nn.py 459.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
110
    'lod_append',
X
Xin Pan 已提交
111 112 113 114 115
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
116
    'roi_align',
X
Xin Pan 已提交
117 118 119 120
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
121
    'resize_nearest',
X
Xin Pan 已提交
122 123 124 125 126 127
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
128
    'selu',
X
Xin Pan 已提交
129 130 131
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
132
    'margin_rank_loss',
X
Xin Pan 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
149
    'unique',
X
Xin Pan 已提交
150 151 152 153 154 155 156 157 158 159
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
160 161
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
162 163 164 165 166 167 168
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
169
    'rank',
Z
zhoukunsheng 已提交
170
    'size',
X
Xin Pan 已提交
171 172 173 174 175 176 177 178 179 180
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
181
    'space_to_depth',
W
whs 已提交
182
    'affine_grid',
S
sneaxiy 已提交
183
    'sequence_reverse',
184
    'affine_channel',
B
barrierye 已提交
185
    'similarity_focus',
M
minqiyang 已提交
186
    'hash',
D
dengkaipeng 已提交
187
    'grid_sampler',
G
gmcather 已提交
188 189
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
190
    'bilinear_tensor_product',
C
chengduo 已提交
191 192
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
193
    'lstm',
S
shippingwang 已提交
194
    'shuffle_channel',
195
    'temporal_shift',
S
sneaxiy 已提交
196
    'py_func',
197
    'psroi_pool',
H
heqiaozhi 已提交
198
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
199
    'huber_loss',
D
dengkaipeng 已提交
200
    'kldiv_loss',
Z
zhaozhehao 已提交
201
    'tree_conv',
C
ceci3 已提交
202
    'npair_loss',
R
ruri 已提交
203
    'pixel_shuffle',
204
    'fsp_matrix',
H
heqiaozhi 已提交
205
    'continuous_value_model',
Z
zhoukunsheng 已提交
206
    'where',
Z
zhoukunsheng 已提交
207
    'sign',
208
    'deformable_conv',
209
    'unfold',
C
cjt222 已提交
210
    'deformable_roi_pooling',
211
    'shard_index',
Y
Yu Yang 已提交
212 213
]

J
jerrywgz 已提交
214 215
kIgnoreIndex = -100

Y
Yu Yang 已提交
216 217 218 219 220 221 222

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
223
       is_test=False,
224
       name=None):
Y
Yu Yang 已提交
225
    """
226
    **Fully Connected Layer**
Y
Yu Yang 已提交
227

228
    This function creates a fully connected layer in the network. It can take
229
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
230
    Args in detail). It creates a variable called weights for each input tensor,
231 232 233 234
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
235
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
236 237
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
238

239
    When the input is single tensor:
C
caoying03 已提交
240

241 242 243 244 245
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
246 247 248

    .. math::

249
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
250 251 252

    In the above equation:

253 254 255
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
256
    * :math:`b`: The bias parameter created by this layer (if needed).
257
    * :math:`Act`: The activation function.
C
caoying03 已提交
258
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
278
    Args:
R
ranqiu 已提交
279 280 281 282 283 284 285 286 287 288
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
289
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
290 291 292 293
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
294 295
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
296
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
297
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
298
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
299

300
    Returns:
F
fengjiayi 已提交
301
        Variable: The transformation result.
302 303

    Raises:
C
caoying03 已提交
304
        ValueError: If rank of the input tensor is less than 2.
305 306 307 308

    Examples:
        .. code-block:: python

309
          import paddle.fluid as fluid
310
          # when input is single tensor
F
fengjiayi 已提交
311
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
312
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
313 314 315 316 317

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
318
    """
C
caoying03 已提交
319
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
320 321 322 323

    dtype = helper.input_dtype()

    mul_results = []
324 325
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
326 327 328
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
329

Y
Yu Yang 已提交
330
        w = helper.create_parameter(
331
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
332
        tmp = helper.create_variable_for_type_inference(dtype)
333
        helper.append_op(
334 335 336
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
337
            outputs={"Out": tmp},
M
mozga-intel 已提交
338 339
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
340 341 342 343
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
344
    else:
X
Xin Pan 已提交
345
        pre_bias = helper.create_variable_for_type_inference(dtype)
346
        helper.append_op(
347 348 349
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
350
            attrs={"use_mkldnn": False})
351 352 353 354
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
355 356


357 358 359
def embedding(input,
              size,
              is_sparse=False,
360
              is_distributed=False,
361 362 363
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
364
    """
365 366
    **Embedding Layer**

367
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
368 369
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
370 371 372

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
373 374

    Args:
375
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
376 377 378 379
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
380
        is_distributed(bool): Whether to run lookup table from remote parameter server.
381 382
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
383
            with zeros whenever lookup encounters it in :attr:`input`. If
384
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
385 386
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
387
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
388

389 390 391
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
392

393 394
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
395

B
bdzhuxiaoning 已提交
396 397 398
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
399 400 401
    """

    helper = LayerHelper('embedding', **locals())
402
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
403 404
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
405 406
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
407
    tmp = helper.create_variable_for_type_inference(dtype)
408 409
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
410 411 412 413 414
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
415 416 417
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
418
            'remote_prefetch': remote_prefetch,
419 420
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
421 422 423
    return tmp


W
wopeizl 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
440

W
wopeizl 已提交
441 442 443 444 445 446 447 448 449 450 451
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
452

W
wopeizl 已提交
453 454 455 456
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
457

W
wopeizl 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
494
            
495
            import paddle.fluid as fluid
496 497
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
498
            hidden_dim = 512
499 500 501 502 503 504
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
505
                                           bias_attr=False)
506

W
wopeizl 已提交
507 508 509
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
510
    assert in_dygraph_mode(
511
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
555 556


P
phlrain 已提交
557 558 559 560 561 562
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
563
         dropout_prob=0.0,
P
phlrain 已提交
564 565 566 567 568
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
569
    """
P
phlrain 已提交
570
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
571 572

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
573
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
574 575
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
576
    .. math::
M
minqiyang 已提交
577 578 579 580 581 582 583

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
584
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
585 586 587 588

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
589 590

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
591 592 593 594 595 596
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
597 598 599
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
600
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
601

M
minqiyang 已提交
602
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
603 604 605 606 607
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
608
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
609 610 611 612 613
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
614
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
615 616
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
617 618
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
619 620 621 622 623 624
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
625
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
626

L
liuhongyu 已提交
627 628

    Returns:
M
minqiyang 已提交
629 630
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
631
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
632

H
haowang101779990 已提交
633 634 635 636
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
637
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
638 639
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
640
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
641 642 643 644


    Examples:
        .. code-block:: python
645
            
646 647 648
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

649 650 651 652 653
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
654 655 656 657 658 659
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
660 661 662 663 664
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
665 666 667 668
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
669 670 671
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
731 732 733 734 735 736 737 738 739 740
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
741
                  proj_activation='tanh',
742
                  dtype='float32',
X
xuezhong 已提交
743 744 745 746 747
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
748 749 750
    """
    **Dynamic LSTMP Layer**

751 752 753 754 755 756
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
757 758 759 760 761

    The formula is as follows:

    .. math::

762
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
763

764
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
765

766
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
767

768
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
769

770
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
771

772
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
773

774
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
775

Y
Yibing Liu 已提交
776 777 778 779 780 781
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
782
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
783
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
784
          bias vector).
Y
Yibing Liu 已提交
785 786 787
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
788
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
789
    * :math:`h`: The hidden state.
790
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
791 792
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
793
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
794
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
795
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
796 797
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
798 799 800 801

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
802

Y
Yibing Liu 已提交
803 804 805 806 807 808 809 810 811 812 813 814
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
815
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
816 817
                               hidden-hidden weight and projection weight.

818 819
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
820 821
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
822 823
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
824
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
825 826 827 828 829

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
830
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
831 832 833 834 835 836
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
837
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
838 839 840
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
841
                                - The shape is (1 x 7D).
C
chengduo 已提交
842 843 844 845 846

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
847 848 849 850 851 852 853 854 855
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
856
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
857 858
                              default "tanh".
        proj_activation(str): The activation for projection output.
859
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
860
                              default "tanh".
Y
Yibing Liu 已提交
861
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
862 863
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
864 865 866 867 868 869 870 871 872 873 874
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
875 876

    Returns:
877 878 879 880
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
881 882

    Examples:
883

Y
Yibing Liu 已提交
884 885
        .. code-block:: python

886
            import paddle.fluid as fluid
887 888 889 890
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
891
            hidden_dim, proj_dim = 512, 256
892
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
893
                                     act=None, bias_attr=None)
894 895 896
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
897 898 899 900
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
901
    """
902

L
lujun 已提交
903
    assert in_dygraph_mode(
904 905
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
906
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
907
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
908
    size = size // 4
Y
Yibing Liu 已提交
909 910 911 912 913 914 915 916 917 918
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
919 920 921 922 923 924
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
940

X
xuezhong 已提交
941 942 943 944 945
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
946 947
    helper.append_op(
        type='lstmp',
948
        inputs=inputs,
Y
Yibing Liu 已提交
949 950 951 952 953 954 955 956 957
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
958 959
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
960 961 962 963 964 965 966 967 968
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
969 970 971 972 973 974 975
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
976 977
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
978
    """
979
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
980

981 982 983
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
984

G
guosheng 已提交
985 986 987 988 989 990 991 992 993
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
994

G
guosheng 已提交
995
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
996

Q
Qiao Longfei 已提交
997 998 999

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1012
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1013 1014
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1015 1016 1017 1018
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1019
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1020 1021

    Args:
1022 1023
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1024
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1025
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1026 1027
            is the hidden size.
        size(int): The dimension of the gru cell.
1028
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1029 1030
            hidden-hidden weight matrix. Note:

1031
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1032
              :math:`D` is the hidden size.
1033
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1034
              The first part are weights of the update gate and reset gate with
1035
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1036
              candidate hidden state with shape :math:`(D \\times D)`.
1037 1038 1039 1040 1041

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1042
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1043
            the bias in the update gate, reset gate and candidate calculations.
1044 1045 1046
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1047 1048
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1049
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1050 1051 1052
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1053
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1054
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1055 1056 1057 1058
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1059 1060

    Returns:
G
guosheng 已提交
1061
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1062
            and sequence length is the same with the input.
1063

G
guosheng 已提交
1064
    Examples:
1065

G
guosheng 已提交
1066 1067
        .. code-block:: python

1068 1069
            import paddle.fluid as fluid

1070 1071 1072 1073
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1074
            hidden_dim = 512
1075
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1076
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1077 1078
    """

L
lujun 已提交
1079
    assert in_dygraph_mode(
1080 1081
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1082 1083 1084 1085 1086 1087 1088
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1089
    batch_size = input.shape[0]
G
guosheng 已提交
1090
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1091
    if h_0:
G
guosheng 已提交
1092
        assert h_0.shape == (
Y
Yancey 已提交
1093 1094 1095
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1096

X
Xin Pan 已提交
1097 1098 1099 1100
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1114 1115
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1116 1117 1118 1119
        })
    return hidden


Y
Yu Yang 已提交
1120 1121 1122
def gru_unit(input,
             hidden,
             size,
1123 1124
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1125
             activation='tanh',
Q
Qiao Longfei 已提交
1126 1127
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1128
    """
1129 1130 1131
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1132
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1133
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1134

1135 1136
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1137

1138
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1139

1140
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1157 1158

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1159 1160 1161
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1162 1163
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1164 1165
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1166 1167 1168
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1169 1170 1171

    Args:
        input (Variable): The fc transformed input value of current step.
1172
        hidden (Variable): The hidden value of gru unit from previous step.
1173
        size (integer): The input dimension value.
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1188
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1189
            the bias in the update gate, reset gate and candidate calculations.
1190 1191 1192
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1193 1194
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1195 1196 1197 1198
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1199

1200 1201 1202 1203 1204 1205
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1230
    size = size // 3
Y
Yu Yang 已提交
1231 1232

    # create weight
1233 1234
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1235

X
Xin Pan 已提交
1236 1237 1238
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1239
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1240
    # create bias
1241
    if helper.bias_attr:
Y
Yu Yang 已提交
1242 1243 1244
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1245
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1246 1247 1248

    helper.append_op(
        type='gru_unit',
1249
        inputs=inputs,
Y
Yu Yang 已提交
1250 1251 1252 1253 1254 1255
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1256 1257
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1258 1259 1260 1261 1262
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1263
@templatedoc()
1264
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1265 1266 1267 1268 1269 1270 1271
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1272
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1273 1274 1275 1276
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1277 1278 1279
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1280

J
JesseyXujin 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1294
    """
Y
Yu Yang 已提交
1295 1296 1297 1298 1299 1300
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1301 1302 1303 1304 1305 1306 1307 1308
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1324 1325 1326 1327
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1328

W
wopeizl 已提交
1329 1330
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1331

W
wopeizl 已提交
1332
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1333

W
wopeizl 已提交
1334
        label(${label_type}): ${label_comment}
1335

W
wopeizl 已提交
1336 1337
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1338

W
wopeizl 已提交
1339 1340
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1341

1342
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1343 1344 1345 1346 1347 1348 1349
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1350 1351 1352 1353 1354 1355 1356 1357
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1358
                "Transition": transition,
W
wopeizl 已提交
1359 1360
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1361

W
wopeizl 已提交
1362
    return viterbi_path
Y
Yu Yang 已提交
1363 1364


Y
yi.wu 已提交
1365
@templatedoc()
F
fengjiayi 已提交
1366
def cos_sim(X, Y):
Y
Yu Yang 已提交
1367
    """
Y
yi.wu 已提交
1368 1369 1370
    ${comment}

    Args:
1371 1372
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1373

Y
yi.wu 已提交
1374
    Returns:
1375
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1376 1377 1378 1379

    Examples:
        .. code-block:: python

1380
            import paddle.fluid as fluid
L
lvmengsi 已提交
1381 1382 1383
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1384
    """
F
fengjiayi 已提交
1385
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1386 1387 1388
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1399 1400 1401 1402 1403
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1404
            dropout_implementation="downgrade_in_infer"):
1405 1406 1407 1408 1409
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1410
    training. The dropout operator randomly sets (according to the given dropout
1411 1412 1413
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1414 1415
    dropout op can be removed from the program to make the program more efficient.

1416
    Args:
1417 1418
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1419 1420 1421 1422 1423 1424 1425
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1426 1427
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1428
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1429 1430

                                           - train: out = input * mask
C
ceci3 已提交
1431
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1432 1433 1434

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1435
                                        2. upscale_in_train, upscale the outcome at training time
1436

H
haowang101779990 已提交
1437 1438
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1439

H
haowang101779990 已提交
1440 1441
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1442

M
minqiyang 已提交
1443

1444
    Returns:
1445
        Variable: A tensor variable is the shape with `x`.
1446 1447

    Examples:
1448

1449 1450
        .. code-block:: python

1451
            import paddle.fluid as fluid
1452 1453
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1454 1455
    """

F
fengjiayi 已提交
1456
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1457 1458
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1459
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1460 1461 1462 1463

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1464 1465 1466 1467 1468
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1469 1470 1471 1472
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1473
            'seed': seed,
P
phlrain 已提交
1474
            'dropout_implementation': dropout_implementation,
1475
        })
1476 1477 1478
    return out


J
jerrywgz 已提交
1479
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1480
    """
Y
Yibing Liu 已提交
1481 1482
    **Cross Entropy Layer**

1483 1484 1485
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1486 1487

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1488
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1489

Y
Yibing Liu 已提交
1490
        .. math::
Y
yangyaming 已提交
1491

Y
Yibing Liu 已提交
1492 1493 1494
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1495 1496
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1497 1498 1499 1500 1501

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1502
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1503 1504 1505
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1506 1507
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1508
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1509

Y
Yibing Liu 已提交
1510
    Args:
Y
yangyaming 已提交
1511
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1512 1513 1514 1515
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1516
        label (Variable|list): the ground truth which is a 2-D tensor. When
1517 1518 1519 1520
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1521
        soft_label (bool): a flag indicating whether to
1522
                                           interpretate the given labels as soft
1523
                                           labels. Default: `False`.
M
minqiyang 已提交
1524 1525
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1526
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1527 1528 1529 1530 1531

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1532 1533 1534
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1535

H
haowang101779990 已提交
1536 1537
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1538

H
haowang101779990 已提交
1539 1540
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1541 1542 1543 1544

    Examples:
        .. code-block:: python

1545
          import paddle.fluid as fluid
L
lvmengsi 已提交
1546 1547 1548 1549
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1550
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1551
    """
S
sneaxiy 已提交
1552 1553
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1554
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1555
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1556 1557 1558 1559 1560
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1561 1562
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1563 1564 1565
    return out


S
sneaxiy 已提交
1566 1567 1568 1569
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1570
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1571 1572 1573 1574 1575
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1576
                 'MatchX': [match_x],
S
sneaxiy 已提交
1577 1578 1579 1580 1581
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1582
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1583
    """
1584
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1585

1586
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1587
    The loss at a given point in one session is defined as:
1588 1589 1590

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1591 1592

    Learn more details by reading paper <session-based recommendations with recurrent
1593
    neural networks>.
F
frankwhzhang 已提交
1594

1595 1596 1597 1598 1599 1600
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1601 1602
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1603 1604 1605
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1606 1607 1608
    Examples:
        .. code-block:: python

1609 1610 1611 1612 1613 1614 1615
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1616
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1617
    """
1618 1619 1620 1621 1622
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1623
                'Label': [label]},
1624 1625 1626 1627
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1628
def square_error_cost(input, label):
Y
Yu Yang 已提交
1629
    """
1630 1631
    **Square error cost layer**

1632 1633
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1634

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1648 1649
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1650 1651

    Returns:
G
guosheng 已提交
1652
        Variable: The tensor variable storing the element-wise squared error \
1653
                  difference of input and label.
1654 1655 1656 1657

    Examples:
        .. code-block:: python

1658
          import paddle.fluid as fluid
R
ruri 已提交
1659 1660 1661
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1662

Y
Yu Yang 已提交
1663
    """
F
fengjiayi 已提交
1664
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1665
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1666 1667 1668 1669 1670 1671
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1672
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1673
    helper.append_op(
F
fengjiayi 已提交
1674 1675
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1676 1677 1678
    return square_out


Y
yi.wu 已提交
1679
@templatedoc()
Y
Yu Yang 已提交
1680 1681 1682 1683
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1684 1685
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1686
    """
Y
yi.wu 已提交
1687
    **Chunk Evaluator**
Y
yi.wu 已提交
1688

Y
yangyaming 已提交
1689
    This function computes and outputs the precision, recall and
1690
    F1-score of chunk detection.
Y
yi.wu 已提交
1691

M
minqiyang 已提交
1692
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1693
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1694 1695 1696 1697 1698 1699

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1700

Y
yi.wu 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1726

Y
yi.wu 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1751
    Args:
1752 1753 1754 1755 1756
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1757
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1758

Y
yi.wu 已提交
1759
    Returns:
Y
update  
yi.wu 已提交
1760 1761 1762
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1763

Y
yi.wu 已提交
1764 1765 1766
    Examples:
        .. code-block:: python

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1778
            crf = fluid.layers.linear_chain_crf(
1779
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1780
            crf_decode = fluid.layers.crf_decoding(
1781
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1782 1783 1784 1785 1786
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1787
    """
F
fengjiayi 已提交
1788
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1789 1790

    # prepare output
X
Xin Pan 已提交
1791 1792 1793 1794 1795 1796 1797
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1798

1799 1800 1801 1802 1803
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1804 1805
    helper.append_op(
        type="chunk_eval",
1806
        inputs=this_input,
Y
Yu Yang 已提交
1807 1808 1809
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1810 1811 1812 1813
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1814 1815 1816
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1817 1818
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1819
        })
1820 1821
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1822 1823


1824
@templatedoc()
Y
Yu Yang 已提交
1825 1826 1827 1828 1829 1830 1831
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1832 1833
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1834 1835 1836 1837
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1838 1839 1840 1841 1842 1843 1844

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1858

1859 1860
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1861 1862 1863 1864 1865 1866 1867

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1868 1869
    """

L
lujun 已提交
1870
    assert not in_dygraph_mode(), (
1871
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1872 1873 1874 1875 1876
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1877
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1888
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1889 1890 1891 1892 1893 1894
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1895
def sequence_softmax(input, use_cudnn=False, name=None):
1896 1897 1898
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1899
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1916 1917 1918
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1919

1920 1921 1922 1923 1924 1925 1926
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

1927
             import paddle.fluid as fluid
1928 1929 1930 1931
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1932
    assert not in_dygraph_mode(), (
1933
        "sequence layer is not supported in dygraph mode yet.")
1934 1935
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1936
    softmax_out = helper.create_variable_for_type_inference(dtype)
1937 1938 1939 1940 1941 1942 1943 1944
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1945
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1946
    """
1947
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1948
    has the same shape as the input.
Q
qiaolongfei 已提交
1949

D
dengkaipeng 已提交
1950
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1951
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1952
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1953 1954 1955
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1956
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1957
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1958 1959 1960 1961 1962 1963 1964

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1965
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1966 1967 1968 1969 1970 1971 1972 1973

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1974 1975
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1976 1977
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1978 1979 1980
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1981 1982 1983 1984 1985 1986 1987 1988

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1989 1990
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1991
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1992
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1993
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1994 1995
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1996 1997

    """
1998 1999
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2000
    softmax_out = helper.create_variable_for_type_inference(dtype)
2001 2002 2003 2004
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2005 2006
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2007 2008 2009
    return softmax_out


Y
Yu Yang 已提交
2010 2011 2012
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2013 2014
           stride=1,
           padding=0,
2015
           dilation=1,
Y
Yu Yang 已提交
2016 2017 2018
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2019
           use_cudnn=True,
2020 2021
           act=None,
           name=None):
Y
Yu Yang 已提交
2022
    """
C
chengduoZH 已提交
2023
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2024 2025
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2026
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2027 2028 2029 2030 2031 2032 2033
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2034 2035 2036
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2037

2038
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2039

C
chengduoZH 已提交
2040 2041
    .. math::

C
refine  
chengduoZH 已提交
2042
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2043

T
tensor-tang 已提交
2044
    Where:
C
chengduoZH 已提交
2045

2046 2047 2048 2049 2050
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2051
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2052 2053 2054

    Example:

2055 2056
        - Input:

W
weixing02 已提交
2057
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2058

W
weixing02 已提交
2059
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2060

2061
        - Output:
T
tensor-tang 已提交
2062

W
weixing02 已提交
2063
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2064

C
chengduoZH 已提交
2065
        Where
2066 2067

        .. math::
C
chengduoZH 已提交
2068

W
weixing02 已提交
2069 2070
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2071 2072

    Args:
2073
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2074
        num_filters(int): The number of filter. It is as same as the output
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2092 2093 2094 2095 2096
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2097
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2098 2099 2100 2101 2102
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2103 2104
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2105 2106
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2107
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2108
            will be named automatically. Default: None
C
chengduoZH 已提交
2109 2110

    Returns:
G
guosheng 已提交
2111
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2112 2113
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2114
    Raises:
2115 2116
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2117

C
chengduoZH 已提交
2118 2119 2120
    Examples:
        .. code-block:: python

2121
          import paddle.fluid as fluid
2122 2123
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2124 2125 2126
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2127
    assert param_attr is not False, "param_attr should not be False here."
2128
    l_type = 'conv2d'
X
xzl 已提交
2129 2130
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2131
        l_type = 'depthwise_conv2d'
2132 2133 2134 2135

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2136 2137 2138 2139 2140
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2141
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2142

C
chengduoZH 已提交
2143 2144 2145
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2146
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2147

C
chengduoZH 已提交
2148 2149
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2150 2151

    input_shape = input.shape
M
minqiyang 已提交
2152
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2153 2154

    def _get_default_param_initializer():
C
chengduo 已提交
2155 2156
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2157 2158 2159 2160 2161 2162 2163 2164
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2165
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2166

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2181
    helper.append_op(
2182
        type=l_type,
Y
Yu Yang 已提交
2183 2184 2185 2186 2187
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2188 2189 2190
        attrs={
            'strides': stride,
            'paddings': padding,
2191
            'dilations': dilation,
C
chengduoZH 已提交
2192
            'groups': groups,
2193
            'use_cudnn': use_cudnn,
2194
            'use_mkldnn': False,
2195
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2196
        })
Y
Yu Yang 已提交
2197 2198 2199 2200 2201 2202

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2220 2221 2222 2223 2224 2225
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2235 2236
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2237 2238 2239
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2240
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2263
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2264 2265
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2266
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2267 2268
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2269
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2270 2271
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2272
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2273 2274
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2275
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2276 2277 2278 2279 2280 2281
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2292 2293
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2294 2295
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2296
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2297
            will be named automatically. Default: None.
C
chengduoZH 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2310
          import paddle.fluid as fluid
2311 2312
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2313 2314 2315
    """

    l_type = 'conv3d'
C
chengduo 已提交
2316
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2327
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2341 2342 2343
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2344 2345 2346 2347 2348 2349 2350 2351
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2352
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2367
            'use_mkldnn': False
C
chengduoZH 已提交
2368 2369
        })

2370
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2371 2372 2373 2374

    return helper.append_activation(pre_act)


2375
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2376
    """
Y
yangyaming 已提交
2377 2378 2379
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2390 2391
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2392 2393 2394 2395
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2396
         out.dim = [4, 1]
2397
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2398 2399

       for different pool_type:
2400 2401 2402
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2403
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2404 2405 2406 2407 2408
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2409

L
Luo Tao 已提交
2410
    Args:
2411
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2412
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2413
            It supports average, sum, sqrt and max.
2414 2415
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2416 2417 2418 2419 2420 2421 2422

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2423

2424 2425
             import paddle.fluid as fluid

Y
yangyaming 已提交
2426
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2427 2428 2429 2430 2431
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2432 2433
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2434
    """
L
lujun 已提交
2435
    assert not in_dygraph_mode(), (
2436
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2437
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2438
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2439 2440
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2441 2442 2443 2444 2445 2446

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2447 2448 2449 2450 2451
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2452

Y
yangyaming 已提交
2453 2454 2455 2456 2457
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2458 2459 2460
    return pool_out


C
add doc  
chengduoZH 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2477 2478 2479 2480
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2481
    """
L
lujun 已提交
2482
    assert not in_dygraph_mode(), (
2483
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2484
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2485
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2486 2487 2488 2489 2490
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2491
def sequence_first_step(input):
L
Luo Tao 已提交
2492
    """
L
Luo Tao 已提交
2493
    This function gets the first step of sequence.
L
Luo Tao 已提交
2494 2495 2496 2497

    .. code-block:: text

       x is a 1-level LoDTensor:
2498
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2499 2500 2501 2502 2503
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2504
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2505
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2506

L
Luo Tao 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2516

2517
             import paddle.fluid as fluid
Y
yangyaming 已提交
2518
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2519 2520 2521
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2522 2523 2524
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2525
def sequence_last_step(input):
L
Luo Tao 已提交
2526
    """
L
Luo Tao 已提交
2527
    This function gets the last step of sequence.
L
Luo Tao 已提交
2528 2529 2530 2531

    .. code-block:: text

       x is a 1-level LoDTensor:
2532
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2533 2534 2535 2536 2537
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2538
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2539
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2540

L
Luo Tao 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2550

2551
             import paddle.fluid as fluid
Y
yangyaming 已提交
2552
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2553 2554 2555
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2556 2557 2558
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2559 2560 2561 2562
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2563
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2564 2565 2566 2567 2568
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2569

H
haowang101779990 已提交
2570
              - Case:
Y
Yibing Liu 已提交
2571

2572
            Given the input Variable **input**:
2573

2574 2575 2576
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2577

2578
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2579

2580
            the output Variable will be
2581

2582 2583 2584
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2585

M
minqiyang 已提交
2586
    Note:
H
haowang101779990 已提交
2587
          The first dimension size of **input**, **offset** and **length**
2588
          should be equal. The **offset** should start from 0.
2589

Y
Yibing Liu 已提交
2590
    Args:
2591
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2592
                         sequences.
Y
Yibing Liu 已提交
2593 2594 2595 2596 2597 2598
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2599
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2600 2601 2602 2603 2604

    Examples:

        .. code-block:: python

2605
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2606 2607 2608 2609 2610
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2611
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2612 2613
                                                   length=length)
    """
L
lujun 已提交
2614
    assert not in_dygraph_mode(), (
2615
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2616 2617
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2618
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2633
@templatedoc()
Y
Yu Yang 已提交
2634
def pool2d(input,
C
chengduoZH 已提交
2635 2636
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2637 2638
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2639
           global_pooling=False,
C
chengduoZH 已提交
2640
           use_cudnn=True,
2641
           ceil_mode=False,
2642 2643
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2644
    """
F
fengjiayi 已提交
2645
    ${comment}
2646 2647

    Args:
2648 2649 2650
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2651
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2652
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2653 2654
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2655
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2656 2657 2658 2659 2660 2661
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2662 2663 2664
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2665
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2666
                        layer will be named automatically.
2667
        exclusive (bool): Whether to exclude padding points in average pooling
2668
                          mode, default is true
F
fengjiayi 已提交
2669

2670
    Returns:
F
fengjiayi 已提交
2671
        Variable: The pooling result.
F
fengjiayi 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2682
          import paddle.fluid as fluid
F
fengjiayi 已提交
2683 2684
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2685
          pool2d = fluid.layers.pool2d(
2686 2687 2688 2689
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2690
                            global_pooling=False)
Y
Yu Yang 已提交
2691 2692 2693 2694 2695
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2696

C
chengduoZH 已提交
2697 2698 2699 2700 2701
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2702 2703 2704 2705
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2706 2707
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2708

C
Add doc  
chengduoZH 已提交
2709
    l_type = 'pool2d'
2710 2711

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2712
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2713
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2714 2715

    helper.append_op(
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2727 2728
            "use_mkldnn": False,
            "exclusive": exclusive,
2729 2730 2731 2732 2733
        })

    return pool_out


D
dengkaipeng 已提交
2734
@templatedoc()
2735 2736 2737 2738 2739 2740 2741 2742
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2743 2744
           name=None,
           exclusive=True):
2745
    """
2746
    ${comment}
2747 2748

    Args:
D
dengkaipeng 已提交
2749 2750 2751 2752 2753
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2754 2755 2756 2757 2758
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2759 2760 2761 2762 2763 2764 2765
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2766
        exclusive (bool): Whether to exclude padding points in average pooling
2767
                          mode, default is true
2768

2769
    Returns:
2770
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2771 2772 2773 2774 2775

    Examples:

        .. code-block:: python

2776
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2777 2778 2779 2780 2781 2782 2783 2784
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2785 2786 2787 2788 2789
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2790

C
chengduoZH 已提交
2791 2792 2793 2794 2795
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2796 2797 2798
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2799

C
chengduoZH 已提交
2800 2801
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2802

2803 2804
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2805
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2806
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2807 2808

    helper.append_op(
2809
        type=l_type,
Y
Yu Yang 已提交
2810 2811 2812 2813 2814 2815 2816
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2817
            "paddings": pool_padding,
2818
            "use_cudnn": use_cudnn,
2819
            "ceil_mode": ceil_mode,
2820 2821
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2822 2823 2824 2825 2826
        })

    return pool_out


2827 2828 2829 2830 2831 2832 2833
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2834 2835 2836 2837 2838 2839 2840
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2855 2856 2857 2858 2859 2860 2861 2862 2863

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2864 2865
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2880
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2881
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2882
          # of input data into m * n grids averagely and performs poolings in each
2883 2884
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2885
          #
2886 2887 2888 2889 2890 2891 2892 2893
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2894
          import paddle.fluid as fluid
2895 2896
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2897
          pool_out = fluid.layers.adaptive_pool2d(
2898 2899
                            input=data,
                            pool_size=[3, 3],
2900
                            pool_type='avg')
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2911
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2937
    return (pool_out, mask) if require_index else pool_out
2938 2939 2940 2941 2942 2943 2944 2945 2946


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2947 2948 2949 2950 2951 2952 2953
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2972 2973 2974

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2975 2976 2977
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2978
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2979
            it must contain three integers, (Depth, Height, Width).
2980
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2981 2982
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2997 2998
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2999
          # of input data into l * m * n grids averagely and performs poolings in each
3000 3001
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3002
          #
3003 3004 3005 3006 3007 3008 3009 3010 3011
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3012
          #                 output[:, :, i, j, k] =
3013 3014
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3015 3016 3017

          import paddle.fluid as fluid

3018
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3019 3020
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3021
                            input=data,
D
dengkaipeng 已提交
3022
                            pool_size=[3, 3, 3],
3023
                            pool_type='avg')
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3034
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3060
    return (pool_out, mask) if require_index else pool_out
3061 3062


Y
Yu Yang 已提交
3063 3064 3065 3066 3067 3068 3069
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3070
               data_layout='NCHW',
Y
Yang Yang 已提交
3071
               in_place=False,
3072 3073
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3074
               moving_variance_name=None,
3075
               do_model_average_for_mean_and_var=False,
3076 3077
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3078
    """
Q
qiaolongfei 已提交
3079 3080 3081 3082
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3083

Q
qiaolongfei 已提交
3084
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3085

Q
qiaolongfei 已提交
3086 3087
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3088 3089 3090
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3117
    Args:
Q
qingqing01 已提交
3118
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3119
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3129 3130
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3131 3132 3133
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3134 3135
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3136 3137 3138
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3139
        data_layout(string, default NCHW): NCHW|NHWC
3140
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3141 3142
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3143 3144 3145
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3146
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3147 3148
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3149
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3150
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3151 3152 3153 3154 3155
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3156 3157

    Returns:
Q
qiaolongfei 已提交
3158
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3159 3160 3161 3162 3163

    Examples:

        .. code-block:: python

3164
            import paddle.fluid as fluid
L
lvmengsi 已提交
3165
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3166 3167
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3168
    """
C
chengduo 已提交
3169
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3170 3171 3172
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3173 3174 3175 3176
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3195
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3196

3197 3198
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3199 3200 3201
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3202
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3203
        shape=param_shape,
W
Wu Yi 已提交
3204
        dtype=dtype)
3205 3206 3207 3208 3209 3210
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3211
            trainable=False,
W
wanghaoshuang 已提交
3212
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3213
        shape=param_shape,
W
Wu Yi 已提交
3214
        dtype=dtype)
3215
    variance.stop_gradient = True
Y
Yu Yang 已提交
3216 3217 3218 3219 3220 3221

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3222 3223 3224 3225
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3226

X
Xin Pan 已提交
3227 3228
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3246 3247 3248 3249
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3250
            "data_layout": data_layout,
X
Xin Pan 已提交
3251
            "use_mkldnn": False,
3252 3253
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3254
        })
Y
Yu Yang 已提交
3255 3256 3257 3258

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3310 3311
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3312

3313 3314
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3380
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3381 3382 3383 3384

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3385
@templatedoc()
G
guosheng 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3396
    ${comment}
G
guosheng 已提交
3397 3398 3399

    The formula is as follows:

Y
yuyang18 已提交
3400
    ..  math::
G
guosheng 已提交
3401 3402 3403 3404 3405 3406 3407

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3408 3409 3410 3411 3412 3413 3414 3415
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3416

G
guosheng 已提交
3417 3418
    Args:
        input(Variable): The input tensor variable.
3419
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3420
            normalization. Default True.
3421
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3422 3423
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3424
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3425
            Default 1.
3426
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3427
            division by zero. Default 1e-05.
G
guosheng 已提交
3428
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3429 3430
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3431 3432
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3433
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3434 3435
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3436
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3437
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3438
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3439 3440 3441
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3442 3443

    Returns:
Y
yuyang18 已提交
3444
        ${y_comment}
G
guosheng 已提交
3445 3446 3447

    Examples:

3448
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3449 3450 3451
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3452
    """
L
lujun 已提交
3453
    assert in_dygraph_mode(
L
lujun 已提交
3454
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3469
    if shift:
G
guosheng 已提交
3470 3471 3472 3473 3474 3475
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3476 3477 3478 3479 3480
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3508
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3530
        >>> import paddle.fluid as fluid
D
Dun 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3557 3558
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3576
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3577 3578 3579
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3580
    This layer calculates the spectral normalization value of weight parameters of
3581
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3582
    Parameters. Calculations are showed as follows.
3583

D
dengkaipeng 已提交
3584 3585 3586
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3587
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3600
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3601 3602 3603 3604

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3605

D
dengkaipeng 已提交
3606
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3607 3608
                

D
dengkaipeng 已提交
3609 3610 3611 3612
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3613 3614 3615
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3616 3617 3618
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3619
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3620 3621

    Examples:
K
Kaipeng Deng 已提交
3622
       .. code-block:: python
D
dengkaipeng 已提交
3623

K
Kaipeng Deng 已提交
3624 3625 3626 3627 3628
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3629 3630
    """
    helper = LayerHelper('spectral_norm', **locals())
3631
    dtype = weight.dtype
D
dengkaipeng 已提交
3632 3633 3634

    # create intput and parameters
    inputs = {'Weight': weight}
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3653 3654

    # create output
3655
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3656 3657

    helper.append_op(
3658
        type="spectral_norm",
D
Dun 已提交
3659
        inputs=inputs,
3660 3661 3662 3663 3664 3665
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3666

3667
    return out
D
Dun 已提交
3668 3669


Y
Yu Yang 已提交
3670 3671 3672 3673
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3674 3675 3676
                     padding=0,
                     stride=1,
                     dilation=1,
3677
                     groups=None,
C
caoying03 已提交
3678
                     param_attr=None,
3679
                     bias_attr=None,
C
chengduoZH 已提交
3680
                     use_cudnn=True,
3681
                     act=None,
C
caoying03 已提交
3682
                     name=None):
Y
Yu Yang 已提交
3683
    """
3684 3685 3686 3687 3688 3689 3690 3691
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3692
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3693
    `therein <https://ieeexplore.ieee.org/document/5539957>`_.
3694 3695 3696
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3697 3698 3699 3700 3701

    For each input :math:`X`, the equation is:

    .. math::

3702
        Out = \sigma (W \\ast X + b)
3703

3704
    Where:
3705 3706 3707

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3708 3709 3710 3711
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3712

3713 3714 3715 3716
    Example:

        - Input:

3717
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3718

3719
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3720 3721 3722

        - Output:

3723
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3724 3725

        Where
Y
Yu Yang 已提交
3726

3727 3728
        .. math::

3729 3730
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3740 3741

    Args:
3742 3743 3744 3745
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3746 3747 3748 3749
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3778
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3779 3780 3781
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3782
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3783
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3784 3785

    Returns:
3786
        Variable: The tensor variable storing the convolution transpose result.
3787 3788

    Raises:
3789 3790
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3791 3792 3793 3794

    Examples:
       .. code-block:: python

3795
          import paddle.fluid as fluid
3796 3797
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3798
    """
C
chengduo 已提交
3799
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3800 3801 3802 3803 3804 3805 3806 3807
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3808 3809 3810
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3811 3812 3813
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3814

C
chengduoZH 已提交
3815 3816
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3817

Y
Yu Yang 已提交
3818 3819 3820 3821 3822
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3823

Y
Yu Yang 已提交
3824 3825
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3826

C
chengduoZH 已提交
3827
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3828
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3829
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3830
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3831
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3832 3833 3834
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3835

3836 3837 3838 3839 3840 3841 3842
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3843
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3844
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3845

Y
Yu Yang 已提交
3846 3847 3848
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3849
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3850
    helper.append_op(
3851
        type=op_type,
Y
Yu Yang 已提交
3852 3853
        inputs={'Input': [input],
                'Filter': [img_filter]},
3854
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3855
        attrs={
3856
            'output_size': output_size,
3857 3858 3859 3860 3861
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3862 3863
        })

3864 3865 3866
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3867 3868


3869
def conv3d_transpose(input,
Y
Yu Yang 已提交
3870 3871 3872
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3873 3874 3875
                     padding=0,
                     stride=1,
                     dilation=1,
3876
                     groups=None,
C
caoying03 已提交
3877
                     param_attr=None,
3878
                     bias_attr=None,
C
chengduoZH 已提交
3879
                     use_cudnn=True,
3880
                     act=None,
C
caoying03 已提交
3881
                     name=None):
Y
Yu Yang 已提交
3882
    """
3883
    **Convlution3D transpose layer**
3884

3885
    The convolution3D transpose layer calculates the output based on the input,
3886
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3887 3888 3889 3890 3891
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3892
    explanation and references `therein <https://ieeexplore.ieee.org/document/5539957>`_.
3893 3894 3895
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3896 3897 3898 3899 3900

    For each input :math:`X`, the equation is:

    .. math::

3901
        Out = \sigma (W \\ast X + b)
3902 3903 3904

    In the above equation:

3905 3906
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3907 3908 3909 3910
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3911

3912 3913 3914 3915
    Example:

        - Input:

3916
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3917

3918
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3919 3920 3921

        - Output:

3922
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3923 3924

        Where
Y
Yu Yang 已提交
3925

3926 3927
        .. math::

3928 3929 3930
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3931 3932

    Args:
3933
        input(Variable): The input image with [N, C, D, H, W] format.
3934 3935 3936
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3937
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3938 3939
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3940
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3941 3942 3943
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3944 3945
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3946
        stride(int|tuple): The stride size. If stride is a tuple, it must
3947 3948
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3949
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3950 3951 3952
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3953 3954 3955 3956 3957
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3967 3968
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3969 3970
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3971 3972
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3973 3974

    Returns:
3975
        Variable: The tensor variable storing the convolution transpose result.
3976 3977

    Raises:
3978 3979
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3980 3981 3982 3983

    Examples:
       .. code-block:: python

3984
          import paddle.fluid as fluid
3985 3986
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3987
    """
C
chengduo 已提交
3988
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3989 3990
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3991
    if not isinstance(input, Variable):
3992
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3993 3994
    input_channel = input.shape[1]

3995 3996 3997
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3998

C
chengduoZH 已提交
3999 4000 4001
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4002 4003 4004 4005 4006 4007
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4008 4009 4010
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4011

4012
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4013
                         padding[0] - 1) // dilation[0] + 1
4014
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4015
                         padding[1] - 1) // dilation[1] + 1
4016
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4017
                         padding[2] - 1) // dilation[2] + 1
4018
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4019
    else:
4020 4021
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4022

4023
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4024
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4025 4026 4027
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4028
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4029
    helper.append_op(
4030
        type=l_type,
Y
Yu Yang 已提交
4031 4032
        inputs={'Input': [input],
                'Filter': [img_filter]},
4033
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4034 4035 4036 4037
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4038
            'groups': groups,
C
chengduoZH 已提交
4039 4040
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4041

4042 4043
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4044
    return out
Y
yangyaming 已提交
4045 4046


Y
yangyaming 已提交
4047
def sequence_expand(x, y, ref_level=-1, name=None):
4048
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4049 4050 4051 4052
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4053 4054 4055 4056 4057

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4058
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4059
                x.data = [[a], [b], [c], [d]]
4060 4061 4062
                x.dims = [4, 1]

            y is a LoDTensor:
4063 4064
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4065

Y
yangyaming 已提交
4066
            ref_level: 0
4067

Y
yangyaming 已提交
4068
            then output is a 1-level LoDTensor:
4069
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4070
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4071 4072 4073 4074
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4075
                x.data = [[a], [b], [c]]
4076 4077 4078
                x.dims = [3, 1]

            y is a LoDTensor:
4079
                y.lod = [[2, 0, 3]]
4080

Y
yangyaming 已提交
4081
            ref_level: -1
4082

Y
yangyaming 已提交
4083 4084 4085
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4086 4087 4088
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4089 4090
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4091
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4092
                        will be named automatically.
4093 4094 4095 4096 4097 4098

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4099
	
4100
            import paddle.fluid as fluid
4101
            import paddle.fluid.layers as layers
4102 4103 4104
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4105
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4106
    """
L
lujun 已提交
4107
    assert not in_dygraph_mode(), (
4108
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4109
    helper = LayerHelper('sequence_expand', input=x, **locals())
4110
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4111
    tmp = helper.create_variable_for_type_inference(dtype)
4112
    helper.append_op(
Y
yangyaming 已提交
4113 4114 4115 4116 4117
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4118
    return tmp
4119 4120


C
chengduo 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4169 4170
            
            import paddle.fluid as fluid
4171
            import paddle.fluid.layers as layers
C
chengduo 已提交
4172 4173 4174 4175 4176 4177

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4178
    assert not in_dygraph_mode(), (
4179
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4180 4181
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4182
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4183 4184 4185 4186 4187 4188 4189 4190
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4191
@templatedoc()
4192
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4193 4194 4195 4196 4197
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4198 4199 4200
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4201
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4202 4203 4204 4205
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4206 4207 4208
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4209

F
fengjiayi 已提交
4210
    Returns:
M
minqiyang 已提交
4211
        Variable: The padded sequence batch and the original lengths before
4212
                  padding. All sequences has the same length.
M
minqiyang 已提交
4213

F
fengjiayi 已提交
4214 4215 4216
    Examples:
        .. code-block:: python

4217
            import paddle.fluid as fluid
F
fengjiayi 已提交
4218 4219 4220 4221
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4222
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4223
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4224 4225 4226
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4227
    assert not in_dygraph_mode(), (
4228
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4229 4230
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4231 4232
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4233 4234 4235 4236

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4237 4238 4239 4240 4241 4242
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4243 4244
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4245
        attrs={'padded_length': maxlen})
4246
    return out, length
F
fengjiayi 已提交
4247 4248


4249
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4250
    """
4251
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4252

4253 4254
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4264 4265 4266
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4267
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4268 4269 4270 4271 4272 4273

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4274
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4275 4276 4277 4278 4279 4280

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4281 4282
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4283 4284 4285 4286 4287 4288 4289

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4290
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4291 4292 4293 4294 4295
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4296
    assert not in_dygraph_mode(), (
4297
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4298 4299
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4300
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4312 4313 4314 4315 4316 4317 4318
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4319
                is_accumulated=True,
4320 4321
                name=None,
                return_parent_idx=False):
4322
    """
4323 4324
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4325 4326 4327

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4328 4329

    This layer does the search in beams for one time step. Specifically, it
4330 4331 4332
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4344 4345 4346 4347

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4348

4349
    Args:
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4373 4374
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4375 4376
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4377 4378 4379 4380
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4381

4382
    Returns:
4383 4384 4385 4386
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4387 4388 4389 4390

    Examples:
        .. code-block:: python

4391 4392
            import paddle.fluid as fluid

4393 4394 4395
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4408
                axis=0)
4409
            selected_ids, selected_scores = fluid.layers.beam_search(
4410 4411 4412 4413 4414 4415 4416
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4417
    helper = LayerHelper('beam_search', **locals())
4418 4419 4420 4421 4422 4423
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4424

X
Xin Pan 已提交
4425 4426 4427
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4428 4429 4430 4431 4432
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4433 4434 4435

    helper.append_op(
        type='beam_search',
4436
        inputs=inputs,
Q
Qiao Longfei 已提交
4437 4438 4439
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4440
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4441 4442 4443 4444 4445 4446
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4447
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4448
        })
4449 4450 4451 4452
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4453 4454


4455 4456 4457 4458 4459 4460 4461
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4462

4463 4464 4465 4466 4467 4468 4469 4470 4471
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4472

4473 4474 4475 4476 4477 4478
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4479

4480 4481
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4482

4483 4484
            import paddle.fluid as fluid

4485 4486
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4487 4488 4489
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4490 4491 4492
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4493 4494
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4510 4511 4512 4513
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4514
              param_attr=None,
C
caoying03 已提交
4515 4516
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4517 4518 4519 4520
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4521
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4522

4523
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4524

4525
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4526

4527
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4528 4529 4530

            h_t & = o_t tanh(c_t)

4531 4532 4533 4534 4535 4536
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4537 4538 4539

        .. math::

4540
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4541 4542 4543 4544 4545 4546 4547 4548

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4549
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4550 4551

    Args:
Y
yangyaming 已提交
4552 4553 4554 4555 4556 4557
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4558
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4571 4572
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4573 4574

    Returns:
Y
yangyaming 已提交
4575
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4576 4577

    Raises:
4578 4579 4580 4581
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4582 4583 4584 4585 4586

    Examples:

        .. code-block:: python

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4614
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4615 4616 4617 4618
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4619 4620
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4621 4622 4623
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4624
    size = cell_t_prev.shape[1]
4625
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4626 4627
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4628
                param_attr=param_attr,
4629
                bias_attr=bias_attr)
Y
yangyaming 已提交
4630
    dtype = x_t.dtype
X
Xin Pan 已提交
4631 4632
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4642
    return h, c
G
guosheng 已提交
4643 4644


C
caoying03 已提交
4645
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4646
    """
Y
yangyaming 已提交
4647
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4648 4649 4650

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4651
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4652 4653
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4654 4655
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4656
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4657
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4658
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4659 4660
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4661 4662 4663

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4664

G
guosheng 已提交
4665 4666 4667
    Examples:
        .. code-block:: python

4668
            import paddle.fluid as fluid
G
guosheng 已提交
4669 4670 4671
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4672
            # Each example is followed by the corresponding output tensor.
4673
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4674 4675 4676 4677
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4678

4679
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4680 4681
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4682
            # Each example is followed by the corresponding output tensor.
4683 4684 4685
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4686

G
guosheng 已提交
4687 4688
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4689
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4690 4691
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4692 4693 4694 4695 4696
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4697
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4698 4699 4700 4701
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4702 4703


C
caoying03 已提交
4704
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4705
    """
Y
Yibing Liu 已提交
4706
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4707 4708 4709

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4710 4711 4712
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4713
            must be in the range :math:`[-rank(input), rank(input))`. If
4714
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4715
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4716 4717
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4718
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4719
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4720
                       will be named automatically.
G
guosheng 已提交
4721 4722

    Returns:
Y
Yibing Liu 已提交
4723
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4724

G
guosheng 已提交
4725 4726 4727
    Examples:
        .. code-block:: python

4728
            import paddle.fluid as fluid
G
guosheng 已提交
4729 4730 4731 4732
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4733
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4734 4735 4736
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4737
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4738

4739
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4740 4741 4742
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4743 4744 4745
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4746 4747
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4748
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4749 4750
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4751 4752 4753 4754 4755
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4756
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4757 4758 4759 4760
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4761 4762


C
caoying03 已提交
4763
def reduce_max(input, dim=None, keep_dim=False, name=None):
4764
    """
Y
yangyaming 已提交
4765
    Computes the maximum of tensor elements over the given dimension.
4766 4767 4768

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4769
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4770 4771 4772
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4773
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4774 4775
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4776
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4777 4778
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4779 4780 4781

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4782

4783 4784 4785
    Examples:
        .. code-block:: python

4786
            import paddle.fluid as fluid
4787 4788 4789 4790
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4791
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4792 4793 4794 4795
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4796

4797
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4798 4799 4800
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4801 4802 4803
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4804 4805
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4806
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4807 4808
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4809 4810 4811 4812 4813
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4814
            'dim': dim if dim != None else [0],
4815 4816 4817 4818 4819 4820
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4821
def reduce_min(input, dim=None, keep_dim=False, name=None):
4822
    """
Y
yangyaming 已提交
4823
    Computes the minimum of tensor elements over the given dimension.
4824 4825 4826

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4827
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4828 4829 4830
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4831
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4832 4833
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4834
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4835 4836
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4837 4838 4839

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4840

4841 4842 4843
    Examples:
        .. code-block:: python

4844
            import paddle.fluid as fluid
4845 4846 4847 4848
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4849
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4850 4851 4852 4853
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4854

4855
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4856 4857 4858
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4859 4860 4861
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4862 4863
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4864
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4865 4866
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4867 4868 4869 4870 4871
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4872
            'dim': dim if dim != None else [0],
4873 4874 4875 4876
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4877 4878


4879 4880 4881 4882 4883 4884
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4885
        dim (list|int|None): The dimensions along which the product is performed. If
4886 4887
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4888 4889
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4890 4891 4892
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4893
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4894
            layer will be named automatically.
4895 4896 4897 4898 4899 4900 4901

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4902
            import paddle.fluid as fluid
4903 4904 4905 4906
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4907
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4908 4909 4910
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4911
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4912
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4913

4914
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4915 4916 4917
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4918 4919 4920
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4921 4922
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4923
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4924 4925
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4926 4927 4928 4929 4930
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4931
            'dim': dim if dim != None else [0],
4932 4933 4934 4935 4936 4937
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4938 4939
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4940
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4960
        
4961
            import paddle.fluid as fluid
4962 4963 4964
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4965 4966 4967
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4968 4969 4970 4971 4972 4973 4974
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4995
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5015

5016
            import paddle.fluid as fluid
5017 5018 5019
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5020 5021 5022
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5023 5024 5025 5026 5027 5028 5029
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5044 5045 5046 5047 5048
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5049
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5050
    """
C
caoying03 已提交
5051
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5052 5053 5054

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5055 5056 5057 5058 5059
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5060
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5061
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5062
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5063 5064
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5065 5066

    Returns:
D
dzhwinter 已提交
5067
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5068 5069 5070 5071

    Examples:
        .. code-block:: python

5072 5073 5074 5075 5076 5077
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5078
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5079 5080 5081 5082 5083 5084 5085 5086
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5087 5088 5089 5090 5091 5092 5093 5094
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5095
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5096 5097 5098
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5099
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5122
    .. math::
5123 5124

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5125 5126 5127 5128 5129

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5130
        x(Variable|list): The input tensor to l2_normalize layer.
5131
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5132 5133
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5134
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5135
            the default value is 1e-12.
5136
        name(str|None): A name for this layer(optional). If set None, the layer \
5137
            will be named automatically.
C
caoying03 已提交
5138 5139

    Returns:
5140
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5141 5142

    Examples:
5143

C
caoying03 已提交
5144 5145
        .. code-block:: python

5146
            import paddle.fluid as fluid
5147 5148 5149 5150
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5151 5152
    """

F
fengjiayi 已提交
5153 5154
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5155 5156
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5157 5158
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5159
    helper.append_op(
5160 5161 5162 5163
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5164
        attrs={
5165 5166
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5167 5168
        })
    return out
5169 5170


S
sneaxiy 已提交
5171
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5172
    """
Y
ying 已提交
5173 5174 5175 5176
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5177

C
chengduoZH 已提交
5178
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5179
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5180

5181 5182 5183 5184 5185
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5186
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5187

C
chengduoZH 已提交
5188
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5189
      performs in the following way.
G
guosheng 已提交
5190

5191
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5192
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5193
        last two dimensions and a batched matrix multiply supporting broadcast
5194
        applies on the two tensors.
G
guosheng 已提交
5195

Y
ying 已提交
5196 5197
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5198
    removed after matrix multiplication.
G
guosheng 已提交
5199 5200 5201

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5202 5203 5204
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5205
        alpha (float): The scale of output. Default 1.0.
5206
        name(str|None): A name for this layer(optional). If set None, the layer
5207
            will be named automatically.
G
guosheng 已提交
5208 5209

    Returns:
石晓伟 已提交
5210
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5211

G
guosheng 已提交
5212 5213 5214
    Examples:
        .. code-block:: python

5215
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5216
            # x: [B, ..., M, K], y: [B, ..., K, N]
5217
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5218

5219
            # x: [B, M, K], y: [B, K, N]
5220
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5221

5222
            # x: [B, M, K], y: [K, N]
5223
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5224

5225
            # x: [M, K], y: [K, N]
5226
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5227 5228

            # x: [B, M, K], y: [K]
5229
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5230

5231
            # x: [K], y: [K]
5232
            # fluid.layers.matmul(x, y)  # out: [1]
5233

Y
ying 已提交
5234
            # x: [M], y: [N]
5235 5236
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5237
            import paddle.fluid as fluid
5238 5239 5240
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5241
    """
Y
ying 已提交
5242 5243 5244 5245 5246 5247 5248

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5249
            y_shape = y_shape + [1]
Y
ying 已提交
5250 5251 5252 5253 5254 5255 5256

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5257 5258
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5259

C
chengduo 已提交
5260
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5261
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5262 5263 5264
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5265
                if dim_x != y_shape[i]:
C
chengduo 已提交
5266 5267
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5268 5269 5270

    __check_input(x, y)

5271
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5272
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5273
    helper.append_op(
5274 5275 5276 5277
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5278 5279 5280
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5281
            'alpha': float(alpha),
S
sneaxiy 已提交
5282
        })
5283
    return out
5284 5285


5286
def topk(input, k, name=None):
Q
qingqing01 已提交
5287 5288 5289 5290
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5291
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5292 5293 5294 5295 5296 5297
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5319 5320 5321
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5322
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5323
                 of input.
5324
        name(str|None): A name for this layer(optional). If set None, the layer
5325
                       will be named automatically.
F
fengjiayi 已提交
5326
                       Default: None
Q
qingqing01 已提交
5327 5328

    Returns:
5329 5330 5331
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5332
        within the last dimension of input.
Q
qingqing01 已提交
5333

F
fengjiayi 已提交
5334 5335
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5336 5337 5338 5339

    Examples:
        .. code-block:: python

5340
            import paddle.fluid as fluid
5341 5342
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5343 5344 5345
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5346 5347
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5348 5349 5350 5351 5352 5353
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5354 5355
    helper.append_op(
        type="top_k",
W
whs 已提交
5356
        inputs=inputs,
Q
qingqing01 已提交
5357 5358
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5359
        attrs=attrs)
Q
qingqing01 已提交
5360 5361 5362 5363 5364
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5365 5366 5367 5368 5369 5370
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5371
    """
R
ruri 已提交
5372
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5373 5374 5375 5376 5377 5378 5379 5380
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5381

Y
ying 已提交
5382
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5383

5384
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5385
    the total number denoted by `batch_size`, and the separation is specified
5386 5387
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5388

5389
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5390 5391
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5392

5393
    Args:
5394 5395
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5396
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5397
                          the length of reference string.
5398
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5399
                                     calculating edit distance.
5400 5401
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5402

W
wanghaoshuang 已提交
5403
    Returns:
5404 5405 5406
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5407 5408 5409

    Examples:
        .. code-block:: python
5410
            
R
ruri 已提交
5411 5412
            import paddle.fluid as fluid

5413 5414 5415 5416
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5417

5418 5419 5420 5421 5422 5423 5424 5425
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5426

5427
    """
5428
    helper = LayerHelper("edit_distance", **locals())
5429

5430
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5431
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5432 5433
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5434 5435 5436 5437 5438

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5439
            attrs={"tokens": ignored_tokens})
5440 5441 5442 5443 5444
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5445
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5446
            attrs={"tokens": ignored_tokens})
5447 5448
        label = erased_label

5449 5450 5451 5452 5453
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5454
    # edit distance op
X
Xin Pan 已提交
5455 5456
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5457 5458
    helper.append_op(
        type="edit_distance",
5459
        inputs=this_inputs,
5460 5461
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5462 5463
        attrs={"normalized": normalized})

5464
    return edit_distance_out, sequence_num
5465 5466 5467 5468 5469


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5470

Y
ying 已提交
5471 5472 5473 5474
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5492
        input.lod = [[4, 4]]
M
minqiyang 已提交
5493

W
whs 已提交
5494
        Computation:
5495

W
whs 已提交
5496 5497 5498 5499 5500 5501
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5502 5503 5504 5505 5506

        output.data = [[2],
                       [1],
                       [3]]

5507
        output.lod = [[2, 1]]
5508

W
whs 已提交
5509

5510 5511
    Args:

Y
ying 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5521
        name (str): The name of this layer. It is optional.
5522 5523

    Returns:
H
haowang101779990 已提交
5524 5525 5526
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5527
                  LoD [[]] and dims [1, 1].
5528 5529 5530 5531

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5532
            import paddle.fluid as fluid
5533 5534
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5535
    """
5536
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5537
    _, topk_indices = topk(input, k=1)
5538 5539

    # ctc align op
X
Xin Pan 已提交
5540
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5541 5542 5543
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5544
        outputs={"Output": [ctc_out]},
5545 5546
        attrs={"merge_repeated": True,
               "blank": blank})
5547
    return ctc_out
5548 5549


W
Wu Yi 已提交
5550
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5551
    """
5552 5553
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5554
    to compute Connectionist Temporal Classification (CTC) loss.
5555 5556
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5557 5558 5559
    input tensor.

    Args:
5560
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5561 5562 5563 5564
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5565
       label (Variable): The ground truth of variable-length sequence,
5566 5567 5568
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5569 5570
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5571 5572 5573
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5574
         follewed by a mean_op.
W
Wu Yi 已提交
5575
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5576 5577

    Returns:
5578 5579
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5580 5581

    Examples:
5582

W
wanghaoshuang 已提交
5583
        .. code-block:: python
5584

B
Bai Yifan 已提交
5585 5586 5587 5588 5589
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5590
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5591 5592

    """
F
fengjiayi 已提交
5593
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5594 5595
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5596 5597 5598 5599 5600 5601
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5602 5603 5604 5605 5606
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5607
    return loss_out
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5623 5624 5625
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5626 5627 5628 5629 5630
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5631

5632
            out.lod  = [[0, 1, 3]]
5633 5634 5635 5636

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5637 5638 5639 5640 5641 5642 5643
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5644 5645 5646

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5647 5648

    Returns:
5649

5650 5651 5652 5653 5654
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5655 5656 5657
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5658
    """
L
lujun 已提交
5659
    assert not in_dygraph_mode(), (
5660
        "sequence layer is not supported in dygraph mode yet.")
5661
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5662
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5663 5664 5665 5666 5667 5668
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5669 5670


5671 5672 5673 5674
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5675 5676 5677 5678 5679 5680
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5681
        num_neg_samples=None,
5682 5683 5684
        name=None,
        sampler="uniform",
        custom_dist=None,
5685 5686
        seed=0,
        is_sparse=False):
5687 5688 5689 5690 5691 5692 5693
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5694 5695
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5696
            sample is 1.0.
C
chengduo 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5706
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5707 5708
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5709 5710 5711
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5712
        custom_dist (float[]): A float[] with size=num_total_classes.
5713 5714 5715 5716
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5717
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5718

5719
    Returns:
Y
Yibing Liu 已提交
5720 5721 5722 5723 5724 5725
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


5726 5727
	    import paddle.fluid as fluid
        import numpy as np
Y
Yibing Liu 已提交
5728

Y
Yibing Liu 已提交
5729 5730 5731 5732 5733 5734 5735 5736
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5737

Y
Yibing Liu 已提交
5738 5739 5740 5741
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5742

Y
Yibing Liu 已提交
5743 5744 5745
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5746

Y
Yibing Liu 已提交
5747 5748 5749 5750
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5751

Y
Yibing Liu 已提交
5752 5753 5754 5755 5756 5757 5758 5759
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5760
    """
Y
Yang Yu 已提交
5761 5762 5763
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5764 5765

    dim = input.shape[1]
Y
Yang Yu 已提交
5766 5767 5768 5769 5770 5771
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5772
    inputs = {}
C
chengduo 已提交
5773 5774 5775 5776 5777 5778 5779
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5780 5781 5782
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5783

5784 5785 5786 5787
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5788 5789 5790 5791 5792 5793 5794

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5795 5796
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5797
        custom_dist_len = num_total_classes
5798 5799 5800 5801 5802 5803
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5804
            if normal_prob - 1.0 > 0:
5805
                bigs.append((i, normal_prob))
5806
            elif 1.0 - normal_prob > 0:
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5822
            if big_left - 1.0 > 0:
5823
                bigs.append((big_idx, big_left))
5824
            elif 1.0 - big_left > 0:
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5854 5855 5856 5857
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5858 5859 5860 5861 5862
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5863 5864 5865 5866
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5867

Y
Yang Yu 已提交
5868 5869
    attrs = {
        'num_total_classes': int(num_total_classes),
5870 5871
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5872
        'sampler': sampler,
5873 5874
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5875
    }
Y
Yang Yu 已提交
5876 5877 5878

    helper.append_op(
        type='nce',
C
chengduo 已提交
5879
        inputs=inputs,
Y
Yang Yu 已提交
5880 5881 5882 5883 5884 5885
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5886
    return cost / (num_neg_samples + 1)
5887 5888


C
chengduo 已提交
5889 5890
def hsigmoid(input,
             label,
5891
             num_classes,
C
chengduo 已提交
5892 5893
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5894
             name=None,
5895 5896 5897
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5898
             is_sparse=False):
W
weixing02 已提交
5899 5900
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5901
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5902
    complete binary tree, or you can use is_custom to pass your own tree to
5903
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5904 5905 5906 5907 5908 5909
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5910
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5911
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5912

5913 5914
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5915 5916 5917 5918
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5919
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5920
       related to the same batch of inputs.
5921

W
weixing02 已提交
5922
    Args:
M
minqiyang 已提交
5923
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5924 5925 5926 5927
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5928 5929
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5930
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5942
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5943
            it should be in leaf -> root order
M
minqiyang 已提交
5944 5945 5946
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5947
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5948
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5949
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5950
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5951
             of W and input will be sparse.
W
weixing02 已提交
5952 5953

    Returns:
J
JiabinYang 已提交
5954
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5955 5956 5957 5958 5959

    Examples:

        .. code-block:: python

5960
            import paddle.fluid as fluid
G
guosheng 已提交
5961 5962 5963
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5964 5965 5966 5967
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5968 5969
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5970
    dim = input.shape[1]
5971
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5972 5973 5974
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5975 5976 5977 5978 5979 5980 5981 5982 5983
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5984
    if (is_custom) and (path_code is None):
5985
        raise ValueError("path_code should not be None with custom tree")
5986
    elif (is_custom) and (path_table is None):
5987
        raise ValueError("path_table should not be None with custom tree")
5988
    elif (is_custom) and (num_classes is None):
5989
        raise ValueError("num_classes should not be None with custom tree")
5990 5991 5992
    else:
        pass

J
JiabinYang 已提交
5993
    weights = None
5994 5995 5996 5997
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5998
    if not is_custom:
J
JiabinYang 已提交
5999 6000 6001 6002 6003 6004 6005 6006
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6007
            shape=[num_classes, dim],
J
JiabinYang 已提交
6008 6009
            is_bias=False,
            dtype=input.dtype)
6010 6011 6012
    inputs = {
        "X": input,
        "W": weights,
6013
        "PathTable": path_table,
6014
        "PathCode": path_code,
6015 6016
        "Label": label
    }
W
weixing02 已提交
6017
    if helper.bias_attr:
6018
        if not is_custom:
J
JiabinYang 已提交
6019 6020
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6021
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6022 6023 6024 6025 6026 6027
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6028
                shape=[num_classes, 1],
J
JiabinYang 已提交
6029 6030 6031
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6032 6033
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6034
        inputs=inputs,
W
weixing02 已提交
6035
        outputs={"Out": out,
6036 6037 6038 6039 6040 6041 6042
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6043 6044 6045
    return out


Y
fix ci.  
ying 已提交
6046
def transpose(x, perm, name=None):
Y
ying 已提交
6047 6048 6049 6050 6051 6052 6053
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6054 6055 6056
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6057 6058 6059 6060 6061 6062 6063

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6064
            # use append_batch_size=False to avoid prepending extra
6065
            # batch size in shape
6066
            import paddle.fluid as fluid
6067
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6068
                            dtype='float32', append_batch_size=False)
6069
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6070 6071
    """

Y
fix ci.  
ying 已提交
6072
    if len(perm) != len(x.shape):
Y
ying 已提交
6073 6074
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6075
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6076 6077 6078 6079 6080 6081
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6082 6083

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6084 6085
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6086
    helper.append_op(
6087
        type='transpose2',
Y
fix ci.  
ying 已提交
6088
        inputs={'X': [x]},
6089 6090
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6091 6092
        attrs={'axis': perm})
    return out
6093 6094


6095 6096 6097 6098 6099 6100 6101
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6102
    """
6103 6104 6105 6106 6107 6108 6109
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6138 6139 6140 6141 6142 6143 6144 6145 6146
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6147 6148 6149
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6150 6151 6152 6153 6154
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6182 6183 6184
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6197
            output.dims = {8, 8}
6198

6199
            output.lod = [[4, 4]]
6200

T
Tink_Y 已提交
6201
    Examples:
6202 6203 6204

        .. code-block:: python

B
Bai Yifan 已提交
6205 6206 6207
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6208
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6209 6210
                input=data, stride=[1, 1], filter_size=[2, 2])

6211 6212

    """
L
lujun 已提交
6213
    assert not in_dygraph_mode(), (
6214
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6225
    inputs = {"X": input}
6226
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6227 6228 6229 6230 6231
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6232
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6233
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6234
    helper.append_op(
6235
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6236
    return out
6237 6238


Y
yuyang18 已提交
6239
@templatedoc()
6240
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6241 6242
    """
    ${comment}
6243 6244

    Args:
Y
yuyang18 已提交
6245
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6246 6247
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6248 6249 6250 6251 6252
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6253
        ${out_comment}.
6254 6255

    Examples:
Y
yuyang18 已提交
6256 6257 6258 6259
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6260 6261 6262 6263 6264 6265
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6266
    out = helper.create_variable_for_type_inference(dtype)
6267 6268 6269 6270 6271
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6272
    return helper.append_activation(out)
6273 6274


Y
yuyang18 已提交
6275
@templatedoc()
6276 6277
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6278 6279
    ${comment}

L
lujun 已提交
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6323 6324

    Args:
Y
yuyang18 已提交
6325 6326
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6327 6328

    Returns:
Y
yuyang18 已提交
6329
        ${out_comment}.
6330 6331
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6332 6333 6334 6335 6336

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6337
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6338 6339 6340 6341 6342 6343
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6344 6345


6346 6347 6348
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6349
                               ignore_index=kIgnoreIndex,
6350
                               numeric_stable_mode=True,
6351 6352
                               return_softmax=False,
                               axis=-1):
6353 6354
    """
    **Softmax With Cross Entropy Operator.**
6355

6356
    Cross entropy loss with softmax is used as the output layer extensively. This
6357 6358 6359
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6360

6361 6362 6363
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6364

6365 6366 6367 6368
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6369

6370
    The equation is as follows:
6371

6372
    1) Hard label (one-hot label, so every sample has exactly one class)
6373

6374 6375 6376 6377
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6378

6379 6380 6381
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6382

6383 6384 6385 6386
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6387 6388
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6389 6390

    .. math::
6391

H
haowang101779990 已提交
6392
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6393

H
haowang101779990 已提交
6394
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6395

H
haowang101779990 已提交
6396
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6397 6398 6399

    and then cross entropy loss is calculated by softmax and label.

6400
    Args:
6401 6402 6403 6404 6405 6406
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6407
        soft_label (bool): A flag to indicate whether to interpretate the given
6408
            labels as soft labels. Default False.
M
minqiyang 已提交
6409 6410
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6411 6412
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6413 6414
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6415 6416 6417 6418
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6419
                                    Note that the speed may be slower when use
6420
                                    stable algorithm. Default: True
6421
        return_softmax (bool): A flag indicating whether to return the softmax
6422
                               along with the cross entropy loss. Default: False
6423 6424 6425
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6426

6427
    Returns:
H
haowang101779990 已提交
6428 6429
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6430 6431 6432 6433
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6434 6435 6436 6437

    Examples:
        .. code-block:: python

6438 6439
            import paddle.fluid as fluid

6440 6441 6442
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6443 6444
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6445 6446
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6447 6448
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6449 6450 6451 6452 6453 6454
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6455 6456 6457
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6458 6459
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6460
        })
6461 6462 6463 6464

    if return_softmax:
        return loss, softmax

6465 6466 6467
    return loss


6468 6469 6470
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6471
                                       num_true=1,
6472
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6473 6474 6475
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6476
                                       seed=0):
X
xuezhong 已提交
6477 6478 6479 6480 6481
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6482
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6483 6484 6485 6486 6487 6488 6489 6490
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6491
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6492 6493 6494 6495 6496 6497 6498 6499
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6500
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6512
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6513 6514 6515 6516 6517
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6518
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6519
            logits.
X
xuezhong 已提交
6520 6521 6522 6523 6524
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6525 6526 6527
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6528 6529 6530 6531 6532 6533 6534
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6535 6536 6537
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6538
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6539
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6540
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6541
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6542 6543 6544 6545 6546 6547 6548 6549
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6550 6551
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6552 6553
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6554 6555 6556 6557 6558

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6559
            'Labels': label,
X
xuezhong 已提交
6560 6561
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6562 6563 6564 6565
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6566
            'SampledLabels': sampled_label,
6567 6568 6569
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6570 6571
        },
        attrs={
X
xuezhong 已提交
6572
            'use_customized_samples': use_customized_samples,
6573
            'uniq': True,
X
xuezhong 已提交
6574 6575 6576 6577
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6578 6579
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6580 6581 6582 6583 6584 6585
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6586 6587
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6588
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6589
                'Label': sampled_softlabel},
X
xuezhong 已提交
6590 6591 6592
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6593
            'soft_label': True,
X
xuezhong 已提交
6594 6595 6596
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6597
    return loss / num_true
X
xuezhong 已提交
6598 6599


6600 6601
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6602 6603
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6604
    For each instance, it computes the smooth L1 loss element by element first
6605
    and then sums all the losses. So the shape of ouput Variable is
6606
    [batch_size, 1].
6607

6608 6609
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6610
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6611
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6612
            L1 loss op with same shape as :attr:`x`.
6613
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6614 6615
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6616
            by this tensor element by element.
6617
        outside_weight (Variable|None): A tensor with rank at least 2. This
6618 6619
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6620
            element by element.
6621
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6622 6623
           scalar with default value 1.0.

6624
    Returns:
6625
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6626 6627 6628 6629

    Examples:
        .. code-block:: python

6630
            import paddle.fluid as fluid
6631
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6632 6633
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6634
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6635
            out = fluid.layers.smooth_l1(x=fc, y=label)
6636
    """
6637

6638
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6639 6640
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6651
        attrs={'sigma': sigma if sigma is not None else 1.0})
6652
    return loss
6653 6654


6655
def one_hot(input, depth, allow_out_of_range=False):
6656
    """
Y
Yibing Liu 已提交
6657
    This layer creates the one-hot representations for input indices.
6658 6659

    Args:
Y
Yibing Liu 已提交
6660 6661
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6662 6663 6664 6665
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6666 6667

    Returns:
Y
Yibing Liu 已提交
6668
        Variable: The one-hot representations of input.
6669 6670

    Examples:
C
caoying03 已提交
6671
        .. code-block:: python
6672

6673
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6674 6675
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6676 6677
    """
    helper = LayerHelper("one_hot", **locals())
6678

X
Xin Pan 已提交
6679
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6690
            depth.stop_gradient = True
6691 6692
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6693 6694
    helper.append_op(
        type="one_hot",
6695 6696
        inputs=inputs,
        attrs=attrs,
6697 6698
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6699
    return one_hot_out
Y
Yu Yang 已提交
6700 6701


Y
Yu Yang 已提交
6702
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6703
    """
Y
yi.wu 已提交
6704 6705 6706
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6707 6708 6709 6710 6711 6712

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6713 6714
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6715 6716 6717 6718

    Examples:
        .. code-block:: python

6719
           import paddle.fluid as fluid
Y
yi.wu 已提交
6720
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6721
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6722 6723
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6724 6725
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6726 6727 6728 6729 6730
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6731
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6732
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6733 6734
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6735
            outputs={'Out': [counter]},
M
minqiyang 已提交
6736 6737
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6738 6739 6740
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6741 6742


6743
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6744
    """
C
caoying03 已提交
6745 6746
    Gives a new shape to the input Tensor without changing its data.

6747 6748 6749 6750 6751
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6752

6753
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6754

6755 6756 6757 6758
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6759
    2. 0 means the actual dimension value is going to be copied from the
6760 6761 6762 6763
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6764 6765

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6766
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6767
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6768

6769
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6770 6771
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6772 6773
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6774
    dimensions.
C
caoying03 已提交
6775

6776
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6777 6778 6779 6780
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6781 6782

    Args:
6783
        x(variable): The input tensor.
C
caoying03 已提交
6784 6785
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6786 6787 6788 6789 6790
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6791 6792
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6793 6794 6795
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6796
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6797
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6798

6799
    Returns:
G
guosheng 已提交
6800 6801 6802 6803
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6804

X
Xin Pan 已提交
6805 6806 6807
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6808 6809
    Examples:
        .. code-block:: python
G
guosheng 已提交
6810

6811
            import paddle.fluid as fluid
6812
            data = fluid.layers.data(
6813
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6814
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6815
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6816 6817 6818
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6819
        raise ValueError("Input shape must be a python list or tuple.")
6820

X
Xin Pan 已提交
6821 6822 6823 6824 6825
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6826

6827 6828
    # Validate the shape
    unk_dim_idx = -1
6829
    contain_var = False
6830
    for dim_idx, dim_size in enumerate(shape):
6831 6832 6833 6834
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6847
    helper = LayerHelper("reshape2", **locals())
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6870 6871
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6872
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6873
    helper.append_op(
6874
        type="reshape2",
X
Xin Pan 已提交
6875
        inputs=inputs,
6876
        attrs=attrs,
6877 6878
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6879

D
dzhwinter 已提交
6880
    return helper.append_activation(out)
6881

6882

6883
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6884
    """
M
minqiyang 已提交
6885 6886 6887
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6888
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6889

H
haowang101779990 已提交
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6911

Y
Yibing Liu 已提交
6912
    Args:
6913
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6914
        axes (list): List of integers, indicating the dimensions to be squeezed.
6915
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6916 6917 6918 6919 6920 6921 6922

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6923
            import paddle.fluid as fluid
6924
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6925
            x = layers.data(name='x', shape=[5, 1, 10])
6926
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6927
    """
L
lujun 已提交
6928
    assert not in_dygraph_mode(), (
L
lujun 已提交
6929
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6930
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6931 6932
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6933
    helper.append_op(
6934
        type="squeeze2",
6935
        inputs={"X": input},
Y
Yibing Liu 已提交
6936
        attrs={"axes": axes},
6937 6938
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6939

6940 6941 6942
    return out


6943
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6944
    """
M
minqiyang 已提交
6945 6946 6947
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6948

M
minqiyang 已提交
6949
    For example:
H
haowang101779990 已提交
6950 6951 6952

    .. code-block:: text

M
minqiyang 已提交
6953
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6954
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6955

Y
Yibing Liu 已提交
6956
    Args:
6957
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6958
        axes (list): List of integers, indicating the dimensions to be inserted.
6959
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6960 6961 6962 6963 6964 6965 6966

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6967 6968 6969
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6970 6971
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6972 6973
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6974
    helper.append_op(
6975
        type="unsqueeze2",
6976
        inputs={"X": input},
Y
Yibing Liu 已提交
6977
        attrs={"axes": axes},
6978 6979
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6980

6981 6982
    return out

6983

Y
yangyaming 已提交
6984
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6985
    """
Y
Yibing Liu 已提交
6986
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6987 6988 6989 6990
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
6991
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6992 6993 6994 6995 6996 6997

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6998
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6999 7000 7001
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7002
            target_lod: [4, 2]
Y
yangyaming 已提交
7003 7004

            then we get a 1-level LoDTensor:
7005
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7006 7007 7008 7009 7010 7011
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7012
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7013 7014 7015 7016
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7017
                y.data = [[2, 4]]
Y
yangyaming 已提交
7018 7019 7020
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7021
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7022 7023 7024 7025 7026 7027
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7028
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7029 7030 7031 7032
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7033
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7034 7035 7036 7037
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7038
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7039 7040 7041 7042
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7043
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7044
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7045
                           from :attr:`y`.
Y
yangyaming 已提交
7046
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7047
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7048 7049

    Returns:
Y
Yibing Liu 已提交
7050
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7051 7052

    Raises:
Y
Yibing Liu 已提交
7053
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7054 7055 7056 7057

    Examples:
        .. code-block:: python

7058
            import paddle.fluid as fluid
7059 7060 7061
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7062 7063
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7064
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
        level (list|tuple): The LoD level to be appended into LoD of x.

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7109

7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
    if not isinstance(level, Iterable):
        raise ValueError("Input(level) must be list or tuple.")
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="lod_reset",
        inputs={'X': x},
        attrs={'target_lod': level,
               'append': True},
        outputs={'Out': out})
Y
yangyaming 已提交
7130
    return out
D
dragonwarrior 已提交
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7142
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7171
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7172 7173
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7186 7187 7188
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7202 7203 7204 7205


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7206
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7207
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7208

G
guosheng 已提交
7209 7210 7211 7212
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7235
                         The length of :attr:paddings must be
G
guosheng 已提交
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7246

G
guosheng 已提交
7247
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7248 7249
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7250 7251 7252 7253 7254
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7255
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7256 7257 7258 7259 7260 7261 7262
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7263 7264


C
chengduo 已提交
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7296 7297
		And
            pad_value = -1,
C
chengduo 已提交
7298

T
Tink_Y 已提交
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7329 7330 7331
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7332 7333 7334 7335 7336
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7337
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7338 7339 7340 7341 7342 7343 7344 7345 7346
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7347 7348 7349 7350 7351 7352 7353
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7354 7355
    called label-smoothing regularization (LSR).

7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7379
                              be :math:`(1, class\_num)`.
7380 7381
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7382
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7383 7384 7385 7386 7387 7388 7389 7390 7391
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7392
            
7393
            import paddle.fluid as fluid
7394
            import paddle.fluid.layers as layers
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7405
    smooth_label = helper.create_variable_for_type_inference(dtype)
7406 7407 7408 7409 7410 7411 7412
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7413 7414


W
wopeizl 已提交
7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7463 7464


J
jerrywgz 已提交
7465 7466 7467 7468 7469 7470
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7471 7472
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7489
            import paddle.fluid as fluid
J
jerrywgz 已提交
7490 7491 7492 7493
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7494 7495 7496
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7497 7498 7499 7500 7501 7502
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7503
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7544 7545
        .. code-block:: python

S
SunGaofeng 已提交
7546 7547 7548
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7549
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7550
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7551 7552
    """
    label = one_hot(label, depth=input.shape[-1])
7553
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7554 7555 7556 7557 7558 7559
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7560 7561


7562 7563 7564 7565
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7566
                 resample='BILINEAR',
7567 7568
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7569
                 align_mode=1):
7570
    """
Q
qiaolongfei 已提交
7571
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7572

7573
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7574 7575 7576
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7577

7578
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7579

7580
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7581

7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7592
    Align_corners and align_mode are optinal parameters,the calculation method 
7593 7594 7595 7596
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7597
    .. code-block:: text
7598

T
Tink_Y 已提交
7599
        For scale:
7600
          
T
Tink_Y 已提交
7601
            if align_corners = True && out_size > 1 :
7602

T
Tink_Y 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7614

T
Tink_Y 已提交
7615 7616
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7617

T
Tink_Y 已提交
7618 7619
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7620

T
Tink_Y 已提交
7621 7622
          else:
              align_corners = True
7623

T
Tink_Y 已提交
7624 7625
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7626

T
Tink_Y 已提交
7627 7628
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7629

T
Tink_Y 已提交
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7640

T
Tink_Y 已提交
7641 7642 7643 7644
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7645

T
Tink_Y 已提交
7646 7647
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7648 7649 7650 7651 7652 7653 7654 7655 7656

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7657
    Args:
7658
        input (Variable): The input tensor of image resize layer,
7659 7660
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7661
        out_shape(list|tuple|Variable|None): Output shape of image resize
7662 7663
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7664
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7665
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7666
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7667
             Default: None.
7668 7669
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7670
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7671
                       currently.
7672
                       Default: 'BILINEAR'
7673 7674 7675
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7676
                                :attr:`out_shape` and :attr:`scale` specifying
7677 7678 7679 7680 7681 7682 7683
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7684 7685
                                constructing stage.
                                Default: None
7686 7687 7688 7689
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7690
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7691 7692
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7693 7694

    Returns:
Q
update  
qiaolongfei 已提交
7695 7696
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7697

7698 7699 7700
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7701
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7702 7703 7704
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7705
        ValueError: scale should be greater than zero.
7706 7707
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7708

7709 7710 7711
    Examples:
        .. code-block:: python

7712
            import paddle.fluid as fluid
R
ruri 已提交
7713
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7714
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7715
    """
7716 7717 7718 7719
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7720 7721
    if resample not in resample_methods:
        raise ValueError(
7722
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7723
        )
7724
    resample_type = resample_methods[resample]
7725 7726 7727 7728 7729 7730

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7731
    if out_shape is None and scale is None:
7732
        raise ValueError("One of out_shape and scale must not be None.")
7733
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7734
    dtype = helper.input_dtype()
7735 7736 7737 7738

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7739
    inputs = {"X": input}
D
dengkaipeng 已提交
7740
    attrs = {
D
dengkaipeng 已提交
7741 7742
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7743 7744 7745 7746 7747
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7748
    if out_shape is not None:
7749 7750 7751 7752
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7753
            inputs['OutSize'] = out_shape
7754 7755
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7756 7757
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7758 7759 7760 7761 7762 7763 7764
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7765
    else:
D
dengkaipeng 已提交
7766 7767
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7768
        attrs['scale'] = float(scale)
7769

7770 7771 7772 7773 7774
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7775
    out = helper.create_variable_for_type_inference(dtype)
7776
    helper.append_op(
7777
        type='{}_interp'.format(resample_type),
7778
        inputs=inputs,
7779
        outputs={"Out": out},
D
dengkaipeng 已提交
7780
        attrs=attrs)
7781
    return out
F
stash  
fengjiayi 已提交
7782 7783


7784
@templatedoc(op_type="bilinear_interp")
7785 7786 7787 7788
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7789 7790
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7791
                    align_mode=1):
7792
    """
7793 7794
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7795 7796
    in priority order.

7797 7798 7799 7800
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7801 7802
    again in the other direction.

7803
    For details of bilinear interpolation, please refer to Wikipedia:
7804
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7805

T
tink2123 已提交
7806
    Align_corners and align_mode are optinal parameters,the calculation 
7807 7808 7809 7810
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7811
    .. code-block:: text
7812

T
Tink_Y 已提交
7813
        For scale:
7814
          
T
Tink_Y 已提交
7815
            if align_corners = True && out_size > 1 :
7816

T
Tink_Y 已提交
7817 7818 7819 7820 7821
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7822

T
Tink_Y 已提交
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7833 7834


T
Tink_Y 已提交
7835
          else:
T
tink2123 已提交
7836

T
Tink_Y 已提交
7837 7838
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7839

T
Tink_Y 已提交
7840 7841
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7842 7843 7844



Y
yuyang18 已提交
7845 7846 7847
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7848 7849 7850
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7851

Y
yuyang18 已提交
7852
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7853
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7854
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7855
             Default: None.
Y
yuyang18 已提交
7856 7857

        name(str|None): The output variable name.
7858 7859 7860
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7861
                                :attr:`out_shape` and :attr:`scale` specifying
7862 7863 7864 7865 7866 7867 7868
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7869 7870
                                constructing stage.
                                Default: None
7871 7872
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7873 7874 7875

    Returns:
        ${out_comment}.
7876 7877 7878 7879

    Examples:
        .. code-block:: python

7880
            import paddle.fluid as fluid
R
ruri 已提交
7881
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7882
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7883 7884
    """

7885 7886
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7887 7888


7889
@templatedoc(op_type="nearest_interp")
7890 7891 7892 7893
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7894 7895
                   actual_shape=None,
                   align_corners=True):
7896
    """
7897
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7898 7899
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7900 7901
    out_shape and scale in priority order.

7902 7903
    Example:

T
Tink_Y 已提交
7904 7905 7906 7907 7908
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7909

T
Tink_Y 已提交
7910 7911 7912 7913 7914 7915 7916 7917
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7918
          
T
Tink_Y 已提交
7919 7920
          if:
              align_corners = False
7921

T
Tink_Y 已提交
7922 7923
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7924

T
Tink_Y 已提交
7925 7926
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7927

T
Tink_Y 已提交
7928 7929
          else:
              align_corners = True
7930

T
Tink_Y 已提交
7931 7932
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7933

T
Tink_Y 已提交
7934 7935
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7936 7937


7938
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7939
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7940 7941 7942 7943

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7944 7945 7946
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7947

Y
yuyang18 已提交
7948
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7949
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7950
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7951
             Default: None.
Y
yuyang18 已提交
7952 7953

        name(str|None): The output variable name.
7954 7955 7956
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7957
                                :attr:`out_shape` and :attr:`scale` specifying
7958 7959 7960 7961 7962 7963 7964
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7965 7966
                                constructing stage.
                                Default: None
7967
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7968 7969 7970

    Returns:
        ${out_comment}.
7971 7972 7973 7974

    Examples:
        .. code-block:: python

7975
            import paddle.fluid as fluid
R
ruri 已提交
7976
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7977
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7978 7979
    """

7980 7981
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7982 7983 7984 7985


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7986 7987 7988
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7989 7990 7991 7992 7993 7994 7995
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7996
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7997

7998
    Returns:
Q
update  
qiaolongfei 已提交
7999
        Variable: The output is a 4-D tensor of the shape
8000
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8001 8002 8003 8004

    Examples:
        .. code-block:: python

8005
            import paddle.fluid as fluid
R
ruri 已提交
8006 8007
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8018 8019 8020
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8021 8022 8023
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8024
def gather(input, index, overwrite=True):
W
whs 已提交
8025
    """
Q
qiaolongfei 已提交
8026 8027
    **Gather Layer**

8028
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8029 8030 8031 8032
    of X indexed by `index` and concatenate them together.

    .. math::

8033
        Out = X[Index]
W
whs 已提交
8034 8035 8036 8037 8038 8039 8040


    .. code-block:: text


                Given:

8041 8042
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8053
        input (Variable): The source input with rank>=1.
W
whs 已提交
8054
        index (Variable): The index input with rank=1.
8055 8056 8057 8058 8059 8060
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8061 8062 8063 8064 8065

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8066

W
whs 已提交
8067 8068
        .. code-block:: python

8069
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8070 8071
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8072 8073 8074 8075
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8076
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8077 8078 8079 8080
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8081 8082
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8083 8084 8085
    return out


8086
def scatter(input, index, updates, name=None, overwrite=True):
8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8104 8105 8106 8107
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8108 8109 8110 8111 8112 8113 8114 8115

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8116 8117 8118 8119 8120
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8121

8122
            output = fluid.layers.scatter(input, index, updates)
8123 8124 8125
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8126
    out = helper.create_variable_for_type_inference(dtype)
8127 8128 8129 8130 8131
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8132
        attrs={'overwrite': overwrite},
8133 8134 8135 8136
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8146

Q
Qingsheng Li 已提交
8147
    Given the following input:
H
haowang101779990 已提交
8148

Q
Qingsheng Li 已提交
8149
    .. code-block:: text
H
haowang101779990 已提交
8150

Q
Qingsheng Li 已提交
8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8163

Q
Qingsheng Li 已提交
8164
    .. code-block:: text
H
haowang101779990 已提交
8165

Q
Qingsheng Li 已提交
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8181
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8182 8183 8184 8185

    Examples:

        .. code-block:: python
8186
	
8187
            import paddle.fluid as fluid
8188
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8189

8190 8191 8192
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8193 8194 8195
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8196
    assert not in_dygraph_mode(), (
8197
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8198 8199
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8200
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8201 8202 8203 8204 8205 8206 8207 8208 8209
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8223

8224
    Examples:
8225
        >>> import paddle.fluid as fluid
8226 8227
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8228
    """
F
stash  
fengjiayi 已提交
8229
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8230
    dtype = x.dtype
X
Xin Pan 已提交
8231
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8232
    if seed is None:
8233
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8234
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8235
    if isinstance(seed, int):
F
fengjiayi 已提交
8236 8237 8238 8239 8240
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8241 8242 8243 8244
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8245
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8246 8247
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8248 8249
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8250
    return out
W
whs 已提交
8251 8252


8253
def log(x, name=None):
W
wanghaoshuang 已提交
8254 8255 8256 8257 8258
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8259
        Out = \\ln(x)
W
wanghaoshuang 已提交
8260 8261

    Args:
8262
        x (Variable): Input tensor.
8263 8264
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8265 8266 8267 8268 8269 8270 8271 8272

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8273
            import paddle.fluid as fluid
8274
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8275
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8276 8277
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8278
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8279
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8280
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8281 8282 8283
    return out


8284
def relu(x, name=None):
W
wanghaoshuang 已提交
8285 8286
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8287
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8288 8289 8290 8291
    the tensor elementwise.

    .. math::

8292
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8293 8294

    Args:
8295
        x (Variable): The input tensor.
8296 8297
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8298 8299 8300 8301 8302 8303 8304 8305

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8306
            import paddle.fluid as fluid
8307
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8308
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8309 8310
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8311
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8312
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8313 8314
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8315
    return out
8316 8317


C
chengduo 已提交
8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8342 8343 8344 8345 8346 8347
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8363 8364 8365
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8366 8367 8368 8369
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8370
    .. math::
8371

H
haowang101779990 已提交
8372
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8373

8374
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8375 8376 8377 8378 8379
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8380
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8381
                           Its shape should be the same as input.
8382
        num_classes (int): The possible number of labels.
W
whs 已提交
8383 8384

    Returns:
M
minqiyang 已提交
8385 8386
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8387
                     Three variables:
M
minqiyang 已提交
8388

H
haowang101779990 已提交
8389 8390 8391
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8392 8393 8394 8395

    Examples:

        .. code-block:: python
8396

B
Bai Yifan 已提交
8397 8398 8399 8400 8401
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8402 8403 8404
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8405 8406 8407
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8408 8409
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8410 8411
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8412
        outputs={
W
whs 已提交
8413 8414 8415
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8416 8417 8418
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8461
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8462
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8463
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8481
            import paddle.fluid as fluid
8482 8483 8484 8485 8486 8487
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8488
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8489 8490 8491 8492 8493

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8494
            isinstance(shape, Variable)):
8495 8496 8497 8498 8499
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8500
    out = helper.create_variable_for_type_inference(x.dtype)
8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8518 8519


W
whs 已提交
8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8537

W
whs 已提交
8538
              out_shape = [2, 3, 5, 5]
8539

W
whs 已提交
8540
          Step 1:
8541

W
whs 已提交
8542 8543 8544
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8545

W
whs 已提交
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8591
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8592
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8605

S
SunGaofeng 已提交
8606
            import paddle.fluid as fluid
W
whs 已提交
8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8618
            isinstance(out_shape, Variable)):
W
whs 已提交
8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8640 8641
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8642

8643 8644
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8645
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8646 8647 8648
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8649

8650 8651
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8652

H
haowang101779990 已提交
8653 8654
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8655 8656
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8657

H
haowang101779990 已提交
8658 8659 8660 8661 8662 8663 8664 8665
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8666 8667 8668

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8686
            import paddle.fluid as fluid
8687 8688 8689
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8704
    out = helper.create_variable_for_type_inference("float32")
8705 8706 8707 8708 8709 8710 8711 8712

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8713 8714


M
minqiyang 已提交
8715 8716
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8717
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8718
    which compares left score and right score passed in.
M
minqiyang 已提交
8719
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8720 8721 8722

    .. math::

H
haowang101779990 已提交
8723
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8724 8725

    Args:
M
minqiyang 已提交
8726
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8727 8728
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8729
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8730 8731
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8732

M
minqiyang 已提交
8733
    Returns:
M
minqiyang 已提交
8734
       Variable: The ranking loss.
H
haowang101779990 已提交
8735

M
minqiyang 已提交
8736
    Raises:
M
minqiyang 已提交
8737
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8738

M
minqiyang 已提交
8739
    Examples:
H
haowang101779990 已提交
8740

M
minqiyang 已提交
8741
        .. code-block:: python
H
haowang101779990 已提交
8742

8743
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
8744 8745 8746
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8747 8748
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8749
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8750 8751 8752 8753 8754 8755
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8756 8757
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8781
        .. code-block:: text
W
whs 已提交
8782

T
Tink_Y 已提交
8783
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8784

T
Tink_Y 已提交
8785 8786
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8787

T
Tink_Y 已提交
8788
	      Case 0:
M
minqiyang 已提交
8789

T
Tink_Y 已提交
8790 8791 8792
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8793

T
Tink_Y 已提交
8794 8795 8796
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8797

T
Tink_Y 已提交
8798
	      Case 1:
M
minqiyang 已提交
8799

T
Tink_Y 已提交
8800 8801
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8802

T
Tink_Y 已提交
8803 8804 8805
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8806

T
Tink_Y 已提交
8807
	      Case 2:
M
minqiyang 已提交
8808

T
Tink_Y 已提交
8809 8810
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8811

T
Tink_Y 已提交
8812 8813 8814
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8815 8816


W
whs 已提交
8817 8818
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8819
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8837 8838 8839 8840 8841
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8842 8843 8844 8845
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8846
    out = helper.create_variable_for_type_inference(dtype)
8847 8848 8849 8850 8851 8852 8853 8854 8855
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8856
    helper.append_op(
8857
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8858 8859 8860 8861

    return out


8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8874 8875 8876 8877 8878

    Examples:

        .. code-block:: python

8879
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8880 8881
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8882 8883
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8884
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8905 8906 8907 8908 8909

    Examples:

        .. code-block:: python

8910
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8911 8912
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8913 8914
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8915
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8936 8937 8938 8939 8940

    Examples:

        .. code-block:: python

8941
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8942 8943
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8944 8945
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8946
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8968 8969 8970 8971 8972

    Examples:

        .. code-block:: python

8973
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8974
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8975
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8976 8977
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8978
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9001 9002 9003 9004 9005

    Examples:

        .. code-block:: python

9006
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9007 9008
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9009 9010
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9011
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9033 9034 9035 9036 9037

    Examples:

        .. code-block:: python

9038
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9039 9040
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9041 9042
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9043
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9044 9045 9046 9047 9048 9049 9050 9051
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9052 9053 9054 9055
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9056 9057
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9058

J
jerrywgz 已提交
9059 9060 9061 9062 9063 9064 9065 9066
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9067 9068
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9069
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9070
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9071
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9072
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9073
          will be named automatically.
J
jerrywgz 已提交
9074 9075 9076 9077 9078 9079 9080 9081

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9082 9083 9084
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9085
            mode = 'channel'
J
jerrywgz 已提交
9086 9087 9088
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9100
        attr=helper.param_attr,
J
jerrywgz 已提交
9101 9102 9103 9104
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9105
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9106 9107 9108 9109 9110 9111 9112 9113 9114
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9115 9116 9117 9118 9119 9120 9121 9122 9123 9124
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9125
    Returns:
9126
        output(${out_type}): ${out_comment}
9127 9128 9129

    Examples:

9130
    .. code-block:: python
9131

9132
            import paddle.fluid as fluid
H
haowang101779990 已提交
9133 9134
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9135 9136
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9137
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9156
    Returns:
9157
        output(${out_type}): ${out_comment}
9158 9159 9160 9161 9162

    Examples:

        .. code-block:: python

9163
            import paddle.fluid as fluid
H
haowang101779990 已提交
9164 9165
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9166 9167
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9168
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9186
    Returns:
9187
        output(${out_type}): ${out_comment}
9188 9189 9190

    Examples:

9191 9192 9193 9194 9195
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9196
            y = fluid.layers.soft_relu(x, threshold=20.0)
9197 9198
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9199
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9200 9201 9202 9203 9204 9205 9206 9207
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9208 9209 9210 9211
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9212

H
haowang101779990 已提交
9213
    For Example:
M
minqiyang 已提交
9214

H
haowang101779990 已提交
9215
    .. code-block:: text
9216

H
haowang101779990 已提交
9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9238 9239 9240

    Args:
        x (Variable): A tensor of rank >= axis.
9241 9242
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9243 9244 9245 9246 9247 9248 9249 9250
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9251 9252 9253
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9254 9255 9256 9257
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9258
        ValueError: If axis is not in range [0, rank(x)].
9259 9260 9261 9262 9263

    Examples:

        .. code-block:: python

9264
            import paddle.fluid as fluid
9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9276 9277
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9278
    helper.append_op(
9279
        type='flatten2',
9280
        inputs={"X": x},
9281 9282
        outputs={'Out': out,
                 'XShape': x_shape},
9283 9284
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9285 9286


C
chenweihang 已提交
9287
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9288
    """
C
chenweihang 已提交
9289
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9290
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9291 9292
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9293

H
haowang101779990 已提交
9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9311 9312

    Args:
C
chenweihang 已提交
9313 9314 9315
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9316 9317 9318 9319 9320 9321 9322

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9323 9324 9325
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9326 9327
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9328
    assert not in_dygraph_mode(), (
9329
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9330
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9331 9332
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9333 9334 9335 9336 9337 9338
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9339
    return out
9340

9341

S
sneaxiy 已提交
9342 9343 9344 9345 9346 9347 9348 9349 9350
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9351

S
sneaxiy 已提交
9352
    .. math::
9353

S
sneaxiy 已提交
9354 9355 9356
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9357
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9358 9359 9360 9361
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9362 9363 9364
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9365 9366
    Returns:
        Variable: The output sequence mask.
9367

9368 9369 9370
    Examples:
        .. code-block:: python
	
9371
            import paddle.fluid as fluid
9372 9373 9374 9375 9376
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9377
    """
L
lujun 已提交
9378
    assert not in_dygraph_mode(), (
9379
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9380

Q
qingqing01 已提交
9381
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9382
    if name is None:
X
Xin Pan 已提交
9383
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9384
    else:
X
Xin Pan 已提交
9385
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9386

9387 9388 9389 9390 9391 9392 9393 9394
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9395
    helper.append_op(
9396 9397 9398
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9399
    return out
S
sneaxiy 已提交
9400 9401


X
Xin Pan 已提交
9402
def stack(x, axis=0):
S
sneaxiy 已提交
9403 9404 9405 9406
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9407 9408 9409 9410 9411 9412 9413

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9414
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9415
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9416

C
chengduozh 已提交
9417 9418
    For Example:

C
chengduozh 已提交
9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9457
    Args:
9458
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9459
        axis (int|None): The axis along which all inputs are stacked.
9460

S
sneaxiy 已提交
9461 9462
    Returns:
        Variable: The stacked variable.
9463

9464 9465 9466
    Examples:
        .. code-block:: python

9467
            import paddle.fluid as fluid
9468
            import paddle.fluid.layers as layers
9469 9470
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9471 9472
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9473 9474
    """

X
Xin Pan 已提交
9475 9476 9477 9478 9479 9480
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9481
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9482
    helper.append_op(
S
sneaxiy 已提交
9483 9484
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9485

X
Xin Pan 已提交
9486
    return out
D
dzhwinter 已提交
9487 9488 9489 9490 9491 9492 9493


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9494

D
dzhwinter 已提交
9495 9496 9497
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9498
    raised.
D
dzhwinter 已提交
9499 9500

    Args:
M
minqiyang 已提交
9501
        x (Variable): Input variable.
D
dzhwinter 已提交
9502 9503
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9504

D
dzhwinter 已提交
9505 9506
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9507

9508 9509 9510 9511 9512 9513
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9514 9515 9516 9517 9518 9519 9520 9521 9522 9523
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9524
    for _ in range(num):
X
Xin Pan 已提交
9525
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9526 9527 9528 9529 9530 9531 9532 9533

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9546

W
whs 已提交
9547 9548 9549 9550
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9551

W
whs 已提交
9552
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9553

W
whs 已提交
9554
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9555

W
whs 已提交
9556 9557 9558 9559
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9560

W
whs 已提交
9561 9562 9563 9564 9565 9566 9567 9568 9569 9570
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9571 9572 9573
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9574 9575 9576 9577
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9578
    out = helper.create_variable_for_type_inference(dtype)
9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9596
                    ele.stop_gradient = True
9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9610
    helper.append_op(
9611
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9612
    return out
S
sneaxiy 已提交
9613 9614


G
fix  
gongweibao 已提交
9615 9616 9617
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9618
@templatedoc()
G
fix  
gongweibao 已提交
9619 9620 9621 9622 9623 9624 9625 9626 9627
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9628
    ${comment}
G
fix  
gongweibao 已提交
9629 9630

    Args:
G
gongweibao 已提交
9631 9632 9633
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9634
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9635 9636 9637
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9638 9639
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9640
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9641

9642 9643 9644
    Examples:
        .. code-block:: python

9645
            import paddle.fluid as fluid
9646 9647
            import paddle.fluid.layers as layers 

9648 9649
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9650 9651 9652
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9653
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9670 9671


G
gongweibao 已提交
9672
@templatedoc()
X
Xin Pan 已提交
9673
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9674
    """
G
gongweibao 已提交
9675
    ${comment}
G
fix  
gongweibao 已提交
9676 9677

    Args:
G
gongweibao 已提交
9678 9679 9680 9681
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9682 9683 9684
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9685
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9686

9687 9688 9689
    Examples:
        .. code-block:: python

9690
            import paddle.fluid as fluid
J
JesseyXujin 已提交
9691
            import paddle.fluid.layers as layers
9692
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9693 9694 9695
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9696
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9697 9698 9699 9700 9701 9702 9703 9704 9705 9706
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9707
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9708 9709 9710 9711 9712
        })

    return out


G
gongweibao 已提交
9713
@templatedoc()
G
fix  
gongweibao 已提交
9714
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9715
    """
G
gongweibao 已提交
9716
    ${comment}
G
fix  
gongweibao 已提交
9717 9718

    Args:
G
gongweibao 已提交
9719 9720 9721 9722
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9723
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9724 9725

    Returns:
G
gongweibao 已提交
9726
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9727

9728 9729 9730
    Examples:
        .. code-block:: python

9731
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9732
            x = fluid.layers.data(
9733 9734 9735 9736 9737
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9738
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9739 9740 9741
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9742
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9754
@templatedoc()
G
fix  
gongweibao 已提交
9755 9756 9757 9758 9759 9760 9761 9762 9763
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9764
    ${comment}
G
fix  
gongweibao 已提交
9765 9766

    Args:
G
gongweibao 已提交
9767 9768
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9769
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9770 9771 9772 9773
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9774
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9775 9776

    Returns:
G
gongweibao 已提交
9777
        out (Variable): ${out_comment}
9778 9779 9780 9781

    Examples:
        .. code-block:: python

9782
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9783
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9784

Y
Yibing Liu 已提交
9785
            out = fluid.layers.gaussian_random_batch_size_like(
9786
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9787 9788 9789
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9790
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9809
@templatedoc()
X
Xin Pan 已提交
9810
def sum(x):
G
fix  
gongweibao 已提交
9811
    """
G
gongweibao 已提交
9812
    ${comment}
G
fix  
gongweibao 已提交
9813 9814

    Args:
G
gongweibao 已提交
9815
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9816 9817

    Returns:
G
gongweibao 已提交
9818
        out (Variable): ${out_comment}
9819 9820 9821 9822

    Examples:
        .. code-block:: python

9823
            import paddle.fluid as fluid
9824 9825 9826 9827
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9828 9829 9830
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9831 9832
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9833 9834 9835 9836
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9837
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9838 9839 9840 9841

    return out


G
gongweibao 已提交
9842
@templatedoc()
G
fix  
gongweibao 已提交
9843 9844
def slice(input, axes, starts, ends):
    """
9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9860

9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9878
    Args:
G
gongweibao 已提交
9879 9880 9881 9882
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9883 9884

    Returns:
G
gongweibao 已提交
9885
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9886

9887 9888 9889
    Examples:
        .. code-block:: python

9890 9891
            import paddle.fluid as fluid
 
9892 9893 9894 9895
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9896
            input = fluid.layers.data(
9897 9898
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9899
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9900 9901 9902
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9903 9904
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9918 9919
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9920
    Get the shape of the input.
G
fix  
gongweibao 已提交
9921 9922

    Args:
C
chengduozh 已提交
9923
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9924 9925

    Returns:
C
fix doc  
chengduozh 已提交
9926
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9927

9928 9929 9930
    Examples:
        .. code-block:: python

9931 9932 9933
            import paddle.fluid as fluid

            input = fluid.layers.data(
9934
                name="input", shape=[3, 100, 100], dtype="float32")
9935
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9936 9937 9938
    """

    helper = LayerHelper('shape', **locals())
9939
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9940
    helper.append_op(
G
fix  
gongweibao 已提交
9941
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9942 9943

    return out
G
merge  
gongweibao 已提交
9944 9945


Z
zhoukunsheng 已提交
9946 9947 9948 9949
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9950
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9951 9952 9953 9954 9955 9956 9957 9958 9959 9960

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

9961 9962 9963 9964
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
9965 9966 9967 9968 9969 9970 9971 9972
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10002 10003 10004 10005
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10006
    if in_dygraph_mode():
X
Xin Pan 已提交
10007 10008 10009
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10010 10011 10012 10013
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10014 10015
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10016
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10017 10018 10019
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10020

S
sneaxiy 已提交
10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10032
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10033 10034 10035 10036 10037 10038 10039 10040
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10041
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10042
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10043 10044 10045

    Returns:
        out(${out_type}): ${out_comment}
10046 10047 10048 10049 10050 10051 10052 10053

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10054 10055 10056
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10057
    if name is None:
X
Xin Pan 已提交
10058
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10059 10060 10061
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10062 10063 10064 10065 10066 10067 10068 10069 10070 10071

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10072
    return helper.append_activation(out)
S
sneaxiy 已提交
10073 10074


X
Xin Pan 已提交
10075
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10076 10077 10078
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10079
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10080 10081 10082
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10083
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10084 10085 10086
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10087
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10088 10089 10090
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10091
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10092 10093 10094
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10095
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10096 10097 10098
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10099
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10100 10101 10102
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10103 10104 10105 10106 10107 10108 10109 10110
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10111
for func in [
10112 10113 10114 10115 10116 10117 10118 10119 10120
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10121 10122 10123 10124 10125
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10126 10127
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10128
        ])
10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10166 10167


10168
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10169 10170
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10171 10172
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10173 10174 10175

    if out is None:
        if name is None:
X
Xin Pan 已提交
10176
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10192
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10204 10205 10206 10207

    Examples:
        .. code-block:: python

10208
            import paddle.fluid as fluid
10209
            left = fluid.layers.data(
石晓伟 已提交
10210
                name='left', shape=[1], dtype='bool')
10211
            right = fluid.layers.data(
石晓伟 已提交
10212
                name='right', shape=[1], dtype='bool')
10213
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10214 10215 10216 10217 10218 10219 10220
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10221
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10233 10234 10235 10236

    Examples:
        .. code-block:: python

10237
            import paddle.fluid as fluid
10238
            left = fluid.layers.data(
石晓伟 已提交
10239
                name='left', shape=[1], dtype='bool')
10240
            right = fluid.layers.data(
石晓伟 已提交
10241
                name='right', shape=[1], dtype='bool')
10242
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10243 10244 10245 10246 10247 10248 10249
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10250
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10262 10263 10264 10265

    Examples:
        .. code-block:: python

10266
            import paddle.fluid as fluid
10267
            left = fluid.layers.data(
石晓伟 已提交
10268
                name='left', shape=[1], dtype='bool')
10269
            right = fluid.layers.data(
石晓伟 已提交
10270
                name='right', shape=[1], dtype='bool')
10271
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10272 10273 10274 10275 10276 10277 10278
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10279
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10280 10281 10282 10283 10284 10285 10286 10287 10288 10289
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10290 10291 10292 10293

    Examples:
        .. code-block:: python

10294
            import paddle.fluid as fluid
10295
            left = fluid.layers.data(
石晓伟 已提交
10296
                name='left', shape=[1], dtype='bool')
10297
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10298 10299 10300 10301
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10317 10318 10319 10320

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10321
            import paddle.fluid as fluid
10322 10323 10324
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10325 10326 10327 10328 10329
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10330 10331
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10332 10333 10334

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10358 10359 10360 10361

    Examples:
        .. code-block:: python

10362
            import paddle.fluid as fluid
10363 10364 10365
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10366 10367 10368 10369 10370
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10371 10372
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10373 10374 10375

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10376 10377 10378 10379 10380 10381 10382 10383

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10397 10398 10399 10400

    Examples:
        .. code-block:: python

10401
            import paddle.fluid as fluid
10402 10403 10404
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10405 10406 10407 10408 10409
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10410
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10411 10412 10413 10414 10415 10416 10417 10418 10419 10420
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10432 10433 10434 10435

    Examples:
        .. code-block:: python

10436
            import paddle.fluid as fluid
10437 10438 10439 10440 10441
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10480 10481 10482 10483 10484
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10485
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10486 10487 10488 10489 10490 10491 10492 10493 10494
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10495 10496
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10497 10498 10499 10500 10501 10502
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10503 10504 10505
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10506 10507
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10508 10509 10510 10511 10512 10513
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10514
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10515
        name(basestring|None): Name of the output.
10516 10517
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10518 10519 10520

    Returns:
        out(${out_type}): ${out_comment}
10521 10522 10523 10524

    Examples:
        .. code-block:: python

10525
            import paddle.fluid as fluid
10526 10527 10528 10529 10530 10531 10532 10533 10534 10535
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10536 10537 10538 10539 10540
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10541
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10542 10543 10544 10545 10546 10547 10548 10549
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10550 10551
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10568 10569 10570 10571

    Examples:
        .. code-block:: python

10572
            import paddle.fluid as fluid
J
jerrywgz 已提交
10573 10574 10575 10576 10577
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10578 10579 10580 10581
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10582
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10583 10584 10585 10586 10587 10588 10589 10590 10591 10592
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10593 10594


J
JiabinYang 已提交
10595
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10596
    """
J
JiabinYang 已提交
10597
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10598 10599 10600

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10601
    The attr blocksize indicates the input block size.
10602 10603

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10604
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10605 10606

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10607
    (but keeping all data)
J
JiabinYang 已提交
10608

J
JiabinYang 已提交
10609
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10610
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10611 10612 10613 10614 10615
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10616
    Args:
J
JiabinYang 已提交
10617
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10618
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10619 10620

    Returns:
J
JiabinYang 已提交
10621
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10622 10623

    Raises:
J
JiabinYang 已提交
10624
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10625 10626 10627

    Examples:
        .. code-block:: python
10628 10629 10630
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10631 10632

            data = fluid.layers.data(
10633
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10634
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10635
                x=data, blocksize=2)
10636

10637
            exe = fluid.Executor(fluid.CPUPlace())
10638 10639 10640 10641
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10642

J
JiabinYang 已提交
10643 10644
    """

J
JiabinYang 已提交
10645
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10646

J
JiabinYang 已提交
10647 10648
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10649 10650

    if name is None:
J
JiabinYang 已提交
10651 10652
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10653 10654 10655 10656 10657
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10658
        type="space_to_depth",
J
JiabinYang 已提交
10659
        inputs={"X": x},
J
JiabinYang 已提交
10660
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10661
        outputs={"Out": out})
J
JiabinYang 已提交
10662 10663
    return out

J
JiabinYang 已提交
10664

S
sneaxiy 已提交
10665 10666
@templatedoc()
def sequence_reverse(x, name=None):
10667
    """
S
sneaxiy 已提交
10668 10669 10670 10671 10672 10673 10674 10675
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10676 10677 10678 10679 10680 10681 10682

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10683
    """
L
lujun 已提交
10684
    assert not in_dygraph_mode(), (
10685
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10686 10687
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10688
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10689 10690 10691 10692 10693 10694 10695 10696 10697 10698
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10699 10700


10701 10702 10703 10704 10705 10706
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10707 10708 10709 10710 10711
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10712

10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10725
        act (str, default None): Activation to be applied to the output of this layer.
10726 10727 10728

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10743 10744 10745 10746
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10747
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10759
    return helper.append_activation(out)
10760 10761


B
barrierye 已提交
10762
def similarity_focus(input, axis, indexes, name=None):
10763
    """
B
barrierye 已提交
10764
    SimilarityFocus Operator
B
barrierye 已提交
10765 10766

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10767

10768 10769 10770
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10771
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10772 10773 10774 10775 10776 10777 10778
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10779
       each index.
B
barrierye 已提交
10780 10781 10782 10783
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10833
    Args:
10834
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10835
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10836
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10837
            1, 2 or 3.
B
barrierye 已提交
10838
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10839 10840

    Returns:
H
haowang101779990 已提交
10841 10842
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10843

B
barrierye 已提交
10844 10845
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10846

10847
            import paddle.fluid as fluid
B
barrierye 已提交
10848
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10849 10850
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10863 10864 10865 10866 10867
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10868 10869 10870 10871 10872 10873 10874
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10875 10876


M
minqiyang 已提交
10877 10878
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10879 10880
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10881 10882
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10883 10884 10885 10886 10887 10888 10889 10890

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
10891
        input.data = 
10892
            [[1, 2],
10893
             [3, 4]]
M
minqiyang 已提交
10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10907 10908
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10909 10910 10911 10912
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
10913
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
10914 10915
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10916
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10917
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10918 10919

    Returns:
10920
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
10921 10922 10923

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10924

10925 10926
            import paddle.fluid as fluid

10927 10928 10929 10930
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
10931 10932


10933 10934 10935 10936
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
10937 10938
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10939 10940
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10941 10942 10943 10944 10945 10946 10947
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10948 10949


D
dengkaipeng 已提交
10950
@templatedoc()
10951 10952
def grid_sampler(x, grid, name=None):
    """
10953
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10954
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10955 10956 10957 10958
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10959
    interpolation value of 4 nearest corner points.
10960

H
haowang101779990 已提交
10961
    .. code-block:: text
10962

H
haowang101779990 已提交
10963 10964
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10965

H
haowang101779990 已提交
10966 10967
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10968

H
haowang101779990 已提交
10969 10970 10971
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10972

H
haowang101779990 已提交
10973 10974 10975 10976 10977 10978 10979 10980 10981
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10982

H
haowang101779990 已提交
10983 10984 10985 10986
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10987

H
haowang101779990 已提交
10988 10989 10990 10991
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10992

H
haowang101779990 已提交
10993 10994 10995 10996
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10997

H
haowang101779990 已提交
10998 10999
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11000 11001

    Args:
11002 11003 11004
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11005 11006

    Returns:
H
haowang101779990 已提交
11007
        Variable: Output of shape [N, C, H, W] data samples input X
11008 11009
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11010 11011 11012 11013
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11014 11015 11016 11017 11018
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11019
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11020

D
dengkaipeng 已提交
11021 11022 11023 11024 11025 11026 11027 11028 11029
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11030
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11031 11032
    ipts = {'X': x, 'Grid': grid}

11033
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11034 11035 11036
    return out


G
gmcather 已提交
11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11064
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11065 11066
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11105
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11106 11107 11108 11109 11110 11111 11112
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11113 11114
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11115

11116 11117 11118 11119 11120
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11121
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11122

H
heqiaozhi 已提交
11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11136 11137 11138 11139
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11140
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11141 11142
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11143
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11144 11145

    .. math::
H
haowang101779990 已提交
11146 11147 11148
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11149 11150

    Where:
H
haowang101779990 已提交
11151 11152
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11166 11167 11168 11169 11170 11171 11172 11173 11174
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11175

G
gmcather 已提交
11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11192 11193 11194 11195 11196 11197 11198 11199 11200 11201


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11202
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11203

Q
Qiao Longfei 已提交
11204
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11205 11206 11207
    For example:

    .. math::
H
haowang101779990 已提交
11208
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11209

Q
Qiao Longfei 已提交
11210
    In this formula:
11211 11212
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11213
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11214
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11215 11216 11217
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11218 11219
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11220 11221 11222
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11223
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11224
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11225
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11226 11227 11228 11229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11230
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11231 11232 11233 11234

    Examples:
        .. code-block:: python

11235
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11236 11237 11238
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11239 11240
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11241
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11242 11243 11244 11245

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11246
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11277 11278 11279 11280 11281 11282 11283 11284

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11285 11286 11287 11288 11289 11290 11291 11292 11293 11294
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11295 11296


S
shippingwang 已提交
11297
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11298 11299
    """
    **Shuffle Channel Operator**
11300

S
shippingwang 已提交
11301 11302 11303 11304 11305 11306
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11307
    
S
shippingwang 已提交
11308
    .. code-block:: text
11309

S
shippingwang 已提交
11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11338
    Args: 
S
shippingwang 已提交
11339 11340
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11341 11342

    Returns:
S
shippingwang 已提交
11343 11344
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11345 11346

    Raises:
S
shippingwang 已提交
11347
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11348 11349 11350

    Examples:
        .. code-block:: python
11351

11352
            import paddle.fluid as fluid
11353
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11354
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11355 11356 11357
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11358
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11359 11360 11361 11362 11363 11364 11365 11366 11367

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11368
    return out
S
Add  
shippingwang 已提交
11369 11370


11371
@templatedoc()
D
dengkaipeng 已提交
11372
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11373 11374 11375 11376 11377 11378 11379 11380
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11381
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11382
        name (str, default None): The name of this layer.
11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11394
            import paddle.fluid as fluid
11395
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11396
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11409 11410
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11411 11412 11413
    return out


S
sneaxiy 已提交
11414
class PyFuncRegistry(object):
S
sneaxiy 已提交
11415 11416 11417
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11418
        if func is None or not callable(func):
S
sneaxiy 已提交
11419 11420 11421
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11422
        # find named args using reflection
S
sneaxiy 已提交
11423 11424 11425 11426 11427 11428 11429
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11430 11431 11432
        '''
        Why record self here?

M
minqiyang 已提交
11433 11434
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11435
           to find the registered function corresponding
M
minqiyang 已提交
11436
           to :code:`idx`.
S
sneaxiy 已提交
11437

M
minqiyang 已提交
11438 11439
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11440
           whose reference count is 1 would cause
M
minqiyang 已提交
11441
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11442 11443
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11444
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11459 11460 11461 11462 11463 11464 11465 11466 11467
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11468

S
sneaxiy 已提交
11469 11470
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11471 11472

        ret = []
S
sneaxiy 已提交
11473 11474 11475
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11476 11477
                continue

S
sneaxiy 已提交
11478 11479
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11480

S
sneaxiy 已提交
11481 11482 11483
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11484

S
sneaxiy 已提交
11485
        return tuple(ret)
S
sneaxiy 已提交
11486 11487


S
sneaxiy 已提交
11488 11489 11490 11491
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11492

S
sneaxiy 已提交
11493 11494 11495 11496 11497 11498 11499 11500
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11501
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11502

S
sneaxiy 已提交
11503 11504
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11505 11506 11507 11508
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11509
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11510
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11511 11512
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11513 11514 11515 11516 11517
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11518
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11519
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11520
                                       None means no backward. Default None.
S
sneaxiy 已提交
11521
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11522
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11523 11524
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11525
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11526 11527 11528

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11529 11530

    Examples:
M
minqiyang 已提交
11531

S
sneaxiy 已提交
11532 11533 11534 11535 11536
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11537
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11538 11539
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11540
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11541 11542 11543
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11544
        >>>
S
sneaxiy 已提交
11545 11546 11547 11548 11549
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11550
        >>>     print(x)
S
sneaxiy 已提交
11551 11552 11553 11554 11555 11556
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11557
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11558 11559
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11560 11561
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11562 11563 11564 11565 11566 11567 11568 11569
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11570
    """
S
sneaxiy 已提交
11571
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11572 11573 11574
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11575
        x = [x]
S
sneaxiy 已提交
11576 11577
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11578

S
sneaxiy 已提交
11579 11580 11581
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11582
        out_list = [out]
S
sneaxiy 已提交
11583
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11584
        out_list = out
S
sneaxiy 已提交
11585 11586 11587
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11588

S
sneaxiy 已提交
11589 11590
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11591
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11592 11593

    for each_out in out_list:
S
sneaxiy 已提交
11594 11595
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11596 11597
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11598

S
sneaxiy 已提交
11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11614 11615 11616 11617

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11618 11619
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11620 11621 11622
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11623
        })
S
sneaxiy 已提交
11624
    return out
S
sneaxiy 已提交
11625 11626 11627


# For debug usage
S
sneaxiy 已提交
11628 11629 11630 11631
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11645 11646 11647 11648 11649
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11662 11663 11664 11665
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11691

M
minqiyang 已提交
11692

M
minqiyang 已提交
11693
def huber_loss(input, label, delta):
11694
    """
M
minqiyang 已提交
11695 11696 11697
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11698 11699 11700 11701

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11702
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11703 11704 11705 11706

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11707
        huber\_loss = 0.5 * (label - input) * (label - input)
11708 11709 11710 11711 11712 11713 11714


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11715
        delta (float): The parameter of huber loss, which controls
11716 11717 11718
                       the range of outliers

    Returns:
M
minqiyang 已提交
11719
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11720 11721 11722 11723

    Examples:
        .. code-block:: python

11724 11725 11726 11727 11728 11729 11730 11731 11732
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11733
    """
M
minqiyang 已提交
11734
    helper = LayerHelper('huber_loss', **locals())
11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11746 11747


D
dengkaipeng 已提交
11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

11765
            import paddle.fluid as fluid
D
dengkaipeng 已提交
11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

11811
          import paddle.fluid as fluid
T
Tao Luo 已提交
11812 11813 11814
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11815
          # edges must be directional
T
Tao Luo 已提交
11816 11817 11818 11819
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11820
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11821 11822
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11823
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11824
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11848 11849


C
ceci3 已提交
11850
from .ops import square
C
ceci3 已提交
11851
from .control_flow import equal
C
ceci3 已提交
11852 11853


C
ceci3 已提交
11854 11855 11856
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11857

C
ceci3 已提交
11858
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11859 11860

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11861
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11862 11863 11864 11865 11866
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11867 11868
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11869 11870 11871 11872 11873 11874 11875

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

11876
       import paddle.fluid as fluid
C
ceci3 已提交
11877 11878 11879 11880 11881 11882 11883 11884
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11885 11886 11887 11888 11889 11890 11891
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11892
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11893 11894
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11895 11896
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11897 11898 11899 11900
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11901 11902 11903
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11904 11905 11906
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11907 11908


R
ruri 已提交
11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11938
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11939 11940 11941 11942 11943 11944 11945 11946 11947

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

11948
            import paddle.fluid as fluid
R
ruri 已提交
11949
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12000 12001 12002 12003 12004 12005
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12006 12007 12008 12009 12010 12011 12012 12013
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12014 12015 12016 12017


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12018

H
heqiaozhi 已提交
12019
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12020

H
fix doc  
heqiaozhi 已提交
12021
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12022 12023 12024
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12025
    
H
fix doc  
heqiaozhi 已提交
12026
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12027

H
heqiaozhi 已提交
12028
    Args:
H
fix doc  
heqiaozhi 已提交
12029 12030

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12031 12032
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12033
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12034
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12035

H
heqiaozhi 已提交
12036
    Returns:
H
fix doc  
heqiaozhi 已提交
12037 12038 12039

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12040
    Examples:
H
fix doc  
heqiaozhi 已提交
12041

H
heqiaozhi 已提交
12042
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12043

12044
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12045 12046 12047 12048 12049 12050 12051 12052 12053 12054
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12055

H
heqiaozhi 已提交
12056 12057 12058 12059 12060 12061 12062 12063 12064
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12065
    return out
Z
zhoukunsheng 已提交
12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12084
             import paddle.fluid as fluid
12085 12086 12087
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12088
             # condition is a tensor [True, False, True]
12089 12090 12091
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12092 12093

             # condition is a tensor [[True, False], [False, True]]
12094 12095 12096
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12097 12098

             # condition is a tensor [False, False, False]
12099 12100 12101 12102
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12103 12104 12105 12106 12107 12108 12109 12110 12111
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12129 12130 12131
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12132
          # [1, 0, -1]
12133 12134
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12147 12148


Z
zhoukunsheng 已提交
12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12290
          import paddle.fluid as fluid
12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12522
        import paddle.fluid as fluid
C
cjt222 已提交
12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out