Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
39f4e927
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
39f4e927
编写于
12月 19, 2018
作者:
H
heqiaozhi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
data_norm
test=develop
上级
754a5f88
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
576 addition
and
3 deletion
+576
-3
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/data_norm_op.cc
paddle/fluid/operators/data_norm_op.cc
+409
-0
paddle/fluid/operators/data_norm_op.h
paddle/fluid/operators/data_norm_op.h
+35
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+131
-3
未找到文件。
paddle/fluid/API.spec
浏览文件 @
39f4e927
...
...
@@ -88,6 +88,7 @@ paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'poo
paddle.fluid.layers.adaptive_pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None))
paddle.fluid.layers.adaptive_pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False))
paddle.fluid.layers.data_norm ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'use_mkldnn', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, False, None, None, None, False))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
...
...
paddle/fluid/operators/data_norm_op.cc
0 → 100644
浏览文件 @
39f4e927
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/data_norm_op.h"
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
EigenArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
;
template
<
typename
T
>
using
ConstEigenArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
;
template
<
typename
T
>
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
template
<
typename
T
>
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
class
DataNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchSize"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchSum"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchSquareSum"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Means"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Scales"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
""
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_layout"
));
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"Input X must have 2 to 5 dimensions."
);
const
int64_t
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSize"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSum"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSquareSum"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSize"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSum"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSquareSum"
)[
0
],
C
);
ctx
->
SetOutputDim
(
"Y"
,
x_dims
);
ctx
->
SetOutputDim
(
"Means"
,
{
C
});
ctx
->
SetOutputDim
(
"Scales"
,
{
C
});
ctx
->
ShareLoD
(
"X"
,
"Y"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
();
// By default, the type of the scale, bias, mean,
// and var tensors should both be float. (For float or float16 input tensor)
// or double (For double input tensor).
auto
dn_param_type
=
framework
::
proto
::
VarType
::
FP32
;
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP64
)
{
dn_param_type
=
framework
::
proto
::
VarType
::
FP64
;
}
PADDLE_ENFORCE_EQ
(
dn_param_type
,
ctx
.
Input
<
Tensor
>
(
"BatchSize"
)
->
type
(),
"BatchSize input should be of float type"
);
PADDLE_ENFORCE_EQ
(
dn_param_type
,
ctx
.
Input
<
Tensor
>
(
"BatchSum"
)
->
type
(),
"BatchSum input should be of float type"
);
PADDLE_ENFORCE_EQ
(
dn_param_type
,
ctx
.
Input
<
Tensor
>
(
"BatchSquareSum"
)
->
type
(),
"BatchSquareSum input should be of float type"
);
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
layout
=
framework
::
DataLayout
::
kMKLDNN
;
}
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout
,
library
);
}
};
class
DataNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
// AddAttr<bool>("is_test", "").SetDefault(false);
AddAttr
<
float
>
(
"epsilon"
,
""
)
.
SetDefault
(
1e-4
)
.
AddCustomChecker
([](
const
float
&
epsilon
)
{
PADDLE_ENFORCE
(
epsilon
>=
0.0
f
&&
epsilon
<=
0.001
f
,
"'epsilon' should be between 0.0 and 0.001."
);
});
AddAttr
<
std
::
string
>
(
"data_layout"
,
""
).
SetDefault
(
"NCHW"
);
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"BatchSize"
,
"BatchSize is a 1-dimensional tensor of size C "
"that is applied to the output"
);
AddInput
(
"BatchSum"
,
"BatchSum is a 1-dimensional tensor of size C "
"that is applied to the output"
);
AddInput
(
"BatchSquareSum"
,
"The global BatchSquareSum (for training) or "
"estimated BatchSquareSum (for testing)"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"Means"
,
"Mean of the history data batch, "
"will apply to output when training"
)
.
AsIntermediate
();
AddOutput
(
"Scales"
,
"Scales of the history data batch, "
"will apply to output when training"
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Data Normalization.
Can be used as a normalizer function for data
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
)DOC"
);
}
};
template
<
typename
T
>
class
DataNormKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// const bool is_test = ctx.Attr<bool>("is_test");
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
==
2
,
"The Input dim size should be 2"
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean_out
=
ctx
.
Output
<
Tensor
>
(
"Means"
);
auto
*
scales
=
ctx
.
Output
<
Tensor
>
(
"Scales"
);
// alloc memory
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>
inv_std
(
C
);
ConstEigenVectorArrayMap
<
T
>
b_size_arr
(
ctx
.
Input
<
Tensor
>
(
"BatchSize"
)
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
b_sum_arr
(
ctx
.
Input
<
Tensor
>
(
"BatchSum"
)
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
b_square_sum_arr
(
ctx
.
Input
<
Tensor
>
(
"BatchSquareSum"
)
->
data
<
T
>
(),
C
);
EigenVectorArrayMap
<
T
>
means_arr
(
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
scales_arr
(
scales
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
means_arr
=
b_sum_arr
/
b_size_arr
;
scales_arr
=
(
b_size_arr
/
b_square_sum_arr
).
sqrt
();
switch
(
data_layout
)
{
case
DataLayout
::
kNCHW
:
// because it's two dimensions, so make no
// difference
case
DataLayout
::
kNHWC
:
{
EigenArrayMap
<
T
>
(
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
N
)
=
(
ConstEigenArrayMap
<
T
>
(
x
->
data
<
T
>
(),
C
,
N
).
colwise
()
-
means_arr
)
.
colwise
()
*
scales_arr
;
break
;
}
default:
PADDLE_THROW
(
"Unknown storage order: %d"
,
data_layout
);
}
}
};
class
DataNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// check input
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchSize"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchSum"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchSquareSum"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Means"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Scales"
),
""
);
// check output
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BatchSize"
)),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BatchSum"
)),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BatchSquareSum"
)),
""
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_layout"
));
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BatchSize"
),
{
C
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BatchSum"
),
{
C
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BatchSquareSum"
),
{
C
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
));
if
(
var
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
&
var
->
Get
<
Tensor
>
();
}
else
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
&
var
->
Get
<
LoDTensor
>
();
}
if
(
t
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
layout
=
framework
::
DataLayout
::
kMKLDNN
;
}
#endif
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
(),
layout
,
library
);
}
};
template
<
typename
T
>
class
DataNormGradKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
batch_size
=
ctx
.
Input
<
Tensor
>
(
"BatchSize"
);
const
auto
*
batch_sum
=
ctx
.
Input
<
Tensor
>
(
"BatchSum"
);
const
auto
*
batch_square_sum
=
ctx
.
Input
<
Tensor
>
(
"BatchSquareSum"
);
const
auto
*
scales
=
ctx
.
Input
<
Tensor
>
(
"Scales"
);
const
auto
*
means
=
ctx
.
Input
<
Tensor
>
(
"Means"
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
// Get the size for each dimension.
// NCHW [batch_size, in_channels, in_height, in_width]
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
==
2
,
"The Input dim size should be 2"
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_batch_size
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BatchSize"
));
auto
*
d_batch_sum
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BatchSum"
));
auto
*
d_batch_square_sum
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BatchSquareSum"
));
EigenVectorArrayMap
<
T
>
d_batch_size_arr
(
d_batch_size
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
d_batch_sum_arr
(
d_batch_sum
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
d_batch_square_sum_arr
(
d_batch_square_sum
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
d_batch_size_arr
.
setZero
();
d_batch_sum_arr
.
setZero
();
d_batch_square_sum_arr
.
setZero
();
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
switch
(
data_layout
)
{
// because it's two dimensions, so make no difference
case
DataLayout
::
kNCHW
:
case
DataLayout
::
kNHWC
:
{
ConstEigenVectorArrayMap
<
T
>
scales_arr
(
scales
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
means_arr
(
means
->
data
<
T
>
(),
C
);
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
C
,
N
);
ConstEigenArrayMap
<
T
>
d_y_arr
(
d_y
->
data
<
T
>
(),
C
,
N
);
EigenArrayMap
<
T
>
d_x_arr
(
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
N
);
d_x_arr
.
setZero
();
for
(
int
nc
=
0
;
nc
<
N
;
++
nc
)
{
d_x_arr
.
col
(
nc
)
=
d_y_arr
.
col
(
nc
)
*
scales_arr
;
}
// calculate data sum and squre sum
ConstEigenVectorArrayMap
<
T
>
batch_size_arr
(
batch_size
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
batch_sum_arr
(
batch_sum
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
batch_square_sum_arr
(
batch_square_sum
->
data
<
T
>
(),
C
);
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>
sample_sum
(
C
);
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>
sample_square_sum
(
C
);
// calculate data sample sum and square sum
sample_sum
.
setZero
();
sample_square_sum
.
setZero
();
for
(
int
nc
=
0
;
nc
<
N
;
++
nc
)
{
sample_sum
+=
x_arr
.
col
(
nc
);
sample_square_sum
+=
(
x_arr
.
col
(
nc
)
-
means_arr
).
square
();
}
// calculate gradient
d_batch_size_arr
.
setConstant
(
N
);
d_batch_sum_arr
=
sample_sum
;
d_batch_square_sum_arr
=
sample_square_sum
+
d_batch_size_arr
*
epsilon
;
break
;
}
default:
PADDLE_THROW
(
"Unknown storage order: %s"
,
data_layout_str
);
}
}
};
class
DataNormGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"data_norm_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetInput
(
"BatchSize"
,
Input
(
"BatchSize"
));
op
->
SetInput
(
"BatchSum"
,
Input
(
"BatchSum"
));
op
->
SetInput
(
"BatchSquareSum"
,
Input
(
"BatchSquareSum"
));
op
->
SetInput
(
"Scales"
,
Output
(
"Scales"
));
op
->
SetInput
(
"Means"
,
Output
(
"Means"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"BatchSize"
),
InputGrad
(
"BatchSize"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"BatchSum"
),
InputGrad
(
"BatchSum"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"BatchSquareSum"
),
InputGrad
(
"BatchSquareSum"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
data_norm
,
ops
::
DataNormOp
,
ops
::
DataNormOpMaker
,
ops
::
DataNormGradMaker
);
REGISTER_OPERATOR
(
data_norm_grad
,
ops
::
DataNormGradOp
);
REGISTER_OP_CPU_KERNEL
(
data_norm
,
ops
::
DataNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
DataNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
data_norm_grad
,
ops
::
DataNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
DataNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/data_norm_op.h
0 → 100644
浏览文件 @
39f4e927
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
DataNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
DataNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
39f4e927
...
...
@@ -55,6 +55,7 @@ __all__ = [
'adaptive_pool2d'
,
'adaptive_pool3d'
,
'batch_norm'
,
'data_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv3d_transpose'
,
...
...
@@ -2886,6 +2887,133 @@ def batch_norm(input,
return
helper
.
append_activation
(
batch_norm_out
)
def
data_norm
(
input
,
act
=
None
,
epsilon
=
1e-05
,
param_attr
=
None
,
data_layout
=
'NCHW'
,
in_place
=
False
,
use_mkldnn
=
False
,
name
=
None
,
moving_mean_name
=
None
,
moving_variance_name
=
None
,
do_model_average_for_mean_and_var
=
False
):
"""
**Data Normalization Layer**
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
:math:`input` is the input features over a mini-batch.
.. math::
\\
mu_{
\\
beta} &
\\
gets
\\
frac{1}{m}
\\
sum_{i=1}^{m} x_i
\\
qquad &//
\\
\ mini-batch\ mean
\\\\
\\
sigma_{
\\
beta}^{2} &
\\
gets
\\
frac{1}{m}
\\
sum_{i=1}^{m}(x_i -
\\
\\
mu_{
\\
beta})^2
\\
qquad &//\ mini-batch\ variance
\\\\
\\
hat{x_i} &
\\
gets
\\
frac{x_i -
\\
mu_
\\
beta} {
\\
sqrt{
\\
\\
sigma_{
\\
beta}^{2} +
\\
epsilon}}
\\
qquad &//\ normalize
\\\\
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
\\
qquad &//\ scale\ and\ shift
Args:
input(variable): The input variable which is a LoDTensor.
act(string, Default None): Activation type, linear|relu|prelu|...
epsilon(float, Default 1e-05):
param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False): Make the input and output of batch norm reuse memory.
use_mkldnn(bool, Default false): ${use_mkldnn_comment}
name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically.
moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
Returns:
Variable: A tensor variable which is the result after applying data normalization on the input.
Examples:
.. code-block:: python
data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
hidden2 = fluid.layers.data_norm(input=hidden1)
"""
helper
=
LayerHelper
(
'data_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
input_shape
=
input
.
shape
if
data_layout
==
'NCHW'
:
channel_num
=
input_shape
[
1
]
else
:
if
data_layout
==
'NHWC'
:
channel_num
=
input_shape
[
-
1
]
else
:
raise
ValueError
(
"unsupported data layout:"
+
data_layout
)
param_shape
=
[
channel_num
]
batch_size_default
=
1e4
batch_sum_default
=
0.0
batch_square_sum_default
=
1e4
if
param_attr
and
isinstance
(
param_attr
,
dict
):
batch_size_default
=
param_attr
.
get
(
"batch_size"
,
1e4
)
batch_sum_default
=
param_attr
.
get
(
"batch_sum"
,
0.0
)
batch_square_sum_default
=
param_attr
.
get
(
"batch_square"
,
1e4
)
# create parameter
batch_size
=
helper
.
create_parameter
(
attr
=
ParamAttr
(
name
=
name
+
'.batch_size'
,
initializer
=
Constant
(
value
=
float
(
batch_size_default
)),
trainable
=
True
),
shape
=
param_shape
,
dtype
=
input
.
dtype
)
batch_sum
=
helper
.
create_parameter
(
attr
=
ParamAttr
(
name
=
name
+
'.batch_sum'
,
initializer
=
Constant
(
value
=
float
(
batch_sum_default
)),
trainable
=
True
),
shape
=
param_shape
,
dtype
=
input
.
dtype
)
batch_square_sum
=
helper
.
create_parameter
(
attr
=
ParamAttr
(
name
=
name
+
'.batch_square_sum'
,
initializer
=
Constant
(
value
=
float
(
batch_square_sum_default
)),
trainable
=
True
),
shape
=
param_shape
,
dtype
=
input
.
dtype
)
means
=
helper
.
create_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
scales
=
helper
.
create_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
data_norm_out
=
input
if
in_place
else
helper
.
create_variable
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
"data_norm"
,
inputs
=
{
"X"
:
input
,
"BatchSize"
:
batch_size
,
"BatchSum"
:
batch_sum
,
"BatchSquareSum"
:
batch_square_sum
},
outputs
=
{
"Y"
:
data_norm_out
,
"Means"
:
means
,
"Scales"
:
scales
},
attrs
=
{
"epsilon"
:
epsilon
,
"use_mkldnn"
:
use_mkldnn
})
return
helper
.
append_activation
(
data_norm_out
)
@
templatedoc
()
def
layer_norm
(
input
,
scale
=
True
,
...
...
@@ -3054,9 +3182,9 @@ def group_norm(input,
inputs
[
'Bias'
]
=
bias
# create output
mean_out
=
helper
.
create_
tmp_
variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_
tmp_
variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
group_norm_out
=
helper
.
create_
tmp_
variable
(
dtype
)
mean_out
=
helper
.
create_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
group_norm_out
=
helper
.
create_variable
(
dtype
)
helper
.
append_op
(
type
=
"group_norm"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录