nn.py 411.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
Y
Yu Yang 已提交
205 206
]

J
jerrywgz 已提交
207 208
kIgnoreIndex = -100

Y
Yu Yang 已提交
209 210 211 212 213 214 215

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
216
       is_test=False,
217
       name=None):
Y
Yu Yang 已提交
218
    """
219
    **Fully Connected Layer**
Y
Yu Yang 已提交
220

221
    This function creates a fully connected layer in the network. It can take
222
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
223
    Args in detail). It creates a variable called weights for each input tensor,
224 225 226 227
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
228
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
229 230
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
231

232
    When the input is single tensor:
C
caoying03 已提交
233

234 235 236 237 238
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
239 240 241

    .. math::

242
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
243 244 245

    In the above equation:

246 247 248
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
249
    * :math:`b`: The bias parameter created by this layer (if needed).
250
    * :math:`Act`: The activation function.
C
caoying03 已提交
251
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
271
    Args:
R
ranqiu 已提交
272 273 274 275 276 277 278 279 280 281
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
282
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
283 284 285 286
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
287 288
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
289
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
290
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
291
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
292

293
    Returns:
F
fengjiayi 已提交
294
        Variable: The transformation result.
295 296

    Raises:
C
caoying03 已提交
297
        ValueError: If rank of the input tensor is less than 2.
298 299 300 301

    Examples:
        .. code-block:: python

302
          # when input is single tensor
F
fengjiayi 已提交
303
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
304
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
305 306 307 308 309

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
310
    """
C
caoying03 已提交
311
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
312 313 314 315

    dtype = helper.input_dtype()

    mul_results = []
316 317
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
318 319 320
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
321

Y
Yu Yang 已提交
322
        w = helper.create_parameter(
323
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
324
        tmp = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
329
            outputs={"Out": tmp},
M
mozga-intel 已提交
330 331
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
332 333 334 335
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
336
    else:
X
Xin Pan 已提交
337
        pre_bias = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
342
            attrs={"use_mkldnn": False})
343 344 345 346
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
347 348


349 350 351
def embedding(input,
              size,
              is_sparse=False,
352
              is_distributed=False,
353 354 355
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
356
    """
357 358
    **Embedding Layer**

359
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
360 361
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
362 363 364

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
365 366

    Args:
367 368 369 370 371
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
372
        is_distributed(bool): Whether to run lookup table from remote parameter server.
373 374
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
375
            with zeros whenever lookup encounters it in :attr:`input`. If
376
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
377 378
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
380

381 382 383
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
384

385 386
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
387

C
chengduoZH 已提交
388
          dict_size = len(dataset.ids)
389
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
390
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
391 392 393
    """

    helper = LayerHelper('embedding', **locals())
394
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
395 396
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
397 398
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
399
    tmp = helper.create_variable_for_type_inference(dtype)
400 401
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
402 403 404 405 406
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
407 408 409
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
410
            'remote_prefetch': remote_prefetch,
411 412
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
413 414 415
    return tmp


W
wopeizl 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
432

W
wopeizl 已提交
433 434 435 436 437 438 439 440 441 442 443
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
449

W
wopeizl 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
493
    assert in_dygraph_mode(
494
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
538 539


P
phlrain 已提交
540 541 542 543 544 545
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
546
         dropout_prob=0.0,
P
phlrain 已提交
547 548 549 550 551
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
552
    """
P
phlrain 已提交
553
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
554 555

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
556
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
557 558
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
559
    .. math::
M
minqiyang 已提交
560 561 562 563 564 565 566

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
567
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
568 569 570 571

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
572 573

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
574 575 576 577 578 579
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
580 581 582
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
583
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
584

M
minqiyang 已提交
585
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
586 587 588 589 590
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
591
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
592 593 594 595 596
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
597
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
598 599
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
600 601
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
602 603 604 605 606 607
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
608
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
609

L
liuhongyu 已提交
610 611

    Returns:
M
minqiyang 已提交
612 613
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
614
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
615

H
haowang101779990 已提交
616 617 618 619
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
620
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
621 622
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
623
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
639
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
640 641 642 643 644 645
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
646 647 648
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
718
                  proj_activation='tanh',
719
                  dtype='float32',
X
xuezhong 已提交
720 721 722 723 724
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
725 726 727
    """
    **Dynamic LSTMP Layer**

728 729 730 731 732 733
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
734 735 736 737 738

    The formula is as follows:

    .. math::

739
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
740

741
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
742

743
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
744

745
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
746

747
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
748

749
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
750

751
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
752

Y
Yibing Liu 已提交
753 754 755 756 757 758
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
759
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
760
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
761
          bias vector).
Y
Yibing Liu 已提交
762 763 764
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
765
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
766
    * :math:`h`: The hidden state.
767
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
768 769
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
770
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
771
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
772
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
773 774
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
775 776 777 778

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
779

Y
Yibing Liu 已提交
780 781 782 783 784 785 786 787 788 789 790 791
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
792
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
793 794
                               hidden-hidden weight and projection weight.

795 796
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
797 798
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
799 800
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
801
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
802 803 804 805 806

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
807
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
808 809 810 811 812 813
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
814
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
815 816 817
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
818
                                - The shape is (1 x 7D).
C
chengduo 已提交
819 820 821 822 823

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
833
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
834 835
                              default "tanh".
        proj_activation(str): The activation for projection output.
836
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
837
                              default "tanh".
Y
Yibing Liu 已提交
838
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
839 840
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
841 842 843 844 845 846 847 848 849 850 851
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
852 853

    Returns:
854 855 856 857
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
858 859

    Examples:
860

Y
Yibing Liu 已提交
861 862
        .. code-block:: python

863 864 865 866
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
867
            hidden_dim, proj_dim = 512, 256
868
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
869
                                     act=None, bias_attr=None)
870 871 872
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
873 874 875 876
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
877
    """
878

L
lujun 已提交
879
    assert in_dygraph_mode(
880 881
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
882
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
883
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
884
    size = size // 4
Y
Yibing Liu 已提交
885 886 887 888 889 890 891 892 893 894
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
895 896 897 898 899 900
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
916

X
xuezhong 已提交
917 918 919 920 921
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
922 923
    helper.append_op(
        type='lstmp',
924
        inputs=inputs,
Y
Yibing Liu 已提交
925 926 927 928 929 930 931 932 933
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
934 935
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
936 937 938 939 940 941 942 943 944
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
945 946 947 948 949 950 951
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
952 953
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
954
    """
955
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
956

957 958 959
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
960

G
guosheng 已提交
961 962 963 964 965 966 967 968 969
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
970

G
guosheng 已提交
971
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
972

Q
Qiao Longfei 已提交
973 974 975

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
976 977 978 979 980 981 982 983 984 985 986 987
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
988
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
989 990
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
991 992 993 994
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
995
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
996 997

    Args:
998 999
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1000
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1001
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1002 1003
            is the hidden size.
        size(int): The dimension of the gru cell.
1004
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1005 1006
            hidden-hidden weight matrix. Note:

1007
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1008
              :math:`D` is the hidden size.
1009
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1010
              The first part are weights of the update gate and reset gate with
1011
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1012
              candidate hidden state with shape :math:`(D \\times D)`.
1013 1014 1015 1016 1017

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1018
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1019
            the bias in the update gate, reset gate and candidate calculations.
1020 1021 1022
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1023 1024
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1025
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1026 1027 1028
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1029
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1030
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1031 1032 1033 1034
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1035 1036

    Returns:
G
guosheng 已提交
1037
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1038
            and sequence length is the same with the input.
1039

G
guosheng 已提交
1040
    Examples:
1041

G
guosheng 已提交
1042 1043
        .. code-block:: python

1044 1045 1046 1047
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1048
            hidden_dim = 512
1049
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1050
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1051 1052
    """

L
lujun 已提交
1053
    assert in_dygraph_mode(
1054 1055
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1056 1057 1058 1059 1060 1061 1062
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1063
    batch_size = input.shape[0]
G
guosheng 已提交
1064
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1065
    if h_0:
G
guosheng 已提交
1066
        assert h_0.shape == (
Y
Yancey 已提交
1067 1068 1069
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1070

X
Xin Pan 已提交
1071 1072 1073 1074
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1088 1089
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1090 1091 1092 1093
        })
    return hidden


Y
Yu Yang 已提交
1094 1095 1096
def gru_unit(input,
             hidden,
             size,
1097 1098
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1099
             activation='tanh',
Q
Qiao Longfei 已提交
1100 1101
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1102
    """
1103 1104 1105
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1106
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1107
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1108

1109 1110
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1111

1112
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1113

1114
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1131 1132

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1133 1134 1135
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1136 1137
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1138 1139
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1140 1141 1142
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1143 1144 1145

    Args:
        input (Variable): The fc transformed input value of current step.
1146
        hidden (Variable): The hidden value of gru unit from previous step.
1147
        size (integer): The input dimension value.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1162
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1163
            the bias in the update gate, reset gate and candidate calculations.
1164 1165 1166
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1167 1168
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1169 1170 1171 1172
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1173

1174 1175 1176 1177 1178 1179
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1180

1181
             # assuming we have x_t_data and prev_hidden of size=10
1182
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1183 1184
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1197
    size = size // 3
Y
Yu Yang 已提交
1198 1199

    # create weight
1200 1201
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1202

X
Xin Pan 已提交
1203 1204 1205
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1206
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1207
    # create bias
1208
    if helper.bias_attr:
Y
Yu Yang 已提交
1209 1210 1211
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1212
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1213 1214 1215

    helper.append_op(
        type='gru_unit',
1216
        inputs=inputs,
Y
Yu Yang 已提交
1217 1218 1219 1220 1221 1222
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1223 1224
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1225 1226 1227 1228 1229
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1230
@templatedoc()
1231
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1232 1233 1234 1235 1236 1237 1238
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1239
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1240 1241 1242 1243
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1244 1245 1246
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1247

J
JesseyXujin 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1261
    """
Y
Yu Yang 已提交
1262 1263 1264 1265 1266 1267
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1268 1269 1270 1271 1272 1273 1274 1275
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1291 1292 1293 1294
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1295

W
wopeizl 已提交
1296 1297
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1298

W
wopeizl 已提交
1299
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1300

W
wopeizl 已提交
1301
        label(${label_type}): ${label_comment}
1302

W
wopeizl 已提交
1303 1304
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1305

W
wopeizl 已提交
1306 1307
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1308

Y
Yibing Liu 已提交
1309 1310 1311 1312 1313 1314 1315
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1316 1317 1318 1319 1320 1321 1322 1323
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1324
                "Transition": transition,
W
wopeizl 已提交
1325 1326
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1327

W
wopeizl 已提交
1328
    return viterbi_path
Y
Yu Yang 已提交
1329 1330


Y
yi.wu 已提交
1331
@templatedoc()
F
fengjiayi 已提交
1332
def cos_sim(X, Y):
Y
Yu Yang 已提交
1333
    """
Y
yi.wu 已提交
1334 1335 1336
    ${comment}

    Args:
1337 1338
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1339

Y
yi.wu 已提交
1340
    Returns:
1341
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1342 1343 1344 1345 1346 1347 1348

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1349
    """
F
fengjiayi 已提交
1350
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1351 1352 1353
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1364 1365 1366 1367 1368
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1369
            dropout_implementation="downgrade_in_infer"):
1370 1371 1372 1373 1374
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1375
    training. The dropout operator randomly sets (according to the given dropout
1376 1377 1378
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1379 1380
    dropout op can be removed from the program to make the program more efficient.

1381
    Args:
1382 1383
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1384 1385 1386 1387 1388 1389 1390
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1391 1392
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1393
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1394 1395

                                           - train: out = input * mask
C
ceci3 已提交
1396
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1397 1398 1399

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1400
                                        2. upscale_in_train, upscale the outcome at training time
1401

H
haowang101779990 已提交
1402 1403
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1404

H
haowang101779990 已提交
1405 1406
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1407

M
minqiyang 已提交
1408

1409
    Returns:
1410
        Variable: A tensor variable is the shape with `x`.
1411 1412

    Examples:
1413

1414 1415
        .. code-block:: python

1416 1417
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1418 1419
    """

F
fengjiayi 已提交
1420
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1421 1422
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1423
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1424 1425 1426 1427

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1428 1429 1430 1431 1432
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1433 1434 1435 1436
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1437 1438
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1439
        })
1440 1441 1442
    return out


J
jerrywgz 已提交
1443
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1444
    """
Y
Yibing Liu 已提交
1445 1446
    **Cross Entropy Layer**

1447 1448 1449
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1450 1451

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1452
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1453

Y
Yibing Liu 已提交
1454
        .. math::
Y
yangyaming 已提交
1455

Y
Yibing Liu 已提交
1456 1457 1458
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1459 1460
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1461 1462 1463 1464 1465

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1466
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1467 1468 1469
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1470 1471
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1472
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1473

Y
Yibing Liu 已提交
1474
    Args:
Y
yangyaming 已提交
1475
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1476 1477 1478 1479
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1480
        label (Variable|list): the ground truth which is a 2-D tensor. When
1481 1482 1483 1484
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1485
        soft_label (bool): a flag indicating whether to
1486
                                           interpretate the given labels as soft
1487
                                           labels. Default: `False`.
M
minqiyang 已提交
1488 1489
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1490
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1491 1492 1493 1494 1495

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1496 1497 1498
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1499

H
haowang101779990 已提交
1500 1501
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1502

H
haowang101779990 已提交
1503 1504
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1505 1506 1507 1508

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1509 1510 1511 1512
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1513
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1514
    """
S
sneaxiy 已提交
1515 1516
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1517
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1518
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1519 1520 1521 1522 1523
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1524 1525
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1526 1527 1528
    return out


S
sneaxiy 已提交
1529 1530 1531 1532
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1533
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1534 1535 1536 1537 1538
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1539
                 'MatchX': [match_x],
S
sneaxiy 已提交
1540 1541 1542 1543 1544
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1545
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1546
    """
1547
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1548

1549
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1550
    The loss at a given point in one session is defined as:
1551 1552 1553

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1554 1555

    Learn more details by reading paper <session-based recommendations with recurrent
1556
    neural networks>.
F
frankwhzhang 已提交
1557

1558 1559 1560 1561 1562 1563
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1564 1565
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1566 1567 1568
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1569 1570 1571
    Examples:
        .. code-block:: python

1572 1573 1574 1575 1576 1577 1578
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1579
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1580
    """
1581 1582 1583 1584 1585
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1586
                'Label': [label]},
1587 1588 1589 1590
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1591
def square_error_cost(input, label):
Y
Yu Yang 已提交
1592
    """
1593 1594
    **Square error cost layer**

1595 1596
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1611 1612
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1613 1614

    Returns:
G
guosheng 已提交
1615
        Variable: The tensor variable storing the element-wise squared error \
1616
                  difference of input and label.
1617 1618 1619 1620

    Examples:
        .. code-block:: python

R
ruri 已提交
1621 1622 1623
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1624

Y
Yu Yang 已提交
1625
    """
F
fengjiayi 已提交
1626
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1627
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1628 1629 1630 1631 1632 1633
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1634
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1635
    helper.append_op(
F
fengjiayi 已提交
1636 1637
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1638 1639 1640
    return square_out


Y
yi.wu 已提交
1641
@templatedoc()
Y
Yu Yang 已提交
1642 1643 1644 1645
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1646
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1647
    """
Y
yi.wu 已提交
1648
    **Chunk Evaluator**
Y
yi.wu 已提交
1649

Y
yangyaming 已提交
1650
    This function computes and outputs the precision, recall and
1651
    F1-score of chunk detection.
Y
yi.wu 已提交
1652

M
minqiyang 已提交
1653
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1654
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1655 1656 1657 1658 1659 1660

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1661

Y
yi.wu 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1687

Y
yi.wu 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1712
    Args:
1713 1714 1715 1716 1717
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1718

Y
yi.wu 已提交
1719
    Returns:
Y
update  
yi.wu 已提交
1720 1721 1722
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1723

Y
yi.wu 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1736
    """
F
fengjiayi 已提交
1737
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1738 1739

    # prepare output
X
Xin Pan 已提交
1740 1741 1742 1743 1744 1745 1746
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1747 1748 1749 1750 1751 1752 1753 1754

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1755 1756 1757 1758
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1759 1760 1761
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1762 1763
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1764
        })
1765 1766
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1767 1768


1769
@templatedoc()
Y
Yu Yang 已提交
1770 1771 1772 1773 1774 1775 1776
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1777 1778
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1779 1780 1781 1782
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1783 1784 1785 1786 1787 1788 1789

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1803

1804 1805
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1806 1807
    """

L
lujun 已提交
1808
    assert not in_dygraph_mode(), (
1809
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1810 1811 1812 1813 1814
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1815
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1826
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1827 1828 1829 1830 1831 1832
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1833
def sequence_softmax(input, use_cudnn=False, name=None):
1834 1835 1836
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1837
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1854 1855 1856
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1869
    assert not in_dygraph_mode(), (
1870
        "sequence layer is not supported in dygraph mode yet.")
1871 1872
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1873
    softmax_out = helper.create_variable_for_type_inference(dtype)
1874 1875 1876 1877 1878 1879 1880 1881
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1882
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1883
    """
1884
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1885
    has the same shape as the input.
Q
qiaolongfei 已提交
1886

D
dengkaipeng 已提交
1887
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1888
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1889
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1890 1891 1892
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1893
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1894
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1895 1896 1897 1898 1899 1900 1901

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1902
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1903 1904 1905 1906 1907 1908 1909 1910

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1911 1912
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1913 1914
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1915 1916 1917
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1918 1919 1920 1921 1922 1923 1924 1925

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1926 1927
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1928
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1929
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1930
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1931 1932
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1933 1934

    """
1935 1936
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1937
    softmax_out = helper.create_variable_for_type_inference(dtype)
1938 1939 1940 1941
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1942 1943
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1944 1945 1946
    return softmax_out


Y
Yu Yang 已提交
1947 1948 1949
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1950 1951
           stride=1,
           padding=0,
1952
           dilation=1,
Y
Yu Yang 已提交
1953 1954 1955
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1956
           use_cudnn=True,
1957 1958
           act=None,
           name=None):
Y
Yu Yang 已提交
1959
    """
C
chengduoZH 已提交
1960
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1961 1962
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1963
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1964 1965 1966 1967 1968 1969 1970
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1971 1972 1973
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1974

1975
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1976

C
chengduoZH 已提交
1977 1978
    .. math::

C
refine  
chengduoZH 已提交
1979
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1980

T
tensor-tang 已提交
1981
    Where:
C
chengduoZH 已提交
1982

1983 1984 1985 1986 1987
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1988
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1989 1990 1991

    Example:

1992 1993
        - Input:

W
weixing02 已提交
1994
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1995

W
weixing02 已提交
1996
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1997

1998
        - Output:
T
tensor-tang 已提交
1999

W
weixing02 已提交
2000
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2001

C
chengduoZH 已提交
2002
        Where
2003 2004

        .. math::
C
chengduoZH 已提交
2005

W
weixing02 已提交
2006 2007
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2008 2009

    Args:
2010
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2011
        num_filters(int): The number of filter. It is as same as the output
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2029 2030 2031 2032 2033
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2034
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2035 2036 2037 2038 2039
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2040 2041
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2042 2043
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2044
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2045
            will be named automatically. Default: None
C
chengduoZH 已提交
2046 2047

    Returns:
G
guosheng 已提交
2048
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2049 2050
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2051
    Raises:
2052 2053
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2054

C
chengduoZH 已提交
2055 2056 2057
    Examples:
        .. code-block:: python

2058 2059
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2060 2061 2062
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2063
    assert param_attr is not False, "param_attr should not be False here."
2064
    l_type = 'conv2d'
X
xzl 已提交
2065 2066
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2067
        l_type = 'depthwise_conv2d'
2068 2069 2070 2071

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2072 2073 2074 2075 2076
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2077
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2078

C
chengduoZH 已提交
2079 2080 2081
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2082
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2083

C
chengduoZH 已提交
2084 2085
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2086 2087

    input_shape = input.shape
M
minqiyang 已提交
2088
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2089 2090

    def _get_default_param_initializer():
C
chengduo 已提交
2091 2092
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2093 2094 2095 2096 2097 2098 2099 2100
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2101
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2117
    helper.append_op(
2118
        type=l_type,
Y
Yu Yang 已提交
2119 2120 2121 2122 2123
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2124 2125 2126
        attrs={
            'strides': stride,
            'paddings': padding,
2127
            'dilations': dilation,
C
chengduoZH 已提交
2128
            'groups': groups,
2129
            'use_cudnn': use_cudnn,
2130
            'use_mkldnn': False,
2131
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2132
        })
Y
Yu Yang 已提交
2133 2134 2135 2136 2137 2138

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2156 2157 2158 2159 2160 2161
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2171 2172
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2173 2174 2175
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2176
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2202
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2203 2204
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2205
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2206 2207
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2208
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2209 2210
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2211
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2212 2213 2214 2215 2216 2217
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2228 2229
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2230 2231
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2232
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2233
            will be named automatically. Default: None.
C
chengduoZH 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2246 2247
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2248 2249 2250
    """

    l_type = 'conv3d'
C
chengduo 已提交
2251
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2262
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2276 2277 2278
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2279 2280 2281 2282 2283 2284 2285 2286
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2287
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2302
            'use_mkldnn': False
C
chengduoZH 已提交
2303 2304
        })

2305
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2306 2307 2308 2309

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2310
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2311
    """
Y
yangyaming 已提交
2312 2313 2314
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2326
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2327 2328 2329 2330 2331
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2332
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2333 2334 2335 2336 2337 2338 2339

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2340 2341
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2342

L
Luo Tao 已提交
2343 2344
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2345
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2346
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2347
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2348 2349 2350 2351 2352 2353 2354

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2355

Y
yangyaming 已提交
2356
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2357 2358 2359 2360 2361
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2362 2363
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2364
    """
L
lujun 已提交
2365
    assert not in_dygraph_mode(), (
2366
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2367
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2368
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2369 2370
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2371 2372 2373 2374 2375 2376

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2377 2378
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2379

Y
yangyaming 已提交
2380 2381 2382 2383 2384
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2385 2386 2387
    return pool_out


C
add doc  
chengduoZH 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2406
    assert not in_dygraph_mode(), (
2407
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2408
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2409
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2410 2411 2412 2413 2414
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2415
def sequence_first_step(input):
L
Luo Tao 已提交
2416
    """
L
Luo Tao 已提交
2417
    This function gets the first step of sequence.
L
Luo Tao 已提交
2418 2419 2420 2421

    .. code-block:: text

       x is a 1-level LoDTensor:
2422
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2423 2424 2425 2426 2427
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2428
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2429
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2430

L
Luo Tao 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2440

Y
yangyaming 已提交
2441
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2442 2443 2444
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2445 2446 2447
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2448
def sequence_last_step(input):
L
Luo Tao 已提交
2449
    """
L
Luo Tao 已提交
2450
    This function gets the last step of sequence.
L
Luo Tao 已提交
2451 2452 2453 2454

    .. code-block:: text

       x is a 1-level LoDTensor:
2455
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2456 2457 2458 2459 2460
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2461
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2462
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2463

L
Luo Tao 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2473

Y
yangyaming 已提交
2474
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2475 2476 2477
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2478 2479 2480
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2481 2482 2483 2484
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2485
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2486 2487 2488 2489 2490
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2491

H
haowang101779990 已提交
2492
              - Case:
Y
Yibing Liu 已提交
2493

2494
            Given the input Variable **input**:
2495

2496 2497 2498
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2499

2500
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2501

2502
            the output Variable will be
2503

2504 2505 2506
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2507

M
minqiyang 已提交
2508
    Note:
H
haowang101779990 已提交
2509
          The first dimension size of **input**, **offset** and **length**
2510
          should be equal. The **offset** should start from 0.
2511

Y
Yibing Liu 已提交
2512
    Args:
2513
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2514
                         sequences.
Y
Yibing Liu 已提交
2515 2516 2517 2518 2519 2520
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2521
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2532
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2533 2534
                                                   length=length)
    """
L
lujun 已提交
2535
    assert not in_dygraph_mode(), (
2536
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2537 2538
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2539
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2554
@templatedoc()
Y
Yu Yang 已提交
2555
def pool2d(input,
C
chengduoZH 已提交
2556 2557
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2558 2559
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2560
           global_pooling=False,
C
chengduoZH 已提交
2561
           use_cudnn=True,
2562
           ceil_mode=False,
2563 2564
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2565
    """
F
fengjiayi 已提交
2566
    ${comment}
2567 2568

    Args:
2569 2570 2571
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2572
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2573
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2574 2575
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2576
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2577 2578 2579 2580 2581 2582
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2583 2584 2585
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2586
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2587
                        layer will be named automatically.
2588
        exclusive (bool): Whether to exclude padding points in average pooling
2589
                          mode, default is true
F
fengjiayi 已提交
2590

2591
    Returns:
F
fengjiayi 已提交
2592
        Variable: The pooling result.
F
fengjiayi 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2605
          pool2d = fluid.layers.pool2d(
2606 2607 2608 2609
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2610
                            global_pooling=False)
Y
Yu Yang 已提交
2611 2612 2613 2614 2615
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2616

C
chengduoZH 已提交
2617 2618 2619 2620 2621
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2622 2623 2624 2625
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2626 2627
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2628

C
Add doc  
chengduoZH 已提交
2629
    l_type = 'pool2d'
2630 2631

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2632
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2633
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2634 2635

    helper.append_op(
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2647 2648
            "use_mkldnn": False,
            "exclusive": exclusive,
2649 2650 2651 2652 2653
        })

    return pool_out


D
dengkaipeng 已提交
2654
@templatedoc()
2655 2656 2657 2658 2659 2660 2661 2662
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2663 2664
           name=None,
           exclusive=True):
2665
    """
2666
    ${comment}
2667 2668

    Args:
D
dengkaipeng 已提交
2669 2670 2671 2672 2673
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2674 2675 2676 2677 2678
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2679 2680 2681 2682 2683 2684 2685
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2686
        exclusive (bool): Whether to exclude padding points in average pooling
2687
                          mode, default is true
2688

2689
    Returns:
2690
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2704 2705 2706 2707 2708
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2709

C
chengduoZH 已提交
2710 2711 2712 2713 2714
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2715 2716 2717
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2718

C
chengduoZH 已提交
2719 2720
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2721

2722 2723
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2724
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2725
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2726 2727

    helper.append_op(
2728
        type=l_type,
Y
Yu Yang 已提交
2729 2730 2731 2732 2733 2734 2735
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2736
            "paddings": pool_padding,
2737
            "use_cudnn": use_cudnn,
2738
            "ceil_mode": ceil_mode,
2739 2740
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2741 2742 2743 2744 2745
        })

    return pool_out


2746 2747 2748 2749 2750 2751 2752
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2753 2754 2755 2756 2757 2758 2759
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2760

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2774 2775 2776 2777 2778 2779 2780 2781 2782

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2783 2784
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2799
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2800
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2801
          # of input data into m * n grids averagely and performs poolings in each
2802 2803
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2804
          #
2805 2806 2807 2808 2809 2810 2811 2812
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2813 2814
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2815
          pool_out = fluid.layers.adaptive_pool2d(
2816 2817
                            input=data,
                            pool_size=[3, 3],
2818
                            pool_type='avg')
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2829
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2855
    return (pool_out, mask) if require_index else pool_out
2856 2857 2858 2859 2860 2861 2862 2863 2864


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2865 2866 2867 2868 2869 2870 2871
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2872

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2890 2891 2892

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2893 2894 2895
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2896
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2897
            it must contain three integers, (Depth, Height, Width).
2898
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2899 2900
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2915 2916
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2917
          # of input data into l * m * n grids averagely and performs poolings in each
2918 2919
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2920
          #
2921 2922 2923 2924 2925 2926 2927 2928 2929
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2930
          #                 output[:, :, i, j, k] =
2931 2932
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2933 2934
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2935
          pool_out, mask = fluid.layers.adaptive_pool3d(
2936
                            input=data,
D
dengkaipeng 已提交
2937
                            pool_size=[3, 3, 3],
2938
                            pool_type='avg')
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2949
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2975
    return (pool_out, mask) if require_index else pool_out
2976 2977


Y
Yu Yang 已提交
2978 2979 2980 2981 2982 2983 2984
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2985
               data_layout='NCHW',
Y
Yang Yang 已提交
2986
               in_place=False,
2987 2988
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2989
               moving_variance_name=None,
2990
               do_model_average_for_mean_and_var=False,
2991 2992
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2993
    """
Q
qiaolongfei 已提交
2994 2995 2996 2997
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2998

Q
qiaolongfei 已提交
2999
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3000

Q
qiaolongfei 已提交
3001 3002
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3003 3004 3005
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3018

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3032
    Args:
Q
qingqing01 已提交
3033
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3034
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3044 3045 3046 3047 3048 3049 3050 3051
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3052
        data_layout(string, default NCHW): NCHW|NHWC
3053
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3054 3055 3056 3057
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3058
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3059
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3060 3061 3062 3063 3064
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3065 3066

    Returns:
Q
qiaolongfei 已提交
3067
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3068 3069 3070 3071 3072

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3073
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3074 3075
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3076
    """
C
chengduo 已提交
3077
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3078 3079 3080
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3081 3082 3083 3084
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3103
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3104

3105 3106
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3107 3108 3109
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3110
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3111
        shape=param_shape,
W
Wu Yi 已提交
3112
        dtype=dtype)
3113 3114 3115 3116 3117 3118
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3119
            trainable=False,
W
wanghaoshuang 已提交
3120
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3121
        shape=param_shape,
W
Wu Yi 已提交
3122
        dtype=dtype)
3123
    variance.stop_gradient = True
Y
Yu Yang 已提交
3124 3125 3126 3127 3128 3129

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3130 3131 3132 3133
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3134

X
Xin Pan 已提交
3135 3136
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3154 3155 3156 3157
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3158
            "data_layout": data_layout,
X
Xin Pan 已提交
3159
            "use_mkldnn": False,
3160 3161
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3162
        })
Y
Yu Yang 已提交
3163 3164 3165 3166

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3218 3219
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3220

3221 3222
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3288
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3289 3290 3291 3292

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3293
@templatedoc()
G
guosheng 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3304
    ${comment}
G
guosheng 已提交
3305 3306 3307

    The formula is as follows:

Y
yuyang18 已提交
3308
    ..  math::
G
guosheng 已提交
3309 3310 3311 3312 3313 3314 3315

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3316 3317 3318 3319 3320 3321 3322 3323
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3324

G
guosheng 已提交
3325 3326
    Args:
        input(Variable): The input tensor variable.
3327
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3328
            normalization. Default True.
3329
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3330 3331
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3332
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3333
            Default 1.
3334
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3335
            division by zero. Default 1e-05.
G
guosheng 已提交
3336
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3337 3338
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3339 3340
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3341
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3342 3343
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3344
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3345
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3346
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3347 3348 3349
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3350 3351

    Returns:
Y
yuyang18 已提交
3352
        ${y_comment}
G
guosheng 已提交
3353 3354 3355

    Examples:

Y
yuyang18 已提交
3356 3357 3358
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3359
    """
L
lujun 已提交
3360
    assert in_dygraph_mode(
L
lujun 已提交
3361
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3376
    if shift:
G
guosheng 已提交
3377 3378 3379 3380 3381 3382
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3383 3384 3385 3386 3387
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3415
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3463 3464
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3482
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3483 3484 3485
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3486
    This layer calculates the spectral normalization value of weight parameters of
3487
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3488
    Parameters. Calculations are showed as follows.
3489

D
dengkaipeng 已提交
3490 3491 3492
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3493
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3506
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3507 3508 3509 3510

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3511

D
dengkaipeng 已提交
3512
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3513 3514
                

D
dengkaipeng 已提交
3515 3516 3517 3518
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3519 3520 3521
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3522 3523 3524
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3525
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3526 3527 3528 3529 3530 3531 3532 3533

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3534
    dtype = weight.dtype
D
dengkaipeng 已提交
3535 3536 3537

    # create intput and parameters
    inputs = {'Weight': weight}
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3556 3557

    # create output
3558
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3559 3560

    helper.append_op(
3561
        type="spectral_norm",
D
Dun 已提交
3562
        inputs=inputs,
3563 3564 3565 3566 3567 3568
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3569

3570
    return out
D
Dun 已提交
3571 3572


Y
Yu Yang 已提交
3573 3574 3575 3576
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3577 3578 3579
                     padding=0,
                     stride=1,
                     dilation=1,
3580
                     groups=None,
C
caoying03 已提交
3581
                     param_attr=None,
3582
                     bias_attr=None,
C
chengduoZH 已提交
3583
                     use_cudnn=True,
3584
                     act=None,
C
caoying03 已提交
3585
                     name=None):
Y
Yu Yang 已提交
3586
    """
3587 3588 3589 3590 3591 3592 3593 3594
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3595 3596
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3597 3598 3599
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3600 3601 3602 3603 3604

    For each input :math:`X`, the equation is:

    .. math::

3605
        Out = \sigma (W \\ast X + b)
3606

3607
    Where:
3608 3609 3610

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3611 3612 3613 3614
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3615

3616 3617 3618 3619
    Example:

        - Input:

3620
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3621

3622
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3623 3624 3625

        - Output:

3626
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3627 3628

        Where
Y
Yu Yang 已提交
3629

3630 3631
        .. math::

3632 3633
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3634 3635
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3636 3637

    Args:
3638 3639 3640 3641
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3642 3643 3644 3645
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3674
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3675 3676 3677
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3678
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3679
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3680 3681

    Returns:
3682
        Variable: The tensor variable storing the convolution transpose result.
3683 3684

    Raises:
3685 3686
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3687 3688 3689 3690

    Examples:
       .. code-block:: python

3691 3692
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3693
    """
C
chengduo 已提交
3694
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3695 3696 3697 3698 3699 3700 3701 3702
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3703 3704 3705
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3706 3707 3708
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3709

C
chengduoZH 已提交
3710 3711
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3712

Y
Yu Yang 已提交
3713 3714 3715 3716 3717
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3718

Y
Yu Yang 已提交
3719 3720
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3721

C
chengduoZH 已提交
3722
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3723
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3724
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3725
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3726
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3727 3728 3729
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3730

3731 3732 3733 3734 3735 3736 3737
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3738
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3739
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3740

Y
Yu Yang 已提交
3741 3742 3743
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3744
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3745
    helper.append_op(
3746
        type=op_type,
Y
Yu Yang 已提交
3747 3748
        inputs={'Input': [input],
                'Filter': [img_filter]},
3749
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3750
        attrs={
3751
            'output_size': output_size,
3752 3753 3754 3755 3756
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3757 3758
        })

3759 3760 3761
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3762 3763


3764
def conv3d_transpose(input,
Y
Yu Yang 已提交
3765 3766 3767
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3768 3769 3770
                     padding=0,
                     stride=1,
                     dilation=1,
3771
                     groups=None,
C
caoying03 已提交
3772
                     param_attr=None,
3773
                     bias_attr=None,
C
chengduoZH 已提交
3774
                     use_cudnn=True,
3775
                     act=None,
C
caoying03 已提交
3776
                     name=None):
Y
Yu Yang 已提交
3777
    """
3778
    **Convlution3D transpose layer**
3779

3780
    The convolution3D transpose layer calculates the output based on the input,
3781
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3782 3783 3784 3785 3786 3787
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3788 3789 3790
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3791 3792 3793 3794 3795

    For each input :math:`X`, the equation is:

    .. math::

3796
        Out = \sigma (W \\ast X + b)
3797 3798 3799

    In the above equation:

3800 3801
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3802 3803 3804 3805
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3806

3807 3808 3809 3810
    Example:

        - Input:

3811
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3812

3813
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3814 3815 3816

        - Output:

3817
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3818 3819

        Where
Y
Yu Yang 已提交
3820

3821 3822
        .. math::

3823 3824 3825
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3826 3827

    Args:
3828
        input(Variable): The input image with [N, C, D, H, W] format.
3829 3830 3831
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3832
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3833 3834
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3835
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3836 3837 3838
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3839 3840
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3841
        stride(int|tuple): The stride size. If stride is a tuple, it must
3842 3843
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3844
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3845 3846 3847
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3848 3849 3850 3851 3852
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3862 3863
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3864 3865
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3866 3867
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3868 3869

    Returns:
3870
        Variable: The tensor variable storing the convolution transpose result.
3871 3872

    Raises:
3873 3874
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3875 3876 3877 3878

    Examples:
       .. code-block:: python

3879 3880
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3881
    """
C
chengduo 已提交
3882
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3883 3884
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3885
    if not isinstance(input, Variable):
3886
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3887 3888
    input_channel = input.shape[1]

3889 3890 3891
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3892

C
chengduoZH 已提交
3893 3894 3895
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3896 3897 3898 3899 3900 3901
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3902 3903 3904
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3905

3906
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3907
                         padding[0] - 1) // dilation[0] + 1
3908
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3909
                         padding[1] - 1) // dilation[1] + 1
3910
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3911
                         padding[2] - 1) // dilation[2] + 1
3912
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3913
    else:
3914 3915
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3916

3917
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3918
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3919 3920 3921
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3922
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3923
    helper.append_op(
3924
        type=l_type,
Y
Yu Yang 已提交
3925 3926
        inputs={'Input': [input],
                'Filter': [img_filter]},
3927
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3928 3929 3930 3931
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3932
            'groups': groups,
C
chengduoZH 已提交
3933 3934
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3935

3936 3937
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3938
    return out
Y
yangyaming 已提交
3939 3940


Y
yangyaming 已提交
3941
def sequence_expand(x, y, ref_level=-1, name=None):
3942
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3943 3944 3945 3946
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3947 3948 3949 3950 3951

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3952
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3953
                x.data = [[a], [b], [c], [d]]
3954 3955 3956
                x.dims = [4, 1]

            y is a LoDTensor:
3957 3958
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3959

Y
yangyaming 已提交
3960
            ref_level: 0
3961

Y
yangyaming 已提交
3962
            then output is a 1-level LoDTensor:
3963
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3964
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3965 3966 3967 3968
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3969
                x.data = [[a], [b], [c]]
3970 3971 3972
                x.dims = [3, 1]

            y is a LoDTensor:
3973
                y.lod = [[2, 0, 3]]
3974

Y
yangyaming 已提交
3975
            ref_level: -1
3976

Y
yangyaming 已提交
3977 3978 3979
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3980 3981 3982
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3983 3984
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3985
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3986
                        will be named automatically.
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3997
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3998
    """
L
lujun 已提交
3999
    assert not in_dygraph_mode(), (
4000
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4001
    helper = LayerHelper('sequence_expand', input=x, **locals())
4002
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4003
    tmp = helper.create_variable_for_type_inference(dtype)
4004
    helper.append_op(
Y
yangyaming 已提交
4005 4006 4007 4008 4009
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4010
    return tmp
4011 4012


C
chengduo 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4067
    assert not in_dygraph_mode(), (
4068
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4069 4070
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4071
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4072 4073 4074 4075 4076 4077 4078 4079
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4080
@templatedoc()
4081
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4082 4083 4084 4085 4086
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4087 4088 4089
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4090
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4091 4092 4093 4094
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4095 4096 4097
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4098

F
fengjiayi 已提交
4099
    Returns:
M
minqiyang 已提交
4100
        Variable: The padded sequence batch and the original lengths before
4101
                  padding. All sequences has the same length.
M
minqiyang 已提交
4102

F
fengjiayi 已提交
4103 4104 4105 4106 4107 4108 4109
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4110
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4111
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4112 4113 4114
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4115
    assert not in_dygraph_mode(), (
4116
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4117 4118
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4119 4120
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4121 4122 4123 4124

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4125 4126 4127 4128 4129 4130
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4131 4132
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4133
        attrs={'padded_length': maxlen})
4134
    return out, length
F
fengjiayi 已提交
4135 4136


4137
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4138
    """
4139
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4140

4141 4142
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4152 4153 4154
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4155
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4156 4157 4158 4159 4160 4161

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4162
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4163 4164 4165 4166 4167 4168

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4169 4170
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4183
    assert not in_dygraph_mode(), (
4184
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4185 4186
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4187
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4199 4200 4201 4202 4203 4204 4205
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4206
                is_accumulated=True,
4207 4208
                name=None,
                return_parent_idx=False):
4209
    """
4210 4211
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4212 4213 4214

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4215 4216

    This layer does the search in beams for one time step. Specifically, it
4217 4218 4219
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4231 4232 4233 4234

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4235

4236
    Args:
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4260 4261
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4262 4263
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4264 4265 4266 4267
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4268

4269
    Returns:
4270 4271 4272 4273
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4274 4275 4276 4277

    Examples:
        .. code-block:: python

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4295
    helper = LayerHelper('beam_search', **locals())
4296 4297 4298 4299 4300 4301
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4302

X
Xin Pan 已提交
4303 4304 4305
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4306 4307 4308 4309 4310
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4311 4312 4313

    helper.append_op(
        type='beam_search',
4314
        inputs=inputs,
Q
Qiao Longfei 已提交
4315 4316 4317
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4318
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4319 4320 4321 4322 4323 4324
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4325
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4326
        })
4327 4328 4329 4330
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4331 4332


4333 4334 4335 4336 4337 4338 4339
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4340

4341 4342 4343 4344 4345 4346 4347 4348 4349
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4350

4351 4352 4353 4354 4355 4356
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4357

4358 4359
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4360

4361 4362 4363 4364 4365 4366
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4367 4368
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4384 4385 4386 4387
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4388
              param_attr=None,
C
caoying03 已提交
4389 4390
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4391 4392 4393 4394
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4395
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4396

4397
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4398

4399
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4400

4401
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4402 4403 4404

            h_t & = o_t tanh(c_t)

4405 4406 4407 4408 4409 4410
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4411 4412 4413

        .. math::

4414
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4415 4416 4417 4418 4419 4420 4421 4422

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4423
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4424 4425

    Args:
Y
yangyaming 已提交
4426 4427 4428 4429 4430 4431
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4432
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4445 4446
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4447 4448

    Returns:
Y
yangyaming 已提交
4449
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4450 4451

    Raises:
4452 4453 4454 4455
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4456 4457 4458 4459 4460 4461

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4462
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4463
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4464
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4481
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4482 4483 4484 4485
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4486 4487
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4488 4489 4490
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4491
    size = cell_t_prev.shape[1]
4492
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4493 4494
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4495
                param_attr=param_attr,
4496
                bias_attr=bias_attr)
Y
yangyaming 已提交
4497
    dtype = x_t.dtype
X
Xin Pan 已提交
4498 4499
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4509
    return h, c
G
guosheng 已提交
4510 4511


C
caoying03 已提交
4512
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4513
    """
Y
yangyaming 已提交
4514
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4515 4516 4517

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4518
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4519 4520
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4521 4522
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4523
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4524
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4525
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4526 4527
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4528 4529 4530

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4531

G
guosheng 已提交
4532 4533 4534 4535 4536 4537
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4538
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4539 4540 4541 4542
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4543 4544 4545 4546

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4547
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4548 4549 4550
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4551 4552
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4553
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4554 4555
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4556 4557 4558 4559 4560
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4561
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4562 4563 4564 4565
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4566 4567


C
caoying03 已提交
4568
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4569
    """
Y
Yibing Liu 已提交
4570
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4571 4572 4573

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4574 4575 4576
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4577
            must be in the range :math:`[-rank(input), rank(input))`. If
4578
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4579
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4580 4581
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4582
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4583
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4584
                       will be named automatically.
G
guosheng 已提交
4585 4586

    Returns:
Y
Yibing Liu 已提交
4587
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4588

G
guosheng 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4599 4600
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4601 4602 4603 4604 4605 4606 4607

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4608 4609
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4610
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4611 4612
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4613 4614 4615 4616 4617
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4618
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4619 4620 4621 4622
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4623 4624


C
caoying03 已提交
4625
def reduce_max(input, dim=None, keep_dim=False, name=None):
4626
    """
Y
yangyaming 已提交
4627
    Computes the maximum of tensor elements over the given dimension.
4628 4629 4630

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4631
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4632 4633 4634
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4635
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4636 4637
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4638
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4639 4640
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4641 4642 4643

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4644

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4656 4657 4658 4659 4660 4661 4662

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4663 4664
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4665
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4666 4667
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4668 4669 4670 4671 4672
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4673
            'dim': dim if dim != None else [0],
4674 4675 4676 4677 4678 4679
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4680
def reduce_min(input, dim=None, keep_dim=False, name=None):
4681
    """
Y
yangyaming 已提交
4682
    Computes the minimum of tensor elements over the given dimension.
4683 4684 4685

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4686
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4687 4688 4689
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4690
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4691 4692
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4693
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4694 4695
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4696 4697 4698

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4711 4712 4713 4714 4715 4716 4717

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4718 4719
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4720
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4721 4722
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4723 4724 4725 4726 4727
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4728
            'dim': dim if dim != None else [0],
4729 4730 4731 4732
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4733 4734


4735 4736 4737 4738 4739 4740
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4741
        dim (list|int|None): The dimensions along which the product is performed. If
4742 4743
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4744 4745
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4746 4747 4748
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4749
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4750
            layer will be named automatically.
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4765
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4766
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4767 4768 4769 4770 4771 4772 4773

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4774 4775
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4776
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4777 4778
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4779 4780 4781 4782 4783
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4784
            'dim': dim if dim != None else [0],
4785 4786 4787 4788 4789 4790
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4791 4792
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4793
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4813
        
Z
zhoukunsheng 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4843
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4863

Z
zhoukunsheng 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4886 4887 4888 4889 4890
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4891
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4892
    """
C
caoying03 已提交
4893
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4894 4895 4896

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4897 4898 4899 4900 4901
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4902
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4903
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4904
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4905 4906
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4907 4908

    Returns:
D
dzhwinter 已提交
4909
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4919 4920
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4932
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4933 4934 4935
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4936
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4959
    .. math::
4960 4961

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4962 4963 4964 4965 4966

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4967
        x(Variable|list): The input tensor to l2_normalize layer.
4968
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4969 4970
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4971
        epsilon(float): The epsilon value is used to avoid division by zero, \
4972
            the defalut value is 1e-12.
4973
        name(str|None): A name for this layer(optional). If set None, the layer \
4974
            will be named automatically.
C
caoying03 已提交
4975 4976

    Returns:
4977
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4978 4979

    Examples:
4980

C
caoying03 已提交
4981 4982
        .. code-block:: python

4983 4984 4985 4986
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4987 4988
    """

F
fengjiayi 已提交
4989 4990
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4991 4992
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4993 4994
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4995
    helper.append_op(
4996 4997 4998 4999
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5000
        attrs={
5001 5002
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5003 5004
        })
    return out
5005 5006


S
sneaxiy 已提交
5007
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5008
    """
Y
ying 已提交
5009 5010 5011 5012
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5013

C
chengduoZH 已提交
5014
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5015
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5016

5017 5018 5019 5020 5021
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5022
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5023

C
chengduoZH 已提交
5024
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5025
      performs in the following way.
G
guosheng 已提交
5026

5027
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5028
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5029
        last two dimensions and a batched matrix multiply supporting broadcast
5030
        applies on the two tensors.
G
guosheng 已提交
5031

Y
ying 已提交
5032 5033
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5034
    removed after matrix multiplication.
G
guosheng 已提交
5035 5036 5037

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5038 5039 5040
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5041
        alpha (float): The scale of output. Default 1.0.
5042
        name(str|None): A name for this layer(optional). If set None, the layer
5043
            will be named automatically.
G
guosheng 已提交
5044 5045

    Returns:
5046
        Variable: The product Tensor variable.
G
guosheng 已提交
5047

G
guosheng 已提交
5048 5049 5050
    Examples:
        .. code-block:: python

5051
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5052 5053
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5054

5055 5056
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5057

5058 5059
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5060

5061 5062
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5063 5064 5065 5066

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5067 5068
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5069

Y
ying 已提交
5070
            # x: [M], y: [N]
5071
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5072
    """
Y
ying 已提交
5073 5074 5075 5076 5077 5078 5079

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5080
            y_shape = y_shape + [1]
Y
ying 已提交
5081 5082 5083 5084 5085 5086 5087

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5088 5089
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5090

C
chengduo 已提交
5091
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5092
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5093 5094 5095
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5096
                if dim_x != y_shape[i]:
C
chengduo 已提交
5097 5098
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5099 5100 5101

    __check_input(x, y)

5102
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5103
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5104
    helper.append_op(
5105 5106 5107 5108
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5109 5110 5111
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5112
            'alpha': float(alpha),
S
sneaxiy 已提交
5113
        })
5114
    return out
5115 5116


5117
def topk(input, k, name=None):
Q
qingqing01 已提交
5118 5119 5120 5121
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5122
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5123 5124 5125 5126 5127 5128
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5150 5151 5152
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5153
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5154
                 of input.
5155
        name(str|None): A name for this layer(optional). If set None, the layer
5156
                       will be named automatically.
F
fengjiayi 已提交
5157
                       Default: None
Q
qingqing01 已提交
5158 5159

    Returns:
5160 5161 5162
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5163
        within the last dimension of input.
Q
qingqing01 已提交
5164

F
fengjiayi 已提交
5165 5166
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5167 5168 5169 5170

    Examples:
        .. code-block:: python

5171 5172
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5173 5174 5175
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5176 5177
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5178 5179 5180 5181 5182 5183
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5184 5185
    helper.append_op(
        type="top_k",
W
whs 已提交
5186
        inputs=inputs,
Q
qingqing01 已提交
5187 5188
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5189
        attrs=attrs)
Q
qingqing01 已提交
5190 5191 5192 5193 5194
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5195
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5196
    """
Y
ying 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5206

Y
ying 已提交
5207
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5208

5209
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5210 5211
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5212
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5213

5214
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5215 5216
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5217

5218 5219 5220
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5221
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5222
                          the length of reference string.
5223
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5224
                                     calculating edit distance.
5225
        name (str): The name of this layer. It is optional.
5226

W
wanghaoshuang 已提交
5227
    Returns:
W
wanghaoshuang 已提交
5228
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5229 5230 5231 5232

    Examples:
        .. code-block:: python

T
tink2123 已提交
5233 5234
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5235
            cost = fluid.layers.edit_distance(input=x,label=y)
5236
    """
5237
    helper = LayerHelper("edit_distance", **locals())
5238

5239
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5240
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5241 5242
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5243 5244 5245 5246 5247

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5248
            attrs={"tokens": ignored_tokens})
5249 5250 5251 5252 5253
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5254
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5255
            attrs={"tokens": ignored_tokens})
5256 5257
        label = erased_label

5258
    # edit distance op
X
Xin Pan 已提交
5259 5260
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5261 5262 5263 5264
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5265 5266
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5267 5268
        attrs={"normalized": normalized})

5269
    return edit_distance_out, sequence_num
5270 5271 5272 5273 5274


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5275

Y
ying 已提交
5276 5277 5278 5279
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5297
        input.lod = [[4, 4]]
M
minqiyang 已提交
5298

W
whs 已提交
5299
        Computation:
5300

W
whs 已提交
5301 5302 5303 5304 5305 5306
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5307 5308 5309 5310 5311

        output.data = [[2],
                       [1],
                       [3]]

5312
        output.lod = [[2, 1]]
5313

W
whs 已提交
5314

5315 5316
    Args:

Y
ying 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5326
        name (str): The name of this layer. It is optional.
5327 5328

    Returns:
H
haowang101779990 已提交
5329 5330 5331
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5332
                  LoD [[]] and dims [1, 1].
5333 5334 5335 5336

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5337
            import paddle.fluid as fluid
5338 5339
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5340
    """
5341
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5342
    _, topk_indices = topk(input, k=1)
5343 5344

    # ctc align op
X
Xin Pan 已提交
5345
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5346 5347 5348
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5349
        outputs={"Output": [ctc_out]},
5350 5351
        attrs={"merge_repeated": True,
               "blank": blank})
5352
    return ctc_out
5353 5354


W
Wu Yi 已提交
5355
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5356
    """
5357 5358
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5359
    to compute Connectionist Temporal Classification (CTC) loss.
5360 5361
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5362 5363 5364
    input tensor.

    Args:
5365
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5366 5367 5368 5369
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5370
       label (Variable): The ground truth of variable-length sequence,
5371 5372 5373
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5374 5375
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5376 5377 5378
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5379
         follewed by a mean_op.
W
Wu Yi 已提交
5380
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5381 5382

    Returns:
5383 5384
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5385 5386

    Examples:
5387

W
wanghaoshuang 已提交
5388
        .. code-block:: python
5389

5390 5391 5392
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5393 5394

    """
F
fengjiayi 已提交
5395
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5396 5397
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5398 5399 5400 5401 5402 5403
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5404 5405 5406 5407 5408
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5409
    return loss_out
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5425 5426 5427
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5428 5429 5430 5431 5432
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5433

5434
            out.lod  = [[0, 1, 3]]
5435 5436 5437 5438

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5439 5440 5441 5442 5443 5444 5445
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5446 5447 5448

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5449 5450

    Returns:
5451

5452 5453 5454 5455 5456
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5457
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5458
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5459
    """
L
lujun 已提交
5460
    assert not in_dygraph_mode(), (
5461
        "sequence layer is not supported in dygraph mode yet.")
5462
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5463
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5464 5465 5466 5467 5468 5469
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5470 5471


5472 5473 5474 5475
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5476 5477 5478 5479 5480 5481
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5482
        num_neg_samples=None,
5483 5484 5485
        name=None,
        sampler="uniform",
        custom_dist=None,
5486 5487
        seed=0,
        is_sparse=False):
5488 5489 5490 5491 5492 5493 5494
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5495 5496
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5497
            sample is 1.0.
C
chengduo 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5507
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5508 5509
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5510 5511 5512
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5513
        custom_dist (float[]): A float[] with size=num_total_classes.
5514 5515 5516 5517
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5518
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5519

5520
    Returns:
Y
Yibing Liu 已提交
5521 5522 5523 5524 5525 5526
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5527
	    import numpy as np
Y
Yibing Liu 已提交
5528

Y
Yibing Liu 已提交
5529 5530 5531 5532 5533 5534 5535 5536
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5537

Y
Yibing Liu 已提交
5538 5539 5540 5541
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5542

Y
Yibing Liu 已提交
5543 5544 5545
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5546

Y
Yibing Liu 已提交
5547 5548 5549 5550
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5551

Y
Yibing Liu 已提交
5552 5553 5554 5555 5556 5557 5558 5559
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5560
    """
Y
Yang Yu 已提交
5561 5562 5563
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5564 5565

    dim = input.shape[1]
Y
Yang Yu 已提交
5566 5567 5568 5569 5570 5571
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5572
    inputs = {}
C
chengduo 已提交
5573 5574 5575 5576 5577 5578 5579
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5580 5581 5582
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5583

5584 5585 5586 5587
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5588 5589 5590 5591 5592 5593 5594

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5595 5596
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5597
        custom_dist_len = num_total_classes
5598 5599 5600 5601 5602 5603
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5604
            if normal_prob - 1.0 > 0:
5605
                bigs.append((i, normal_prob))
5606
            elif 1.0 - normal_prob > 0:
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5622
            if big_left - 1.0 > 0:
5623
                bigs.append((big_idx, big_left))
5624
            elif 1.0 - big_left > 0:
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5654 5655 5656 5657
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5658 5659 5660 5661 5662
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5663 5664 5665 5666
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5667

Y
Yang Yu 已提交
5668 5669
    attrs = {
        'num_total_classes': int(num_total_classes),
5670 5671
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5672
        'sampler': sampler,
5673 5674
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5675
    }
Y
Yang Yu 已提交
5676 5677 5678

    helper.append_op(
        type='nce',
C
chengduo 已提交
5679
        inputs=inputs,
Y
Yang Yu 已提交
5680 5681 5682 5683 5684 5685
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5686
    return cost / (num_neg_samples + 1)
5687 5688


C
chengduo 已提交
5689 5690
def hsigmoid(input,
             label,
5691
             num_classes,
C
chengduo 已提交
5692 5693
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5694
             name=None,
5695 5696 5697
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5698
             is_sparse=False):
W
weixing02 已提交
5699 5700
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5701
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5702
    complete binary tree, or you can use is_custom to pass your own tree to
5703
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5704 5705 5706 5707 5708 5709
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5710
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5711
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5712

5713 5714
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5715 5716 5717 5718
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5719
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5720
       related to the same batch of inputs.
5721

W
weixing02 已提交
5722
    Args:
M
minqiyang 已提交
5723
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5724 5725 5726 5727
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5728 5729
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5730
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5742
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5743
            it should be in leaf -> root order
M
minqiyang 已提交
5744 5745 5746
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5747
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5748
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5749
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5750
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5751
             of W and input will be sparse.
W
weixing02 已提交
5752 5753

    Returns:
J
JiabinYang 已提交
5754
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5755 5756 5757 5758 5759

    Examples:

        .. code-block:: python

G
guosheng 已提交
5760 5761 5762
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5763 5764 5765 5766
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5767 5768
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5769
    dim = input.shape[1]
5770
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5771 5772 5773
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5774 5775 5776 5777 5778 5779 5780 5781 5782
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5783
    if (is_custom) and (path_code is None):
5784
        raise ValueError("path_code should not be None with custom tree")
5785
    elif (is_custom) and (path_table is None):
5786
        raise ValueError("path_table should not be None with custom tree")
5787
    elif (is_custom) and (num_classes is None):
5788
        raise ValueError("num_classes should not be None with custom tree")
5789 5790 5791
    else:
        pass

J
JiabinYang 已提交
5792
    weights = None
5793 5794 5795 5796
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5797
    if not is_custom:
J
JiabinYang 已提交
5798 5799 5800 5801 5802 5803 5804 5805
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5806
            shape=[num_classes, dim],
J
JiabinYang 已提交
5807 5808
            is_bias=False,
            dtype=input.dtype)
5809 5810 5811
    inputs = {
        "X": input,
        "W": weights,
5812
        "PathTable": path_table,
5813
        "PathCode": path_code,
5814 5815
        "Label": label
    }
W
weixing02 已提交
5816
    if helper.bias_attr:
5817
        if not is_custom:
J
JiabinYang 已提交
5818 5819
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5820
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5821 5822 5823 5824 5825 5826
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5827
                shape=[num_classes, 1],
J
JiabinYang 已提交
5828 5829 5830
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5831 5832
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5833
        inputs=inputs,
W
weixing02 已提交
5834
        outputs={"Out": out,
5835 5836 5837 5838 5839 5840 5841
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5842 5843 5844
    return out


Y
fix ci.  
ying 已提交
5845
def transpose(x, perm, name=None):
Y
ying 已提交
5846 5847 5848 5849 5850 5851 5852
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5853 5854 5855
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5856 5857 5858 5859 5860 5861 5862

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5863
            # use append_batch_size=False to avoid prepending extra
5864
            # batch size in shape
5865
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5866
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5867
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5868 5869
    """

Y
fix ci.  
ying 已提交
5870
    if len(perm) != len(x.shape):
Y
ying 已提交
5871 5872 5873
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5874 5875 5876 5877 5878 5879
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5880 5881

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5882 5883
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5884
    helper.append_op(
5885
        type='transpose2',
Y
fix ci.  
ying 已提交
5886
        inputs={'X': [x]},
5887 5888
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5889 5890
        attrs={'axis': perm})
    return out
5891 5892


5893 5894 5895 5896 5897 5898 5899
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5900
    """
5901 5902 5903 5904 5905 5906 5907
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5936 5937 5938 5939 5940 5941 5942 5943 5944
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5945 5946 5947
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5948 5949 5950 5951 5952
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5980 5981 5982
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5995
            output.dims = {8, 8}
5996

5997
            output.lod = [[4, 4]]
5998

T
Tink_Y 已提交
5999
    Examples:
6000 6001 6002

        .. code-block:: python

6003 6004
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
6005 6006

    """
L
lujun 已提交
6007
    assert not in_dygraph_mode(), (
6008
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6019 6020 6021 6022 6023 6024 6025
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6026
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6027
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6028
    helper.append_op(
6029
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6030
    return out
6031 6032


Y
yuyang18 已提交
6033
@templatedoc()
6034
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6035 6036
    """
    ${comment}
6037 6038

    Args:
Y
yuyang18 已提交
6039
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6040 6041
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6042 6043 6044 6045 6046
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6047
        ${out_comment}.
6048 6049

    Examples:
Y
yuyang18 已提交
6050 6051 6052 6053
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6054 6055 6056 6057 6058 6059
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6060
    out = helper.create_variable_for_type_inference(dtype)
6061 6062 6063 6064 6065
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6066
    return helper.append_activation(out)
6067 6068


Y
yuyang18 已提交
6069
@templatedoc()
6070 6071
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6072 6073
    ${comment}

L
lujun 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6117 6118

    Args:
Y
yuyang18 已提交
6119 6120
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6121 6122

    Returns:
Y
yuyang18 已提交
6123
        ${out_comment}.
6124 6125
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6126 6127 6128 6129 6130

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6131
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6132 6133 6134 6135 6136 6137
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6138 6139


6140 6141 6142
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6143
                               ignore_index=kIgnoreIndex,
6144
                               numeric_stable_mode=True,
6145 6146
                               return_softmax=False,
                               axis=-1):
6147 6148
    """
    **Softmax With Cross Entropy Operator.**
6149

6150
    Cross entropy loss with softmax is used as the output layer extensively. This
6151 6152 6153
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6154

6155 6156 6157
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6158

6159 6160 6161 6162
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6163

6164
    The equation is as follows:
6165

6166
    1) Hard label (one-hot label, so every sample has exactly one class)
6167

6168 6169 6170 6171
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6172

6173 6174 6175
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6176

6177 6178 6179 6180
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6181 6182
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6183 6184

    .. math::
6185

H
haowang101779990 已提交
6186
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6187

H
haowang101779990 已提交
6188
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6189

H
haowang101779990 已提交
6190
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6191 6192 6193

    and then cross entropy loss is calculated by softmax and label.

6194
    Args:
6195 6196 6197 6198 6199 6200
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6201
        soft_label (bool): A flag to indicate whether to interpretate the given
6202
            labels as soft labels. Default False.
M
minqiyang 已提交
6203 6204
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6205 6206
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6207 6208
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6209 6210 6211 6212
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6213
                                    Note that the speed may be slower when use
6214
                                    stable algorithm. Default: True
6215
        return_softmax (bool): A flag indicating whether to return the softmax
6216
                               along with the cross entropy loss. Default: False
6217 6218 6219
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6220

6221
    Returns:
H
haowang101779990 已提交
6222 6223
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6224 6225 6226 6227
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6228 6229 6230 6231 6232 6233 6234

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6235 6236
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6237 6238
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6239 6240
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6241 6242 6243 6244 6245 6246
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6247 6248 6249
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6250 6251
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6252
        })
6253 6254 6255 6256

    if return_softmax:
        return loss, softmax

6257 6258 6259
    return loss


6260 6261 6262
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6263
                                       num_true=1,
6264
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6265 6266 6267
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6268
                                       seed=0):
X
xuezhong 已提交
6269 6270 6271 6272 6273
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6274
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6275 6276 6277 6278 6279 6280 6281 6282
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6283
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6284 6285 6286 6287 6288 6289 6290 6291
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6292
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6304
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6305 6306 6307 6308 6309
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6310
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6311
            logits.
X
xuezhong 已提交
6312 6313 6314 6315 6316
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6317 6318 6319
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6340 6341
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6342 6343
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6344 6345 6346 6347 6348

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6349
            'Labels': label,
X
xuezhong 已提交
6350 6351
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6352 6353 6354 6355
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6356
            'SampledLabels': sampled_label,
6357 6358 6359
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6360 6361
        },
        attrs={
X
xuezhong 已提交
6362
            'use_customized_samples': use_customized_samples,
6363
            'uniq': True,
X
xuezhong 已提交
6364 6365 6366 6367
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6368 6369
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6370 6371 6372 6373 6374 6375
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6376 6377
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6378
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6379
                'Label': sampled_softlabel},
X
xuezhong 已提交
6380 6381 6382
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6383
            'soft_label': True,
X
xuezhong 已提交
6384 6385 6386
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6387
    return loss / num_true
X
xuezhong 已提交
6388 6389


6390 6391
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6392 6393
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6394
    For each instance, it computes the smooth L1 loss element by element first
6395
    and then sums all the losses. So the shape of ouput Variable is
6396
    [batch_size, 1].
6397

6398 6399
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6400
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6401
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6402
            L1 loss op with same shape as :attr:`x`.
6403
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6404 6405
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6406
            by this tensor element by element.
6407
        outside_weight (Variable|None): A tensor with rank at least 2. This
6408 6409
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6410
            element by element.
6411
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6412 6413
           scalar with default value 1.0.

6414
    Returns:
6415
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6416 6417 6418 6419 6420

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6421 6422
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6423
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6424
            out = fluid.layers.smooth_l1(x=fc, y=label)
6425
    """
6426

6427
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6428 6429
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6440
        attrs={'sigma': sigma if sigma is not None else 1.0})
6441
    return loss
6442 6443 6444 6445


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6446
    This layer creates the one-hot representations for input indices.
6447 6448

    Args:
Y
Yibing Liu 已提交
6449 6450
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6451 6452

    Returns:
Y
Yibing Liu 已提交
6453
        Variable: The one-hot representations of input.
6454 6455

    Examples:
C
caoying03 已提交
6456
        .. code-block:: python
6457

Y
Yibing Liu 已提交
6458 6459
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6460 6461
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6462
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6463 6464 6465 6466
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6467 6468
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6469
    return one_hot_out
Y
Yu Yang 已提交
6470 6471


Y
Yu Yang 已提交
6472
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6473
    """
Y
yi.wu 已提交
6474 6475 6476
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6477 6478 6479 6480 6481 6482

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6483 6484
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6485 6486 6487 6488 6489

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6490
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6491 6492
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6493 6494
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6495 6496 6497 6498 6499
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6500
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6501
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6502 6503
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6504
            outputs={'Out': [counter]},
M
minqiyang 已提交
6505 6506
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6507 6508 6509
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6510 6511


6512
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6513
    """
C
caoying03 已提交
6514 6515
    Gives a new shape to the input Tensor without changing its data.

6516 6517 6518 6519 6520
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6521

6522
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6523

6524 6525 6526 6527
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6528
    2. 0 means the actual dimension value is going to be copied from the
6529 6530 6531 6532
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6533 6534

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6535
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6536
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6537

6538
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6539 6540
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6541 6542
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6543
    dimensions.
C
caoying03 已提交
6544

6545
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6546 6547 6548 6549
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6550 6551

    Args:
6552
        x(variable): The input tensor.
C
caoying03 已提交
6553 6554
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6555 6556 6557 6558 6559
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6560 6561
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6562 6563 6564
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6565
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6566
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6567

6568
    Returns:
G
guosheng 已提交
6569 6570 6571 6572
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6573

X
Xin Pan 已提交
6574 6575 6576
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6577 6578
    Examples:
        .. code-block:: python
G
guosheng 已提交
6579

6580
            data = fluid.layers.data(
6581
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6582
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6583
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6584 6585 6586
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6587
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6588 6589 6590 6591 6592
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6593

6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6609
    helper = LayerHelper("reshape2", **locals())
6610 6611
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6612
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6613
    helper.append_op(
6614
        type="reshape2",
X
Xin Pan 已提交
6615
        inputs=inputs,
D
dzhwinter 已提交
6616
        attrs={"shape": shape},
6617 6618
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6619

D
dzhwinter 已提交
6620
    return helper.append_activation(out)
6621

6622

6623
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6624
    """
M
minqiyang 已提交
6625 6626 6627
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6628
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6629

H
haowang101779990 已提交
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6651

Y
Yibing Liu 已提交
6652
    Args:
6653
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6654
        axes (list): List of integers, indicating the dimensions to be squeezed.
6655
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6656 6657 6658 6659 6660 6661 6662

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6663
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6664
            x = layers.data(name='x', shape=[5, 1, 10])
6665
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6666
    """
L
lujun 已提交
6667
    assert not in_dygraph_mode(), (
L
lujun 已提交
6668
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6669
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6670 6671
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6672
    helper.append_op(
6673
        type="squeeze2",
6674
        inputs={"X": input},
Y
Yibing Liu 已提交
6675
        attrs={"axes": axes},
6676 6677
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6678

6679 6680 6681
    return out


6682
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6683
    """
M
minqiyang 已提交
6684 6685 6686
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6687

M
minqiyang 已提交
6688
    For example:
H
haowang101779990 已提交
6689 6690 6691

    .. code-block:: text

M
minqiyang 已提交
6692
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6693
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6694

Y
Yibing Liu 已提交
6695
    Args:
6696
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6697
        axes (list): List of integers, indicating the dimensions to be inserted.
6698
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6699 6700 6701 6702 6703 6704 6705 6706

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6707
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6708 6709
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6710 6711
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6712
    helper.append_op(
6713
        type="unsqueeze2",
6714
        inputs={"X": input},
Y
Yibing Liu 已提交
6715
        attrs={"axes": axes},
6716 6717
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6718

6719 6720
    return out

6721

Y
yangyaming 已提交
6722
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6723
    """
Y
Yibing Liu 已提交
6724
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6725 6726 6727 6728
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6729
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6730 6731 6732 6733 6734 6735

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6736
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6737 6738 6739
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6740
            target_lod: [4, 2]
Y
yangyaming 已提交
6741 6742

            then we get a 1-level LoDTensor:
6743
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6744 6745 6746 6747 6748 6749
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6750
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6751 6752 6753 6754
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6755
                y.data = [[2, 4]]
Y
yangyaming 已提交
6756 6757 6758
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6759
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6760 6761 6762 6763 6764 6765
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6766
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6767 6768 6769 6770
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6771
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6772 6773 6774 6775
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6776
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6777 6778 6779 6780 6781
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6782
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6783
                           from :attr:`y`.
Y
yangyaming 已提交
6784
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6785
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6786 6787

    Returns:
Y
Yibing Liu 已提交
6788
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6789 6790

    Raises:
Y
Yibing Liu 已提交
6791
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6801
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6827
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6856 6857
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6870 6871 6872
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6886 6887 6888 6889


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6890
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6891
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6892

G
guosheng 已提交
6893 6894 6895 6896
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6919
                         The length of :attr:paddings must be
G
guosheng 已提交
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6930

G
guosheng 已提交
6931
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6932 6933
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
6934 6935 6936 6937 6938
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6939
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6940 6941 6942 6943 6944 6945 6946
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6947 6948


C
chengduo 已提交
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6980 6981
		And
            pad_value = -1,
C
chengduo 已提交
6982

T
Tink_Y 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7013 7014 7015
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7016 7017 7018 7019 7020
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7021
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7031 7032 7033 7034 7035 7036 7037
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7038 7039
    called label-smoothing regularization (LSR).

7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7063
                              be :math:`(1, class\_num)`.
7064 7065
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7066
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7086
    smooth_label = helper.create_variable_for_type_inference(dtype)
7087 7088 7089 7090 7091 7092 7093
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7094 7095


W
wopeizl 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7144 7145


J
jerrywgz 已提交
7146 7147 7148 7149 7150 7151
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7152 7153
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7170 7171 7172 7173
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7174 7175 7176
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7177 7178 7179 7180 7181 7182
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7183
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7224 7225
        .. code-block:: python

S
SunGaofeng 已提交
7226 7227 7228
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7229
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7230
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7231 7232
    """
    label = one_hot(label, depth=input.shape[-1])
7233
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7234 7235 7236 7237 7238 7239
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7240 7241


7242 7243 7244 7245
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7246
                 resample='BILINEAR',
7247 7248
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7249
                 align_mode=1):
7250
    """
Q
qiaolongfei 已提交
7251
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7252

7253
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7254 7255 7256
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7257

7258
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7259

7260
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7261

7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7272
    Align_corners and align_mode are optinal parameters,the calculation method 
7273 7274 7275 7276
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7277
    .. code-block:: text
7278

T
Tink_Y 已提交
7279
        For scale:
7280
          
T
Tink_Y 已提交
7281
            if align_corners = True && out_size > 1 :
7282

T
Tink_Y 已提交
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7294

T
Tink_Y 已提交
7295 7296
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7297

T
Tink_Y 已提交
7298 7299
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7300

T
Tink_Y 已提交
7301 7302
          else:
              align_corners = True
7303

T
Tink_Y 已提交
7304 7305
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7306

T
Tink_Y 已提交
7307 7308
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7309

T
Tink_Y 已提交
7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7320

T
Tink_Y 已提交
7321 7322 7323 7324
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7325

T
Tink_Y 已提交
7326 7327
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7328 7329 7330 7331 7332 7333 7334 7335 7336

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7337
    Args:
7338
        input (Variable): The input tensor of image resize layer,
7339 7340
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7341
        out_shape(list|tuple|Variable|None): Output shape of image resize
7342 7343
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7344
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7345
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7346
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7347
             Default: None.
7348 7349
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7350
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7351
                       currently.
7352
                       Default: 'BILINEAR'
7353 7354 7355
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7356
                                :attr:`out_shape` and :attr:`scale` specifying
7357 7358 7359 7360 7361 7362 7363
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7364 7365
                                constructing stage.
                                Default: None
7366 7367 7368 7369
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7370
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7371 7372
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7373 7374

    Returns:
Q
update  
qiaolongfei 已提交
7375 7376
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7377

7378 7379 7380
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7381
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7382 7383 7384
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7385
        ValueError: scale should be greater than zero.
7386 7387
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7388

7389 7390 7391
    Examples:
        .. code-block:: python

R
ruri 已提交
7392
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7393
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7394
    """
7395 7396 7397 7398
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7399 7400
    if resample not in resample_methods:
        raise ValueError(
7401
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7402
        )
7403
    resample_type = resample_methods[resample]
7404 7405 7406 7407 7408 7409

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7410
    if out_shape is None and scale is None:
7411
        raise ValueError("One of out_shape and scale must not be None.")
7412
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7413
    dtype = helper.input_dtype()
7414 7415 7416 7417

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7418
    inputs = {"X": input}
D
dengkaipeng 已提交
7419
    attrs = {
D
dengkaipeng 已提交
7420 7421
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7422 7423 7424 7425 7426
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7427
    if out_shape is not None:
7428 7429 7430 7431
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7432
            inputs['OutSize'] = out_shape
7433 7434
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7435 7436
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7437 7438 7439 7440 7441 7442 7443
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7444
    else:
D
dengkaipeng 已提交
7445 7446
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7447
        attrs['scale'] = float(scale)
7448

7449 7450 7451 7452 7453
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7454
    out = helper.create_variable_for_type_inference(dtype)
7455
    helper.append_op(
7456
        type='{}_interp'.format(resample_type),
7457
        inputs=inputs,
7458
        outputs={"Out": out},
D
dengkaipeng 已提交
7459
        attrs=attrs)
7460
    return out
F
stash  
fengjiayi 已提交
7461 7462


7463
@templatedoc(op_type="bilinear_interp")
7464 7465 7466 7467
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7468 7469
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7470
                    align_mode=1):
7471
    """
7472 7473
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7474 7475
    in priority order.

7476 7477 7478 7479
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7480 7481
    again in the other direction.

7482
    For details of bilinear interpolation, please refer to Wikipedia:
7483
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7484

T
tink2123 已提交
7485
    Align_corners and align_mode are optinal parameters,the calculation 
7486 7487 7488 7489
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7490
    .. code-block:: text
7491

T
Tink_Y 已提交
7492
        For scale:
7493
          
T
Tink_Y 已提交
7494
            if align_corners = True && out_size > 1 :
7495

T
Tink_Y 已提交
7496 7497 7498 7499 7500
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7501

T
Tink_Y 已提交
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7512 7513


T
Tink_Y 已提交
7514
          else:
T
tink2123 已提交
7515

T
Tink_Y 已提交
7516 7517
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7518

T
Tink_Y 已提交
7519 7520
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7521 7522 7523



Y
yuyang18 已提交
7524 7525 7526
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7527 7528 7529
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7530

Y
yuyang18 已提交
7531
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7532
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7533
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7534
             Default: None.
Y
yuyang18 已提交
7535 7536

        name(str|None): The output variable name.
7537 7538 7539
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7540
                                :attr:`out_shape` and :attr:`scale` specifying
7541 7542 7543 7544 7545 7546 7547
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7548 7549
                                constructing stage.
                                Default: None
7550 7551
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7552 7553 7554

    Returns:
        ${out_comment}.
7555 7556 7557 7558

    Examples:
        .. code-block:: python

R
ruri 已提交
7559
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7560
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7561 7562
    """

7563 7564
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7565 7566


7567
@templatedoc(op_type="nearest_interp")
7568 7569 7570 7571
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7572 7573
                   actual_shape=None,
                   align_corners=True):
7574
    """
7575
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7576 7577
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7578 7579
    out_shape and scale in priority order.

7580 7581
    Example:

T
Tink_Y 已提交
7582 7583 7584 7585 7586
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7587

T
Tink_Y 已提交
7588 7589 7590 7591 7592 7593 7594 7595
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7596
          
T
Tink_Y 已提交
7597 7598
          if:
              align_corners = False
7599

T
Tink_Y 已提交
7600 7601
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7602

T
Tink_Y 已提交
7603 7604
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7605

T
Tink_Y 已提交
7606 7607
          else:
              align_corners = True
7608

T
Tink_Y 已提交
7609 7610
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7611

T
Tink_Y 已提交
7612 7613
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7614 7615


7616
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7617
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7618 7619 7620 7621

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7622 7623 7624
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7625

Y
yuyang18 已提交
7626
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7627
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7628
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7629
             Default: None.
Y
yuyang18 已提交
7630 7631

        name(str|None): The output variable name.
7632 7633 7634
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7635
                                :attr:`out_shape` and :attr:`scale` specifying
7636 7637 7638 7639 7640 7641 7642
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7643 7644
                                constructing stage.
                                Default: None
7645
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7646 7647 7648

    Returns:
        ${out_comment}.
7649 7650 7651 7652

    Examples:
        .. code-block:: python

R
ruri 已提交
7653
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7654
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7655 7656
    """

7657 7658
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7659 7660 7661 7662


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7663 7664 7665
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7666 7667 7668 7669 7670 7671 7672
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7673
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7674

7675
    Returns:
Q
update  
qiaolongfei 已提交
7676
        Variable: The output is a 4-D tensor of the shape
7677
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7678 7679 7680 7681 7682 7683

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7694 7695 7696
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7697 7698 7699
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7700 7701
def gather(input, index):
    """
Q
qiaolongfei 已提交
7702 7703
    **Gather Layer**

7704
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7705 7706 7707 7708
    of X indexed by `index` and concatenate them together.

    .. math::

7709
        Out = X[Index]
W
whs 已提交
7710 7711 7712 7713 7714 7715 7716


    .. code-block:: text


                Given:

7717 7718
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7729
        input (Variable): The source input with rank>=1.
W
whs 已提交
7730 7731 7732 7733 7734 7735
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7736

W
whs 已提交
7737 7738
        .. code-block:: python

Y
Yibing Liu 已提交
7739 7740
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7741 7742 7743 7744
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7745
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7746 7747 7748 7749 7750 7751 7752 7753
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7785
    out = helper.create_variable_for_type_inference(dtype)
7786 7787 7788 7789 7790 7791 7792 7793 7794
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7804

Q
Qingsheng Li 已提交
7805
    Given the following input:
H
haowang101779990 已提交
7806

Q
Qingsheng Li 已提交
7807
    .. code-block:: text
H
haowang101779990 已提交
7808

Q
Qingsheng Li 已提交
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7821

Q
Qingsheng Li 已提交
7822
    .. code-block:: text
H
haowang101779990 已提交
7823

Q
Qingsheng Li 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7839
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7840 7841 7842 7843 7844 7845 7846 7847

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7848
    assert not in_dygraph_mode(), (
7849
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7850 7851
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7852
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7853 7854 7855 7856 7857 7858 7859 7860 7861
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7875

7876 7877 7878
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7879
    """
F
stash  
fengjiayi 已提交
7880
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7881
    dtype = x.dtype
X
Xin Pan 已提交
7882
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7883
    if seed is None:
7884
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7885
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7886
    if isinstance(seed, int):
F
fengjiayi 已提交
7887 7888 7889 7890 7891
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7892 7893 7894 7895
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7896
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7897 7898
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7899 7900
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7901
    return out
W
whs 已提交
7902 7903


7904
def log(x, name=None):
W
wanghaoshuang 已提交
7905 7906 7907 7908 7909
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7910
        Out = \\ln(x)
W
wanghaoshuang 已提交
7911 7912

    Args:
7913
        x (Variable): Input tensor.
7914 7915
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7916 7917 7918 7919 7920 7921 7922 7923

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7924
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7925 7926
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7927
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7928
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7929
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7930 7931 7932
    return out


7933
def relu(x, name=None):
W
wanghaoshuang 已提交
7934 7935
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7936
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7937 7938 7939 7940
    the tensor elementwise.

    .. math::

7941
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7942 7943

    Args:
7944
        x (Variable): The input tensor.
7945 7946
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7947 7948 7949 7950 7951 7952 7953 7954

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7955
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7956
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7957 7958
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7959
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7960
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7961 7962
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7963
    return out
7964 7965


C
chengduo 已提交
7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8007 8008 8009
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8010 8011 8012 8013
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8014
    .. math::
8015

H
haowang101779990 已提交
8016
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8017

8018
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8019 8020 8021 8022 8023
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8024
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8025
                           Its shape should be the same as input.
8026
        num_classes (int): The possible number of labels.
W
whs 已提交
8027 8028

    Returns:
M
minqiyang 已提交
8029 8030
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8031
                     Three variables:
M
minqiyang 已提交
8032

H
haowang101779990 已提交
8033 8034 8035
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8036 8037 8038 8039

    Examples:

        .. code-block:: python
8040

W
whs 已提交
8041 8042 8043 8044
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8045 8046 8047
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8048 8049
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8050 8051
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8052
        outputs={
W
whs 已提交
8053 8054 8055
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8056 8057 8058
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8101
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8102
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8103
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8121
            import paddle.fluid as fluid
8122 8123 8124 8125 8126 8127
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8128
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8129 8130 8131 8132 8133

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8134
            isinstance(shape, Variable)):
8135 8136 8137 8138 8139
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8140
    out = helper.create_variable_for_type_inference(x.dtype)
8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8158 8159


W
whs 已提交
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8177

W
whs 已提交
8178
              out_shape = [2, 3, 5, 5]
8179

W
whs 已提交
8180
          Step 1:
8181

W
whs 已提交
8182 8183 8184
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8185

W
whs 已提交
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8231
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8232
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8245

S
SunGaofeng 已提交
8246
            import paddle.fluid as fluid
W
whs 已提交
8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8258
            isinstance(out_shape, Variable)):
W
whs 已提交
8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8280 8281
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8282

8283 8284
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8285
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8286 8287 8288
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8289

8290 8291
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8292

H
haowang101779990 已提交
8293 8294
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8295 8296
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8297

H
haowang101779990 已提交
8298 8299 8300 8301 8302 8303 8304 8305
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8306 8307 8308

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8343
    out = helper.create_variable_for_type_inference("float32")
8344 8345 8346 8347 8348 8349 8350 8351

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8352 8353


M
minqiyang 已提交
8354 8355
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8356
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8357
    which compares left score and right score passed in.
M
minqiyang 已提交
8358
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8359 8360 8361

    .. math::

H
haowang101779990 已提交
8362
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8363 8364

    Args:
M
minqiyang 已提交
8365
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8366 8367
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8368
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8369 8370
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8371

M
minqiyang 已提交
8372
    Returns:
M
minqiyang 已提交
8373
       Variable: The ranking loss.
H
haowang101779990 已提交
8374

M
minqiyang 已提交
8375
    Raises:
M
minqiyang 已提交
8376
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8377

M
minqiyang 已提交
8378
    Examples:
H
haowang101779990 已提交
8379

M
minqiyang 已提交
8380
        .. code-block:: python
H
haowang101779990 已提交
8381

Y
Yibing Liu 已提交
8382 8383 8384
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8385 8386
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8387
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8388 8389 8390 8391 8392 8393
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8394 8395
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8419
        .. code-block:: text
W
whs 已提交
8420

T
Tink_Y 已提交
8421
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8422

T
Tink_Y 已提交
8423 8424
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8425

T
Tink_Y 已提交
8426
	      Case 0:
M
minqiyang 已提交
8427

T
Tink_Y 已提交
8428 8429 8430
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8431

T
Tink_Y 已提交
8432 8433 8434
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8435

T
Tink_Y 已提交
8436
	      Case 1:
M
minqiyang 已提交
8437

T
Tink_Y 已提交
8438 8439
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8440

T
Tink_Y 已提交
8441 8442 8443
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8444

T
Tink_Y 已提交
8445
	      Case 2:
M
minqiyang 已提交
8446

T
Tink_Y 已提交
8447 8448
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8449

T
Tink_Y 已提交
8450 8451 8452
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8453 8454


W
whs 已提交
8455 8456
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8457
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8481
    out = helper.create_variable_for_type_inference(dtype)
8482 8483 8484 8485 8486 8487 8488 8489 8490
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8491
    helper.append_op(
8492
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8493 8494 8495 8496

    return out


8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8509 8510 8511 8512 8513

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8514 8515
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8516 8517
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8518
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8539 8540 8541 8542 8543

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8544 8545
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8546 8547
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8548
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8569 8570 8571 8572 8573

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8574 8575
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8576 8577
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8578
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8600 8601 8602 8603 8604

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8605
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8606
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8607 8608
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8609
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8632 8633 8634 8635 8636

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8637 8638
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8639 8640
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8641
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8663 8664 8665 8666 8667

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8668 8669
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8670 8671
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8672
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8673 8674 8675 8676 8677 8678 8679 8680
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8681 8682 8683 8684
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8685 8686
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8687 8688 8689

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8690
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8691
          weight (alpha).
J
jerrywgz 已提交
8692
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8693 8694 8695
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8696
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8697
          will be named automatically.
J
jerrywgz 已提交
8698 8699 8700 8701 8702 8703 8704 8705

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8706
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8720
        attr=helper.param_attr,
J
jerrywgz 已提交
8721 8722 8723 8724
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8725
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8726 8727 8728 8729 8730 8731 8732 8733 8734
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8735 8736 8737 8738 8739 8740 8741 8742 8743 8744
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8745
    Returns:
8746
        output(${out_type}): ${out_comment}
8747 8748 8749

    Examples:

8750
    .. code-block:: python
8751

H
haowang101779990 已提交
8752 8753
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8754 8755
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8756
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8775
    Returns:
8776
        output(${out_type}): ${out_comment}
8777 8778 8779 8780 8781

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8782 8783
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8784 8785
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8786
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8804
    Returns:
8805
        output(${out_type}): ${out_comment}
8806 8807 8808 8809 8810

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8811 8812
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8813 8814
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8815
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8816 8817 8818 8819 8820 8821 8822 8823
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8824 8825 8826 8827
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8828

H
haowang101779990 已提交
8829
    For Example:
M
minqiyang 已提交
8830

H
haowang101779990 已提交
8831
    .. code-block:: text
8832

H
haowang101779990 已提交
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8854 8855 8856

    Args:
        x (Variable): A tensor of rank >= axis.
8857 8858
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8859 8860 8861 8862 8863 8864 8865 8866
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8867 8868 8869
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8870 8871 8872 8873
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8874
        ValueError: If axis is not in range [0, rank(x)].
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8891 8892
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8893
    helper.append_op(
8894
        type='flatten2',
8895
        inputs={"X": x},
8896 8897
        outputs={'Out': out,
                 'XShape': x_shape},
8898 8899
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8900 8901


C
chenweihang 已提交
8902
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8903
    """
C
chenweihang 已提交
8904
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8905
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8906 8907
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8908

H
haowang101779990 已提交
8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8926 8927

    Args:
C
chenweihang 已提交
8928 8929 8930
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8931 8932 8933 8934 8935 8936 8937 8938 8939 8940

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8941
    assert not in_dygraph_mode(), (
8942
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8943
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8944 8945
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8946 8947 8948 8949 8950 8951
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8952
    return out
8953

8954

S
sneaxiy 已提交
8955 8956 8957 8958 8959 8960 8961 8962 8963
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8964

S
sneaxiy 已提交
8965
    .. math::
8966

S
sneaxiy 已提交
8967 8968 8969
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8970
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8971 8972 8973 8974
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8975 8976 8977
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8978 8979
    Returns:
        Variable: The output sequence mask.
8980

S
sneaxiy 已提交
8981
    """
L
lujun 已提交
8982
    assert not in_dygraph_mode(), (
8983
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8984

Q
qingqing01 已提交
8985
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8986
    if name is None:
X
Xin Pan 已提交
8987
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8988
    else:
X
Xin Pan 已提交
8989
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8990

Q
qingqing01 已提交
8991 8992 8993
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8994 8995
        outputs={'Y': out},
        attrs={
8996
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8997 8998 8999
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9000 9001


X
Xin Pan 已提交
9002
def stack(x, axis=0):
S
sneaxiy 已提交
9003 9004 9005 9006
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9007 9008 9009 9010 9011 9012 9013

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9014
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9015
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9016

C
chengduozh 已提交
9017 9018
    For Example:

C
chengduozh 已提交
9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9057
    Args:
9058
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9059
        axis (int|None): The axis along which all inputs are stacked.
9060

S
sneaxiy 已提交
9061 9062
    Returns:
        Variable: The stacked variable.
9063

9064 9065 9066 9067 9068 9069 9070 9071
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
            x1 = layers.data(name='x1', shape[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape[1, 2], dtype='int32')
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9072 9073
    """

X
Xin Pan 已提交
9074 9075 9076 9077 9078 9079
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9080
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9081
    helper.append_op(
S
sneaxiy 已提交
9082 9083
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9084

X
Xin Pan 已提交
9085
    return out
D
dzhwinter 已提交
9086 9087 9088 9089 9090 9091 9092


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9093

D
dzhwinter 已提交
9094 9095 9096
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9097
    raised.
D
dzhwinter 已提交
9098 9099

    Args:
M
minqiyang 已提交
9100
        x (Variable): Input variable.
D
dzhwinter 已提交
9101 9102
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9103

D
dzhwinter 已提交
9104 9105
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9106

D
dzhwinter 已提交
9107 9108 9109 9110 9111 9112 9113 9114 9115 9116
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9117
    for _ in range(num):
X
Xin Pan 已提交
9118
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9119 9120 9121 9122 9123 9124 9125 9126

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9139

W
whs 已提交
9140 9141 9142 9143
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9144

W
whs 已提交
9145
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9146

W
whs 已提交
9147
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9148

W
whs 已提交
9149 9150 9151 9152
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9153

W
whs 已提交
9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9170
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9171 9172 9173 9174 9175 9176
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9177 9178


G
fix  
gongweibao 已提交
9179 9180 9181
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9182
@templatedoc()
G
fix  
gongweibao 已提交
9183 9184 9185 9186 9187 9188 9189 9190 9191
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9192
    ${comment}
G
fix  
gongweibao 已提交
9193 9194

    Args:
G
gongweibao 已提交
9195 9196 9197
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9198
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9199 9200 9201
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9202 9203
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9204
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9205

9206 9207 9208 9209 9210
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9211 9212 9213
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9214
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9231 9232


G
gongweibao 已提交
9233
@templatedoc()
X
Xin Pan 已提交
9234
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9235
    """
G
gongweibao 已提交
9236
    ${comment}
G
fix  
gongweibao 已提交
9237 9238

    Args:
G
gongweibao 已提交
9239 9240 9241 9242
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9243 9244 9245
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9246
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9247

9248 9249 9250
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9251
            import paddle.fluid.layers as layers
9252
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9253 9254 9255
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9256
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9257 9258 9259 9260 9261 9262 9263 9264 9265 9266
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9267
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9268 9269 9270 9271 9272
        })

    return out


G
gongweibao 已提交
9273
@templatedoc()
G
fix  
gongweibao 已提交
9274
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9275
    """
G
gongweibao 已提交
9276
    ${comment}
G
fix  
gongweibao 已提交
9277 9278

    Args:
G
gongweibao 已提交
9279 9280 9281 9282
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9283
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9284 9285

    Returns:
G
gongweibao 已提交
9286
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9287

9288 9289 9290
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9291
            x = fluid.layers.data(
9292 9293 9294 9295 9296
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9297
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9298 9299 9300
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9301
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9313
@templatedoc()
G
fix  
gongweibao 已提交
9314 9315 9316 9317 9318 9319 9320 9321 9322
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9323
    ${comment}
G
fix  
gongweibao 已提交
9324 9325

    Args:
G
gongweibao 已提交
9326 9327
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9328
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9329 9330 9331 9332
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9333
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9334 9335

    Returns:
G
gongweibao 已提交
9336
        out (Variable): ${out_comment}
9337 9338 9339 9340

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9341
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9342

Y
Yibing Liu 已提交
9343
            out = fluid.layers.gaussian_random_batch_size_like(
9344
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9345 9346 9347
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9348
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9367
@templatedoc()
X
Xin Pan 已提交
9368
def sum(x):
G
fix  
gongweibao 已提交
9369
    """
G
gongweibao 已提交
9370
    ${comment}
G
fix  
gongweibao 已提交
9371 9372

    Args:
G
gongweibao 已提交
9373
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9374 9375

    Returns:
G
gongweibao 已提交
9376
        out (Variable): ${out_comment}
9377 9378 9379 9380 9381 9382

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9383 9384 9385
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9386 9387
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9388 9389 9390 9391
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9392
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9393 9394 9395 9396

    return out


G
gongweibao 已提交
9397
@templatedoc()
G
fix  
gongweibao 已提交
9398 9399
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9400
    ${comment}
G
fix  
gongweibao 已提交
9401 9402

    Args:
G
gongweibao 已提交
9403 9404 9405 9406
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9407 9408

    Returns:
G
gongweibao 已提交
9409
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9410

9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9422 9423 9424
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9425 9426
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9440 9441
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9442
    Get the shape of the input.
G
fix  
gongweibao 已提交
9443 9444

    Args:
C
chengduozh 已提交
9445
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9446 9447

    Returns:
C
fix doc  
chengduozh 已提交
9448
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9449

9450 9451 9452 9453 9454 9455
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9456 9457 9458
    """

    helper = LayerHelper('shape', **locals())
9459
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9460
    helper.append_op(
G
fix  
gongweibao 已提交
9461
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9462 9463

    return out
G
merge  
gongweibao 已提交
9464 9465


Z
zhoukunsheng 已提交
9466 9467 9468 9469
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9470
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9492 9493 9494 9495
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9496
    if in_dygraph_mode():
X
Xin Pan 已提交
9497 9498 9499
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9500 9501 9502 9503
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9504 9505
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9506
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9507 9508 9509
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9510

S
sneaxiy 已提交
9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9522
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9523 9524 9525 9526 9527 9528 9529 9530
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9531
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9532
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9533 9534 9535 9536 9537 9538

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9539
    if name is None:
X
Xin Pan 已提交
9540
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9541 9542 9543
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9544 9545 9546 9547 9548 9549 9550 9551 9552 9553

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9554
    return helper.append_activation(out)
S
sneaxiy 已提交
9555 9556


X
Xin Pan 已提交
9557
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9558 9559 9560
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9561
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9562 9563 9564
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9565
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9566 9567 9568
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9569
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9570 9571 9572
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9573
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9574 9575 9576
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9577
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9578 9579 9580
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9581
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9582 9583 9584
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9585 9586 9587 9588 9589 9590 9591 9592
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9593
for func in [
9594 9595 9596 9597 9598 9599 9600 9601 9602
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9603 9604 9605 9606 9607
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9608 9609
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9610
        ])
M
minqiyang 已提交
9611 9612


9613
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9614 9615
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9616 9617
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9618 9619 9620

    if out is None:
        if name is None:
X
Xin Pan 已提交
9621
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9637
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9649 9650 9651 9652 9653 9654 9655 9656 9657

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9658 9659 9660 9661 9662 9663 9664
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9665
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9677 9678 9679 9680 9681 9682 9683 9684 9685

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9686 9687 9688 9689 9690 9691 9692
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9693
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9705 9706 9707 9708 9709 9710 9711 9712 9713

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9714 9715 9716 9717 9718 9719 9720
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9721
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9722 9723 9724 9725 9726 9727 9728 9729 9730 9731
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9732 9733 9734 9735 9736 9737 9738

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9739 9740 9741 9742
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9758 9759 9760 9761

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9762
            import paddle.fluid as fluid
9763 9764 9765
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9766 9767 9768 9769 9770
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9771 9772 9773 9774
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9798 9799 9800 9801 9802 9803 9804

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9805 9806 9807 9808 9809
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9810 9811 9812 9813
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9814 9815 9816 9817 9818 9819 9820 9821

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9840
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9841 9842 9843 9844 9845 9846 9847 9848 9849 9850
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
9900 9901 9902 9903 9904
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9905
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9906 9907 9908 9909 9910 9911 9912 9913 9914
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9915 9916
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9917 9918 9919 9920 9921 9922
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9923 9924 9925
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9926 9927
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9928 9929 9930 9931 9932 9933
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9934
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9935
        name(basestring|None): Name of the output.
9936 9937
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9938 9939 9940

    Returns:
        out(${out_type}): ${out_comment}
9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9955 9956 9957 9958 9959
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9960
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9961 9962 9963 9964 9965 9966 9967 9968
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9969 9970
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9987 9988 9989 9990 9991 9992 9993 9994 9995

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
9996 9997 9998 9999
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10000
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10001 10002 10003 10004 10005 10006 10007 10008 10009 10010
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10011 10012


J
JiabinYang 已提交
10013
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10014
    """
J
JiabinYang 已提交
10015
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10016 10017 10018

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10019
    The attr blocksize indicates the input block size.
10020 10021

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10022
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10023 10024

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10025
    (but keeping all data)
J
JiabinYang 已提交
10026

J
JiabinYang 已提交
10027
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10028
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10029 10030 10031 10032 10033
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10034
    Args:
J
JiabinYang 已提交
10035
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10036
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10037 10038

    Returns:
J
JiabinYang 已提交
10039
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10040 10041

    Raises:
J
JiabinYang 已提交
10042
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10043 10044 10045 10046 10047

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
10048
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10049
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10050
                x=data, blocksize=2)
10051 10052 10053 10054 10055 10056

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
10057 10058
    """

J
JiabinYang 已提交
10059
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10060

J
JiabinYang 已提交
10061 10062
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10063 10064

    if name is None:
J
JiabinYang 已提交
10065 10066
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10067 10068 10069 10070 10071
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10072
        type="space_to_depth",
J
JiabinYang 已提交
10073
        inputs={"X": x},
J
JiabinYang 已提交
10074
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10075
        outputs={"Out": out})
J
JiabinYang 已提交
10076 10077
    return out

J
JiabinYang 已提交
10078

S
sneaxiy 已提交
10079 10080
@templatedoc()
def sequence_reverse(x, name=None):
10081
    """
S
sneaxiy 已提交
10082 10083 10084 10085 10086 10087 10088 10089 10090
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10091
    assert not in_dygraph_mode(), (
10092
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10093 10094
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10095
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10096 10097 10098 10099 10100 10101 10102 10103 10104 10105
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10106 10107


10108 10109 10110 10111 10112 10113
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10114 10115 10116 10117 10118
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10119

10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10132
        act (str, default None): Activation to be applied to the output of this layer.
10133 10134 10135 10136 10137 10138 10139

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10140
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10152
    return helper.append_activation(out)
10153 10154


B
barrierye 已提交
10155
def similarity_focus(input, axis, indexes, name=None):
10156
    """
B
barrierye 已提交
10157
    SimilarityFocus Operator
B
barrierye 已提交
10158 10159

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10160

10161 10162 10163
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10164
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10165 10166 10167 10168 10169 10170 10171
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10172
       each index.
B
barrierye 已提交
10173 10174 10175 10176
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10226
    Args:
10227
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10228
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10229
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10230
            1, 2 or 3.
B
barrierye 已提交
10231
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10232 10233

    Returns:
H
haowang101779990 已提交
10234 10235
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10236

B
barrierye 已提交
10237 10238
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10239

B
barrierye 已提交
10240
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10241 10242
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10255 10256 10257 10258 10259
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10260 10261 10262 10263 10264 10265 10266
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10267 10268


M
minqiyang 已提交
10269 10270
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10271 10272
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10273 10274
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10313
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10314
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10315 10316 10317 10318 10319 10320

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10321

10322
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10323
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10324 10325
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10326 10327
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10328 10329 10330 10331 10332 10333 10334
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10335 10336


D
dengkaipeng 已提交
10337
@templatedoc()
10338 10339
def grid_sampler(x, grid, name=None):
    """
10340
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10341
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10342 10343 10344 10345
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10346
    interpolation value of 4 nearest corner points.
10347

H
haowang101779990 已提交
10348
    .. code-block:: text
10349

H
haowang101779990 已提交
10350 10351
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10352

H
haowang101779990 已提交
10353 10354
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10355

H
haowang101779990 已提交
10356 10357 10358
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10359

H
haowang101779990 已提交
10360 10361 10362 10363 10364 10365 10366 10367 10368
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10369

H
haowang101779990 已提交
10370 10371 10372 10373
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10374

H
haowang101779990 已提交
10375 10376 10377 10378
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10379

H
haowang101779990 已提交
10380 10381 10382 10383
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10384

H
haowang101779990 已提交
10385 10386
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10387 10388

    Args:
10389 10390 10391
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10392 10393

    Returns:
H
haowang101779990 已提交
10394
        Variable: Output of shape [N, C, H, W] data samples input X
10395 10396
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10397 10398 10399 10400 10401 10402 10403 10404
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10405

D
dengkaipeng 已提交
10406 10407 10408 10409 10410 10411 10412 10413 10414
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10415
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10416 10417
    ipts = {'X': x, 'Grid': grid}

10418
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10419 10420 10421
    return out


G
gmcather 已提交
10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10449 10450
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10489
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10490 10491 10492 10493 10494 10495 10496
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10497 10498
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10499

10500 10501 10502 10503 10504
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10505
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10506

H
heqiaozhi 已提交
10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10520 10521 10522 10523
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10524
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10525 10526
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10527
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10528 10529

    .. math::
H
haowang101779990 已提交
10530 10531 10532
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10533 10534

    Where:
H
haowang101779990 已提交
10535 10536
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10551

G
gmcather 已提交
10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10568 10569 10570 10571 10572 10573 10574 10575 10576 10577


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10578
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10579

Q
Qiao Longfei 已提交
10580
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10581 10582 10583
    For example:

    .. math::
H
haowang101779990 已提交
10584
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10585

Q
Qiao Longfei 已提交
10586
    In this formula:
10587 10588
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10589
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10590
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10591 10592 10593
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10594 10595
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10596 10597 10598
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10599
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10600
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10601
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10602 10603 10604 10605
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10606
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10607 10608 10609 10610

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10611 10612 10613
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10614 10615
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10616
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10617 10618 10619 10620

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10621
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10662 10663


S
shippingwang 已提交
10664
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10665 10666
    """
    **Shuffle Channel Operator**
10667

S
shippingwang 已提交
10668 10669 10670 10671 10672 10673
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10674
    
S
shippingwang 已提交
10675
    .. code-block:: text
10676

S
shippingwang 已提交
10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10705
    Args: 
S
shippingwang 已提交
10706 10707
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10708 10709

    Returns:
S
shippingwang 已提交
10710 10711
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10712 10713

    Raises:
S
shippingwang 已提交
10714
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10715 10716 10717

    Examples:
        .. code-block:: python
10718 10719

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10720
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10721 10722 10723
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10724
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10725 10726 10727 10728 10729 10730 10731 10732 10733

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10734
    return out
S
Add  
shippingwang 已提交
10735 10736


10737
@templatedoc()
D
dengkaipeng 已提交
10738
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10739 10740 10741 10742 10743 10744 10745 10746
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10747
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10748
        name (str, default None): The name of this layer.
10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10761
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10774 10775
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10776 10777 10778
    return out


S
sneaxiy 已提交
10779
class PyFuncRegistry(object):
S
sneaxiy 已提交
10780 10781 10782
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10783
        if func is None or not callable(func):
S
sneaxiy 已提交
10784 10785 10786
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10787
        # find named args using reflection
S
sneaxiy 已提交
10788 10789 10790 10791 10792 10793 10794
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10795 10796 10797
        '''
        Why record self here?

M
minqiyang 已提交
10798 10799
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10800
           to find the registered function corresponding
M
minqiyang 已提交
10801
           to :code:`idx`.
S
sneaxiy 已提交
10802

M
minqiyang 已提交
10803 10804
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10805
           whose reference count is 1 would cause
M
minqiyang 已提交
10806
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10807 10808
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10809
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10824 10825 10826 10827 10828 10829 10830 10831 10832
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10833

S
sneaxiy 已提交
10834 10835
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10836 10837

        ret = []
S
sneaxiy 已提交
10838 10839 10840
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10841 10842
                continue

S
sneaxiy 已提交
10843 10844
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10845

S
sneaxiy 已提交
10846 10847 10848
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10849

S
sneaxiy 已提交
10850
        return tuple(ret)
S
sneaxiy 已提交
10851 10852


S
sneaxiy 已提交
10853 10854 10855 10856
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10857

S
sneaxiy 已提交
10858 10859 10860 10861 10862 10863 10864 10865
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10866
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10867

S
sneaxiy 已提交
10868 10869
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10870 10871 10872 10873
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10874
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10875
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10876 10877
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10878 10879 10880 10881 10882
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10883
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10884
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10885
                                       None means no backward. Default None.
S
sneaxiy 已提交
10886
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10887
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10888 10889
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10890
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10891 10892 10893

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10894 10895

    Examples:
M
minqiyang 已提交
10896

S
sneaxiy 已提交
10897 10898 10899 10900 10901
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10902
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10903 10904
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10905
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10906 10907 10908
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10909
        >>>
S
sneaxiy 已提交
10910 10911 10912 10913 10914
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10915
        >>>     print(x)
S
sneaxiy 已提交
10916 10917 10918 10919 10920 10921
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10922
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10923 10924
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10925 10926
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10927 10928 10929 10930 10931 10932 10933 10934
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10935
    """
S
sneaxiy 已提交
10936
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10937 10938 10939
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10940
        x = [x]
S
sneaxiy 已提交
10941 10942
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10943

S
sneaxiy 已提交
10944 10945 10946
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10947
        out_list = [out]
S
sneaxiy 已提交
10948
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10949
        out_list = out
S
sneaxiy 已提交
10950 10951 10952
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10953

S
sneaxiy 已提交
10954 10955
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10956
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10957 10958

    for each_out in out_list:
S
sneaxiy 已提交
10959 10960
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10961 10962
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10963

S
sneaxiy 已提交
10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10979 10980 10981 10982

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10983 10984
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10985 10986 10987
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10988
        })
S
sneaxiy 已提交
10989
    return out
S
sneaxiy 已提交
10990 10991 10992


# For debug usage
S
sneaxiy 已提交
10993 10994 10995 10996
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11010 11011 11012 11013 11014
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11027 11028 11029 11030
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11056

M
minqiyang 已提交
11057

M
minqiyang 已提交
11058
def huber_loss(input, label, delta):
11059
    """
M
minqiyang 已提交
11060 11061 11062
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11063 11064 11065 11066

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11067
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11068 11069 11070 11071

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11072
        huber\_loss = 0.5 * (label - input) * (label - input)
11073 11074 11075 11076 11077 11078 11079


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11080
        delta (float): The parameter of huber loss, which controls
11081 11082 11083
                       the range of outliers

    Returns:
M
minqiyang 已提交
11084
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11085 11086 11087 11088

    Examples:
        .. code-block:: python

11089 11090 11091 11092 11093 11094 11095 11096 11097
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11098
    """
M
minqiyang 已提交
11099
    helper = LayerHelper('huber_loss', **locals())
11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11111 11112


D
dengkaipeng 已提交
11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11175 11176 11177
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11178
          # edges must be directional
T
Tao Luo 已提交
11179 11180 11181 11182
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11183
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11184 11185
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11186
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11187
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11211 11212


C
ceci3 已提交
11213
from .ops import square
C
ceci3 已提交
11214
from .control_flow import equal
C
ceci3 已提交
11215 11216


C
ceci3 已提交
11217 11218 11219
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11220

C
ceci3 已提交
11221
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11222 11223

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11224
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11225 11226 11227 11228 11229
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11230 11231
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11232 11233 11234 11235 11236 11237 11238

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11239 11240 11241 11242 11243 11244 11245 11246
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11247 11248 11249 11250 11251 11252 11253
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11254
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11255 11256
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11257 11258
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11259 11260 11261 11262
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11263 11264 11265
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11266 11267 11268
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11269 11270


R
ruri 已提交
11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11300
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11301 11302 11303 11304 11305 11306 11307 11308 11309

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11310
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11371 11372 11373 11374


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11375

H
heqiaozhi 已提交
11376
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11377

H
fix doc  
heqiaozhi 已提交
11378
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11379 11380 11381
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11382
    
H
fix doc  
heqiaozhi 已提交
11383
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11384

H
heqiaozhi 已提交
11385
    Args:
H
fix doc  
heqiaozhi 已提交
11386 11387

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11388 11389
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11390
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11391
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11392

H
heqiaozhi 已提交
11393
    Returns:
H
fix doc  
heqiaozhi 已提交
11394 11395 11396

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11397
    Examples:
H
fix doc  
heqiaozhi 已提交
11398

H
heqiaozhi 已提交
11399
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11400

H
heqiaozhi 已提交
11401 11402 11403 11404 11405 11406 11407 11408 11409 11410
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11411

H
heqiaozhi 已提交
11412 11413 11414 11415 11416 11417 11418 11419 11420
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11421
    return out
Z
zhoukunsheng 已提交
11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out