Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
66ea7184
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
66ea7184
编写于
12月 26, 2018
作者:
H
haowang101779990
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
en api improve format Dec 27
test=develop
上级
988bc2b5
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
379 addition
and
291 deletion
+379
-291
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+1
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-2
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+5
-4
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+62
-58
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+5
-6
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+266
-201
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+8
-3
python/paddle/fluid/metrics.py
python/paddle/fluid/metrics.py
+14
-8
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+16
-7
未找到文件。
python/paddle/fluid/data_feeder.py
浏览文件 @
66ea7184
...
...
@@ -272,8 +272,7 @@ class DataFeeder(object):
dict: the result of conversion.
Raises:
ValueError: If drop_last is False and the data batch which cannot
fit for devices.
ValueError: If drop_last is False and the data batch which cannot fit for devices.
"""
def
__reader_creator__
():
...
...
python/paddle/fluid/framework.py
浏览文件 @
66ea7184
...
...
@@ -1646,8 +1646,8 @@ class Program(object):
parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
to print.
Returns
(str)
: The debug string.
Returns
:
str
: The debug string.
Raises:
ValueError: If any of required fields is not set and throw_on_error is
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
66ea7184
...
...
@@ -1452,6 +1452,7 @@ class DynamicRNN(object):
def
step_input
(
self
,
x
):
"""
Mark a sequence as a dynamic RNN input.
Args:
x(Variable): The input sequence.
...
...
@@ -1505,6 +1506,7 @@ class DynamicRNN(object):
"""
Mark a variable as a RNN input. The input will not be scattered into
time steps.
Args:
x(Variable): The input variable.
...
...
@@ -1629,13 +1631,11 @@ class DynamicRNN(object):
Args:
init(Variable|None): The initialized variable.
shape(list|tuple): The memory shape. NOTE the shape does not contain
batch_size.
shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
value(float): the initalized value.
need_reorder(bool): True if the initialized memory depends on the
input sample.
need_reorder(bool): True if the initialized memory depends on the input sample.
dtype(str|numpy.dtype): The data type of the initialized memory.
...
...
@@ -1714,6 +1714,7 @@ class DynamicRNN(object):
"""
Update the memory from ex_mem to new_mem. NOTE that the shape and data
type of :code:`ex_mem` and :code:`new_mem` must be same.
Args:
ex_mem(Variable): the memory variable.
new_mem(Variable): the plain variable generated in RNN block.
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
66ea7184
...
...
@@ -65,7 +65,7 @@ def rpn_target_assign(bbox_pred,
rpn_negative_overlap
=
0.3
,
use_random
=
True
):
"""
**
Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.
**
**
Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.
**
This layer can be, for given the Intersection-over-Union (IoU) overlap
between anchors and ground truth boxes, to assign classification and
...
...
@@ -135,19 +135,20 @@ def rpn_target_assign(bbox_pred,
Examples:
.. code-block:: python
bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
append_batch_size=False, dtype='float32')
cls_logits = layers.data(name='cls_logits', shape=[100, 1],
append_batch_size=False, dtype='float32')
anchor_box = layers.data(name='anchor_box', shape=[20, 4],
append_batch_size=False, dtype='float32')
gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
cls_logits=cls_logits,
anchor_box=anchor_box,
gt_boxes=gt_boxes)
bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
append_batch_size=False, dtype='float32')
cls_logits = layers.data(name='cls_logits', shape=[100, 1],
append_batch_size=False, dtype='float32')
anchor_box = layers.data(name='anchor_box', shape=[20, 4],
append_batch_size=False, dtype='float32')
gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
cls_logits=cls_logits,
anchor_box=anchor_box,
gt_boxes=gt_boxes)
"""
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
...
...
@@ -1519,27 +1520,30 @@ def anchor_generator(input,
Args:
input(Variable): The input feature map, the format is NCHW.
anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
given in absolute pixels e.g. [64., 128., 256., 512.].
For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
given in absolute pixels e.g. [64., 128., 256., 512.].
For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
aspect_ratios(list|tuple|float): The height / width ratios of generated
anchors, e.g. [0.5, 1.0, 2.0].
anchors, e.g. [0.5, 1.0, 2.0].
variance(list|tuple): The variances to be used in box regression deltas.
Default:[0.1, 0.1, 0.2, 0.2].
stride(list|turple): The anchors stride across width and height,
e.g. [16.0, 16.0]
Default:[0.1, 0.1, 0.2, 0.2].
stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the prior box op. Default: None.
Returns:
Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
H is the height of input, W is the width of input,
num_anchors is the box count of each position.
Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
Variances(Variable): The expanded variances of anchors
with a layout of [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_anchors is the box count of each position.
Each variance is in (xcenter, ycenter, w, h) format.
Anchors(Variable),Variances(Variable):
two variables:
- Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
\
H is the height of input, W is the width of input,
\
num_anchors is the box count of each position.
\
Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
- Variances(Variable): The expanded variances of anchors
\
with a layout of [H, W, num_priors, 4].
\
H is the height of input, W is the width of input
\
num_anchors is the box count of each position.
\
Each variance is in (xcenter, ycenter, w, h) format.
Examples:
...
...
@@ -1748,35 +1752,35 @@ def generate_proposals(scores,
eta
=
1.0
,
name
=
None
):
"""
**
Generate proposal Faster-RCNN
**
This operation proposes RoIs according to each box with their probability to be a foreground object and
the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
could be used to train detection net.
For generating proposals, this operation performs following steps:
1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
2. Calculate box locations as proposals candidates.
3. Clip boxes to image
4. Remove predicted boxes with small area.
5. Apply NMS to get final proposals as output.
Args:
scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object
.
N is batch size, A is number of anchors, H and W are height and width of the feature map.
bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location.
im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
between origin image size and the size of feature map.
anchors(Variable): A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized
.
variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) forma
t.
pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6
000 by default.
post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000
by default.
nms_thresh(float): Threshold in NMS, 0.5
by default.
min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default
.
eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
**
Generate proposal Faster-RCNN
**
This operation proposes RoIs according to each box with their probability to be a foreground object and
the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
could be used to train detection net.
For generating proposals, this operation performs following steps:
1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
2. Calculate box locations as proposals candidates.
3. Clip boxes to image
4. Remove predicted boxes with small area.
5. Apply NMS to get final proposals as output.
Args:
scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
N is batch size, A is number of anchors, H and W are height and width of the feature map
.
bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location.
im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
between origin image size and the size of feature map.
anchors(Variable): A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format
.
pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by defaul
t.
post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1
000 by default.
nms_thresh(float): Threshold in NMS, 0.5
by default.
min_size(float): Remove predicted boxes with either height or width < min_size. 0.1
by default.
eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration
.
"""
helper
=
LayerHelper
(
'generate_proposals'
,
**
locals
())
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
66ea7184
...
...
@@ -949,12 +949,11 @@ def shuffle(reader, buffer_size):
is determined by argument buf_size.
Args:
param reader: the original reader whose output will be shuffled.
type reader: callable
param buf_size: shuffle buffer size.
type buf_size: int
return: the new reader whose output is shuffled.
rtype: callable
reader(callable): the original reader whose output will be shuffled.
buf_size(int): shuffle buffer size.
Returns:
callable: the new reader whose output is shuffled.
"""
return
__create_unshared_decorated_reader__
(
'create_shuffle_reader'
,
reader
,
{
'buffer_size'
:
int
(
buffer_size
)})
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
66ea7184
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/tensor.py
浏览文件 @
66ea7184
...
...
@@ -393,9 +393,6 @@ def fill_constant_batch_size_like(input,
It also sets *stop_gradient* to True.
>>> data = fluid.layers.fill_constant_batch_size_like(
>>> input=like, shape=[1], value=0, dtype='int64')
Args:
input(${input_type}): ${input_comment}.
...
...
@@ -411,6 +408,14 @@ def fill_constant_batch_size_like(input,
Returns:
${out_comment}.
Examples:
.. code-block:: python
data = fluid.layers.fill_constant_batch_size_like(
input=like, shape=[1], value=0, dtype='int64')
"""
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
...
...
python/paddle/fluid/metrics.py
浏览文件 @
66ea7184
...
...
@@ -361,8 +361,8 @@ class ChunkEvaluator(MetricBase):
Accumulate counter numbers output by chunk_eval from mini-batches and
compute the precision recall and F1-score using the accumulated counter
numbers.
For some basics of chunking, please refer to
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'
.
For some basics of chunking, please refer to
`Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_
.
ChunkEvalEvaluator computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
...
...
@@ -391,6 +391,7 @@ class ChunkEvaluator(MetricBase):
def
update
(
self
,
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
):
"""
Update the states based on the layers.chunk_eval() ouputs.
Args:
num_infer_chunks(int|numpy.array): The number of chunks in Inference on the given minibatch.
num_label_chunks(int|numpy.array): The number of chunks in Label on the given mini-batch.
...
...
@@ -450,9 +451,9 @@ class EditDistance(MetricBase):
distance, instance_error = distance_evaluator.eval()
In the above example:
'distance' is the average of the edit distance in a pass.
'instance_error' is the instance error rate in a pass.
- 'distance' is the average of the edit distance in a pass.
- 'instance_error' is the instance error rate in a pass.
"""
...
...
@@ -567,12 +568,15 @@ class DetectionMAP(object):
Calculate the detection mean average precision (mAP).
The general steps are as follows:
1. calculate the true positive and false positive according to the input
of detection and labels.
of detection and labels.
2. calculate mAP value, support two versions: '11 point' and 'integral'.
Please get more information from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
Args:
...
...
@@ -613,10 +617,12 @@ class DetectionMAP(object):
for data in batches:
loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
In the above example:
In the above example:
- 'cur_map_v' is the mAP of current mini-batch.
- 'accum_map_v' is the accumulative mAP of one pass.
'cur_map_v' is the mAP of current mini-batch.
'accum_map_v' is the accumulative mAP of one pass.
"""
def
__init__
(
self
,
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
66ea7184
...
...
@@ -125,14 +125,23 @@ def slice_variable(var_list, slice_count, min_block_size):
class
DistributeTranspilerConfig
(
object
):
"""
Args:
slice_var_up (bool): Do Tensor slice for pservers, default is True.
split_method (PSDispatcher): RoundRobin or HashName can be used
try to choose the best method to balance loads for pservers.
min_block_size (int): Minimum splitted element number in block.
According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
.. py:attribute:: slice_var_up (bool)
Do Tensor slice for pservers, default is True.
.. py:attribute:: split_method (PSDispatcher)
RoundRobin or HashName can be used.
Try to choose the best method to balance loads for pservers.
.. py:attribute:: min_block_size (int)
Minimum number of splitted elements in block.
According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
We can use bandwidth effiently when data size is larger than 2MB.If you
want to change it, please be sure you see the slice_variable function.
want to change it, please be sure you have read the slice_variable function.
"""
slice_var_up
=
True
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录