nn.py 354.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
sneaxiy 已提交
182
    'py_func',
183
    'psroi_pool',
H
heqiaozhi 已提交
184
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
185
    'huber_loss',
Y
Yu Yang 已提交
186 187
]

J
jerrywgz 已提交
188 189
kIgnoreIndex = -100

Y
Yu Yang 已提交
190 191 192 193 194 195 196

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
197
       is_test=False,
198
       name=None):
Y
Yu Yang 已提交
199
    """
200
    **Fully Connected Layer**
Y
Yu Yang 已提交
201

202 203 204 205 206 207 208 209
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
210
    to the output as well.
C
caoying03 已提交
211

C
caoying03 已提交
212
    This process can be formulated as follows:
213 214 215

    .. math::

216
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
217 218 219

    In the above equation:

C
caoying03 已提交
220 221 222 223
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
224
    * :math:`Act`: The activation function.
C
caoying03 已提交
225
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
226 227

    Args:
R
ranqiu 已提交
228 229 230 231 232 233 234 235 236 237
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
238
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
239 240 241 242
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
243 244
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
245
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
246
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
247
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
248

249
    Returns:
F
fengjiayi 已提交
250
        Variable: The transformation result.
251 252

    Raises:
C
caoying03 已提交
253
        ValueError: If rank of the input tensor is less than 2.
254 255 256 257

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
258
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
259
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
260
    """
C
caoying03 已提交
261

C
caoying03 已提交
262
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
263 264 265 266

    dtype = helper.input_dtype()

    mul_results = []
267 268
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
269 270 271
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
272

Y
Yu Yang 已提交
273
        w = helper.create_parameter(
274
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
275
        tmp = helper.create_variable_for_type_inference(dtype)
276
        helper.append_op(
277 278 279
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
280
            outputs={"Out": tmp},
M
mozga-intel 已提交
281 282
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
283 284 285 286
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
287
    else:
X
Xin Pan 已提交
288
        pre_bias = helper.create_variable_for_type_inference(dtype)
289
        helper.append_op(
290 291 292
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
293
            attrs={"use_mkldnn": False})
294 295 296 297
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
298 299


300 301 302
def embedding(input,
              size,
              is_sparse=False,
303
              is_distributed=False,
304 305 306
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
307
    """
308 309
    **Embedding Layer**

310
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
311 312
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
313 314 315

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
316 317

    Args:
318 319 320 321 322
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
323
        is_distributed(bool): Whether to run lookup table from remote parameter server.
324 325
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
326
            with zeros whenever lookup encounters it in :attr:`input`. If
327
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
328 329
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
330
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
331

332 333 334
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
335

336 337
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
338

C
chengduoZH 已提交
339
          dict_size = len(dataset.ids)
340
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
341
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
342 343 344
    """

    helper = LayerHelper('embedding', **locals())
345
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
346 347
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
348 349
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
350
    tmp = helper.create_variable_for_type_inference(dtype)
351 352
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
353 354 355 356 357
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
358 359 360
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
361
            'remote_prefetch': remote_prefetch,
362 363
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
364 365 366
    return tmp


W
wopeizl 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
383

W
wopeizl 已提交
384 385 386 387 388 389 390 391 392 393 394
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
395

W
wopeizl 已提交
396 397 398 399
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
487 488


P
phlrain 已提交
489 490 491 492 493 494
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
495
         dropout_prob=0.0,
P
phlrain 已提交
496 497 498 499 500
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
501
    """
P
phlrain 已提交
502
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
503 504

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
505
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
506 507
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
508
    .. math::
M
minqiyang 已提交
509 510 511 512 513 514 515

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
516
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
517 518 519 520

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
521 522

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
523 524 525 526 527 528
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
529 530 531
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
532
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
533

M
minqiyang 已提交
534
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
535 536 537 538 539
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
540
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
541 542 543 544 545
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
546
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
547 548
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
549 550
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
551 552 553 554 555 556
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
557
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
558

L
liuhongyu 已提交
559 560

    Returns:
M
minqiyang 已提交
561 562
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
563
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
564

H
haowang101779990 已提交
565 566 567 568
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
569
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
570 571
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
572
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
588
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
589 590 591 592 593 594
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
595 596 597
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
657 658 659 660 661 662 663 664 665 666 667
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
668 669
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
670 671 672
    """
    **Dynamic LSTMP Layer**

673 674 675 676 677 678
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
679 680 681 682 683

    The formula is as follows:

    .. math::

684
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
685

686
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
687

688
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
689

690
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
691

692
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
693

694
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
695

696
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
697

Y
Yibing Liu 已提交
698 699 700 701 702 703
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
704
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
705
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
706
          bias vector).
Y
Yibing Liu 已提交
707 708 709
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
710
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
711
    * :math:`h`: The hidden state.
712
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
713 714
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
715
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
716
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
717
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
718 719
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
720 721 722 723

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
724

Y
Yibing Liu 已提交
725 726 727 728 729 730 731 732 733 734 735 736
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
737
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
738 739
                               hidden-hidden weight and projection weight.

740 741
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
742 743
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
744 745
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
746
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
747 748 749 750 751

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
752
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
753 754 755 756 757 758
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
759
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
760 761 762
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
763
                                - The shape is (1 x 7D).
C
chengduo 已提交
764 765 766 767 768

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
769 770 771 772 773 774 775 776 777
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
778
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
779 780
                              default "tanh".
        proj_activation(str): The activation for projection output.
781
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
782 783
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
784 785
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
786 787

    Returns:
788 789 790 791
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
792 793

    Examples:
794

Y
Yibing Liu 已提交
795 796
        .. code-block:: python

797 798 799 800
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
801
            hidden_dim, proj_dim = 512, 256
802
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
803
                                     act=None, bias_attr=None)
804 805 806
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
807 808 809 810
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
811
    """
812

C
chengduo 已提交
813
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
814
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
815
    size = size // 4
Y
Yibing Liu 已提交
816 817 818 819 820 821 822 823 824 825
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
826 827 828 829 830 831
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
860 861 862 863 864 865 866
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
867 868
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
869
    """
870
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
871

872 873 874
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
875

G
guosheng 已提交
876 877 878 879 880 881 882 883 884
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
885

G
guosheng 已提交
886
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901
    if origin_mode is True, then the equation is from paper
    `Learning Phrase Representations using RNN Encoder–Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
902
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
903 904
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
905 906 907 908
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
909
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
910 911

    Args:
912 913
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
914
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
915
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
916 917
            is the hidden size.
        size(int): The dimension of the gru cell.
918
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
919 920
            hidden-hidden weight matrix. Note:

921
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
922
              :math:`D` is the hidden size.
923
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
924
              The first part are weights of the update gate and reset gate with
925
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
926
              candidate hidden state with shape :math:`(D \\times D)`.
927 928 929 930 931

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
932
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
933
            the bias in the update gate, reset gate and candidate calculations.
934 935 936
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
937 938
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
939
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
940 941 942
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
943
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
944
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
945 946 947 948
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
949 950

    Returns:
G
guosheng 已提交
951
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
952
            and sequence length is the same with the input.
953

G
guosheng 已提交
954
    Examples:
955

G
guosheng 已提交
956 957
        .. code-block:: python

958 959 960 961
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
962
            hidden_dim = 512
963
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
964
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
965 966 967 968 969 970 971 972 973
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
974
    batch_size = input.shape[0]
G
guosheng 已提交
975
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
976
    if h_0:
G
guosheng 已提交
977
        assert h_0.shape == (
Y
Yancey 已提交
978 979 980
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
981

X
Xin Pan 已提交
982 983 984 985
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
999 1000
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1001 1002 1003 1004
        })
    return hidden


Y
Yu Yang 已提交
1005 1006 1007
def gru_unit(input,
             hidden,
             size,
1008 1009
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1010
             activation='tanh',
Q
Qiao Longfei 已提交
1011 1012
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1013
    """
1014 1015 1016 1017 1018
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder–Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1019

1020 1021
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1022

1023
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1024

1025
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1042 1043

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1044 1045 1046
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1047 1048
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1049 1050
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1051 1052 1053
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1054 1055 1056

    Args:
        input (Variable): The fc transformed input value of current step.
1057
        hidden (Variable): The hidden value of gru unit from previous step.
1058
        size (integer): The input dimension value.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1073
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1074
            the bias in the update gate, reset gate and candidate calculations.
1075 1076 1077
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1078 1079
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1080 1081 1082 1083
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1084

1085 1086 1087 1088 1089 1090
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1091

1092
             # assuming we have x_t_data and prev_hidden of size=10
1093
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1094 1095
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1108
    size = size // 3
Y
Yu Yang 已提交
1109 1110

    # create weight
1111 1112
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1113

X
Xin Pan 已提交
1114 1115 1116
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1117
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1118
    # create bias
1119
    if helper.bias_attr:
Y
Yu Yang 已提交
1120 1121 1122
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1123
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1124 1125 1126

    helper.append_op(
        type='gru_unit',
1127
        inputs=inputs,
Y
Yu Yang 已提交
1128 1129 1130 1131 1132 1133
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1134 1135
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1136 1137 1138 1139 1140
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1141
@templatedoc()
1142
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1143 1144 1145 1146 1147 1148 1149
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1150
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1151 1152 1153 1154
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1155 1156 1157
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1158 1159

    """
Y
Yu Yang 已提交
1160 1161 1162 1163 1164 1165
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1166 1167 1168 1169 1170 1171 1172 1173
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1189 1190 1191 1192
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1193

W
wopeizl 已提交
1194 1195
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1196

W
wopeizl 已提交
1197
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1198

W
wopeizl 已提交
1199
        label(${label_type}): ${label_comment}
1200

W
wopeizl 已提交
1201 1202
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1203

W
wopeizl 已提交
1204 1205
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1206

W
wopeizl 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1217
                "Transition": transition,
W
wopeizl 已提交
1218 1219
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1220

W
wopeizl 已提交
1221
    return viterbi_path
Y
Yu Yang 已提交
1222 1223


Y
yi.wu 已提交
1224
@templatedoc()
F
fengjiayi 已提交
1225
def cos_sim(X, Y):
Y
Yu Yang 已提交
1226
    """
Y
yi.wu 已提交
1227 1228 1229
    ${comment}

    Args:
1230 1231
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1232

Y
yi.wu 已提交
1233
    Returns:
1234
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1235
    """
F
fengjiayi 已提交
1236
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1237 1238 1239
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1250 1251 1252 1253 1254
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1255
            dropout_implementation="downgrade_in_infer"):
1256 1257 1258 1259 1260
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1261
    training. The dropout operator randomly sets (according to the given dropout
1262 1263 1264
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1265 1266
    dropout op can be removed from the program to make the program more efficient.

1267
    Args:
1268 1269
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1270 1271 1272 1273 1274 1275 1276
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1277 1278
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1279
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1280 1281 1282 1283 1284 1285

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1286
                                        2. upscale_in_train, upscale the outcome at training time
1287

H
haowang101779990 已提交
1288 1289
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1290

H
haowang101779990 已提交
1291 1292
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1293

M
minqiyang 已提交
1294

1295
    Returns:
1296
        Variable: A tensor variable is the shape with `x`.
1297 1298

    Examples:
1299

1300 1301
        .. code-block:: python

1302 1303
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1304 1305
    """

F
fengjiayi 已提交
1306
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1307 1308 1309
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1310 1311 1312 1313

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1314 1315 1316 1317 1318
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1319 1320 1321 1322
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1323 1324
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1325
        })
1326 1327 1328
    return out


J
jerrywgz 已提交
1329
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1330
    """
Y
Yibing Liu 已提交
1331 1332
    **Cross Entropy Layer**

1333 1334 1335
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1336 1337

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1338
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1339

Y
Yibing Liu 已提交
1340
        .. math::
Y
yangyaming 已提交
1341

Y
Yibing Liu 已提交
1342 1343 1344
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1345 1346
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1347 1348 1349 1350 1351

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1352
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1353 1354 1355
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1356 1357
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1358
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1359

Y
Yibing Liu 已提交
1360
    Args:
Y
yangyaming 已提交
1361
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1362 1363 1364 1365
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1366
        label (Variable|list): the ground truth which is a 2-D tensor. When
1367 1368 1369 1370
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1371
        soft_label (bool): a flag indicating whether to
1372
                                           interpretate the given labels as soft
1373
                                           labels. Default: `False`.
M
minqiyang 已提交
1374 1375
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1376
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1377 1378 1379 1380 1381

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1382 1383 1384
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1385

H
haowang101779990 已提交
1386 1387
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1388

H
haowang101779990 已提交
1389 1390
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1391 1392 1393 1394 1395 1396

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1397
    """
F
fengjiayi 已提交
1398
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1399
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1400 1401 1402 1403 1404
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1405 1406
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1407 1408 1409
    return out


F
frankwhzhang 已提交
1410
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1411 1412 1413
    """
    Bayesian Personalized Ranking Loss Operator.

1414
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1415 1416 1417 1418 1419 1420
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1421 1422 1423 1424 1425 1426
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1427 1428
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1429 1430 1431
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1432 1433 1434
    Examples:
        .. code-block:: python

1435
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1436
    """
1437 1438 1439 1440 1441 1442

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1443
                'Label': [label]},
1444 1445 1446 1447
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1448
def square_error_cost(input, label):
Y
Yu Yang 已提交
1449
    """
1450 1451
    **Square error cost layer**

1452 1453
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1468 1469
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1470 1471

    Returns:
G
guosheng 已提交
1472
        Variable: The tensor variable storing the element-wise squared error \
1473
                  difference of input and label.
1474 1475 1476 1477 1478 1479 1480 1481

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1482
    """
F
fengjiayi 已提交
1483
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1484
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1485 1486 1487 1488 1489 1490
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1491
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1492
    helper.append_op(
F
fengjiayi 已提交
1493 1494
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1495 1496 1497
    return square_out


Y
yi.wu 已提交
1498
@templatedoc()
Y
Yu Yang 已提交
1499 1500 1501 1502
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1503
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1504
    """
Y
yi.wu 已提交
1505
    **Chunk Evaluator**
Y
yi.wu 已提交
1506

Y
yangyaming 已提交
1507
    This function computes and outputs the precision, recall and
1508
    F1-score of chunk detection.
Y
yi.wu 已提交
1509

M
minqiyang 已提交
1510
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1511
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1512 1513 1514 1515 1516 1517

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1518

Y
yi.wu 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1544

Y
yi.wu 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1569
    Args:
1570 1571 1572 1573 1574
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1575

Y
yi.wu 已提交
1576
    Returns:
Y
update  
yi.wu 已提交
1577 1578 1579
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1580

Y
yi.wu 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1593
    """
F
fengjiayi 已提交
1594
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1595 1596

    # prepare output
X
Xin Pan 已提交
1597 1598 1599 1600 1601 1602 1603
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1604 1605 1606 1607 1608 1609 1610 1611

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1612 1613 1614 1615
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1616 1617 1618
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1619 1620
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1621
        })
1622 1623
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1624 1625


1626
@templatedoc()
Y
Yu Yang 已提交
1627 1628 1629 1630 1631 1632 1633
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1634 1635
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1636 1637 1638 1639
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1640 1641 1642 1643 1644 1645 1646

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1660

1661 1662
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1663 1664 1665 1666 1667 1668 1669
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1670
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1681
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1682 1683 1684 1685 1686 1687
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1688
def sequence_softmax(input, use_cudnn=False, name=None):
1689 1690 1691
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1692
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1709 1710 1711
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1724 1725
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1726
    softmax_out = helper.create_variable_for_type_inference(dtype)
1727 1728 1729 1730 1731 1732 1733 1734
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1735
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1736
    """
1737
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1738
    has the same shape as the input.
Q
qiaolongfei 已提交
1739

1740 1741 1742 1743 1744 1745
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1746
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1747 1748 1749 1750 1751 1752 1753

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1754
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1755 1756 1757 1758 1759 1760 1761 1762

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1763 1764 1765
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1778 1779
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1780
    softmax_out = helper.create_variable_for_type_inference(dtype)
1781 1782 1783 1784 1785 1786 1787 1788
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1789 1790 1791
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1792 1793
           stride=1,
           padding=0,
1794
           dilation=1,
Y
Yu Yang 已提交
1795 1796 1797
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1798
           use_cudnn=True,
1799 1800
           act=None,
           name=None):
Y
Yu Yang 已提交
1801
    """
C
chengduoZH 已提交
1802
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1803 1804
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1805
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1806 1807 1808 1809 1810 1811 1812
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1813 1814 1815
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1816

1817
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1818

C
chengduoZH 已提交
1819 1820
    .. math::

C
refine  
chengduoZH 已提交
1821
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1822

T
tensor-tang 已提交
1823
    Where:
C
chengduoZH 已提交
1824

1825 1826 1827 1828 1829
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1830
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1831 1832 1833

    Example:

1834 1835
        - Input:

W
weixing02 已提交
1836
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1837

W
weixing02 已提交
1838
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1839

1840
        - Output:
T
tensor-tang 已提交
1841

W
weixing02 已提交
1842
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1843

C
chengduoZH 已提交
1844
        Where
1845 1846

        .. math::
C
chengduoZH 已提交
1847

W
weixing02 已提交
1848 1849
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1850 1851

    Args:
1852
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1853
        num_filters(int): The number of filter. It is as same as the output
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1871 1872 1873 1874 1875
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1876
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1877 1878 1879 1880 1881
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1882 1883
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1884 1885
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1886
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1887
            will be named automatically. Default: None
C
chengduoZH 已提交
1888 1889

    Returns:
G
guosheng 已提交
1890
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1891 1892
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1893
    Raises:
1894 1895
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1896

C
chengduoZH 已提交
1897 1898 1899
    Examples:
        .. code-block:: python

1900 1901
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1902 1903 1904
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1905
    assert param_attr is not False, "param_attr should not be False here."
1906
    l_type = 'conv2d'
X
xzl 已提交
1907 1908
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1909
        l_type = 'depthwise_conv2d'
1910 1911 1912 1913

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1914 1915 1916 1917 1918
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1919
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1920

C
chengduoZH 已提交
1921 1922 1923
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1924
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1925

C
chengduoZH 已提交
1926 1927
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1928 1929

    input_shape = input.shape
M
minqiyang 已提交
1930
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1931 1932

    def _get_default_param_initializer():
C
chengduo 已提交
1933 1934
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1935 1936 1937 1938 1939 1940 1941 1942
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1943
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1944

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1959
    helper.append_op(
1960
        type=l_type,
Y
Yu Yang 已提交
1961 1962 1963 1964 1965
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1966 1967 1968
        attrs={
            'strides': stride,
            'paddings': padding,
1969
            'dilations': dilation,
C
chengduoZH 已提交
1970
            'groups': groups,
1971
            'use_cudnn': use_cudnn,
1972
            'use_mkldnn': False,
C
chengduoZH 已提交
1973
        })
Y
Yu Yang 已提交
1974 1975 1976 1977 1978 1979

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1997 1998 1999 2000 2001 2002
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2012 2013
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2014 2015 2016
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2017
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2043
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2044 2045
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2046
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2047 2048
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2049
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2050 2051
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2052
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2053 2054 2055 2056 2057 2058
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2069 2070
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2071 2072
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2073
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2074
            will be named automatically. Default: None.
C
chengduoZH 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2087 2088
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2089 2090 2091
    """

    l_type = 'conv3d'
C
chengduo 已提交
2092
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2103
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2117 2118 2119
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2120 2121 2122 2123 2124 2125 2126 2127
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2128
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2143
            'use_mkldnn': False
C
chengduoZH 已提交
2144 2145
        })

2146
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2147 2148 2149 2150

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2151
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2152
    """
Y
yangyaming 已提交
2153 2154 2155
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2167
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2168 2169 2170 2171 2172
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2173
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2174 2175 2176 2177 2178 2179 2180

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2181 2182
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2183

L
Luo Tao 已提交
2184 2185
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2186
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2187
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2188
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2189 2190 2191 2192 2193 2194 2195

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2196

Y
yangyaming 已提交
2197
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2198 2199 2200 2201 2202
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2203 2204
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2205
    """
F
fengjiayi 已提交
2206
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2207
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2208 2209
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2210 2211 2212 2213 2214 2215

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2216 2217
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2218

Y
yangyaming 已提交
2219 2220 2221 2222 2223
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2224 2225 2226
    return pool_out


C
add doc  
chengduoZH 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2246
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2247 2248 2249 2250 2251
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2252
def sequence_first_step(input):
L
Luo Tao 已提交
2253
    """
L
Luo Tao 已提交
2254
    This function gets the first step of sequence.
L
Luo Tao 已提交
2255 2256 2257 2258

    .. code-block:: text

       x is a 1-level LoDTensor:
2259
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2260 2261 2262 2263 2264
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2265
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2266
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2267

L
Luo Tao 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2277

Y
yangyaming 已提交
2278
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2279 2280 2281
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2282 2283 2284
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2285
def sequence_last_step(input):
L
Luo Tao 已提交
2286
    """
L
Luo Tao 已提交
2287
    This function gets the last step of sequence.
L
Luo Tao 已提交
2288 2289 2290 2291

    .. code-block:: text

       x is a 1-level LoDTensor:
2292
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2293 2294 2295 2296 2297
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2298
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2299
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2300

L
Luo Tao 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2310

Y
yangyaming 已提交
2311
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2312 2313 2314
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2315 2316 2317
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2318 2319 2320 2321
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2322
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2323 2324 2325 2326 2327
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2328

H
haowang101779990 已提交
2329
              - Case:
Y
Yibing Liu 已提交
2330

2331
            Given the input Variable **input**:
2332

2333 2334 2335
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2336

2337
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2338

2339
            the output Variable will be
2340

2341 2342 2343
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2344

M
minqiyang 已提交
2345
    Note:
H
haowang101779990 已提交
2346
          The first dimension size of **input**, **offset** and **length**
2347
          should be equal. The **offset** should start from 0.
2348

Y
Yibing Liu 已提交
2349
    Args:
2350
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2351
                         sequences.
Y
Yibing Liu 已提交
2352 2353 2354 2355 2356 2357
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2358
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2369
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2370 2371 2372 2373
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2374
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2389
@templatedoc()
Y
Yu Yang 已提交
2390
def pool2d(input,
C
chengduoZH 已提交
2391 2392
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2393 2394
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2395
           global_pooling=False,
C
chengduoZH 已提交
2396
           use_cudnn=True,
2397
           ceil_mode=False,
2398 2399
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2400
    """
F
fengjiayi 已提交
2401
    ${comment}
2402 2403

    Args:
2404 2405 2406
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2407
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2408
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2409 2410
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2411
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2412 2413 2414 2415 2416 2417
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2418 2419 2420
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2421
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2422
                        layer will be named automatically.
2423
        exclusive (bool): Whether to exclude padding points in average pooling
2424
                          mode, default is true
F
fengjiayi 已提交
2425

2426
    Returns:
F
fengjiayi 已提交
2427
        Variable: The pooling result.
F
fengjiayi 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2441 2442 2443 2444
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2445
                            global_pooling=False)
Y
Yu Yang 已提交
2446 2447 2448 2449 2450
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2451

C
chengduoZH 已提交
2452 2453 2454 2455 2456
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2457 2458 2459 2460
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2461 2462
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2463

C
Add doc  
chengduoZH 已提交
2464
    l_type = 'pool2d'
2465 2466

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2467
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2468
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2469 2470

    helper.append_op(
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2482 2483
            "use_mkldnn": False,
            "exclusive": exclusive,
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2497 2498
           name=None,
           exclusive=True):
2499 2500
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2501
    pooling configurations mentioned in input parameters.
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2514
        exclusive (bool): Whether to exclude padding points in average pooling
2515
                          mode, default is true
2516

2517
    Returns:
2518
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2519 2520 2521 2522 2523
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2524

C
chengduoZH 已提交
2525 2526 2527 2528 2529
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2530 2531 2532
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2533

C
chengduoZH 已提交
2534 2535
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2536

2537 2538
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2539
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2540
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2541 2542

    helper.append_op(
2543
        type=l_type,
Y
Yu Yang 已提交
2544 2545 2546 2547 2548 2549 2550
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2551
            "paddings": pool_padding,
2552
            "use_cudnn": use_cudnn,
2553
            "ceil_mode": ceil_mode,
2554 2555
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2556 2557 2558 2559 2560
        })

    return pool_out


2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2594
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2595
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2596
          # of input data into m * n grids averagely and performs poolings in each
2597 2598
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2599
          #
2600 2601 2602 2603 2604 2605 2606 2607
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2608 2609
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2610
          pool_out = fluid.layers.adaptive_pool2d(
2611 2612
                            input=data,
                            pool_size=[3, 3],
2613
                            pool_type='avg')
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2624
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2650
    return (pool_out, mask) if require_index else pool_out
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2686 2687
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2688
          # of input data into l * m * n grids averagely and performs poolings in each
2689 2690
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2691
          #
2692 2693 2694 2695 2696 2697 2698 2699 2700
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2701
          #                 output[:, :, i, j, k] =
2702 2703
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2704 2705
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2706
          pool_out, mask = fluid.layers.adaptive_pool3d(
2707 2708
                            input=data,
                            pool_size=[3, 3],
2709
                            pool_type='avg')
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2720
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2746
    return (pool_out, mask) if require_index else pool_out
2747 2748


Y
Yu Yang 已提交
2749 2750 2751 2752 2753 2754 2755
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2756
               data_layout='NCHW',
Y
Yang Yang 已提交
2757
               in_place=False,
2758 2759
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2760
               moving_variance_name=None,
2761
               do_model_average_for_mean_and_var=False,
2762 2763
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2764
    """
Q
qiaolongfei 已提交
2765 2766 2767 2768
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2769

Q
qiaolongfei 已提交
2770
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2771

Q
qiaolongfei 已提交
2772 2773
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2774 2775 2776
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2789

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2803
    Args:
Q
qiaolongfei 已提交
2804
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2805 2806 2807 2808
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2809 2810 2811 2812 2813 2814 2815 2816
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2817
        data_layout(string, default NCHW): NCHW|NHWC
2818
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2819 2820 2821 2822
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2823
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2824
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2825 2826 2827 2828 2829
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2830 2831

    Returns:
Q
qiaolongfei 已提交
2832
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2833 2834 2835 2836 2837 2838 2839

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2840
    """
C
chengduo 已提交
2841
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2842 2843 2844
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2845 2846 2847 2848
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2866 2867 2868
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2869 2870

    bias = helper.create_parameter(
2871
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2872 2873 2874
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2875

2876 2877
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2878 2879 2880
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2881
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2882
        shape=param_shape,
W
Wu Yi 已提交
2883
        dtype=dtype)
2884 2885 2886 2887 2888 2889
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2890
            trainable=False,
W
wanghaoshuang 已提交
2891
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2892
        shape=param_shape,
W
Wu Yi 已提交
2893
        dtype=dtype)
2894
    variance.stop_gradient = True
Y
Yu Yang 已提交
2895 2896 2897 2898 2899 2900

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2901 2902 2903 2904
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2905

X
Xin Pan 已提交
2906 2907
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2925 2926 2927 2928
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2929
            "use_mkldnn": False,
2930 2931
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2932
        })
Y
Yu Yang 已提交
2933 2934 2935 2936

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3064
@templatedoc()
G
guosheng 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3075
    ${comment}
G
guosheng 已提交
3076 3077 3078

    The formula is as follows:

Y
yuyang18 已提交
3079
    ..  math::
G
guosheng 已提交
3080 3081 3082 3083 3084 3085 3086

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3087 3088 3089 3090 3091 3092 3093 3094
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3095

G
guosheng 已提交
3096 3097
    Args:
        input(Variable): The input tensor variable.
3098
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3099
            normalization. Default True.
3100
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3101 3102
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3103
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3104
            Default 1.
3105
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3106
            division by zero. Default 1e-05.
G
guosheng 已提交
3107
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3108 3109
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3110 3111
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3112
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3113 3114
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3115
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3116
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3117
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3118 3119 3120
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3121 3122

    Returns:
Y
yuyang18 已提交
3123
        ${y_comment}
G
guosheng 已提交
3124 3125 3126

    Examples:

Y
yuyang18 已提交
3127 3128 3129
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3145
    if shift:
G
guosheng 已提交
3146 3147 3148 3149 3150 3151
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3152 3153 3154 3155 3156
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3184
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3232 3233 3234
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3250 3251 3252 3253
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3254 3255 3256
                     padding=0,
                     stride=1,
                     dilation=1,
3257
                     groups=None,
C
caoying03 已提交
3258
                     param_attr=None,
3259
                     bias_attr=None,
C
chengduoZH 已提交
3260
                     use_cudnn=True,
3261
                     act=None,
C
caoying03 已提交
3262
                     name=None):
Y
Yu Yang 已提交
3263
    """
3264 3265 3266 3267 3268 3269 3270 3271
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3272 3273
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3274 3275 3276
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3277 3278 3279 3280 3281

    For each input :math:`X`, the equation is:

    .. math::

3282
        Out = \sigma (W \\ast X + b)
3283

3284
    Where:
3285 3286 3287

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3288 3289 3290 3291
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3292

3293 3294 3295 3296
    Example:

        - Input:

3297
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3298

3299
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3300 3301 3302

        - Output:

3303
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3304 3305

        Where
Y
Yu Yang 已提交
3306

3307 3308
        .. math::

3309 3310
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3311 3312
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3313 3314

    Args:
3315 3316 3317 3318
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3319 3320 3321 3322
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3351
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3352 3353 3354
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3355
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3356
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3357 3358

    Returns:
3359
        Variable: The tensor variable storing the convolution transpose result.
3360 3361

    Raises:
3362 3363
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3364 3365 3366 3367

    Examples:
       .. code-block:: python

3368 3369
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3370
    """
C
chengduo 已提交
3371
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3372 3373 3374 3375 3376 3377 3378 3379
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3380 3381 3382
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3383 3384 3385
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3386

C
chengduoZH 已提交
3387 3388
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3389

Y
Yu Yang 已提交
3390 3391 3392 3393 3394
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3395

Y
Yu Yang 已提交
3396 3397
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3398

C
chengduoZH 已提交
3399
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3400
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3401
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3402
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3403
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3404 3405 3406
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3407

3408 3409 3410 3411 3412 3413 3414
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3415
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3416
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3417

Y
Yu Yang 已提交
3418 3419 3420
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3421
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3422
    helper.append_op(
3423
        type=op_type,
Y
Yu Yang 已提交
3424 3425
        inputs={'Input': [input],
                'Filter': [img_filter]},
3426
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3427
        attrs={
3428
            'output_size': output_size,
3429 3430 3431 3432 3433
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3434 3435
        })

3436 3437 3438
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3439 3440


3441
def conv3d_transpose(input,
Y
Yu Yang 已提交
3442 3443 3444
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3445 3446 3447
                     padding=0,
                     stride=1,
                     dilation=1,
3448
                     groups=None,
C
caoying03 已提交
3449
                     param_attr=None,
3450
                     bias_attr=None,
C
chengduoZH 已提交
3451
                     use_cudnn=True,
3452
                     act=None,
C
caoying03 已提交
3453
                     name=None):
Y
Yu Yang 已提交
3454
    """
3455
    **Convlution3D transpose layer**
3456

3457
    The convolution3D transpose layer calculates the output based on the input,
3458
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3459 3460 3461 3462 3463 3464
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3465 3466 3467
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3468 3469 3470 3471 3472

    For each input :math:`X`, the equation is:

    .. math::

3473
        Out = \sigma (W \\ast X + b)
3474 3475 3476

    In the above equation:

3477 3478
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3479 3480 3481 3482
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3483

3484 3485 3486 3487
    Example:

        - Input:

3488
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3489

3490
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3491 3492 3493

        - Output:

3494
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3495 3496

        Where
Y
Yu Yang 已提交
3497

3498 3499
        .. math::

3500 3501 3502
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3503 3504

    Args:
3505
        input(Variable): The input image with [N, C, D, H, W] format.
3506 3507 3508
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3509
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3510 3511
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3512
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3513 3514 3515
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3516 3517
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3518
        stride(int|tuple): The stride size. If stride is a tuple, it must
3519 3520
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3521
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3522 3523 3524
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3525 3526 3527 3528 3529
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3539 3540
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3541 3542
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3543 3544
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3545 3546

    Returns:
3547
        Variable: The tensor variable storing the convolution transpose result.
3548 3549

    Raises:
3550 3551
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3552 3553 3554 3555

    Examples:
       .. code-block:: python

3556 3557
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3558
    """
C
chengduo 已提交
3559
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3560 3561
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3562
    if not isinstance(input, Variable):
3563
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3564 3565
    input_channel = input.shape[1]

3566 3567 3568
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3569

C
chengduoZH 已提交
3570 3571 3572
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3573 3574 3575 3576 3577 3578
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3579 3580 3581
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3582

3583
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3584
                         padding[0] - 1) // dilation[0] + 1
3585
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3586
                         padding[1] - 1) // dilation[1] + 1
3587
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3588
                         padding[2] - 1) // dilation[2] + 1
3589
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3590
    else:
3591 3592
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3593

3594
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3595
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3596 3597 3598
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3599
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3600
    helper.append_op(
3601
        type=l_type,
Y
Yu Yang 已提交
3602 3603
        inputs={'Input': [input],
                'Filter': [img_filter]},
3604
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3605 3606 3607 3608
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3609
            'groups': groups,
C
chengduoZH 已提交
3610 3611
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3612

3613 3614
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3615
    return out
Y
yangyaming 已提交
3616 3617


Y
yangyaming 已提交
3618
def sequence_expand(x, y, ref_level=-1, name=None):
3619
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3620 3621 3622 3623
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3624 3625 3626 3627 3628

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3629
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3630
                x.data = [[a], [b], [c], [d]]
3631 3632 3633
                x.dims = [4, 1]

            y is a LoDTensor:
3634 3635
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3636

Y
yangyaming 已提交
3637
            ref_level: 0
3638

Y
yangyaming 已提交
3639
            then output is a 1-level LoDTensor:
3640
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3641
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3642 3643 3644 3645
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3646
                x.data = [[a], [b], [c]]
3647 3648 3649
                x.dims = [3, 1]

            y is a LoDTensor:
3650
                y.lod = [[2, 0, 3]]
3651

Y
yangyaming 已提交
3652
            ref_level: -1
3653

Y
yangyaming 已提交
3654 3655 3656
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3657 3658 3659
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3660 3661
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3662
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3663
                        will be named automatically.
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3674
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3675
    """
Y
yangyaming 已提交
3676
    helper = LayerHelper('sequence_expand', input=x, **locals())
3677
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3678
    tmp = helper.create_variable_for_type_inference(dtype)
3679
    helper.append_op(
Y
yangyaming 已提交
3680 3681 3682 3683 3684
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3685
    return tmp
3686 3687


C
chengduo 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3744
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3745 3746 3747 3748 3749 3750 3751 3752
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3753
@templatedoc()
3754
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3755 3756 3757 3758 3759
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3760 3761 3762
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3763
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3764 3765 3766 3767
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3768 3769 3770
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3771

F
fengjiayi 已提交
3772
    Returns:
M
minqiyang 已提交
3773
        Variable: The padded sequence batch and the original lengths before
3774
                  padding. All sequences has the same length.
M
minqiyang 已提交
3775

F
fengjiayi 已提交
3776 3777 3778 3779 3780 3781 3782
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3783
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3784
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3785 3786 3787 3788 3789
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3790 3791
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3792 3793 3794 3795

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3796 3797 3798 3799 3800 3801
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3802 3803
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3804
        attrs={'padded_length': maxlen})
3805
    return out, length
F
fengjiayi 已提交
3806 3807


3808
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3809
    """
3810
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3811

3812 3813
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3823 3824 3825
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3826
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3827 3828 3829 3830 3831 3832

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3833
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3834 3835 3836 3837 3838 3839

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3840 3841
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3856
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3868 3869 3870 3871 3872 3873 3874 3875 3876
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3877 3878
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3879 3880 3881

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3882 3883

    This layer does the search in beams for one time step. Specifically, it
3884 3885 3886 3887 3888 3889
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3890

3891 3892 3893 3894 3895 3896 3897 3898
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3899

3900
    Args:
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3926

3927
    Returns:
3928 3929
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3930 3931 3932 3933

    Examples:
        .. code-block:: python

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3951 3952 3953 3954
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3955 3956 3957
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3958 3959 3960 3961 3962

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3963
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3981 3982 3983 3984 3985 3986 3987
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3988

3989 3990 3991 3992 3993 3994 3995 3996 3997
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3998

3999 4000 4001 4002 4003 4004
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4005

4006 4007
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4008

4009 4010 4011 4012 4013 4014
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4015 4016
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4032 4033 4034 4035
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4036
              param_attr=None,
C
caoying03 已提交
4037 4038
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4039 4040 4041 4042
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4043
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4044

4045
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4046

4047
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4048

4049
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4050 4051 4052

            h_t & = o_t tanh(c_t)

4053 4054 4055 4056 4057 4058
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4059 4060 4061

        .. math::

4062
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4063 4064 4065 4066 4067 4068 4069 4070

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4071
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4072 4073

    Args:
Y
yangyaming 已提交
4074 4075 4076 4077 4078 4079
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4080
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4093 4094
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4095 4096

    Returns:
Y
yangyaming 已提交
4097
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4098 4099

    Raises:
4100 4101 4102 4103
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4104 4105 4106 4107 4108 4109

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4110
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4111
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4112
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4129
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4130 4131 4132 4133
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4134 4135
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4136 4137 4138
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4139
    size = cell_t_prev.shape[1]
4140
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4141 4142
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4143
                param_attr=param_attr,
4144
                bias_attr=bias_attr)
Y
yangyaming 已提交
4145
    dtype = x_t.dtype
X
Xin Pan 已提交
4146 4147
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4157
    return h, c
G
guosheng 已提交
4158 4159


C
caoying03 已提交
4160
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4161
    """
Y
yangyaming 已提交
4162
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4163 4164 4165

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4166
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4167 4168
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4169 4170
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4171
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4172
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4173
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4174 4175
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4176 4177 4178

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4179

G
guosheng 已提交
4180 4181 4182 4183 4184 4185
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4186
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4187 4188 4189 4190
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4191 4192 4193 4194

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4195
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4196 4197 4198
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4199 4200
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4201
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4202 4203
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4204 4205 4206 4207 4208
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4209
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4210 4211 4212 4213
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4214 4215


C
caoying03 已提交
4216
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4217
    """
Y
Yibing Liu 已提交
4218
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4219 4220 4221

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4222 4223 4224
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4225
            must be in the range :math:`[-rank(input), rank(input))`. If
4226
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4227
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4228 4229
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4230
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4231
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4232
                       will be named automatically.
G
guosheng 已提交
4233 4234

    Returns:
Y
Yibing Liu 已提交
4235
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4236

G
guosheng 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4247 4248
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4249 4250 4251 4252 4253 4254 4255

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4256 4257
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4258
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4259 4260
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4261 4262 4263 4264 4265
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4266
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4267 4268 4269 4270
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4271 4272


C
caoying03 已提交
4273
def reduce_max(input, dim=None, keep_dim=False, name=None):
4274
    """
Y
yangyaming 已提交
4275
    Computes the maximum of tensor elements over the given dimension.
4276 4277 4278

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4279
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4280 4281 4282
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4283
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4284 4285
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4286
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4287 4288
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4289 4290 4291

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4292

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4304 4305 4306 4307 4308 4309 4310

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4311 4312
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4313
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4314 4315
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4316 4317 4318 4319 4320
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4321
            'dim': dim if dim != None else [0],
4322 4323 4324 4325 4326 4327
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4328
def reduce_min(input, dim=None, keep_dim=False, name=None):
4329
    """
Y
yangyaming 已提交
4330
    Computes the minimum of tensor elements over the given dimension.
4331 4332 4333

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4334
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4335 4336 4337
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4338
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4339 4340
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4341
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4342 4343
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4344 4345 4346

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4347

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4359 4360 4361 4362 4363 4364 4365

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4366 4367
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4368
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4369 4370
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4371 4372 4373 4374 4375
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4376
            'dim': dim if dim != None else [0],
4377 4378 4379 4380
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4381 4382


4383 4384 4385 4386 4387 4388
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4389
        dim (list|int|None): The dimensions along which the product is performed. If
4390 4391
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4392 4393
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4394 4395 4396
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4397
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4398
            layer will be named automatically.
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4413
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4414
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4415 4416 4417 4418 4419 4420 4421

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4422 4423
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4424
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4425 4426
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4427 4428 4429 4430 4431
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4432
            'dim': dim if dim != None else [0],
4433 4434 4435 4436 4437 4438
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4439
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4440
    """
C
caoying03 已提交
4441
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4442 4443 4444

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4445 4446 4447 4448 4449
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4450
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4451
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4452
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4453 4454
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4455 4456

    Returns:
D
dzhwinter 已提交
4457
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4458 4459 4460 4461 4462 4463 4464 4465 4466

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4467 4468
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4484
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4507
    .. math::
4508 4509

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4510 4511 4512 4513 4514

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4515
        x(Variable|list): The input tensor to l2_normalize layer.
4516
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4517 4518
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4519
        epsilon(float): The epsilon value is used to avoid division by zero, \
4520
            the defalut value is 1e-10.
4521
        name(str|None): A name for this layer(optional). If set None, the layer \
4522
            will be named automatically.
C
caoying03 已提交
4523 4524

    Returns:
4525
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4526 4527

    Examples:
4528

C
caoying03 已提交
4529 4530
        .. code-block:: python

4531 4532 4533 4534
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4535 4536
    """

F
fengjiayi 已提交
4537 4538
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4539 4540
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4541 4542
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4543
    helper.append_op(
4544 4545 4546 4547
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4548
        attrs={
4549 4550
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4551 4552
        })
    return out
4553 4554


S
sneaxiy 已提交
4555
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4556
    """
Y
ying 已提交
4557 4558 4559 4560
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4561

C
chengduoZH 已提交
4562
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4563
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4564

4565 4566 4567 4568 4569
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4570
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4571

C
chengduoZH 已提交
4572
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4573
      performs in the following way.
G
guosheng 已提交
4574

4575
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4576
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4577
        last two dimensions and a batched matrix multiply supporting broadcast
4578
        applies on the two tensors.
G
guosheng 已提交
4579

Y
ying 已提交
4580 4581
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4582
    removed after matrix multiplication.
G
guosheng 已提交
4583 4584 4585

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4586 4587 4588
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4589
        alpha (float): The scale of output. Default 1.0.
4590
        name(str|None): A name for this layer(optional). If set None, the layer
4591
            will be named automatically.
G
guosheng 已提交
4592 4593

    Returns:
4594
        Variable: The product Tensor variable.
G
guosheng 已提交
4595

G
guosheng 已提交
4596 4597 4598
    Examples:
        .. code-block:: python

4599
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4600 4601
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4602

4603 4604
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4605

4606 4607
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4608

4609 4610
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4611 4612 4613 4614

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4615 4616
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4617

Y
ying 已提交
4618
            # x: [M], y: [N]
4619
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4620
    """
Y
ying 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4633
            y_shape = y_shape + [1]
Y
ying 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4650
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4651
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4652
    helper.append_op(
4653 4654 4655 4656
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4657 4658 4659
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4660
            'alpha': float(alpha),
S
sneaxiy 已提交
4661
        })
4662
    return out
4663 4664


4665
def topk(input, k, name=None):
Q
qingqing01 已提交
4666 4667 4668 4669
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4670
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4671 4672 4673 4674 4675 4676
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4698 4699 4700
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4701
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4702
                 of input.
4703
        name(str|None): A name for this layer(optional). If set None, the layer
4704
                       will be named automatically.
F
fengjiayi 已提交
4705
                       Default: None
Q
qingqing01 已提交
4706 4707

    Returns:
4708 4709 4710
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4711
        within the last dimension of input.
Q
qingqing01 已提交
4712

F
fengjiayi 已提交
4713 4714
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4715 4716 4717 4718 4719 4720 4721

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4722 4723
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4724 4725 4726 4727 4728 4729
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4730 4731
    helper.append_op(
        type="top_k",
W
whs 已提交
4732
        inputs=inputs,
Q
qingqing01 已提交
4733 4734
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4735
        attrs=attrs)
Q
qingqing01 已提交
4736 4737 4738 4739 4740
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4741
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4742
    """
Y
ying 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4752

Y
ying 已提交
4753
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4754

4755
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4756 4757
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4758
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4759

4760
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4761 4762
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4763

4764 4765 4766
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4767
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4768
                          the length of reference string.
4769
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4770
                                     calculating edit distance.
4771
        name (str): The name of this layer. It is optional.
4772

W
wanghaoshuang 已提交
4773
    Returns:
W
wanghaoshuang 已提交
4774
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4775 4776 4777 4778

    Examples:
        .. code-block:: python

T
tink2123 已提交
4779 4780
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4781
            cost = fluid.layers.edit_distance(input=x,label=y)
4782
    """
4783
    helper = LayerHelper("edit_distance", **locals())
4784

4785
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4786
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4787 4788
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4789 4790 4791 4792 4793

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4794
            attrs={"tokens": ignored_tokens})
4795 4796 4797 4798 4799
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4800
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4801
            attrs={"tokens": ignored_tokens})
4802 4803
        label = erased_label

4804
    # edit distance op
X
Xin Pan 已提交
4805 4806
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4807 4808 4809 4810
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4811 4812
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4813 4814
        attrs={"normalized": normalized})

4815
    return edit_distance_out, sequence_num
4816 4817 4818 4819 4820


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4821

Y
ying 已提交
4822 4823 4824 4825
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4843
        input.lod = [[4, 4]]
M
minqiyang 已提交
4844

W
whs 已提交
4845
        Computation:
4846

W
whs 已提交
4847 4848 4849 4850 4851 4852
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4853 4854 4855 4856 4857

        output.data = [[2],
                       [1],
                       [3]]

4858
        output.lod = [[2, 1]]
4859

W
whs 已提交
4860

4861 4862
    Args:

Y
ying 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4872
        name (str): The name of this layer. It is optional.
4873 4874

    Returns:
H
haowang101779990 已提交
4875 4876 4877
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4878
                  LoD [[]] and dims [1, 1].
4879 4880 4881 4882 4883

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4884

4885
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4886
    """
4887
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4888
    _, topk_indices = topk(input, k=1)
4889 4890

    # ctc align op
X
Xin Pan 已提交
4891
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4892 4893 4894
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4895
        outputs={"Output": [ctc_out]},
4896 4897
        attrs={"merge_repeated": True,
               "blank": blank})
4898
    return ctc_out
4899 4900


W
Wu Yi 已提交
4901
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4902
    """
4903 4904
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4905
    to compute Connectionist Temporal Classification (CTC) loss.
4906 4907
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4908 4909 4910
    input tensor.

    Args:
4911
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4912 4913 4914 4915
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4916
       label (Variable): The ground truth of variable-length sequence,
4917 4918 4919
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4920 4921
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4922 4923 4924
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4925
         follewed by a mean_op.
W
Wu Yi 已提交
4926
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4927 4928

    Returns:
4929 4930
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4931 4932

    Examples:
4933

W
wanghaoshuang 已提交
4934
        .. code-block:: python
4935

4936 4937 4938
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4939 4940

    """
F
fengjiayi 已提交
4941
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4942 4943
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4944 4945 4946 4947 4948 4949
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4950 4951 4952 4953 4954
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4955
    return loss_out
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4971 4972 4973
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4974 4975 4976 4977 4978
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4979

4980
            out.lod  = [[0, 1, 3]]
4981 4982 4983 4984

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4985 4986 4987 4988 4989 4990 4991
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4992 4993 4994

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4995 4996

    Returns:
4997

4998 4999 5000 5001 5002
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5003
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5004
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5005 5006
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5007
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5008 5009 5010 5011 5012 5013
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5014 5015


5016 5017 5018 5019
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5020 5021 5022 5023 5024 5025
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5026
        num_neg_samples=None,
5027 5028 5029
        name=None,
        sampler="uniform",
        custom_dist=None,
5030 5031
        seed=0,
        is_sparse=False):
5032 5033 5034 5035 5036 5037 5038
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5039 5040
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5041
            sample is 1.0.
C
chengduo 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5051
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5052 5053
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5054 5055 5056
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5057
        custom_dist (float[]): A float[] with size=num_total_classes.
5058 5059 5060 5061
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5062
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5063

5064
    Returns:
Y
Yibing Liu 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5092 5093 5094 5095 5096 5097 5098 5099 5100

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5101

5102
    """
Y
Yang Yu 已提交
5103 5104 5105
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5106 5107

    dim = input.shape[1]
Y
Yang Yu 已提交
5108 5109 5110 5111 5112 5113
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5114
    inputs = {}
C
chengduo 已提交
5115 5116 5117 5118 5119 5120 5121
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5122 5123 5124
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5125

5126 5127 5128 5129
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5130 5131 5132 5133 5134 5135 5136

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5189 5190 5191 5192
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5193 5194 5195 5196 5197
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5198 5199 5200 5201
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5202

Y
Yang Yu 已提交
5203 5204
    attrs = {
        'num_total_classes': int(num_total_classes),
5205 5206
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5207
        'sampler': sampler,
5208 5209
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5210
    }
Y
Yang Yu 已提交
5211 5212 5213

    helper.append_op(
        type='nce',
C
chengduo 已提交
5214
        inputs=inputs,
Y
Yang Yu 已提交
5215 5216 5217 5218 5219 5220
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5221
    return cost / (num_neg_samples + 1)
5222 5223


C
chengduo 已提交
5224 5225
def hsigmoid(input,
             label,
5226
             num_classes,
C
chengduo 已提交
5227 5228
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5229
             name=None,
5230 5231 5232
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5233
             is_sparse=False):
W
weixing02 已提交
5234 5235
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5236
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5237
    complete binary tree, or you can use is_custom to pass your own tree to
5238
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5239 5240 5241 5242 5243 5244
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5245
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5246
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5247

5248 5249
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5250 5251 5252 5253
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5254
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5255
       related to the same batch of inputs.
5256

W
weixing02 已提交
5257
    Args:
M
minqiyang 已提交
5258
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5259 5260 5261 5262
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5263 5264
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5265
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5277
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5278
            it should be in leaf -> root order
M
minqiyang 已提交
5279 5280 5281
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5282
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5283
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5284
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5285
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5286
             of W and input will be sparse.
W
weixing02 已提交
5287 5288

    Returns:
J
JiabinYang 已提交
5289
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5290 5291 5292 5293 5294

    Examples:

        .. code-block:: python

G
guosheng 已提交
5295 5296 5297
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5298 5299 5300 5301
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5302 5303
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5304
    dim = input.shape[1]
5305
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5306 5307 5308
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5309 5310 5311 5312
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5313 5314
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5315 5316 5317
    else:
        pass

J
JiabinYang 已提交
5318
    weights = None
5319 5320 5321 5322
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5323
    if not is_custom:
J
JiabinYang 已提交
5324 5325 5326 5327 5328 5329 5330 5331
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5332
            shape=[num_classes, dim],
J
JiabinYang 已提交
5333 5334
            is_bias=False,
            dtype=input.dtype)
5335 5336 5337
    inputs = {
        "X": input,
        "W": weights,
5338
        "PathTable": path_table,
5339
        "PathCode": path_code,
5340 5341
        "Label": label
    }
W
weixing02 已提交
5342
    if helper.bias_attr:
5343
        if not is_custom:
J
JiabinYang 已提交
5344 5345
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5346
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5347 5348 5349 5350 5351 5352
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5353
                shape=[num_classes, 1],
J
JiabinYang 已提交
5354 5355 5356
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5357 5358
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5359
        inputs=inputs,
W
weixing02 已提交
5360
        outputs={"Out": out,
5361 5362 5363 5364 5365 5366 5367
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5368 5369 5370
    return out


Y
fix ci.  
ying 已提交
5371
def transpose(x, perm, name=None):
Y
ying 已提交
5372 5373 5374 5375 5376 5377 5378
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5379 5380 5381
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5382 5383 5384 5385 5386 5387 5388

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5389
            # use append_batch_size=False to avoid prepending extra
5390
            # batch size in shape
5391
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5392
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5393
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5394 5395
    """

Y
fix ci.  
ying 已提交
5396
    if len(perm) != len(x.shape):
Y
ying 已提交
5397 5398 5399
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5400 5401 5402 5403 5404 5405
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5406 5407

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5408 5409
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5410
    helper.append_op(
5411
        type='transpose2',
Y
fix ci.  
ying 已提交
5412
        inputs={'X': [x]},
5413 5414
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5415 5416
        attrs={'axis': perm})
    return out
5417 5418


5419 5420 5421 5422 5423 5424 5425
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5426
    """
5427 5428 5429 5430 5431 5432 5433
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5462 5463 5464 5465 5466 5467 5468 5469 5470
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5471 5472 5473
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5474 5475 5476 5477 5478
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5506 5507 5508
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5521
            output.dims = {8, 8}
5522

5523
            output.lod = [[4, 4]]
5524

T
Tink_Y 已提交
5525
    Examples:
5526 5527 5528

        .. code-block:: python

5529 5530
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5531 5532

    """
W
wanghaoshuang 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5543 5544 5545 5546 5547 5548 5549
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5550
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5551
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5552
    helper.append_op(
5553
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5554
    return out
5555 5556


Y
yuyang18 已提交
5557
@templatedoc()
5558
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5559 5560
    """
    ${comment}
5561 5562

    Args:
Y
yuyang18 已提交
5563
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5564 5565
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5566 5567 5568 5569 5570
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5571
        ${out_comment}.
5572 5573

    Examples:
Y
yuyang18 已提交
5574 5575 5576 5577
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5578 5579 5580 5581 5582 5583
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5584
    out = helper.create_variable_for_type_inference(dtype)
5585 5586 5587 5588 5589
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5590
    return helper.append_activation(out)
5591 5592


Y
yuyang18 已提交
5593
@templatedoc()
5594 5595
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5596 5597 5598 5599 5600 5601 5602
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5603 5604

    Args:
Y
yuyang18 已提交
5605 5606
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5607 5608

    Returns:
Y
yuyang18 已提交
5609
        ${out_comment}.
5610 5611
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5612 5613 5614 5615 5616

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5617
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5618 5619 5620 5621 5622 5623
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5624 5625


5626 5627 5628
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5629
                               ignore_index=kIgnoreIndex,
5630 5631
                               numeric_stable_mode=False,
                               return_softmax=False):
5632 5633
    """
    **Softmax With Cross Entropy Operator.**
5634

5635 5636 5637 5638
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5639

5640 5641 5642
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5643

5644 5645 5646
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5647

5648
    The equation is as follows:
5649

5650
    1) Hard label (one-hot label, so every sample has exactly one class)
5651

5652 5653 5654 5655
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5656

5657 5658 5659
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5660

5661 5662 5663 5664
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5665 5666 5667
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5668

H
haowang101779990 已提交
5669
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5670

H
haowang101779990 已提交
5671
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5672

H
haowang101779990 已提交
5673
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5674 5675 5676

    and then cross entropy loss is calculated by softmax and label.

5677 5678 5679 5680 5681 5682 5683 5684
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5685 5686
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5687
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5688 5689 5690
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5691 5692 5693
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5694
                                    stable algorithm. Default: False
5695
        return_softmax (bool): A flag indicating whether to return the softmax
5696
                               along with the cross entropy loss. Default: False
5697

5698
    Returns:
H
haowang101779990 已提交
5699 5700 5701 5702 5703
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5704 5705 5706 5707 5708 5709 5710

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5711 5712
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5713 5714
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5715 5716
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5717 5718 5719 5720 5721 5722
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5723 5724 5725 5726 5727
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5728 5729 5730 5731

    if return_softmax:
        return loss, softmax

5732 5733 5734 5735 5736
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5737 5738
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5739
    For each instance, it computes the smooth L1 loss element by element first
5740
    and then sums all the losses. So the shape of ouput Variable is
5741
    [batch_size, 1].
5742

5743 5744
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5745
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5746
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5747
            L1 loss op with same shape as :attr:`x`.
5748
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5749 5750
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5751
            by this tensor element by element.
5752
        outside_weight (Variable|None): A tensor with rank at least 2. This
5753 5754
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5755
            element by element.
5756
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5757 5758
           scalar with default value 1.0.

5759
    Returns:
5760
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5761 5762 5763 5764 5765

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5766 5767
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5768
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5769
            out = fluid.layers.smooth_l1(x=fc, y=label)
5770
    """
5771

5772
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5773 5774
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5787 5788 5789 5790


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5791
    This layer creates the one-hot representations for input indices.
5792 5793

    Args:
Y
Yibing Liu 已提交
5794 5795
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5796 5797

    Returns:
Y
Yibing Liu 已提交
5798
        Variable: The one-hot representations of input.
5799 5800

    Examples:
C
caoying03 已提交
5801
        .. code-block:: python
5802

Y
Yibing Liu 已提交
5803 5804
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5805 5806
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5807
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5808 5809 5810 5811 5812 5813
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5814 5815


Y
Yu Yang 已提交
5816
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5817
    """
Y
yi.wu 已提交
5818 5819 5820
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5821 5822 5823 5824 5825 5826

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5827 5828
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5829 5830 5831 5832 5833 5834

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5835 5836
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5837 5838
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5839 5840 5841 5842 5843
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5844
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5845
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5846 5847
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5848 5849
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5850 5851 5852
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5853 5854


5855
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5856
    """
C
caoying03 已提交
5857 5858
    Gives a new shape to the input Tensor without changing its data.

5859 5860 5861 5862 5863
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5864

5865
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5866

5867 5868 5869 5870
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5871
    2. 0 means the actual dimension value is going to be copied from the
5872 5873 5874 5875
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5876 5877

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5878
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5879
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5880

5881
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5882 5883
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5884 5885
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5886
    dimensions.
C
caoying03 已提交
5887

5888
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5889 5890 5891 5892
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5893 5894

    Args:
5895
        x(variable): The input tensor.
C
caoying03 已提交
5896 5897
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5898 5899 5900 5901 5902
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5903 5904
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5905 5906 5907 5908 5909 5910 5911
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5912
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5913

5914
    Returns:
G
guosheng 已提交
5915 5916 5917 5918
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5919

X
Xin Pan 已提交
5920 5921 5922
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5923 5924
    Examples:
        .. code-block:: python
G
guosheng 已提交
5925

5926
            data = fluid.layers.data(
5927
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5928
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5929
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5930 5931 5932
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5933
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5934 5935 5936 5937 5938
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5939

5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5955
    helper = LayerHelper("reshape2", **locals())
5956 5957
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5958
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5959
    helper.append_op(
5960
        type="reshape2",
X
Xin Pan 已提交
5961
        inputs=inputs,
D
dzhwinter 已提交
5962
        attrs={"shape": shape},
5963 5964
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5965

D
dzhwinter 已提交
5966
    return helper.append_activation(out)
5967

5968

5969
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5970
    """
M
minqiyang 已提交
5971 5972 5973
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5974
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5975

H
haowang101779990 已提交
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
5997

Y
Yibing Liu 已提交
5998
    Args:
5999
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6000
        axes (list): List of integers, indicating the dimensions to be squeezed.
6001
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6002 6003 6004 6005 6006 6007 6008 6009

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6010
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6011 6012
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6013 6014
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6015
    helper.append_op(
6016
        type="squeeze2",
6017
        inputs={"X": input},
Y
Yibing Liu 已提交
6018
        attrs={"axes": axes},
6019 6020
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6021

6022 6023 6024
    return out


6025
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6026
    """
M
minqiyang 已提交
6027 6028 6029
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6030

M
minqiyang 已提交
6031
    For example:
H
haowang101779990 已提交
6032 6033 6034

    .. code-block:: text

M
minqiyang 已提交
6035
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6036
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6037

Y
Yibing Liu 已提交
6038
    Args:
6039
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6040
        axes (list): List of integers, indicating the dimensions to be inserted.
6041
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6042 6043 6044 6045 6046 6047 6048 6049

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6050
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6051 6052
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6053 6054
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6055
    helper.append_op(
6056
        type="unsqueeze2",
6057
        inputs={"X": input},
Y
Yibing Liu 已提交
6058
        attrs={"axes": axes},
6059 6060
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6061

6062 6063
    return out

6064

Y
yangyaming 已提交
6065
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6066
    """
Y
Yibing Liu 已提交
6067
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6068 6069 6070 6071
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6072
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6073 6074 6075 6076 6077 6078

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6079
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6080 6081 6082
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6083
            target_lod: [4, 2]
Y
yangyaming 已提交
6084 6085

            then we get a 1-level LoDTensor:
6086
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6087 6088 6089 6090 6091 6092
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6093
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6094 6095 6096 6097
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6098
                y.data = [[2, 4]]
Y
yangyaming 已提交
6099 6100 6101
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6102
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6103 6104 6105 6106 6107 6108
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6109
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6110 6111 6112 6113
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6114
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6115 6116 6117 6118
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6119
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6120 6121 6122 6123 6124
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6125
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6126
                           from :attr:`y`.
Y
yangyaming 已提交
6127
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6128
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6129 6130

    Returns:
Y
Yibing Liu 已提交
6131
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6132 6133

    Raises:
Y
Yibing Liu 已提交
6134
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6135 6136 6137 6138 6139 6140 6141 6142 6143

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6144
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6170
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6199 6200
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6213 6214 6215
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6229 6230 6231 6232


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6233
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6234
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6235

G
guosheng 已提交
6236 6237 6238 6239
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6262
                         The length of :attr:paddings must be
G
guosheng 已提交
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6273

G
guosheng 已提交
6274 6275 6276 6277 6278 6279
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6280
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6281 6282 6283 6284 6285 6286 6287
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6288 6289


C
chengduo 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6321 6322
		And
            pad_value = -1,
C
chengduo 已提交
6323

T
Tink_Y 已提交
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6359
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6360 6361 6362 6363 6364 6365 6366 6367 6368
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6369 6370 6371 6372 6373 6374 6375
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6376 6377
    called label-smoothing regularization (LSR).

6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6401
                              be :math:`(1, class\_num)`.
6402 6403
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6404
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6424
    smooth_label = helper.create_variable_for_type_inference(dtype)
6425 6426 6427 6428 6429 6430 6431
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6432 6433


W
wopeizl 已提交
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6470 6471


J
jerrywgz 已提交
6472 6473 6474 6475 6476 6477
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6478 6479
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6496 6497 6498
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6499 6500 6501 6502 6503 6504
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6505
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6546 6547
        .. code-block:: python

W
whs 已提交
6548 6549 6550 6551
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6552
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6553 6554 6555 6556 6557 6558
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6559 6560


6561 6562 6563 6564
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6565 6566
                 resample='BILINEAR',
                 actual_shape=None):
6567
    """
Q
qiaolongfei 已提交
6568
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6569

6570
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6571 6572 6573
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6574

6575
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6576

6577
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6578

6579
    Args:
6580
        input (Variable): The input tensor of image resize layer,
6581 6582
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6583
        out_shape(list|tuple|Variable|None): Output shape of image resize
6584 6585
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6586
        scale(float|None): The multiplier for the input height or width.
6587 6588 6589
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6590 6591
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6592
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6593
                       currently.
6594
                       Default: 'BILINEAR'
6595 6596 6597
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6598
                                :attr:`out_shape` and :attr:`scale` specifying
6599 6600 6601 6602 6603 6604 6605
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6606 6607
                                constructing stage.
                                Default: None
6608 6609

    Returns:
Q
update  
qiaolongfei 已提交
6610 6611
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6612

6613 6614 6615
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6616
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6617 6618 6619 6620
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6621 6622 6623
    Examples:
        .. code-block:: python

6624
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6625
    """
6626 6627 6628 6629
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6630 6631
    if resample not in resample_methods:
        raise ValueError(
6632
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6633
        )
6634
    resample_type = resample_methods[resample]
6635
    if out_shape is None and scale is None:
6636
        raise ValueError("One of out_shape and scale must not be None.")
6637
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6638
    dtype = helper.input_dtype()
6639 6640 6641 6642

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6643 6644 6645
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6646
    if out_shape is not None:
6647 6648 6649 6650
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6651
            inputs['OutSize'] = out_shape
6652 6653 6654 6655 6656 6657 6658 6659
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6660 6661 6662 6663
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6664 6665 6666 6667 6668
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6669
    out = helper.create_variable_for_type_inference(dtype)
6670
    helper.append_op(
6671
        type='{}_interp'.format(resample_type),
6672
        inputs=inputs,
6673
        outputs={"Out": out},
6674 6675 6676
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6677
    return out
F
stash  
fengjiayi 已提交
6678 6679


6680
@templatedoc(op_type="bilinear_interp")
6681 6682 6683 6684 6685
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6686
    """
6687 6688
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6689 6690
    in priority order.

6691 6692 6693 6694
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6695 6696
    again in the other direction.

6697
    For details of bilinear interpolation, please refer to Wikipedia:
6698
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6699 6700 6701 6702 6703

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6704

Y
yuyang18 已提交
6705 6706 6707 6708 6709
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6710 6711 6712
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6713
                                :attr:`out_shape` and :attr:`scale` specifying
6714 6715 6716 6717 6718 6719 6720
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6721 6722
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6723 6724 6725

    Returns:
        ${out_comment}.
6726 6727 6728 6729 6730

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6731 6732
    """

6733
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6734 6735


6736
@templatedoc(op_type="nearest_interp")
6737 6738 6739 6740 6741
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6742
    """
6743
    Resize input by performing nearest neighbor interpolation in both the
6744 6745
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6746 6747
    out_shape and scale in priority order.

6748
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6749
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6750 6751 6752 6753 6754

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6755

Y
yuyang18 已提交
6756 6757 6758 6759 6760
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6761 6762 6763
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6764
                                :attr:`out_shape` and :attr:`scale` specifying
6765 6766 6767 6768 6769 6770 6771
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6772 6773
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6774 6775 6776

    Returns:
        ${out_comment}.
6777 6778 6779 6780 6781

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6782 6783
    """

6784
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6785 6786 6787 6788


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6789 6790 6791
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6792 6793 6794 6795 6796 6797 6798
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6799
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6800

6801
    Returns:
Q
update  
qiaolongfei 已提交
6802
        Variable: The output is a 4-D tensor of the shape
6803
        (num_batches, channls, out_h, out_w).
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6814 6815 6816
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6817 6818 6819
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6820 6821
def gather(input, index):
    """
Q
qiaolongfei 已提交
6822 6823
    **Gather Layer**

6824
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6825 6826 6827 6828
    of X indexed by `index` and concatenate them together.

    .. math::

6829
        Out = X[Index]
W
whs 已提交
6830 6831 6832 6833 6834 6835 6836


    .. code-block:: text


                Given:

6837 6838
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6849
        input (Variable): The source input with rank>=1.
W
whs 已提交
6850 6851 6852 6853 6854 6855
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6856

W
whs 已提交
6857 6858 6859 6860 6861 6862
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6863
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6864 6865 6866 6867 6868 6869 6870 6871
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6903
    out = helper.create_variable_for_type_inference(dtype)
6904 6905 6906 6907 6908 6909 6910 6911 6912
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6922

Q
Qingsheng Li 已提交
6923
    Given the following input:
H
haowang101779990 已提交
6924

Q
Qingsheng Li 已提交
6925
    .. code-block:: text
H
haowang101779990 已提交
6926

Q
Qingsheng Li 已提交
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6939

Q
Qingsheng Li 已提交
6940
    .. code-block:: text
H
haowang101779990 已提交
6941

Q
Qingsheng Li 已提交
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6957
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6968
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6969 6970 6971 6972 6973 6974 6975 6976 6977
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6991

6992 6993 6994
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6995
    """
F
stash  
fengjiayi 已提交
6996
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6997
    dtype = x.dtype
X
Xin Pan 已提交
6998
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6999
    if seed is None:
7000
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7001
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7002
    if isinstance(seed, int):
F
fengjiayi 已提交
7003 7004 7005 7006 7007
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7008 7009 7010 7011
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7012
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7013 7014
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7015 7016
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7017
    return out
W
whs 已提交
7018 7019


7020
def log(x, name=None):
W
wanghaoshuang 已提交
7021 7022 7023 7024 7025
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7026
        Out = \\ln(x)
W
wanghaoshuang 已提交
7027 7028

    Args:
7029
        x (Variable): Input tensor.
7030 7031
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7032 7033 7034 7035 7036 7037 7038 7039

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7040
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7041 7042
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7043
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7044
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7045
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7046 7047 7048
    return out


7049
def relu(x, name=None):
W
wanghaoshuang 已提交
7050 7051
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7052
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7053 7054 7055 7056
    the tensor elementwise.

    .. math::

7057
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7058 7059

    Args:
7060
        x (Variable): The input tensor.
7061 7062
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7063 7064 7065 7066 7067 7068 7069 7070

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7071
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7072 7073
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7074
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7075
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7076 7077
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7078
    return out
7079 7080


C
chengduo 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7122 7123 7124
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7125 7126 7127 7128
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7129
    .. math::
7130

H
haowang101779990 已提交
7131
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7132

7133
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7134 7135 7136 7137 7138
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7139
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7140
                           Its shape should be the same as input.
7141
        num_classes (int): The possible number of labels.
W
whs 已提交
7142 7143

    Returns:
M
minqiyang 已提交
7144 7145
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7146
                     Three variables:
M
minqiyang 已提交
7147

H
haowang101779990 已提交
7148 7149 7150
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7151 7152 7153 7154

    Examples:

        .. code-block:: python
7155

W
whs 已提交
7156 7157 7158 7159
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7160 7161 7162
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7163 7164
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7165 7166
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7167
        outputs={
W
whs 已提交
7168 7169 7170
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7171 7172 7173
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7242
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7243 7244 7245 7246 7247

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7248
            isinstance(shape, Variable)):
7249 7250 7251 7252 7253
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7254
    out = helper.create_variable_for_type_inference(x.dtype)
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7272 7273


W
whs 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7291

W
whs 已提交
7292
              out_shape = [2, 3, 5, 5]
7293

W
whs 已提交
7294
          Step 1:
7295

W
whs 已提交
7296 7297 7298
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7299

W
whs 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7345
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7346
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7359

W
whs 已提交
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7371
            isinstance(out_shape, Variable)):
W
whs 已提交
7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7393 7394
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7395

7396 7397
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7398
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7399 7400 7401
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7402

7403 7404
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7405

H
haowang101779990 已提交
7406 7407
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7408 7409
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7410

H
haowang101779990 已提交
7411 7412 7413 7414 7415 7416 7417 7418
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7419 7420 7421

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7456
    out = helper.create_variable_for_type_inference("float32")
7457 7458 7459 7460 7461 7462 7463 7464

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7465 7466


M
minqiyang 已提交
7467 7468
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7469
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7470
    which compares left score and right score passed in.
M
minqiyang 已提交
7471
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7472 7473 7474

    .. math::

H
haowang101779990 已提交
7475
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7476 7477

    Args:
M
minqiyang 已提交
7478
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7479 7480
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7481
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7482 7483
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7484

M
minqiyang 已提交
7485
    Returns:
M
minqiyang 已提交
7486
       Variable: The ranking loss.
H
haowang101779990 已提交
7487

M
minqiyang 已提交
7488
    Raises:
M
minqiyang 已提交
7489
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7490

M
minqiyang 已提交
7491
    Examples:
H
haowang101779990 已提交
7492

M
minqiyang 已提交
7493
        .. code-block:: python
H
haowang101779990 已提交
7494

M
minqiyang 已提交
7495 7496 7497 7498 7499
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7500
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7501 7502 7503 7504 7505 7506
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7507 7508
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7532
        .. code-block:: text
W
whs 已提交
7533

T
Tink_Y 已提交
7534
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7535

T
Tink_Y 已提交
7536 7537
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7538

T
Tink_Y 已提交
7539
	      Case 0:
M
minqiyang 已提交
7540

T
Tink_Y 已提交
7541 7542 7543
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7544

T
Tink_Y 已提交
7545 7546 7547
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7548

T
Tink_Y 已提交
7549
	      Case 1:
M
minqiyang 已提交
7550

T
Tink_Y 已提交
7551 7552
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7553

T
Tink_Y 已提交
7554 7555 7556
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7557

T
Tink_Y 已提交
7558
	      Case 2:
M
minqiyang 已提交
7559

T
Tink_Y 已提交
7560 7561
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7562

T
Tink_Y 已提交
7563 7564 7565
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7566 7567


W
whs 已提交
7568 7569
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7570
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7594
    out = helper.create_variable_for_type_inference(dtype)
7595 7596 7597 7598 7599 7600 7601 7602 7603
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7604
    helper.append_op(
7605
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7606 7607 7608 7609

    return out


7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7622 7623 7624 7625 7626

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7627 7628
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7629 7630
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7631
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7652 7653 7654 7655 7656

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7657 7658
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7659 7660
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7661
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7682 7683 7684 7685 7686

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7687 7688
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7689 7690
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7691
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7713 7714 7715 7716 7717

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7718
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7719
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7720 7721
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7722
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7745 7746 7747 7748 7749

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7750 7751
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7752 7753
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7754
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7776 7777 7778 7779 7780

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7781 7782
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7783 7784
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7785
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7786 7787 7788 7789 7790 7791 7792 7793
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7794 7795 7796 7797
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7798 7799
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7800 7801 7802

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7803
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7804
          weight (alpha).
J
jerrywgz 已提交
7805
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7806 7807 7808
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7809
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7810
          will be named automatically.
J
jerrywgz 已提交
7811 7812 7813 7814 7815 7816 7817 7818

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7819
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7833
        attr=helper.param_attr,
J
jerrywgz 已提交
7834 7835 7836 7837
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7838
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7839 7840 7841 7842 7843 7844 7845 7846 7847
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7858
    Returns:
7859
        output(${out_type}): ${out_comment}
7860 7861 7862

    Examples:

7863
    .. code-block:: python
7864

H
haowang101779990 已提交
7865 7866
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7867 7868
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7869
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7888
    Returns:
7889
        output(${out_type}): ${out_comment}
7890 7891 7892 7893 7894

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7895 7896
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7897 7898
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7899
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7917
    Returns:
7918
        output(${out_type}): ${out_comment}
7919 7920 7921 7922 7923

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7924 7925
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7926 7927
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7928
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7929 7930 7931 7932 7933 7934 7935 7936
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7937 7938 7939 7940
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
7941

H
haowang101779990 已提交
7942
    For Example:
M
minqiyang 已提交
7943

H
haowang101779990 已提交
7944
    .. code-block:: text
7945

H
haowang101779990 已提交
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7967 7968 7969

    Args:
        x (Variable): A tensor of rank >= axis.
7970 7971
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7972 7973 7974 7975 7976 7977 7978 7979
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7980 7981 7982
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
7983 7984 7985 7986
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7987
        ValueError: If axis is not in range [0, rank(x)].
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8004 8005
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8006
    helper.append_op(
8007
        type='flatten2',
8008
        inputs={"X": x},
8009 8010
        outputs={'Out': out,
                 'XShape': x_shape},
8011 8012
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8013 8014


C
chenweihang 已提交
8015
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8016
    """
C
chenweihang 已提交
8017
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8018
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8019 8020
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8021

H
haowang101779990 已提交
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8039 8040

    Args:
C
chenweihang 已提交
8041 8042 8043
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8055 8056
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8057 8058 8059 8060 8061 8062
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8063
    return out
8064

8065

S
sneaxiy 已提交
8066 8067 8068 8069 8070 8071 8072 8073 8074
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8075

S
sneaxiy 已提交
8076
    .. math::
8077

S
sneaxiy 已提交
8078 8079 8080
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8081
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8082 8083 8084 8085
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8086 8087 8088
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8089 8090
    Returns:
        Variable: The output sequence mask.
8091

S
sneaxiy 已提交
8092 8093
    """

Q
qingqing01 已提交
8094
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8095
    if name is None:
X
Xin Pan 已提交
8096
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8097
    else:
X
Xin Pan 已提交
8098
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8099

Q
qingqing01 已提交
8100 8101 8102
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8103 8104
        outputs={'Y': out},
        attrs={
8105
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8106 8107 8108
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8109 8110


X
Xin Pan 已提交
8111
def stack(x, axis=0):
S
sneaxiy 已提交
8112 8113 8114 8115
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8116 8117 8118 8119 8120 8121 8122

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8123
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8124
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8125 8126

    Args:
8127
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8128
        axis (int|None): The axis along which all inputs are stacked.
8129

S
sneaxiy 已提交
8130 8131
    Returns:
        Variable: The stacked variable.
8132

S
sneaxiy 已提交
8133 8134
    """

X
Xin Pan 已提交
8135 8136 8137 8138 8139 8140
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8141
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8142
    helper.append_op(
S
sneaxiy 已提交
8143 8144
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8145

X
Xin Pan 已提交
8146
    return out
D
dzhwinter 已提交
8147 8148 8149 8150 8151 8152 8153


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8154

D
dzhwinter 已提交
8155 8156 8157
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8158
    raised.
D
dzhwinter 已提交
8159 8160

    Args:
M
minqiyang 已提交
8161
        x (Variable): Input variable.
D
dzhwinter 已提交
8162 8163
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8164

D
dzhwinter 已提交
8165 8166
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8167

D
dzhwinter 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8178
    for _ in range(num):
X
Xin Pan 已提交
8179
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8180 8181 8182 8183 8184 8185 8186 8187

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8200

W
whs 已提交
8201 8202 8203 8204
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8205

W
whs 已提交
8206
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8207

W
whs 已提交
8208
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8209

W
whs 已提交
8210 8211 8212 8213
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8214

W
whs 已提交
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8231
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8232 8233 8234 8235 8236 8237
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8238 8239


G
fix  
gongweibao 已提交
8240 8241 8242
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8243
@templatedoc()
G
fix  
gongweibao 已提交
8244 8245 8246 8247 8248 8249 8250 8251 8252
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8253
    ${comment}
G
fix  
gongweibao 已提交
8254 8255

    Args:
G
gongweibao 已提交
8256 8257 8258
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8259
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8260 8261 8262
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8263 8264
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8265
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8266

8267 8268 8269 8270 8271
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8272 8273 8274
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8275
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8292 8293


G
gongweibao 已提交
8294
@templatedoc()
X
Xin Pan 已提交
8295
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8296
    """
G
gongweibao 已提交
8297
    ${comment}
G
fix  
gongweibao 已提交
8298 8299

    Args:
G
gongweibao 已提交
8300 8301 8302 8303
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8304 8305 8306
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8307
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8308

8309 8310 8311 8312
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8313 8314 8315
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8316
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8327
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8328 8329 8330 8331 8332
        })

    return out


G
gongweibao 已提交
8333
@templatedoc()
G
fix  
gongweibao 已提交
8334
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8335
    """
G
gongweibao 已提交
8336
    ${comment}
G
fix  
gongweibao 已提交
8337 8338

    Args:
G
gongweibao 已提交
8339 8340 8341 8342
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8343
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8344 8345

    Returns:
G
gongweibao 已提交
8346
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8347

8348 8349 8350 8351 8352 8353 8354 8355 8356 8357
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8358 8359 8360
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8361
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8373
@templatedoc()
G
fix  
gongweibao 已提交
8374 8375 8376 8377 8378 8379 8380 8381 8382
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8383
    ${comment}
G
fix  
gongweibao 已提交
8384 8385

    Args:
G
gongweibao 已提交
8386 8387
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8388
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8389 8390 8391 8392
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8393
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8394 8395

    Returns:
G
gongweibao 已提交
8396
        out (Variable): ${out_comment}
8397 8398 8399 8400 8401 8402 8403 8404

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8405 8406 8407
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8408
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8427
@templatedoc()
X
Xin Pan 已提交
8428
def sum(x):
G
fix  
gongweibao 已提交
8429
    """
G
gongweibao 已提交
8430
    ${comment}
G
fix  
gongweibao 已提交
8431 8432

    Args:
G
gongweibao 已提交
8433
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8434 8435

    Returns:
G
gongweibao 已提交
8436
        out (Variable): ${out_comment}
8437 8438 8439 8440 8441 8442

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8443 8444 8445
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8446 8447
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8448 8449 8450 8451
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8452
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8453 8454 8455 8456

    return out


G
gongweibao 已提交
8457
@templatedoc()
G
fix  
gongweibao 已提交
8458 8459
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8460
    ${comment}
G
fix  
gongweibao 已提交
8461 8462

    Args:
G
gongweibao 已提交
8463 8464 8465 8466
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8467 8468

    Returns:
G
gongweibao 已提交
8469
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8470

8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8482 8483 8484
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8485 8486
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8498
@templatedoc()
G
fix  
gongweibao 已提交
8499 8500
def shape(input):
    """
G
gongweibao 已提交
8501
    ${comment}
G
fix  
gongweibao 已提交
8502 8503

    Args:
G
gongweibao 已提交
8504
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8505 8506

    Returns:
G
gongweibao 已提交
8507
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8508

8509 8510 8511 8512 8513 8514
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8515 8516 8517
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8518 8519
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8520
    helper.append_op(
G
fix  
gongweibao 已提交
8521
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8522 8523

    return out
G
merge  
gongweibao 已提交
8524 8525


S
sneaxiy 已提交
8526 8527 8528 8529 8530 8531 8532 8533
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8534 8535
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8536
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8537 8538 8539
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8540

S
sneaxiy 已提交
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8552
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8553 8554 8555 8556 8557 8558 8559 8560
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8561
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8562
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8563 8564 8565 8566 8567 8568

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8569
    if name is None:
X
Xin Pan 已提交
8570
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8571 8572 8573
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8584
    return helper.append_activation(out)
S
sneaxiy 已提交
8585 8586


X
Xin Pan 已提交
8587
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8588 8589 8590
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8591
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8592 8593 8594
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8595
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8596 8597 8598
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8599
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8600 8601 8602
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8603
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8604 8605 8606
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8607
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8608 8609 8610
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8611
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8623 8624
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8625
        ])
M
minqiyang 已提交
8626 8627


8628
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8629 8630
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8631 8632
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8633 8634 8635

    if out is None:
        if name is None:
X
Xin Pan 已提交
8636
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8652
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8664 8665 8666 8667 8668 8669 8670 8671 8672

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8673 8674 8675 8676 8677 8678 8679
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8680
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8692 8693 8694 8695 8696 8697 8698 8699 8700

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8701 8702 8703 8704 8705 8706 8707
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8708
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8720 8721 8722 8723 8724 8725 8726 8727 8728

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8729 8730 8731 8732 8733 8734 8735
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8736
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8737 8738 8739 8740 8741 8742 8743 8744 8745 8746
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8747 8748 8749 8750 8751 8752 8753

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8754 8755 8756 8757
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8773 8774 8775 8776 8777 8778 8779

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8780 8781 8782 8783 8784
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8785 8786 8787 8788
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8812 8813 8814 8815 8816 8817 8818

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8819 8820 8821 8822 8823
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8824 8825 8826 8827
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8828 8829 8830 8831 8832 8833 8834 8835

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8854
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8855 8856 8857 8858 8859 8860 8861 8862 8863 8864
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8907
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8908 8909 8910 8911 8912 8913 8914 8915 8916
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8917 8918
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8919 8920 8921 8922 8923 8924
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8925 8926 8927 8928
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8929 8930 8931 8932 8933 8934
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8935
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8936 8937 8938 8939 8940 8941 8942 8943 8944
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8945
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8946 8947 8948 8949 8950 8951 8952 8953
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8954
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8975
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8986 8987


J
JiabinYang 已提交
8988
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8989
    """
J
JiabinYang 已提交
8990
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8991 8992 8993

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8994
    The attr blocksize indicates the input block size.
8995 8996

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8997
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8998 8999

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9000
    (but keeping all data)
J
JiabinYang 已提交
9001

J
JiabinYang 已提交
9002
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9003
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9004 9005 9006 9007 9008
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9009
    Args:
J
JiabinYang 已提交
9010
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9011
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9012 9013

    Returns:
J
JiabinYang 已提交
9014
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9015 9016

    Raises:
J
JiabinYang 已提交
9017
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9018 9019 9020 9021 9022 9023

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9024
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9025
                x=data, blocksize=2)
J
JiabinYang 已提交
9026 9027
    """

J
JiabinYang 已提交
9028
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9029

J
JiabinYang 已提交
9030 9031
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9032 9033

    if name is None:
J
JiabinYang 已提交
9034 9035
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9036 9037 9038 9039 9040
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9041
        type="space_to_depth",
J
JiabinYang 已提交
9042
        inputs={"X": x},
J
JiabinYang 已提交
9043
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9044
        outputs={"Out": out})
J
JiabinYang 已提交
9045 9046
    return out

J
JiabinYang 已提交
9047

S
sneaxiy 已提交
9048 9049
@templatedoc()
def sequence_reverse(x, name=None):
9050
    """
S
sneaxiy 已提交
9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9062
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9063 9064 9065 9066 9067 9068 9069 9070 9071 9072
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9073 9074


9075 9076 9077 9078 9079 9080
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9081

9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9101
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9114 9115


B
barrierye 已提交
9116
def similarity_focus(input, axis, indexes, name=None):
9117
    """
B
barrierye 已提交
9118
    SimilarityFocus Operator
B
barrierye 已提交
9119 9120

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9121

9122 9123 9124
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9125
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9126 9127 9128 9129 9130 9131 9132
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9133
       each index.
B
barrierye 已提交
9134 9135 9136 9137
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9187
    Args:
9188
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9189
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9190
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9191
            1, 2 or 3.
B
barrierye 已提交
9192
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9193 9194

    Returns:
H
haowang101779990 已提交
9195 9196
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9197

B
barrierye 已提交
9198 9199
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9200

B
barrierye 已提交
9201
            data = fluid.layers.data(
B
barrierye 已提交
9202 9203
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9204

B
barrierye 已提交
9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9217 9218 9219 9220 9221
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9222 9223 9224 9225 9226 9227 9228
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9229 9230


M
minqiyang 已提交
9231 9232
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9233 9234
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9235 9236
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9275
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9276
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9277 9278 9279 9280 9281 9282

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9283

M
minqiyang 已提交
9284 9285 9286
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9287 9288
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9289 9290
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9291 9292 9293 9294 9295 9296 9297
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9298 9299


D
dengkaipeng 已提交
9300
@templatedoc()
9301 9302
def grid_sampler(x, grid, name=None):
    """
9303
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9304
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9305 9306 9307 9308
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9309
    interpolation value of 4 nearest corner points.
9310

H
haowang101779990 已提交
9311
    .. code-block:: text
9312

H
haowang101779990 已提交
9313 9314
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9315

H
haowang101779990 已提交
9316 9317
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9318

H
haowang101779990 已提交
9319 9320 9321
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9322

H
haowang101779990 已提交
9323 9324 9325 9326 9327 9328 9329 9330 9331
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9332

H
haowang101779990 已提交
9333 9334 9335 9336
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9337

H
haowang101779990 已提交
9338 9339 9340 9341
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9342

H
haowang101779990 已提交
9343 9344 9345 9346
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9347

H
haowang101779990 已提交
9348 9349
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9350 9351

    Args:
9352 9353 9354
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9355 9356

    Returns:
H
haowang101779990 已提交
9357
        Variable: Output of shape [N, C, H, W] data samples input X
9358 9359
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9360 9361 9362 9363 9364 9365 9366 9367
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9368

D
dengkaipeng 已提交
9369 9370 9371 9372 9373 9374 9375 9376 9377
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9378
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9379 9380
    ipts = {'X': x, 'Grid': grid}

9381
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9382 9383 9384
    return out


G
gmcather 已提交
9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
H
heqiaozhi 已提交
9451
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound 
H
heqiaozhi 已提交
9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9473 9474 9475 9476
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9477
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9478 9479
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9480
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9481 9482

    .. math::
H
haowang101779990 已提交
9483 9484 9485
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9486 9487

    Where:
H
haowang101779990 已提交
9488 9489
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9504

G
gmcather 已提交
9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9531
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9532

Q
Qiao Longfei 已提交
9533
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9534 9535 9536
    For example:

    .. math::
H
haowang101779990 已提交
9537
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9538

Q
Qiao Longfei 已提交
9539
    In this formula:
9540 9541
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9542
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9543
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9544 9545 9546
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9547 9548
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9549 9550 9551
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9552
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9553
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9554
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9555 9556 9557 9558
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9559
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9560 9561 9562 9563

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9564
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9565 9566
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9567
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9568 9569 9570 9571

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9572
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9613 9614


S
sneaxiy 已提交
9615
class PyFuncRegistry(object):
S
sneaxiy 已提交
9616 9617 9618
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9619
        if func is None or not callable(func):
S
sneaxiy 已提交
9620 9621 9622
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9623
        # find named args using reflection
S
sneaxiy 已提交
9624 9625 9626 9627 9628 9629 9630
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9631 9632 9633
        '''
        Why record self here?

M
minqiyang 已提交
9634 9635
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9636
           to find the registered function corresponding
M
minqiyang 已提交
9637
           to :code:`idx`.
S
sneaxiy 已提交
9638

M
minqiyang 已提交
9639 9640
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9641
           whose reference count is 1 would cause
M
minqiyang 已提交
9642
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9643 9644
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9645
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9660 9661 9662 9663 9664 9665 9666 9667 9668
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9669

S
sneaxiy 已提交
9670 9671
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9672 9673

        ret = []
S
sneaxiy 已提交
9674 9675 9676
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9677 9678
                continue

S
sneaxiy 已提交
9679 9680
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9681

S
sneaxiy 已提交
9682 9683 9684
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9685

S
sneaxiy 已提交
9686
        return tuple(ret)
S
sneaxiy 已提交
9687 9688


S
sneaxiy 已提交
9689 9690 9691 9692
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9693

S
sneaxiy 已提交
9694 9695 9696 9697 9698 9699 9700 9701
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9702
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9703

S
sneaxiy 已提交
9704 9705
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9706 9707 9708 9709
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9710
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9711
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9712 9713
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9714 9715 9716 9717 9718
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9719
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9720
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9721
                                       None means no backward. Default None.
S
sneaxiy 已提交
9722
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9723
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9724 9725
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9726
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9727 9728 9729

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9730 9731

    Examples:
M
minqiyang 已提交
9732

S
sneaxiy 已提交
9733 9734 9735 9736 9737
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9738
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9739 9740
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9741
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9742 9743 9744
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9745
        >>>
S
sneaxiy 已提交
9746 9747 9748 9749 9750
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9751
        >>>     print(x)
S
sneaxiy 已提交
9752 9753 9754 9755 9756 9757
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9758
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9759 9760
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9761 9762
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9763 9764 9765 9766 9767 9768 9769 9770
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9771
    """
S
sneaxiy 已提交
9772
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9773 9774 9775
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9776
        x = [x]
S
sneaxiy 已提交
9777 9778
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9779

S
sneaxiy 已提交
9780 9781 9782
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9783
        out_list = [out]
S
sneaxiy 已提交
9784
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9785
        out_list = out
S
sneaxiy 已提交
9786 9787 9788
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9789

S
sneaxiy 已提交
9790 9791
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9792
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9793 9794

    for each_out in out_list:
S
sneaxiy 已提交
9795 9796
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9797 9798
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9799

S
sneaxiy 已提交
9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9815 9816 9817 9818

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9819 9820
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9821 9822 9823
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9824
        })
S
sneaxiy 已提交
9825
    return out
S
sneaxiy 已提交
9826 9827 9828


# For debug usage
S
sneaxiy 已提交
9829 9830 9831 9832
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9885

M
minqiyang 已提交
9886

M
minqiyang 已提交
9887
def huber_loss(input, label, delta):
9888
    """
M
minqiyang 已提交
9889 9890 9891
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9892 9893 9894 9895

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9896
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9897 9898 9899 9900

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9901
        huber\_loss = 0.5 * (label - input) * (label - input)
9902 9903 9904 9905 9906 9907 9908


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9909
        delta (float): The parameter of huber loss, which controls
9910 9911 9912
                       the range of outliers

    Returns:
M
minqiyang 已提交
9913
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9914 9915 9916 9917 9918

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9919
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9920
    """
M
minqiyang 已提交
9921
    helper = LayerHelper('huber_loss', **locals())
9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out