nn.py 407.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Y
Yu Yang 已提交
204 205
]

J
jerrywgz 已提交
206 207
kIgnoreIndex = -100

Y
Yu Yang 已提交
208 209 210 211 212 213 214

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
215
       is_test=False,
216
       name=None):
Y
Yu Yang 已提交
217
    """
218
    **Fully Connected Layer**
Y
Yu Yang 已提交
219

220
    This function creates a fully connected layer in the network. It can take
221
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
222
    Args in detail). It creates a variable called weights for each input tensor,
223 224 225 226
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
227
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
228 229
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
230

231
    When the input is single tensor:
C
caoying03 已提交
232

233 234 235 236 237
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
238 239 240

    .. math::

241
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
242 243 244

    In the above equation:

245 246 247
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
248
    * :math:`b`: The bias parameter created by this layer (if needed).
249
    * :math:`Act`: The activation function.
C
caoying03 已提交
250
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
270
    Args:
R
ranqiu 已提交
271 272 273 274 275 276 277 278 279 280
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
281
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
282 283 284 285
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
286 287
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
288
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
289
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
290
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
291

292
    Returns:
F
fengjiayi 已提交
293
        Variable: The transformation result.
294 295

    Raises:
C
caoying03 已提交
296
        ValueError: If rank of the input tensor is less than 2.
297 298 299 300

    Examples:
        .. code-block:: python

301
          # when input is single tensor
F
fengjiayi 已提交
302
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
303
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
304 305 306 307 308

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
309
    """
C
caoying03 已提交
310
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
311 312 313 314

    dtype = helper.input_dtype()

    mul_results = []
315 316
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
317 318 319
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
320

Y
Yu Yang 已提交
321
        w = helper.create_parameter(
322
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
323
        tmp = helper.create_variable_for_type_inference(dtype)
324
        helper.append_op(
325 326 327
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
328
            outputs={"Out": tmp},
M
mozga-intel 已提交
329 330
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
331 332 333 334
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
335
    else:
X
Xin Pan 已提交
336
        pre_bias = helper.create_variable_for_type_inference(dtype)
337
        helper.append_op(
338 339 340
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
341
            attrs={"use_mkldnn": False})
342 343 344 345
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
346 347


348 349 350
def embedding(input,
              size,
              is_sparse=False,
351
              is_distributed=False,
352 353 354
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
355
    """
356 357
    **Embedding Layer**

358
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
359 360
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
361 362 363

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
364 365

    Args:
366 367 368 369 370
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
371
        is_distributed(bool): Whether to run lookup table from remote parameter server.
372 373
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
374
            with zeros whenever lookup encounters it in :attr:`input`. If
375
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
376 377
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
378
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
379

380 381 382
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
383

384 385
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
386

C
chengduoZH 已提交
387
          dict_size = len(dataset.ids)
388
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
389
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
390 391 392
    """

    helper = LayerHelper('embedding', **locals())
393
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
394 395
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
396 397
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
398
    tmp = helper.create_variable_for_type_inference(dtype)
399 400
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
401 402 403 404 405
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
406 407 408
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
409
            'remote_prefetch': remote_prefetch,
410 411
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
412 413 414
    return tmp


W
wopeizl 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
431

W
wopeizl 已提交
432 433 434 435 436 437 438 439 440 441 442
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
443

W
wopeizl 已提交
444 445 446 447
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
448

W
wopeizl 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
492
    assert in_dygraph_mode(
493
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
537 538


P
phlrain 已提交
539 540 541 542 543 544
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
545
         dropout_prob=0.0,
P
phlrain 已提交
546 547 548 549 550
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
551
    """
P
phlrain 已提交
552
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
553 554

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
555
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
556 557
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
558
    .. math::
M
minqiyang 已提交
559 560 561 562 563 564 565

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
566
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
567 568 569 570

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
571 572

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
573 574 575 576 577 578
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
579 580 581
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
582
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
583

M
minqiyang 已提交
584
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
585 586 587 588 589
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
590
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
591 592 593 594 595
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
596
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
597 598
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
599 600
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
601 602 603 604 605 606
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
607
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
608

L
liuhongyu 已提交
609 610

    Returns:
M
minqiyang 已提交
611 612
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
613
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
614

H
haowang101779990 已提交
615 616 617 618
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
619
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
620 621
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
622
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
638
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
639 640 641 642 643 644
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
645 646 647
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
707 708 709 710 711 712 713 714 715 716
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
717
                  proj_activation='tanh',
718
                  dtype='float32',
X
xuezhong 已提交
719 720 721 722 723
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
724 725 726
    """
    **Dynamic LSTMP Layer**

727 728 729 730 731 732
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
733 734 735 736 737

    The formula is as follows:

    .. math::

738
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
739

740
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
741

742
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
743

744
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
745

746
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
747

748
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
749

750
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
751

Y
Yibing Liu 已提交
752 753 754 755 756 757
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
758
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
759
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
760
          bias vector).
Y
Yibing Liu 已提交
761 762 763
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
764
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
765
    * :math:`h`: The hidden state.
766
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
767 768
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
769
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
770
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
771
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
772 773
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
774 775 776 777

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
778

Y
Yibing Liu 已提交
779 780 781 782 783 784 785 786 787 788 789 790
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
791
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
792 793
                               hidden-hidden weight and projection weight.

794 795
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
796 797
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
798 799
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
800
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
801 802 803 804 805

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
806
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
807 808 809 810 811 812
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
813
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
814 815 816
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
817
                                - The shape is (1 x 7D).
C
chengduo 已提交
818 819 820 821 822

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
823 824 825 826 827 828 829 830 831
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
832
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
833 834
                              default "tanh".
        proj_activation(str): The activation for projection output.
835
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
836
                              default "tanh".
Y
Yibing Liu 已提交
837
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
838 839
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
840 841 842 843 844 845 846 847 848 849 850
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
851 852

    Returns:
853 854 855 856
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
857 858

    Examples:
859

Y
Yibing Liu 已提交
860 861
        .. code-block:: python

862 863 864 865
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
866
            hidden_dim, proj_dim = 512, 256
867
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
868
                                     act=None, bias_attr=None)
869 870 871
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
872 873 874 875
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
876
    """
877

L
lujun 已提交
878
    assert in_dygraph_mode(
879 880
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
881
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
882
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
883
    size = size // 4
Y
Yibing Liu 已提交
884 885 886 887 888 889 890 891 892 893
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
894 895 896 897 898 899
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
915

X
xuezhong 已提交
916 917 918 919 920
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
921 922
    helper.append_op(
        type='lstmp',
923
        inputs=inputs,
Y
Yibing Liu 已提交
924 925 926 927 928 929 930 931 932
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
933 934
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
935 936 937 938 939 940 941 942 943
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
944 945 946 947 948 949 950
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
951 952
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
953
    """
954
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
955

956 957 958
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
959

G
guosheng 已提交
960 961 962 963 964 965 966 967 968
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
969

G
guosheng 已提交
970
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
971

Q
Qiao Longfei 已提交
972 973 974

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
975 976 977 978 979 980 981 982 983 984 985 986
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
987
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
988 989
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
990 991 992 993
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
994
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
995 996

    Args:
997 998
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
999
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1000
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1001 1002
            is the hidden size.
        size(int): The dimension of the gru cell.
1003
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1004 1005
            hidden-hidden weight matrix. Note:

1006
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1007
              :math:`D` is the hidden size.
1008
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1009
              The first part are weights of the update gate and reset gate with
1010
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1011
              candidate hidden state with shape :math:`(D \\times D)`.
1012 1013 1014 1015 1016

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1017
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1018
            the bias in the update gate, reset gate and candidate calculations.
1019 1020 1021
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1022 1023
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1024
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1025 1026 1027
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1028
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1029
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1030 1031 1032 1033
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1034 1035

    Returns:
G
guosheng 已提交
1036
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1037
            and sequence length is the same with the input.
1038

G
guosheng 已提交
1039
    Examples:
1040

G
guosheng 已提交
1041 1042
        .. code-block:: python

1043 1044 1045 1046
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1047
            hidden_dim = 512
1048
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1049
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1050 1051
    """

L
lujun 已提交
1052
    assert in_dygraph_mode(
1053 1054
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1055 1056 1057 1058 1059 1060 1061
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1062
    batch_size = input.shape[0]
G
guosheng 已提交
1063
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1064
    if h_0:
G
guosheng 已提交
1065
        assert h_0.shape == (
Y
Yancey 已提交
1066 1067 1068
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1069

X
Xin Pan 已提交
1070 1071 1072 1073
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1087 1088
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1089 1090 1091 1092
        })
    return hidden


Y
Yu Yang 已提交
1093 1094 1095
def gru_unit(input,
             hidden,
             size,
1096 1097
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1098
             activation='tanh',
Q
Qiao Longfei 已提交
1099 1100
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1101
    """
1102 1103 1104
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1105
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1106
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1107

1108 1109
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1110

1111
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1112

1113
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1130 1131

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1132 1133 1134
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1135 1136
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1137 1138
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1139 1140 1141
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1142 1143 1144

    Args:
        input (Variable): The fc transformed input value of current step.
1145
        hidden (Variable): The hidden value of gru unit from previous step.
1146
        size (integer): The input dimension value.
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1161
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1162
            the bias in the update gate, reset gate and candidate calculations.
1163 1164 1165
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1166 1167
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1168 1169 1170 1171
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1172

1173 1174 1175 1176 1177 1178
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1179

1180
             # assuming we have x_t_data and prev_hidden of size=10
1181
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1182 1183
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1196
    size = size // 3
Y
Yu Yang 已提交
1197 1198

    # create weight
1199 1200
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1201

X
Xin Pan 已提交
1202 1203 1204
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1205
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1206
    # create bias
1207
    if helper.bias_attr:
Y
Yu Yang 已提交
1208 1209 1210
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1211
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1212 1213 1214

    helper.append_op(
        type='gru_unit',
1215
        inputs=inputs,
Y
Yu Yang 已提交
1216 1217 1218 1219 1220 1221
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1222 1223
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1224 1225 1226 1227 1228
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1229
@templatedoc()
1230
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1231 1232 1233 1234 1235 1236 1237
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1238
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1239 1240 1241 1242
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1243 1244 1245
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1246 1247

    """
Y
Yu Yang 已提交
1248 1249 1250 1251 1252 1253
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1254 1255 1256 1257 1258 1259 1260 1261
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1277 1278 1279 1280
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1281

W
wopeizl 已提交
1282 1283
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1284

W
wopeizl 已提交
1285
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1286

W
wopeizl 已提交
1287
        label(${label_type}): ${label_comment}
1288

W
wopeizl 已提交
1289 1290
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1291

W
wopeizl 已提交
1292 1293
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1294

Y
Yibing Liu 已提交
1295 1296 1297 1298 1299 1300 1301
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1302 1303 1304 1305 1306 1307 1308 1309
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1310
                "Transition": transition,
W
wopeizl 已提交
1311 1312
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1313

W
wopeizl 已提交
1314
    return viterbi_path
Y
Yu Yang 已提交
1315 1316


Y
yi.wu 已提交
1317
@templatedoc()
F
fengjiayi 已提交
1318
def cos_sim(X, Y):
Y
Yu Yang 已提交
1319
    """
Y
yi.wu 已提交
1320 1321 1322
    ${comment}

    Args:
1323 1324
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1325

Y
yi.wu 已提交
1326
    Returns:
1327
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1328 1329 1330 1331 1332 1333 1334

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1335
    """
F
fengjiayi 已提交
1336
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1337 1338 1339
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1350 1351 1352 1353 1354
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1355
            dropout_implementation="downgrade_in_infer"):
1356 1357 1358 1359 1360
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1361
    training. The dropout operator randomly sets (according to the given dropout
1362 1363 1364
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1365 1366
    dropout op can be removed from the program to make the program more efficient.

1367
    Args:
1368 1369
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1370 1371 1372 1373 1374 1375 1376
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1377 1378
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1379
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1380 1381

                                           - train: out = input * mask
C
ceci3 已提交
1382
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1383 1384 1385

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1386
                                        2. upscale_in_train, upscale the outcome at training time
1387

H
haowang101779990 已提交
1388 1389
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1390

H
haowang101779990 已提交
1391 1392
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1393

M
minqiyang 已提交
1394

1395
    Returns:
1396
        Variable: A tensor variable is the shape with `x`.
1397 1398

    Examples:
1399

1400 1401
        .. code-block:: python

1402 1403
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1404 1405
    """

F
fengjiayi 已提交
1406
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1407 1408
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1409
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1410 1411 1412 1413

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1414 1415 1416 1417 1418
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1419 1420 1421 1422
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1423 1424
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1425
        })
1426 1427 1428
    return out


J
jerrywgz 已提交
1429
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1430
    """
Y
Yibing Liu 已提交
1431 1432
    **Cross Entropy Layer**

1433 1434 1435
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1436 1437

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1438
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1439

Y
Yibing Liu 已提交
1440
        .. math::
Y
yangyaming 已提交
1441

Y
Yibing Liu 已提交
1442 1443 1444
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1445 1446
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1447 1448 1449 1450 1451

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1452
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1453 1454 1455
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1456 1457
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1458
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1459

Y
Yibing Liu 已提交
1460
    Args:
Y
yangyaming 已提交
1461
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1462 1463 1464 1465
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1466
        label (Variable|list): the ground truth which is a 2-D tensor. When
1467 1468 1469 1470
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1471
        soft_label (bool): a flag indicating whether to
1472
                                           interpretate the given labels as soft
1473
                                           labels. Default: `False`.
M
minqiyang 已提交
1474 1475
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1476
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1477 1478 1479 1480 1481

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1482 1483 1484
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1485

H
haowang101779990 已提交
1486 1487
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1488

H
haowang101779990 已提交
1489 1490
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1491 1492 1493 1494

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1495 1496 1497 1498
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1499
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1500
    """
S
sneaxiy 已提交
1501 1502
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1503
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1504
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1505 1506 1507 1508 1509
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1510 1511
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1512 1513 1514
    return out


S
sneaxiy 已提交
1515 1516 1517 1518
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1519
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1520 1521 1522 1523 1524
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1525
                 'MatchX': [match_x],
S
sneaxiy 已提交
1526 1527 1528 1529 1530
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1531
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1532 1533 1534
    """
    Bayesian Personalized Ranking Loss Operator.

1535
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1536 1537 1538 1539 1540 1541
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1542 1543 1544 1545 1546 1547
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1548 1549
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1550 1551 1552
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1553 1554 1555
    Examples:
        .. code-block:: python

1556
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1557
    """
1558 1559 1560 1561 1562 1563

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1564
                'Label': [label]},
1565 1566 1567 1568
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1569
def square_error_cost(input, label):
Y
Yu Yang 已提交
1570
    """
1571 1572
    **Square error cost layer**

1573 1574
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1589 1590
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1591 1592

    Returns:
G
guosheng 已提交
1593
        Variable: The tensor variable storing the element-wise squared error \
1594
                  difference of input and label.
1595 1596 1597 1598

    Examples:
        .. code-block:: python

R
ruri 已提交
1599 1600 1601
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1602

Y
Yu Yang 已提交
1603
    """
F
fengjiayi 已提交
1604
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1605
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1606 1607 1608 1609 1610 1611
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1612
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1613
    helper.append_op(
F
fengjiayi 已提交
1614 1615
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1616 1617 1618
    return square_out


Y
yi.wu 已提交
1619
@templatedoc()
Y
Yu Yang 已提交
1620 1621 1622 1623
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1624
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1625
    """
Y
yi.wu 已提交
1626
    **Chunk Evaluator**
Y
yi.wu 已提交
1627

Y
yangyaming 已提交
1628
    This function computes and outputs the precision, recall and
1629
    F1-score of chunk detection.
Y
yi.wu 已提交
1630

M
minqiyang 已提交
1631
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1632
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1633 1634 1635 1636 1637 1638

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1639

Y
yi.wu 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1665

Y
yi.wu 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1690
    Args:
1691 1692 1693 1694 1695
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1696

Y
yi.wu 已提交
1697
    Returns:
Y
update  
yi.wu 已提交
1698 1699 1700
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1701

Y
yi.wu 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1714
    """
F
fengjiayi 已提交
1715
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1716 1717

    # prepare output
X
Xin Pan 已提交
1718 1719 1720 1721 1722 1723 1724
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1725 1726 1727 1728 1729 1730 1731 1732

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1733 1734 1735 1736
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1737 1738 1739
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1740 1741
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1742
        })
1743 1744
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1745 1746


1747
@templatedoc()
Y
Yu Yang 已提交
1748 1749 1750 1751 1752 1753 1754
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1755 1756
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1757 1758 1759 1760
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1761 1762 1763 1764 1765 1766 1767

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1781

1782 1783
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1784 1785
    """

L
lujun 已提交
1786
    assert not in_dygraph_mode(), (
1787
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1788 1789 1790 1791 1792
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1793
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1804
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1805 1806 1807 1808 1809 1810
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1811
def sequence_softmax(input, use_cudnn=False, name=None):
1812 1813 1814
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1815
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1832 1833 1834
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1847
    assert not in_dygraph_mode(), (
1848
        "sequence layer is not supported in dygraph mode yet.")
1849 1850
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1851
    softmax_out = helper.create_variable_for_type_inference(dtype)
1852 1853 1854 1855 1856 1857 1858 1859
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1860
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1861
    """
1862
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1863
    has the same shape as the input.
Q
qiaolongfei 已提交
1864

D
dengkaipeng 已提交
1865
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1866
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1867
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1868 1869 1870
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1871
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1872
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1873 1874 1875 1876 1877 1878 1879

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1880
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1881 1882 1883 1884 1885 1886 1887 1888

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1889 1890
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1891 1892
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1893 1894 1895
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1905
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1906
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1907 1908
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1909 1910

    """
1911 1912
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1913
    softmax_out = helper.create_variable_for_type_inference(dtype)
1914 1915 1916 1917
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1918 1919
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1920 1921 1922
    return softmax_out


Y
Yu Yang 已提交
1923 1924 1925
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1926 1927
           stride=1,
           padding=0,
1928
           dilation=1,
Y
Yu Yang 已提交
1929 1930 1931
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1932
           use_cudnn=True,
1933 1934
           act=None,
           name=None):
Y
Yu Yang 已提交
1935
    """
C
chengduoZH 已提交
1936
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1937 1938
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1939
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1940 1941 1942 1943 1944 1945 1946
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1947 1948 1949
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1950

1951
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1952

C
chengduoZH 已提交
1953 1954
    .. math::

C
refine  
chengduoZH 已提交
1955
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1956

T
tensor-tang 已提交
1957
    Where:
C
chengduoZH 已提交
1958

1959 1960 1961 1962 1963
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1964
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1965 1966 1967

    Example:

1968 1969
        - Input:

W
weixing02 已提交
1970
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1971

W
weixing02 已提交
1972
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1973

1974
        - Output:
T
tensor-tang 已提交
1975

W
weixing02 已提交
1976
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1977

C
chengduoZH 已提交
1978
        Where
1979 1980

        .. math::
C
chengduoZH 已提交
1981

W
weixing02 已提交
1982 1983
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1984 1985

    Args:
1986
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1987
        num_filters(int): The number of filter. It is as same as the output
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2005 2006 2007 2008 2009
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2010
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2011 2012 2013 2014 2015
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2016 2017
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2018 2019
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2020
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2021
            will be named automatically. Default: None
C
chengduoZH 已提交
2022 2023

    Returns:
G
guosheng 已提交
2024
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2025 2026
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2027
    Raises:
2028 2029
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2030

C
chengduoZH 已提交
2031 2032 2033
    Examples:
        .. code-block:: python

2034 2035
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2036 2037 2038
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2039
    assert param_attr is not False, "param_attr should not be False here."
2040
    l_type = 'conv2d'
X
xzl 已提交
2041 2042
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2043
        l_type = 'depthwise_conv2d'
2044 2045 2046 2047

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2048 2049 2050 2051 2052
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2053
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2054

C
chengduoZH 已提交
2055 2056 2057
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2058
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2059

C
chengduoZH 已提交
2060 2061
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2062 2063

    input_shape = input.shape
M
minqiyang 已提交
2064
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2065 2066

    def _get_default_param_initializer():
C
chengduo 已提交
2067 2068
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2069 2070 2071 2072 2073 2074 2075 2076
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2077
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2093
    helper.append_op(
2094
        type=l_type,
Y
Yu Yang 已提交
2095 2096 2097 2098 2099
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2100 2101 2102
        attrs={
            'strides': stride,
            'paddings': padding,
2103
            'dilations': dilation,
C
chengduoZH 已提交
2104
            'groups': groups,
2105
            'use_cudnn': use_cudnn,
2106
            'use_mkldnn': False,
2107
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2108
        })
Y
Yu Yang 已提交
2109 2110 2111 2112 2113 2114

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2132 2133 2134 2135 2136 2137
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2147 2148
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2149 2150 2151
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2152
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2178
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2179 2180
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2181
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2182 2183
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2184
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2185 2186
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2187
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2188 2189 2190 2191 2192 2193
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2204 2205
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2206 2207
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2208
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2209
            will be named automatically. Default: None.
C
chengduoZH 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2222 2223
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2224 2225 2226
    """

    l_type = 'conv3d'
C
chengduo 已提交
2227
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2238
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2252 2253 2254
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2255 2256 2257 2258 2259 2260 2261 2262
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2263
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2278
            'use_mkldnn': False
C
chengduoZH 已提交
2279 2280
        })

2281
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2282 2283 2284 2285

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2286
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2287
    """
Y
yangyaming 已提交
2288 2289 2290
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2302
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2303 2304 2305 2306 2307
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2308
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2309 2310 2311 2312 2313 2314 2315

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2316 2317
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2318

L
Luo Tao 已提交
2319 2320
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2321
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2322
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2323
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2324 2325 2326 2327 2328 2329 2330

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2331

Y
yangyaming 已提交
2332
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2333 2334 2335 2336 2337
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2338 2339
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2340
    """
L
lujun 已提交
2341
    assert not in_dygraph_mode(), (
2342
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2343
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2344
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2345 2346
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2347 2348 2349 2350 2351 2352

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2353 2354
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2355

Y
yangyaming 已提交
2356 2357 2358 2359 2360
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2361 2362 2363
    return pool_out


C
add doc  
chengduoZH 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2382
    assert not in_dygraph_mode(), (
2383
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2384
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2385
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2386 2387 2388 2389 2390
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2391
def sequence_first_step(input):
L
Luo Tao 已提交
2392
    """
L
Luo Tao 已提交
2393
    This function gets the first step of sequence.
L
Luo Tao 已提交
2394 2395 2396 2397

    .. code-block:: text

       x is a 1-level LoDTensor:
2398
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2399 2400 2401 2402 2403
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2404
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2405
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2406

L
Luo Tao 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2416

Y
yangyaming 已提交
2417
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2418 2419 2420
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2421 2422 2423
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2424
def sequence_last_step(input):
L
Luo Tao 已提交
2425
    """
L
Luo Tao 已提交
2426
    This function gets the last step of sequence.
L
Luo Tao 已提交
2427 2428 2429 2430

    .. code-block:: text

       x is a 1-level LoDTensor:
2431
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2432 2433 2434 2435 2436
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2437
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2438
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2439

L
Luo Tao 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2449

Y
yangyaming 已提交
2450
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2451 2452 2453
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2454 2455 2456
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2457 2458 2459 2460
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2461
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2462 2463 2464 2465 2466
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2467

H
haowang101779990 已提交
2468
              - Case:
Y
Yibing Liu 已提交
2469

2470
            Given the input Variable **input**:
2471

2472 2473 2474
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2475

2476
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2477

2478
            the output Variable will be
2479

2480 2481 2482
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2483

M
minqiyang 已提交
2484
    Note:
H
haowang101779990 已提交
2485
          The first dimension size of **input**, **offset** and **length**
2486
          should be equal. The **offset** should start from 0.
2487

Y
Yibing Liu 已提交
2488
    Args:
2489
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2490
                         sequences.
Y
Yibing Liu 已提交
2491 2492 2493 2494 2495 2496
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2497
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2508
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2509 2510
                                                   length=length)
    """
L
lujun 已提交
2511
    assert not in_dygraph_mode(), (
2512
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2513 2514
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2515
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2530
@templatedoc()
Y
Yu Yang 已提交
2531
def pool2d(input,
C
chengduoZH 已提交
2532 2533
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2534 2535
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2536
           global_pooling=False,
C
chengduoZH 已提交
2537
           use_cudnn=True,
2538
           ceil_mode=False,
2539 2540
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2541
    """
F
fengjiayi 已提交
2542
    ${comment}
2543 2544

    Args:
2545 2546 2547
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2548
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2549
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2550 2551
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2552
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2553 2554 2555 2556 2557 2558
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2559 2560 2561
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2562
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2563
                        layer will be named automatically.
2564
        exclusive (bool): Whether to exclude padding points in average pooling
2565
                          mode, default is true
F
fengjiayi 已提交
2566

2567
    Returns:
F
fengjiayi 已提交
2568
        Variable: The pooling result.
F
fengjiayi 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2581
          pool2d = fluid.layers.pool2d(
2582 2583 2584 2585
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2586
                            global_pooling=False)
Y
Yu Yang 已提交
2587 2588 2589 2590 2591
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2592

C
chengduoZH 已提交
2593 2594 2595 2596 2597
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2598 2599 2600 2601
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2602 2603
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2604

C
Add doc  
chengduoZH 已提交
2605
    l_type = 'pool2d'
2606 2607

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2608
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2609
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2610 2611

    helper.append_op(
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2623 2624
            "use_mkldnn": False,
            "exclusive": exclusive,
2625 2626 2627 2628 2629
        })

    return pool_out


D
dengkaipeng 已提交
2630
@templatedoc()
2631 2632 2633 2634 2635 2636 2637 2638
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2639 2640
           name=None,
           exclusive=True):
2641
    """
2642
    ${comment}
2643 2644

    Args:
D
dengkaipeng 已提交
2645 2646 2647 2648 2649
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2650 2651 2652 2653 2654
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2655 2656 2657 2658 2659 2660 2661
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2662
        exclusive (bool): Whether to exclude padding points in average pooling
2663
                          mode, default is true
2664

2665
    Returns:
2666
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2680 2681 2682 2683 2684
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2685

C
chengduoZH 已提交
2686 2687 2688 2689 2690
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2691 2692 2693
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2694

C
chengduoZH 已提交
2695 2696
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2697

2698 2699
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2700
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2701
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2702 2703

    helper.append_op(
2704
        type=l_type,
Y
Yu Yang 已提交
2705 2706 2707 2708 2709 2710 2711
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2712
            "paddings": pool_padding,
2713
            "use_cudnn": use_cudnn,
2714
            "ceil_mode": ceil_mode,
2715 2716
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2717 2718 2719 2720 2721
        })

    return pool_out


2722 2723 2724 2725 2726 2727 2728
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2729 2730 2731 2732 2733 2734 2735
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2736

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2750 2751 2752 2753 2754 2755 2756 2757 2758

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2759 2760
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2775
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2776
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2777
          # of input data into m * n grids averagely and performs poolings in each
2778 2779
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2780
          #
2781 2782 2783 2784 2785 2786 2787 2788
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2789 2790
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2791
          pool_out = fluid.layers.adaptive_pool2d(
2792 2793
                            input=data,
                            pool_size=[3, 3],
2794
                            pool_type='avg')
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2805
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2831
    return (pool_out, mask) if require_index else pool_out
2832 2833 2834 2835 2836 2837 2838 2839 2840


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2841 2842 2843 2844 2845 2846 2847
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2866 2867 2868

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2869 2870 2871
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2872
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2873
            it must contain three integers, (Depth, Height, Width).
2874
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2875 2876
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2891 2892
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2893
          # of input data into l * m * n grids averagely and performs poolings in each
2894 2895
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2896
          #
2897 2898 2899 2900 2901 2902 2903 2904 2905
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2906
          #                 output[:, :, i, j, k] =
2907 2908
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2909 2910
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2911
          pool_out, mask = fluid.layers.adaptive_pool3d(
2912
                            input=data,
D
dengkaipeng 已提交
2913
                            pool_size=[3, 3, 3],
2914
                            pool_type='avg')
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2925
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2951
    return (pool_out, mask) if require_index else pool_out
2952 2953


Y
Yu Yang 已提交
2954 2955 2956 2957 2958 2959 2960
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2961
               data_layout='NCHW',
Y
Yang Yang 已提交
2962
               in_place=False,
2963 2964
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2965
               moving_variance_name=None,
2966
               do_model_average_for_mean_and_var=False,
2967 2968
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2969
    """
Q
qiaolongfei 已提交
2970 2971 2972 2973
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2974

Q
qiaolongfei 已提交
2975
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2976

Q
qiaolongfei 已提交
2977 2978
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2979 2980 2981
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2994

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3008
    Args:
Q
qingqing01 已提交
3009
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3010
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3020 3021 3022 3023 3024 3025 3026 3027
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3028
        data_layout(string, default NCHW): NCHW|NHWC
3029
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3030 3031 3032 3033
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3034
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3035
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3036 3037 3038 3039 3040
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3041 3042

    Returns:
Q
qiaolongfei 已提交
3043
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3044 3045 3046 3047 3048

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3049
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3050 3051
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3052
    """
C
chengduo 已提交
3053
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3054 3055 3056
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3057 3058 3059 3060
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3079
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3080

3081 3082
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3083 3084 3085
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3086
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3087
        shape=param_shape,
W
Wu Yi 已提交
3088
        dtype=dtype)
3089 3090 3091 3092 3093 3094
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3095
            trainable=False,
W
wanghaoshuang 已提交
3096
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3097
        shape=param_shape,
W
Wu Yi 已提交
3098
        dtype=dtype)
3099
    variance.stop_gradient = True
Y
Yu Yang 已提交
3100 3101 3102 3103 3104 3105

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3106 3107 3108 3109
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3110

X
Xin Pan 已提交
3111 3112
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3130 3131 3132 3133
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3134
            "data_layout": data_layout,
X
Xin Pan 已提交
3135
            "use_mkldnn": False,
3136 3137
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3138
        })
Y
Yu Yang 已提交
3139 3140 3141 3142

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3262
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3263 3264 3265 3266

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3267
@templatedoc()
G
guosheng 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3278
    ${comment}
G
guosheng 已提交
3279 3280 3281

    The formula is as follows:

Y
yuyang18 已提交
3282
    ..  math::
G
guosheng 已提交
3283 3284 3285 3286 3287 3288 3289

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3290 3291 3292 3293 3294 3295 3296 3297
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3298

G
guosheng 已提交
3299 3300
    Args:
        input(Variable): The input tensor variable.
3301
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3302
            normalization. Default True.
3303
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3304 3305
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3306
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3307
            Default 1.
3308
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3309
            division by zero. Default 1e-05.
G
guosheng 已提交
3310
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3311 3312
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3313 3314
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3315
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3316 3317
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3318
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3319
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3320
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3321 3322 3323
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3324 3325

    Returns:
Y
yuyang18 已提交
3326
        ${y_comment}
G
guosheng 已提交
3327 3328 3329

    Examples:

Y
yuyang18 已提交
3330 3331 3332
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3333
    """
L
lujun 已提交
3334
    assert in_dygraph_mode(
L
lujun 已提交
3335
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3350
    if shift:
G
guosheng 已提交
3351 3352 3353 3354 3355 3356
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3357 3358 3359 3360 3361
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3389
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3437 3438
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3456
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3457 3458 3459
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3460
    This layer calculates the spectral normalization value of weight parameters of
3461
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3462
    Parameters. Calculations are showed as follows.
3463

D
dengkaipeng 已提交
3464 3465 3466
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3467
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3480
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3481 3482 3483 3484

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3485

D
dengkaipeng 已提交
3486
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3487 3488
                

D
dengkaipeng 已提交
3489 3490 3491 3492
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3493 3494 3495
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3496 3497 3498
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3499
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3500 3501 3502 3503 3504 3505 3506 3507

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3508
    dtype = weight.dtype
D
dengkaipeng 已提交
3509 3510 3511

    # create intput and parameters
    inputs = {'Weight': weight}
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3530 3531

    # create output
3532
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3533 3534

    helper.append_op(
3535
        type="spectral_norm",
D
Dun 已提交
3536
        inputs=inputs,
3537 3538 3539 3540 3541 3542
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3543

3544
    return out
D
Dun 已提交
3545 3546


Y
Yu Yang 已提交
3547 3548 3549 3550
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3551 3552 3553
                     padding=0,
                     stride=1,
                     dilation=1,
3554
                     groups=None,
C
caoying03 已提交
3555
                     param_attr=None,
3556
                     bias_attr=None,
C
chengduoZH 已提交
3557
                     use_cudnn=True,
3558
                     act=None,
C
caoying03 已提交
3559
                     name=None):
Y
Yu Yang 已提交
3560
    """
3561 3562 3563 3564 3565 3566 3567 3568
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3569 3570
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3571 3572 3573
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3574 3575 3576 3577 3578

    For each input :math:`X`, the equation is:

    .. math::

3579
        Out = \sigma (W \\ast X + b)
3580

3581
    Where:
3582 3583 3584

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3585 3586 3587 3588
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3589

3590 3591 3592 3593
    Example:

        - Input:

3594
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3595

3596
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3597 3598 3599

        - Output:

3600
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3601 3602

        Where
Y
Yu Yang 已提交
3603

3604 3605
        .. math::

3606 3607
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3608 3609
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3610 3611

    Args:
3612 3613 3614 3615
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3616 3617 3618 3619
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3648
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3649 3650 3651
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3652
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3653
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3654 3655

    Returns:
3656
        Variable: The tensor variable storing the convolution transpose result.
3657 3658

    Raises:
3659 3660
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3661 3662 3663 3664

    Examples:
       .. code-block:: python

3665 3666
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3667
    """
C
chengduo 已提交
3668
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3669 3670 3671 3672 3673 3674 3675 3676
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3677 3678 3679
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3680 3681 3682
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3683

C
chengduoZH 已提交
3684 3685
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3686

Y
Yu Yang 已提交
3687 3688 3689 3690 3691
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3692

Y
Yu Yang 已提交
3693 3694
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3695

C
chengduoZH 已提交
3696
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3697
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3698
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3699
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3700
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3701 3702 3703
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3704

3705 3706 3707 3708 3709 3710 3711
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3712
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3713
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3714

Y
Yu Yang 已提交
3715 3716 3717
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3718
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3719
    helper.append_op(
3720
        type=op_type,
Y
Yu Yang 已提交
3721 3722
        inputs={'Input': [input],
                'Filter': [img_filter]},
3723
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3724
        attrs={
3725
            'output_size': output_size,
3726 3727 3728 3729 3730
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3731 3732
        })

3733 3734 3735
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3736 3737


3738
def conv3d_transpose(input,
Y
Yu Yang 已提交
3739 3740 3741
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3742 3743 3744
                     padding=0,
                     stride=1,
                     dilation=1,
3745
                     groups=None,
C
caoying03 已提交
3746
                     param_attr=None,
3747
                     bias_attr=None,
C
chengduoZH 已提交
3748
                     use_cudnn=True,
3749
                     act=None,
C
caoying03 已提交
3750
                     name=None):
Y
Yu Yang 已提交
3751
    """
3752
    **Convlution3D transpose layer**
3753

3754
    The convolution3D transpose layer calculates the output based on the input,
3755
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3756 3757 3758 3759 3760 3761
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3762 3763 3764
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3765 3766 3767 3768 3769

    For each input :math:`X`, the equation is:

    .. math::

3770
        Out = \sigma (W \\ast X + b)
3771 3772 3773

    In the above equation:

3774 3775
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3776 3777 3778 3779
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3780

3781 3782 3783 3784
    Example:

        - Input:

3785
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3786

3787
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3788 3789 3790

        - Output:

3791
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3792 3793

        Where
Y
Yu Yang 已提交
3794

3795 3796
        .. math::

3797 3798 3799
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3800 3801

    Args:
3802
        input(Variable): The input image with [N, C, D, H, W] format.
3803 3804 3805
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3806
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3807 3808
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3809
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3810 3811 3812
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3813 3814
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3815
        stride(int|tuple): The stride size. If stride is a tuple, it must
3816 3817
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3818
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3819 3820 3821
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3822 3823 3824 3825 3826
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3836 3837
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3838 3839
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3840 3841
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3842 3843

    Returns:
3844
        Variable: The tensor variable storing the convolution transpose result.
3845 3846

    Raises:
3847 3848
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3849 3850 3851 3852

    Examples:
       .. code-block:: python

3853 3854
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3855
    """
C
chengduo 已提交
3856
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3857 3858
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3859
    if not isinstance(input, Variable):
3860
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3861 3862
    input_channel = input.shape[1]

3863 3864 3865
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3866

C
chengduoZH 已提交
3867 3868 3869
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3870 3871 3872 3873 3874 3875
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3876 3877 3878
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3879

3880
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3881
                         padding[0] - 1) // dilation[0] + 1
3882
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3883
                         padding[1] - 1) // dilation[1] + 1
3884
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3885
                         padding[2] - 1) // dilation[2] + 1
3886
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3887
    else:
3888 3889
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3890

3891
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3892
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3893 3894 3895
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3896
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3897
    helper.append_op(
3898
        type=l_type,
Y
Yu Yang 已提交
3899 3900
        inputs={'Input': [input],
                'Filter': [img_filter]},
3901
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3902 3903 3904 3905
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3906
            'groups': groups,
C
chengduoZH 已提交
3907 3908
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3909

3910 3911
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3912
    return out
Y
yangyaming 已提交
3913 3914


Y
yangyaming 已提交
3915
def sequence_expand(x, y, ref_level=-1, name=None):
3916
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3917 3918 3919 3920
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3921 3922 3923 3924 3925

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3926
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3927
                x.data = [[a], [b], [c], [d]]
3928 3929 3930
                x.dims = [4, 1]

            y is a LoDTensor:
3931 3932
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3933

Y
yangyaming 已提交
3934
            ref_level: 0
3935

Y
yangyaming 已提交
3936
            then output is a 1-level LoDTensor:
3937
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3938
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3939 3940 3941 3942
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3943
                x.data = [[a], [b], [c]]
3944 3945 3946
                x.dims = [3, 1]

            y is a LoDTensor:
3947
                y.lod = [[2, 0, 3]]
3948

Y
yangyaming 已提交
3949
            ref_level: -1
3950

Y
yangyaming 已提交
3951 3952 3953
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3954 3955 3956
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3957 3958
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3959
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3960
                        will be named automatically.
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3971
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3972
    """
L
lujun 已提交
3973
    assert not in_dygraph_mode(), (
3974
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3975
    helper = LayerHelper('sequence_expand', input=x, **locals())
3976
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3977
    tmp = helper.create_variable_for_type_inference(dtype)
3978
    helper.append_op(
Y
yangyaming 已提交
3979 3980 3981 3982 3983
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3984
    return tmp
3985 3986


C
chengduo 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4041
    assert not in_dygraph_mode(), (
4042
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4043 4044
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4045
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4046 4047 4048 4049 4050 4051 4052 4053
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4054
@templatedoc()
4055
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4056 4057 4058 4059 4060
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4061 4062 4063
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4064
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4065 4066 4067 4068
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4069 4070 4071
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4072

F
fengjiayi 已提交
4073
    Returns:
M
minqiyang 已提交
4074
        Variable: The padded sequence batch and the original lengths before
4075
                  padding. All sequences has the same length.
M
minqiyang 已提交
4076

F
fengjiayi 已提交
4077 4078 4079 4080 4081 4082 4083
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4084
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4085
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4086 4087 4088
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4089
    assert not in_dygraph_mode(), (
4090
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4091 4092
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4093 4094
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4095 4096 4097 4098

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4099 4100 4101 4102 4103 4104
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4105 4106
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4107
        attrs={'padded_length': maxlen})
4108
    return out, length
F
fengjiayi 已提交
4109 4110


4111
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4112
    """
4113
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4114

4115 4116
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4126 4127 4128
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4129
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4130 4131 4132 4133 4134 4135

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4136
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4137 4138 4139 4140 4141 4142

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4143 4144
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4157
    assert not in_dygraph_mode(), (
4158
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4159 4160
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4161
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4173 4174 4175 4176 4177 4178 4179
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4180
                is_accumulated=True,
4181 4182
                name=None,
                return_parent_idx=False):
4183
    """
4184 4185
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4186 4187 4188

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4189 4190

    This layer does the search in beams for one time step. Specifically, it
4191 4192 4193
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4205 4206 4207 4208

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4209

4210
    Args:
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4234 4235
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4236 4237
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4238 4239 4240 4241
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4242

4243
    Returns:
4244 4245 4246 4247
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4248 4249 4250 4251

    Examples:
        .. code-block:: python

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4269
    helper = LayerHelper('beam_search', **locals())
4270 4271 4272 4273 4274 4275
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4276

X
Xin Pan 已提交
4277 4278 4279
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4280 4281 4282 4283 4284
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4285 4286 4287

    helper.append_op(
        type='beam_search',
4288
        inputs=inputs,
Q
Qiao Longfei 已提交
4289 4290 4291
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4292
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4293 4294 4295 4296 4297 4298
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4299
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4300
        })
4301 4302 4303 4304
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4305 4306


4307 4308 4309 4310 4311 4312 4313
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4314

4315 4316 4317 4318 4319 4320 4321 4322 4323
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4324

4325 4326 4327 4328 4329 4330
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4331

4332 4333
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4334

4335 4336 4337 4338 4339 4340
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4341 4342
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4358 4359 4360 4361
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4362
              param_attr=None,
C
caoying03 已提交
4363 4364
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4365 4366 4367 4368
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4369
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4370

4371
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4372

4373
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4374

4375
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4376 4377 4378

            h_t & = o_t tanh(c_t)

4379 4380 4381 4382 4383 4384
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4385 4386 4387

        .. math::

4388
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4389 4390 4391 4392 4393 4394 4395 4396

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4397
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4398 4399

    Args:
Y
yangyaming 已提交
4400 4401 4402 4403 4404 4405
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4406
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4419 4420
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4421 4422

    Returns:
Y
yangyaming 已提交
4423
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4424 4425

    Raises:
4426 4427 4428 4429
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4430 4431 4432 4433 4434 4435

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4436
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4437
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4438
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4455
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4456 4457 4458 4459
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4460 4461
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4462 4463 4464
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4465
    size = cell_t_prev.shape[1]
4466
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4467 4468
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4469
                param_attr=param_attr,
4470
                bias_attr=bias_attr)
Y
yangyaming 已提交
4471
    dtype = x_t.dtype
X
Xin Pan 已提交
4472 4473
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4483
    return h, c
G
guosheng 已提交
4484 4485


C
caoying03 已提交
4486
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4487
    """
Y
yangyaming 已提交
4488
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4489 4490 4491

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4492
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4493 4494
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4495 4496
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4497
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4498
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4499
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4500 4501
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4502 4503 4504

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4505

G
guosheng 已提交
4506 4507 4508 4509 4510 4511
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4512
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4513 4514 4515 4516
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4517 4518 4519 4520

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4521
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4522 4523 4524
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4525 4526
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4527
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4528 4529
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4530 4531 4532 4533 4534
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4535
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4536 4537 4538 4539
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4540 4541


C
caoying03 已提交
4542
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4543
    """
Y
Yibing Liu 已提交
4544
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4545 4546 4547

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4548 4549 4550
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4551
            must be in the range :math:`[-rank(input), rank(input))`. If
4552
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4553
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4554 4555
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4556
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4557
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4558
                       will be named automatically.
G
guosheng 已提交
4559 4560

    Returns:
Y
Yibing Liu 已提交
4561
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4562

G
guosheng 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4573 4574
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4575 4576 4577 4578 4579 4580 4581

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4582 4583
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4584
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4585 4586
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4587 4588 4589 4590 4591
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4592
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4593 4594 4595 4596
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4597 4598


C
caoying03 已提交
4599
def reduce_max(input, dim=None, keep_dim=False, name=None):
4600
    """
Y
yangyaming 已提交
4601
    Computes the maximum of tensor elements over the given dimension.
4602 4603 4604

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4605
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4606 4607 4608
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4609
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4610 4611
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4612
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4613 4614
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4615 4616 4617

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4618

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4630 4631 4632 4633 4634 4635 4636

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4637 4638
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4639
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4640 4641
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4642 4643 4644 4645 4646
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4647
            'dim': dim if dim != None else [0],
4648 4649 4650 4651 4652 4653
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4654
def reduce_min(input, dim=None, keep_dim=False, name=None):
4655
    """
Y
yangyaming 已提交
4656
    Computes the minimum of tensor elements over the given dimension.
4657 4658 4659

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4660
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4661 4662 4663
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4664
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4665 4666
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4667
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4668 4669
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4670 4671 4672

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4673

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4685 4686 4687 4688 4689 4690 4691

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4692 4693
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4694
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4695 4696
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4697 4698 4699 4700 4701
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4702
            'dim': dim if dim != None else [0],
4703 4704 4705 4706
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4707 4708


4709 4710 4711 4712 4713 4714
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4715
        dim (list|int|None): The dimensions along which the product is performed. If
4716 4717
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4718 4719
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4720 4721 4722
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4723
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4724
            layer will be named automatically.
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4739
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4740
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4741 4742 4743 4744 4745 4746 4747

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4748 4749
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4750
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4751 4752
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4753 4754 4755 4756 4757
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4758
            'dim': dim if dim != None else [0],
4759 4760 4761 4762 4763 4764
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4765 4766
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4767
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4787
        
Z
zhoukunsheng 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4817
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4837

Z
zhoukunsheng 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4860 4861 4862 4863 4864
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4865
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4866
    """
C
caoying03 已提交
4867
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4868 4869 4870

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4871 4872 4873 4874 4875
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4876
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4877
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4878
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4879 4880
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4881 4882

    Returns:
D
dzhwinter 已提交
4883
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4893 4894
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4906
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4907 4908 4909
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4910
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4933
    .. math::
4934 4935

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4936 4937 4938 4939 4940

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4941
        x(Variable|list): The input tensor to l2_normalize layer.
4942
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4943 4944
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4945
        epsilon(float): The epsilon value is used to avoid division by zero, \
4946
            the defalut value is 1e-12.
4947
        name(str|None): A name for this layer(optional). If set None, the layer \
4948
            will be named automatically.
C
caoying03 已提交
4949 4950

    Returns:
4951
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4952 4953

    Examples:
4954

C
caoying03 已提交
4955 4956
        .. code-block:: python

4957 4958 4959 4960
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4961 4962
    """

F
fengjiayi 已提交
4963 4964
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4965 4966
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4967 4968
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4969
    helper.append_op(
4970 4971 4972 4973
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4974
        attrs={
4975 4976
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4977 4978
        })
    return out
4979 4980


S
sneaxiy 已提交
4981
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4982
    """
Y
ying 已提交
4983 4984 4985 4986
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4987

C
chengduoZH 已提交
4988
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4989
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4990

4991 4992 4993 4994 4995
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4996
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4997

C
chengduoZH 已提交
4998
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4999
      performs in the following way.
G
guosheng 已提交
5000

5001
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5002
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5003
        last two dimensions and a batched matrix multiply supporting broadcast
5004
        applies on the two tensors.
G
guosheng 已提交
5005

Y
ying 已提交
5006 5007
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5008
    removed after matrix multiplication.
G
guosheng 已提交
5009 5010 5011

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5012 5013 5014
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5015
        alpha (float): The scale of output. Default 1.0.
5016
        name(str|None): A name for this layer(optional). If set None, the layer
5017
            will be named automatically.
G
guosheng 已提交
5018 5019

    Returns:
5020
        Variable: The product Tensor variable.
G
guosheng 已提交
5021

G
guosheng 已提交
5022 5023 5024
    Examples:
        .. code-block:: python

5025
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5026 5027
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5028

5029 5030
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5031

5032 5033
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5034

5035 5036
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5037 5038 5039 5040

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5041 5042
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5043

Y
ying 已提交
5044
            # x: [M], y: [N]
5045
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5046
    """
Y
ying 已提交
5047 5048 5049 5050 5051 5052 5053

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5054
            y_shape = y_shape + [1]
Y
ying 已提交
5055 5056 5057 5058 5059 5060 5061

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5062 5063
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5064

C
chengduo 已提交
5065
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5066
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5067 5068 5069
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5070
                if dim_x != y_shape[i]:
C
chengduo 已提交
5071 5072
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5073 5074 5075

    __check_input(x, y)

5076
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5077
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5078
    helper.append_op(
5079 5080 5081 5082
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5083 5084 5085
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5086
            'alpha': float(alpha),
S
sneaxiy 已提交
5087
        })
5088
    return out
5089 5090


5091
def topk(input, k, name=None):
Q
qingqing01 已提交
5092 5093 5094 5095
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5096
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5097 5098 5099 5100 5101 5102
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5124 5125 5126
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5127
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5128
                 of input.
5129
        name(str|None): A name for this layer(optional). If set None, the layer
5130
                       will be named automatically.
F
fengjiayi 已提交
5131
                       Default: None
Q
qingqing01 已提交
5132 5133

    Returns:
5134 5135 5136
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5137
        within the last dimension of input.
Q
qingqing01 已提交
5138

F
fengjiayi 已提交
5139 5140
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5141 5142 5143 5144 5145 5146 5147

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5148 5149
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5150 5151 5152 5153 5154 5155
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5156 5157
    helper.append_op(
        type="top_k",
W
whs 已提交
5158
        inputs=inputs,
Q
qingqing01 已提交
5159 5160
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5161
        attrs=attrs)
Q
qingqing01 已提交
5162 5163 5164 5165 5166
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5167
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5168
    """
Y
ying 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5178

Y
ying 已提交
5179
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5180

5181
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5182 5183
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5184
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5185

5186
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5187 5188
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5189

5190 5191 5192
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5193
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5194
                          the length of reference string.
5195
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5196
                                     calculating edit distance.
5197
        name (str): The name of this layer. It is optional.
5198

W
wanghaoshuang 已提交
5199
    Returns:
W
wanghaoshuang 已提交
5200
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5201 5202 5203 5204

    Examples:
        .. code-block:: python

T
tink2123 已提交
5205 5206
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5207
            cost = fluid.layers.edit_distance(input=x,label=y)
5208
    """
5209
    helper = LayerHelper("edit_distance", **locals())
5210

5211
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5212
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5213 5214
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5215 5216 5217 5218 5219

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5220
            attrs={"tokens": ignored_tokens})
5221 5222 5223 5224 5225
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5226
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5227
            attrs={"tokens": ignored_tokens})
5228 5229
        label = erased_label

5230
    # edit distance op
X
Xin Pan 已提交
5231 5232
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5233 5234 5235 5236
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5237 5238
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5239 5240
        attrs={"normalized": normalized})

5241
    return edit_distance_out, sequence_num
5242 5243 5244 5245 5246


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5247

Y
ying 已提交
5248 5249 5250 5251
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5269
        input.lod = [[4, 4]]
M
minqiyang 已提交
5270

W
whs 已提交
5271
        Computation:
5272

W
whs 已提交
5273 5274 5275 5276 5277 5278
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5279 5280 5281 5282 5283

        output.data = [[2],
                       [1],
                       [3]]

5284
        output.lod = [[2, 1]]
5285

W
whs 已提交
5286

5287 5288
    Args:

Y
ying 已提交
5289 5290 5291 5292 5293 5294 5295 5296 5297
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5298
        name (str): The name of this layer. It is optional.
5299 5300

    Returns:
H
haowang101779990 已提交
5301 5302 5303
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5304
                  LoD [[]] and dims [1, 1].
5305 5306 5307 5308

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5309
            import paddle.fluid as fluid
5310 5311
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5312
    """
5313
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5314
    _, topk_indices = topk(input, k=1)
5315 5316

    # ctc align op
X
Xin Pan 已提交
5317
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5318 5319 5320
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5321
        outputs={"Output": [ctc_out]},
5322 5323
        attrs={"merge_repeated": True,
               "blank": blank})
5324
    return ctc_out
5325 5326


W
Wu Yi 已提交
5327
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5328
    """
5329 5330
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5331
    to compute Connectionist Temporal Classification (CTC) loss.
5332 5333
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5334 5335 5336
    input tensor.

    Args:
5337
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5338 5339 5340 5341
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5342
       label (Variable): The ground truth of variable-length sequence,
5343 5344 5345
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5346 5347
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5348 5349 5350
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5351
         follewed by a mean_op.
W
Wu Yi 已提交
5352
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5353 5354

    Returns:
5355 5356
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5357 5358

    Examples:
5359

W
wanghaoshuang 已提交
5360
        .. code-block:: python
5361

5362 5363 5364
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5365 5366

    """
F
fengjiayi 已提交
5367
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5368 5369
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5370 5371 5372 5373 5374 5375
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5376 5377 5378 5379 5380
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5381
    return loss_out
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5397 5398 5399
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5400 5401 5402 5403 5404
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5405

5406
            out.lod  = [[0, 1, 3]]
5407 5408 5409 5410

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5411 5412 5413 5414 5415 5416 5417
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5418 5419 5420

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5421 5422

    Returns:
5423

5424 5425 5426 5427 5428
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5429
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5430
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5431
    """
L
lujun 已提交
5432
    assert not in_dygraph_mode(), (
5433
        "sequence layer is not supported in dygraph mode yet.")
5434
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5435
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5436 5437 5438 5439 5440 5441
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5442 5443


5444 5445 5446 5447
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5448 5449 5450 5451 5452 5453
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5454
        num_neg_samples=None,
5455 5456 5457
        name=None,
        sampler="uniform",
        custom_dist=None,
5458 5459
        seed=0,
        is_sparse=False):
5460 5461 5462 5463 5464 5465 5466
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5467 5468
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5469
            sample is 1.0.
C
chengduo 已提交
5470 5471 5472 5473 5474 5475 5476 5477 5478
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5479
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5480 5481
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5482 5483 5484
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5485
        custom_dist (float[]): A float[] with size=num_total_classes.
5486 5487 5488 5489
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5490
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5491

5492
    Returns:
Y
Yibing Liu 已提交
5493 5494 5495 5496 5497 5498
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5499
	    import numpy as np
Y
Yibing Liu 已提交
5500

Y
Yibing Liu 已提交
5501 5502 5503 5504 5505 5506 5507 5508
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5509

Y
Yibing Liu 已提交
5510 5511 5512 5513
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5514

Y
Yibing Liu 已提交
5515 5516 5517
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5518

Y
Yibing Liu 已提交
5519 5520 5521 5522
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5523

Y
Yibing Liu 已提交
5524 5525 5526 5527 5528 5529 5530 5531
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5532
    """
Y
Yang Yu 已提交
5533 5534 5535
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5536 5537

    dim = input.shape[1]
Y
Yang Yu 已提交
5538 5539 5540 5541 5542 5543
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5544
    inputs = {}
C
chengduo 已提交
5545 5546 5547 5548 5549 5550 5551
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5552 5553 5554
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5555

5556 5557 5558 5559
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5560 5561 5562 5563 5564 5565 5566

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5567 5568
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5569
        custom_dist_len = num_total_classes
5570 5571 5572 5573 5574 5575
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5576
            if normal_prob - 1.0 > 0:
5577
                bigs.append((i, normal_prob))
5578
            elif 1.0 - normal_prob > 0:
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5594
            if big_left - 1.0 > 0:
5595
                bigs.append((big_idx, big_left))
5596
            elif 1.0 - big_left > 0:
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5626 5627 5628 5629
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5630 5631 5632 5633 5634
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5635 5636 5637 5638
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5639

Y
Yang Yu 已提交
5640 5641
    attrs = {
        'num_total_classes': int(num_total_classes),
5642 5643
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5644
        'sampler': sampler,
5645 5646
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5647
    }
Y
Yang Yu 已提交
5648 5649 5650

    helper.append_op(
        type='nce',
C
chengduo 已提交
5651
        inputs=inputs,
Y
Yang Yu 已提交
5652 5653 5654 5655 5656 5657
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5658
    return cost / (num_neg_samples + 1)
5659 5660


C
chengduo 已提交
5661 5662
def hsigmoid(input,
             label,
5663
             num_classes,
C
chengduo 已提交
5664 5665
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5666
             name=None,
5667 5668 5669
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5670
             is_sparse=False):
W
weixing02 已提交
5671 5672
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5673
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5674
    complete binary tree, or you can use is_custom to pass your own tree to
5675
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5676 5677 5678 5679 5680 5681
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5682
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5683
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5684

5685 5686
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5687 5688 5689 5690
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5691
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5692
       related to the same batch of inputs.
5693

W
weixing02 已提交
5694
    Args:
M
minqiyang 已提交
5695
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5696 5697 5698 5699
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5700 5701
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5702
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5714
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5715
            it should be in leaf -> root order
M
minqiyang 已提交
5716 5717 5718
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5719
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5720
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5721
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5722
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5723
             of W and input will be sparse.
W
weixing02 已提交
5724 5725

    Returns:
J
JiabinYang 已提交
5726
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5727 5728 5729 5730 5731

    Examples:

        .. code-block:: python

G
guosheng 已提交
5732 5733 5734
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5735 5736 5737 5738
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5739 5740
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5741
    dim = input.shape[1]
5742
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5743 5744 5745
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5746 5747 5748 5749 5750 5751 5752 5753 5754
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5755
    if (is_custom) and (path_code is None):
5756
        raise ValueError("path_code should not be None with custom tree")
5757
    elif (is_custom) and (path_table is None):
5758
        raise ValueError("path_table should not be None with custom tree")
5759
    elif (is_custom) and (num_classes is None):
5760
        raise ValueError("num_classes should not be None with custom tree")
5761 5762 5763
    else:
        pass

J
JiabinYang 已提交
5764
    weights = None
5765 5766 5767 5768
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5769
    if not is_custom:
J
JiabinYang 已提交
5770 5771 5772 5773 5774 5775 5776 5777
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5778
            shape=[num_classes, dim],
J
JiabinYang 已提交
5779 5780
            is_bias=False,
            dtype=input.dtype)
5781 5782 5783
    inputs = {
        "X": input,
        "W": weights,
5784
        "PathTable": path_table,
5785
        "PathCode": path_code,
5786 5787
        "Label": label
    }
W
weixing02 已提交
5788
    if helper.bias_attr:
5789
        if not is_custom:
J
JiabinYang 已提交
5790 5791
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5792
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5793 5794 5795 5796 5797 5798
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5799
                shape=[num_classes, 1],
J
JiabinYang 已提交
5800 5801 5802
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5803 5804
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5805
        inputs=inputs,
W
weixing02 已提交
5806
        outputs={"Out": out,
5807 5808 5809 5810 5811 5812 5813
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5814 5815 5816
    return out


Y
fix ci.  
ying 已提交
5817
def transpose(x, perm, name=None):
Y
ying 已提交
5818 5819 5820 5821 5822 5823 5824
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5825 5826 5827
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5828 5829 5830 5831 5832 5833 5834

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5835
            # use append_batch_size=False to avoid prepending extra
5836
            # batch size in shape
5837
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5838
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5839
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5840 5841
    """

Y
fix ci.  
ying 已提交
5842
    if len(perm) != len(x.shape):
Y
ying 已提交
5843 5844 5845
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5846 5847 5848 5849 5850 5851
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5852 5853

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5854 5855
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5856
    helper.append_op(
5857
        type='transpose2',
Y
fix ci.  
ying 已提交
5858
        inputs={'X': [x]},
5859 5860
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5861 5862
        attrs={'axis': perm})
    return out
5863 5864


5865 5866 5867 5868 5869 5870 5871
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5872
    """
5873 5874 5875 5876 5877 5878 5879
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5908 5909 5910 5911 5912 5913 5914 5915 5916
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5917 5918 5919
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5920 5921 5922 5923 5924
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5952 5953 5954
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5967
            output.dims = {8, 8}
5968

5969
            output.lod = [[4, 4]]
5970

T
Tink_Y 已提交
5971
    Examples:
5972 5973 5974

        .. code-block:: python

5975 5976
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5977 5978

    """
L
lujun 已提交
5979
    assert not in_dygraph_mode(), (
5980
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5991 5992 5993 5994 5995 5996 5997
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5998
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5999
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6000
    helper.append_op(
6001
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6002
    return out
6003 6004


Y
yuyang18 已提交
6005
@templatedoc()
6006
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6007 6008
    """
    ${comment}
6009 6010

    Args:
Y
yuyang18 已提交
6011
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6012 6013
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6014 6015 6016 6017 6018
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6019
        ${out_comment}.
6020 6021

    Examples:
Y
yuyang18 已提交
6022 6023 6024 6025
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6026 6027 6028 6029 6030 6031
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6032
    out = helper.create_variable_for_type_inference(dtype)
6033 6034 6035 6036 6037
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6038
    return helper.append_activation(out)
6039 6040


Y
yuyang18 已提交
6041
@templatedoc()
6042 6043
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6044 6045
    ${comment}

L
lujun 已提交
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6089 6090

    Args:
Y
yuyang18 已提交
6091 6092
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6093 6094

    Returns:
Y
yuyang18 已提交
6095
        ${out_comment}.
6096 6097
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6098 6099 6100 6101 6102

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6103
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6104 6105 6106 6107 6108 6109
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6110 6111


6112 6113 6114
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6115
                               ignore_index=kIgnoreIndex,
6116
                               numeric_stable_mode=True,
6117 6118
                               return_softmax=False,
                               axis=-1):
6119 6120
    """
    **Softmax With Cross Entropy Operator.**
6121

6122
    Cross entropy loss with softmax is used as the output layer extensively. This
6123 6124 6125
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6126

6127 6128 6129
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6130

6131 6132 6133 6134
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6135

6136
    The equation is as follows:
6137

6138
    1) Hard label (one-hot label, so every sample has exactly one class)
6139

6140 6141 6142 6143
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6144

6145 6146 6147
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6148

6149 6150 6151 6152
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6153 6154
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6155 6156

    .. math::
6157

H
haowang101779990 已提交
6158
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6159

H
haowang101779990 已提交
6160
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6161

H
haowang101779990 已提交
6162
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6163 6164 6165

    and then cross entropy loss is calculated by softmax and label.

6166
    Args:
6167 6168 6169 6170 6171 6172
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6173
        soft_label (bool): A flag to indicate whether to interpretate the given
6174
            labels as soft labels. Default False.
M
minqiyang 已提交
6175 6176
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6177 6178
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6179 6180
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6181 6182 6183 6184
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6185
                                    Note that the speed may be slower when use
6186
                                    stable algorithm. Default: True
6187
        return_softmax (bool): A flag indicating whether to return the softmax
6188
                               along with the cross entropy loss. Default: False
6189 6190 6191
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6192

6193
    Returns:
H
haowang101779990 已提交
6194 6195
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6196 6197 6198 6199
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6200 6201 6202 6203 6204 6205 6206

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6207 6208
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6209 6210
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6211 6212
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6213 6214 6215 6216 6217 6218
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6219 6220 6221
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6222 6223
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6224
        })
6225 6226 6227 6228

    if return_softmax:
        return loss, softmax

6229 6230 6231
    return loss


6232 6233 6234
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6235
                                       num_true=1,
6236
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6237 6238 6239
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6240
                                       seed=0):
X
xuezhong 已提交
6241 6242 6243 6244 6245
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6246
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6247 6248 6249 6250 6251 6252 6253 6254
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6255
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6256 6257 6258 6259 6260 6261 6262 6263
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6264
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6276
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6277 6278 6279 6280 6281
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6282
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6283
            logits.
X
xuezhong 已提交
6284 6285 6286 6287 6288
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6289 6290 6291
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6312 6313
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6314 6315
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6316 6317 6318 6319 6320

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6321
            'Labels': label,
X
xuezhong 已提交
6322 6323
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6324 6325 6326 6327
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6328
            'SampledLabels': sampled_label,
6329 6330 6331
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6332 6333
        },
        attrs={
X
xuezhong 已提交
6334
            'use_customized_samples': use_customized_samples,
6335
            'uniq': True,
X
xuezhong 已提交
6336 6337 6338 6339
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6340 6341
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6342 6343 6344 6345 6346 6347
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6348 6349
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6350
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6351
                'Label': sampled_softlabel},
X
xuezhong 已提交
6352 6353 6354
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6355
            'soft_label': True,
X
xuezhong 已提交
6356 6357 6358
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6359
    return loss / num_true
X
xuezhong 已提交
6360 6361


6362 6363
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6364 6365
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6366
    For each instance, it computes the smooth L1 loss element by element first
6367
    and then sums all the losses. So the shape of ouput Variable is
6368
    [batch_size, 1].
6369

6370 6371
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6372
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6373
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6374
            L1 loss op with same shape as :attr:`x`.
6375
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6376 6377
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6378
            by this tensor element by element.
6379
        outside_weight (Variable|None): A tensor with rank at least 2. This
6380 6381
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6382
            element by element.
6383
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6384 6385
           scalar with default value 1.0.

6386
    Returns:
6387
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6388 6389 6390 6391 6392

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6393 6394
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6395
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6396
            out = fluid.layers.smooth_l1(x=fc, y=label)
6397
    """
6398

6399
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6400 6401
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6412
        attrs={'sigma': sigma if sigma is not None else 1.0})
6413
    return loss
6414 6415 6416 6417


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6418
    This layer creates the one-hot representations for input indices.
6419 6420

    Args:
Y
Yibing Liu 已提交
6421 6422
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6423 6424

    Returns:
Y
Yibing Liu 已提交
6425
        Variable: The one-hot representations of input.
6426 6427

    Examples:
C
caoying03 已提交
6428
        .. code-block:: python
6429

Y
Yibing Liu 已提交
6430 6431
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6432 6433
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6434
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6435 6436 6437 6438
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6439 6440
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6441
    return one_hot_out
Y
Yu Yang 已提交
6442 6443


Y
Yu Yang 已提交
6444
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6445
    """
Y
yi.wu 已提交
6446 6447 6448
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6449 6450 6451 6452 6453 6454

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6455 6456
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6457 6458 6459 6460 6461

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6462
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6463 6464
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6465 6466
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6467 6468 6469 6470 6471
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6472
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6473
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6474 6475
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6476
            outputs={'Out': [counter]},
M
minqiyang 已提交
6477 6478
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6479 6480 6481
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6482 6483


6484
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6485
    """
C
caoying03 已提交
6486 6487
    Gives a new shape to the input Tensor without changing its data.

6488 6489 6490 6491 6492
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6493

6494
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6495

6496 6497 6498 6499
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6500
    2. 0 means the actual dimension value is going to be copied from the
6501 6502 6503 6504
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6505 6506

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6507
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6508
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6509

6510
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6511 6512
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6513 6514
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6515
    dimensions.
C
caoying03 已提交
6516

6517
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6518 6519 6520 6521
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6522 6523

    Args:
6524
        x(variable): The input tensor.
C
caoying03 已提交
6525 6526
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6527 6528 6529 6530 6531
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6532 6533
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6534 6535 6536
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6537
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6538
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6539

6540
    Returns:
G
guosheng 已提交
6541 6542 6543 6544
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6545

X
Xin Pan 已提交
6546 6547 6548
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6549 6550
    Examples:
        .. code-block:: python
G
guosheng 已提交
6551

6552
            data = fluid.layers.data(
6553
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6554
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6555
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6556 6557 6558
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6559
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6560 6561 6562 6563 6564
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6565

6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6581
    helper = LayerHelper("reshape2", **locals())
6582 6583
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6584
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6585
    helper.append_op(
6586
        type="reshape2",
X
Xin Pan 已提交
6587
        inputs=inputs,
D
dzhwinter 已提交
6588
        attrs={"shape": shape},
6589 6590
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6591

D
dzhwinter 已提交
6592
    return helper.append_activation(out)
6593

6594

6595
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6596
    """
M
minqiyang 已提交
6597 6598 6599
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6600
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6601

H
haowang101779990 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6623

Y
Yibing Liu 已提交
6624
    Args:
6625
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6626
        axes (list): List of integers, indicating the dimensions to be squeezed.
6627
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6628 6629 6630 6631 6632 6633 6634 6635

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6636
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6637
    """
L
lujun 已提交
6638
    assert not in_dygraph_mode(), (
L
lujun 已提交
6639
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6640
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6641 6642
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6643
    helper.append_op(
6644
        type="squeeze2",
6645
        inputs={"X": input},
Y
Yibing Liu 已提交
6646
        attrs={"axes": axes},
6647 6648
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6649

6650 6651 6652
    return out


6653
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6654
    """
M
minqiyang 已提交
6655 6656 6657
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6658

M
minqiyang 已提交
6659
    For example:
H
haowang101779990 已提交
6660 6661 6662

    .. code-block:: text

M
minqiyang 已提交
6663
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6664
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6665

Y
Yibing Liu 已提交
6666
    Args:
6667
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6668
        axes (list): List of integers, indicating the dimensions to be inserted.
6669
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6670 6671 6672 6673 6674 6675 6676 6677

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6678
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6679 6680
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6681 6682
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6683
    helper.append_op(
6684
        type="unsqueeze2",
6685
        inputs={"X": input},
Y
Yibing Liu 已提交
6686
        attrs={"axes": axes},
6687 6688
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6689

6690 6691
    return out

6692

Y
yangyaming 已提交
6693
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6694
    """
Y
Yibing Liu 已提交
6695
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6696 6697 6698 6699
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6700
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6701 6702 6703 6704 6705 6706

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6707
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6708 6709 6710
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6711
            target_lod: [4, 2]
Y
yangyaming 已提交
6712 6713

            then we get a 1-level LoDTensor:
6714
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6715 6716 6717 6718 6719 6720
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6721
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6722 6723 6724 6725
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6726
                y.data = [[2, 4]]
Y
yangyaming 已提交
6727 6728 6729
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6730
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6731 6732 6733 6734 6735 6736
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6737
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6738 6739 6740 6741
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6742
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6743 6744 6745 6746
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6747
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6748 6749 6750 6751 6752
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6753
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6754
                           from :attr:`y`.
Y
yangyaming 已提交
6755
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6756
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6757 6758

    Returns:
Y
Yibing Liu 已提交
6759
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6760 6761

    Raises:
Y
Yibing Liu 已提交
6762
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6772
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6798
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6827 6828
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6841 6842 6843
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6857 6858 6859 6860


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6861
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6862
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6863

G
guosheng 已提交
6864 6865 6866 6867
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6890
                         The length of :attr:paddings must be
G
guosheng 已提交
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6901

G
guosheng 已提交
6902
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6903 6904
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
6905 6906 6907 6908 6909
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6910
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6911 6912 6913 6914 6915 6916 6917
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6918 6919


C
chengduo 已提交
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6951 6952
		And
            pad_value = -1,
C
chengduo 已提交
6953

T
Tink_Y 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6984 6985 6986
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6987 6988 6989 6990 6991
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6992
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7002 7003 7004 7005 7006 7007 7008
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7009 7010
    called label-smoothing regularization (LSR).

7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7034
                              be :math:`(1, class\_num)`.
7035 7036
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7037
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7057
    smooth_label = helper.create_variable_for_type_inference(dtype)
7058 7059 7060 7061 7062 7063 7064
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7065 7066


W
wopeizl 已提交
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7103 7104


J
jerrywgz 已提交
7105 7106 7107 7108 7109 7110
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7111 7112
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7129 7130 7131 7132
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7133 7134 7135
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7136 7137 7138 7139 7140 7141
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7142
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7183 7184
        .. code-block:: python

S
SunGaofeng 已提交
7185 7186 7187
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7188
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7189
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7190 7191
    """
    label = one_hot(label, depth=input.shape[-1])
7192
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7193 7194 7195 7196 7197 7198
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7199 7200


7201 7202 7203 7204
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7205
                 resample='BILINEAR',
7206 7207
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7208
                 align_mode=1):
7209
    """
Q
qiaolongfei 已提交
7210
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7211

7212
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7213 7214 7215
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7216

7217
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7218

7219
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7220

7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7231
    Align_corners and align_mode are optinal parameters,the calculation method 
7232 7233 7234 7235
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7236
    .. code-block:: text
7237

T
Tink_Y 已提交
7238
        For scale:
7239
          
T
Tink_Y 已提交
7240
            if align_corners = True && out_size > 1 :
7241

T
Tink_Y 已提交
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7253

T
Tink_Y 已提交
7254 7255
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7256

T
Tink_Y 已提交
7257 7258
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7259

T
Tink_Y 已提交
7260 7261
          else:
              align_corners = True
7262

T
Tink_Y 已提交
7263 7264
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7265

T
Tink_Y 已提交
7266 7267
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7268

T
Tink_Y 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7279

T
Tink_Y 已提交
7280 7281 7282 7283
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7284

T
Tink_Y 已提交
7285 7286
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7287 7288 7289 7290 7291 7292 7293 7294 7295

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7296
    Args:
7297
        input (Variable): The input tensor of image resize layer,
7298 7299
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7300
        out_shape(list|tuple|Variable|None): Output shape of image resize
7301 7302
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7303
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7304
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7305
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7306
             Default: None.
7307 7308
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7309
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7310
                       currently.
7311
                       Default: 'BILINEAR'
7312 7313 7314
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7315
                                :attr:`out_shape` and :attr:`scale` specifying
7316 7317 7318 7319 7320 7321 7322
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7323 7324
                                constructing stage.
                                Default: None
7325 7326 7327 7328
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7329
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7330 7331
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7332 7333

    Returns:
Q
update  
qiaolongfei 已提交
7334 7335
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7336

7337 7338 7339
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7340
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7341 7342 7343
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7344
        ValueError: scale should be greater than zero.
7345 7346
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7347

7348 7349 7350
    Examples:
        .. code-block:: python

R
ruri 已提交
7351
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7352
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7353
    """
7354 7355 7356 7357
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7358 7359
    if resample not in resample_methods:
        raise ValueError(
7360
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7361
        )
7362
    resample_type = resample_methods[resample]
7363 7364 7365 7366 7367 7368

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7369
    if out_shape is None and scale is None:
7370
        raise ValueError("One of out_shape and scale must not be None.")
7371
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7372
    dtype = helper.input_dtype()
7373 7374 7375 7376

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7377
    inputs = {"X": input}
D
dengkaipeng 已提交
7378
    attrs = {
D
dengkaipeng 已提交
7379 7380
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7381 7382 7383 7384 7385
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7386
    if out_shape is not None:
7387 7388 7389 7390
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7391
            inputs['OutSize'] = out_shape
7392 7393
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7394 7395
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7396 7397 7398 7399 7400 7401 7402
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7403
    else:
D
dengkaipeng 已提交
7404 7405
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7406
        attrs['scale'] = float(scale)
7407

7408 7409 7410 7411 7412
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7413
    out = helper.create_variable_for_type_inference(dtype)
7414
    helper.append_op(
7415
        type='{}_interp'.format(resample_type),
7416
        inputs=inputs,
7417
        outputs={"Out": out},
D
dengkaipeng 已提交
7418
        attrs=attrs)
7419
    return out
F
stash  
fengjiayi 已提交
7420 7421


7422
@templatedoc(op_type="bilinear_interp")
7423 7424 7425 7426
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7427 7428
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7429
                    align_mode=1):
7430
    """
7431 7432
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7433 7434
    in priority order.

7435 7436 7437 7438
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7439 7440
    again in the other direction.

7441
    For details of bilinear interpolation, please refer to Wikipedia:
7442
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7443

T
tink2123 已提交
7444
    Align_corners and align_mode are optinal parameters,the calculation 
7445 7446 7447 7448
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7449
    .. code-block:: text
7450

T
Tink_Y 已提交
7451
        For scale:
7452
          
T
Tink_Y 已提交
7453
            if align_corners = True && out_size > 1 :
7454

T
Tink_Y 已提交
7455 7456 7457 7458 7459
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7460

T
Tink_Y 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7471 7472


T
Tink_Y 已提交
7473
          else:
T
tink2123 已提交
7474

T
Tink_Y 已提交
7475 7476
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7477

T
Tink_Y 已提交
7478 7479
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7480 7481 7482



Y
yuyang18 已提交
7483 7484 7485
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7486 7487 7488
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7489

Y
yuyang18 已提交
7490
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7491
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7492
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7493
             Default: None.
Y
yuyang18 已提交
7494 7495

        name(str|None): The output variable name.
7496 7497 7498
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7499
                                :attr:`out_shape` and :attr:`scale` specifying
7500 7501 7502 7503 7504 7505 7506
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7507 7508
                                constructing stage.
                                Default: None
7509 7510
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7511 7512 7513

    Returns:
        ${out_comment}.
7514 7515 7516 7517

    Examples:
        .. code-block:: python

R
ruri 已提交
7518
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7519
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7520 7521
    """

7522 7523
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7524 7525


7526
@templatedoc(op_type="nearest_interp")
7527 7528 7529 7530
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7531 7532
                   actual_shape=None,
                   align_corners=True):
7533
    """
7534
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7535 7536
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7537 7538
    out_shape and scale in priority order.

7539 7540
    Example:

T
Tink_Y 已提交
7541 7542 7543 7544 7545
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7546

T
Tink_Y 已提交
7547 7548 7549 7550 7551 7552 7553 7554
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7555
          
T
Tink_Y 已提交
7556 7557
          if:
              align_corners = False
7558

T
Tink_Y 已提交
7559 7560
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7561

T
Tink_Y 已提交
7562 7563
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7564

T
Tink_Y 已提交
7565 7566
          else:
              align_corners = True
7567

T
Tink_Y 已提交
7568 7569
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7570

T
Tink_Y 已提交
7571 7572
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7573 7574


7575
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7576
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7577 7578 7579 7580

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7581 7582 7583
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7584

Y
yuyang18 已提交
7585
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7586
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7587
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7588
             Default: None.
Y
yuyang18 已提交
7589 7590

        name(str|None): The output variable name.
7591 7592 7593
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7594
                                :attr:`out_shape` and :attr:`scale` specifying
7595 7596 7597 7598 7599 7600 7601
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7602 7603
                                constructing stage.
                                Default: None
7604
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7605 7606 7607

    Returns:
        ${out_comment}.
7608 7609 7610 7611

    Examples:
        .. code-block:: python

R
ruri 已提交
7612
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7613
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7614 7615
    """

7616 7617
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7618 7619 7620 7621


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7622 7623 7624
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7625 7626 7627 7628 7629 7630 7631
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7632
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7633

7634
    Returns:
Q
update  
qiaolongfei 已提交
7635
        Variable: The output is a 4-D tensor of the shape
7636
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7637 7638 7639 7640 7641 7642

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7653 7654 7655
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7656 7657 7658
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7659 7660
def gather(input, index):
    """
Q
qiaolongfei 已提交
7661 7662
    **Gather Layer**

7663
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7664 7665 7666 7667
    of X indexed by `index` and concatenate them together.

    .. math::

7668
        Out = X[Index]
W
whs 已提交
7669 7670 7671 7672 7673 7674 7675


    .. code-block:: text


                Given:

7676 7677
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7688
        input (Variable): The source input with rank>=1.
W
whs 已提交
7689 7690 7691 7692 7693 7694
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7695

W
whs 已提交
7696 7697
        .. code-block:: python

Y
Yibing Liu 已提交
7698 7699
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7700 7701 7702 7703
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7704
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7705 7706 7707 7708 7709 7710 7711 7712
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7744
    out = helper.create_variable_for_type_inference(dtype)
7745 7746 7747 7748 7749 7750 7751 7752 7753
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7754 7755 7756 7757 7758 7759 7760 7761 7762
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7763

Q
Qingsheng Li 已提交
7764
    Given the following input:
H
haowang101779990 已提交
7765

Q
Qingsheng Li 已提交
7766
    .. code-block:: text
H
haowang101779990 已提交
7767

Q
Qingsheng Li 已提交
7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7780

Q
Qingsheng Li 已提交
7781
    .. code-block:: text
H
haowang101779990 已提交
7782

Q
Qingsheng Li 已提交
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7798
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7799 7800 7801 7802 7803 7804 7805 7806

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7807
    assert not in_dygraph_mode(), (
7808
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7809 7810
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7811
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7812 7813 7814 7815 7816 7817 7818 7819 7820
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7834

7835 7836 7837
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7838
    """
F
stash  
fengjiayi 已提交
7839
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7840
    dtype = x.dtype
X
Xin Pan 已提交
7841
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7842
    if seed is None:
7843
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7844
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7845
    if isinstance(seed, int):
F
fengjiayi 已提交
7846 7847 7848 7849 7850
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7851 7852 7853 7854
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7855
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7856 7857
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7858 7859
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7860
    return out
W
whs 已提交
7861 7862


7863
def log(x, name=None):
W
wanghaoshuang 已提交
7864 7865 7866 7867 7868
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7869
        Out = \\ln(x)
W
wanghaoshuang 已提交
7870 7871

    Args:
7872
        x (Variable): Input tensor.
7873 7874
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7875 7876 7877 7878 7879 7880 7881 7882

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7883
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7884 7885
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7886
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7887
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7888
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7889 7890 7891
    return out


7892
def relu(x, name=None):
W
wanghaoshuang 已提交
7893 7894
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7895
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7896 7897 7898 7899
    the tensor elementwise.

    .. math::

7900
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7901 7902

    Args:
7903
        x (Variable): The input tensor.
7904 7905
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7906 7907 7908 7909 7910 7911 7912 7913

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7914
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7915
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7916 7917
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7918
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7919
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7920 7921
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7922
    return out
7923 7924


C
chengduo 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7966 7967 7968
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7969 7970 7971 7972
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7973
    .. math::
7974

H
haowang101779990 已提交
7975
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7976

7977
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7978 7979 7980 7981 7982
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7983
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7984
                           Its shape should be the same as input.
7985
        num_classes (int): The possible number of labels.
W
whs 已提交
7986 7987

    Returns:
M
minqiyang 已提交
7988 7989
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7990
                     Three variables:
M
minqiyang 已提交
7991

H
haowang101779990 已提交
7992 7993 7994
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7995 7996 7997 7998

    Examples:

        .. code-block:: python
7999

W
whs 已提交
8000 8001 8002 8003
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8004 8005 8006
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8007 8008
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8009 8010
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8011
        outputs={
W
whs 已提交
8012 8013 8014
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8015 8016 8017
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8060
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8061
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8062
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8080
            import paddle.fluid as fluid
8081 8082 8083 8084 8085 8086
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8087
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8088 8089 8090 8091 8092

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8093
            isinstance(shape, Variable)):
8094 8095 8096 8097 8098
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8099
    out = helper.create_variable_for_type_inference(x.dtype)
8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8117 8118


W
whs 已提交
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8136

W
whs 已提交
8137
              out_shape = [2, 3, 5, 5]
8138

W
whs 已提交
8139
          Step 1:
8140

W
whs 已提交
8141 8142 8143
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8144

W
whs 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8190
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8191
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8204

S
SunGaofeng 已提交
8205
            import paddle.fluid as fluid
W
whs 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8217
            isinstance(out_shape, Variable)):
W
whs 已提交
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8239 8240
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8241

8242 8243
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8244
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8245 8246 8247
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8248

8249 8250
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8251

H
haowang101779990 已提交
8252 8253
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8254 8255
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8256

H
haowang101779990 已提交
8257 8258 8259 8260 8261 8262 8263 8264
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8265 8266 8267

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8302
    out = helper.create_variable_for_type_inference("float32")
8303 8304 8305 8306 8307 8308 8309 8310

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8311 8312


M
minqiyang 已提交
8313 8314
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8315
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8316
    which compares left score and right score passed in.
M
minqiyang 已提交
8317
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8318 8319 8320

    .. math::

H
haowang101779990 已提交
8321
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8322 8323

    Args:
M
minqiyang 已提交
8324
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8325 8326
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8327
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8328 8329
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8330

M
minqiyang 已提交
8331
    Returns:
M
minqiyang 已提交
8332
       Variable: The ranking loss.
H
haowang101779990 已提交
8333

M
minqiyang 已提交
8334
    Raises:
M
minqiyang 已提交
8335
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8336

M
minqiyang 已提交
8337
    Examples:
H
haowang101779990 已提交
8338

M
minqiyang 已提交
8339
        .. code-block:: python
H
haowang101779990 已提交
8340

Y
Yibing Liu 已提交
8341 8342 8343
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8344 8345
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8346
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8347 8348 8349 8350 8351 8352
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8353 8354
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8378
        .. code-block:: text
W
whs 已提交
8379

T
Tink_Y 已提交
8380
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8381

T
Tink_Y 已提交
8382 8383
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8384

T
Tink_Y 已提交
8385
	      Case 0:
M
minqiyang 已提交
8386

T
Tink_Y 已提交
8387 8388 8389
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8390

T
Tink_Y 已提交
8391 8392 8393
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8394

T
Tink_Y 已提交
8395
	      Case 1:
M
minqiyang 已提交
8396

T
Tink_Y 已提交
8397 8398
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8399

T
Tink_Y 已提交
8400 8401 8402
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8403

T
Tink_Y 已提交
8404
	      Case 2:
M
minqiyang 已提交
8405

T
Tink_Y 已提交
8406 8407
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8408

T
Tink_Y 已提交
8409 8410 8411
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8412 8413


W
whs 已提交
8414 8415
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8416
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8440
    out = helper.create_variable_for_type_inference(dtype)
8441 8442 8443 8444 8445 8446 8447 8448 8449
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8450
    helper.append_op(
8451
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8452 8453 8454 8455

    return out


8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8468 8469 8470 8471 8472

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8473 8474
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8475 8476
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8477
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8498 8499 8500 8501 8502

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8503 8504
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8505 8506
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8507
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8528 8529 8530 8531 8532

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8533 8534
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8535 8536
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8537
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8559 8560 8561 8562 8563

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8564
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8565
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8566 8567
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8568
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8591 8592 8593 8594 8595

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8596 8597
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8598 8599
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8600
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8622 8623 8624 8625 8626

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8627 8628
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8629 8630
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8631
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8632 8633 8634 8635 8636 8637 8638 8639
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8640 8641 8642 8643
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8644 8645
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8646 8647 8648

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8649
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8650
          weight (alpha).
J
jerrywgz 已提交
8651
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8652 8653 8654
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8655
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8656
          will be named automatically.
J
jerrywgz 已提交
8657 8658 8659 8660 8661 8662 8663 8664

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8665
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8679
        attr=helper.param_attr,
J
jerrywgz 已提交
8680 8681 8682 8683
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8684
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8685 8686 8687 8688 8689 8690 8691 8692 8693
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8704
    Returns:
8705
        output(${out_type}): ${out_comment}
8706 8707 8708

    Examples:

8709
    .. code-block:: python
8710

H
haowang101779990 已提交
8711 8712
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8713 8714
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8715
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8734
    Returns:
8735
        output(${out_type}): ${out_comment}
8736 8737 8738 8739 8740

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8741 8742
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8743 8744
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8745
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8763
    Returns:
8764
        output(${out_type}): ${out_comment}
8765 8766 8767 8768 8769

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8770 8771
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8772 8773
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8774
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8775 8776 8777 8778 8779 8780 8781 8782
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8783 8784 8785 8786
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8787

H
haowang101779990 已提交
8788
    For Example:
M
minqiyang 已提交
8789

H
haowang101779990 已提交
8790
    .. code-block:: text
8791

H
haowang101779990 已提交
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8813 8814 8815

    Args:
        x (Variable): A tensor of rank >= axis.
8816 8817
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8818 8819 8820 8821 8822 8823 8824 8825
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8826 8827 8828
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8829 8830 8831 8832
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8833
        ValueError: If axis is not in range [0, rank(x)].
8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8850 8851
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8852
    helper.append_op(
8853
        type='flatten2',
8854
        inputs={"X": x},
8855 8856
        outputs={'Out': out,
                 'XShape': x_shape},
8857 8858
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8859 8860


C
chenweihang 已提交
8861
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8862
    """
C
chenweihang 已提交
8863
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8864
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8865 8866
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8867

H
haowang101779990 已提交
8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8885 8886

    Args:
C
chenweihang 已提交
8887 8888 8889
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8890 8891 8892 8893 8894 8895 8896 8897 8898 8899

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8900
    assert not in_dygraph_mode(), (
8901
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8902
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8903 8904
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8905 8906 8907 8908 8909 8910
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8911
    return out
8912

8913

S
sneaxiy 已提交
8914 8915 8916 8917 8918 8919 8920 8921 8922
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8923

S
sneaxiy 已提交
8924
    .. math::
8925

S
sneaxiy 已提交
8926 8927 8928
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8929
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8930 8931 8932 8933
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8934 8935 8936
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8937 8938
    Returns:
        Variable: The output sequence mask.
8939

S
sneaxiy 已提交
8940
    """
L
lujun 已提交
8941
    assert not in_dygraph_mode(), (
8942
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8943

Q
qingqing01 已提交
8944
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8945
    if name is None:
X
Xin Pan 已提交
8946
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8947
    else:
X
Xin Pan 已提交
8948
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8949

Q
qingqing01 已提交
8950 8951 8952
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8953 8954
        outputs={'Y': out},
        attrs={
8955
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8956 8957 8958
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8959 8960


X
Xin Pan 已提交
8961
def stack(x, axis=0):
S
sneaxiy 已提交
8962 8963 8964 8965
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8966 8967 8968 8969 8970 8971 8972

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8973
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8974
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8975

C
chengduozh 已提交
8976 8977
    For Example:

C
chengduozh 已提交
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9016
    Args:
9017
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9018
        axis (int|None): The axis along which all inputs are stacked.
9019

S
sneaxiy 已提交
9020 9021
    Returns:
        Variable: The stacked variable.
9022

S
sneaxiy 已提交
9023 9024
    """

X
Xin Pan 已提交
9025 9026 9027 9028 9029 9030
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9031
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9032
    helper.append_op(
S
sneaxiy 已提交
9033 9034
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9035

X
Xin Pan 已提交
9036
    return out
D
dzhwinter 已提交
9037 9038 9039 9040 9041 9042 9043


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9044

D
dzhwinter 已提交
9045 9046 9047
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9048
    raised.
D
dzhwinter 已提交
9049 9050

    Args:
M
minqiyang 已提交
9051
        x (Variable): Input variable.
D
dzhwinter 已提交
9052 9053
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9054

D
dzhwinter 已提交
9055 9056
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9057

D
dzhwinter 已提交
9058 9059 9060 9061 9062 9063 9064 9065 9066 9067
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9068
    for _ in range(num):
X
Xin Pan 已提交
9069
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9070 9071 9072 9073 9074 9075 9076 9077

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9090

W
whs 已提交
9091 9092 9093 9094
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9095

W
whs 已提交
9096
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9097

W
whs 已提交
9098
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9099

W
whs 已提交
9100 9101 9102 9103
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9104

W
whs 已提交
9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9121
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9122 9123 9124 9125 9126 9127
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9128 9129


G
fix  
gongweibao 已提交
9130 9131 9132
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9133
@templatedoc()
G
fix  
gongweibao 已提交
9134 9135 9136 9137 9138 9139 9140 9141 9142
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9143
    ${comment}
G
fix  
gongweibao 已提交
9144 9145

    Args:
G
gongweibao 已提交
9146 9147 9148
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9149
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9150 9151 9152
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9153 9154
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9155
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9156

9157 9158 9159 9160 9161
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9162 9163 9164
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9165
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9182 9183


G
gongweibao 已提交
9184
@templatedoc()
X
Xin Pan 已提交
9185
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9186
    """
G
gongweibao 已提交
9187
    ${comment}
G
fix  
gongweibao 已提交
9188 9189

    Args:
G
gongweibao 已提交
9190 9191 9192 9193
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9194 9195 9196
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9197
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9198

9199 9200 9201 9202
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9203 9204 9205
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9206
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9207 9208 9209 9210 9211 9212 9213 9214 9215 9216
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9217
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9218 9219 9220 9221 9222
        })

    return out


G
gongweibao 已提交
9223
@templatedoc()
G
fix  
gongweibao 已提交
9224
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9225
    """
G
gongweibao 已提交
9226
    ${comment}
G
fix  
gongweibao 已提交
9227 9228

    Args:
G
gongweibao 已提交
9229 9230 9231 9232
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9233
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9234 9235

    Returns:
G
gongweibao 已提交
9236
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9237

9238 9239 9240
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9241
            x = fluid.layers.data(
9242 9243 9244 9245 9246
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9247
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9248 9249 9250
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9251
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9263
@templatedoc()
G
fix  
gongweibao 已提交
9264 9265 9266 9267 9268 9269 9270 9271 9272
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9273
    ${comment}
G
fix  
gongweibao 已提交
9274 9275

    Args:
G
gongweibao 已提交
9276 9277
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9278
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9279 9280 9281 9282
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9283
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9284 9285

    Returns:
G
gongweibao 已提交
9286
        out (Variable): ${out_comment}
9287 9288 9289 9290

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9291
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9292

Y
Yibing Liu 已提交
9293
            out = fluid.layers.gaussian_random_batch_size_like(
9294
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9295 9296 9297
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9298
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9317
@templatedoc()
X
Xin Pan 已提交
9318
def sum(x):
G
fix  
gongweibao 已提交
9319
    """
G
gongweibao 已提交
9320
    ${comment}
G
fix  
gongweibao 已提交
9321 9322

    Args:
G
gongweibao 已提交
9323
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9324 9325

    Returns:
G
gongweibao 已提交
9326
        out (Variable): ${out_comment}
9327 9328 9329 9330 9331 9332

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9333 9334 9335
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9336 9337
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9338 9339 9340 9341
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9342
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9343 9344 9345 9346

    return out


G
gongweibao 已提交
9347
@templatedoc()
G
fix  
gongweibao 已提交
9348 9349
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9350
    ${comment}
G
fix  
gongweibao 已提交
9351 9352

    Args:
G
gongweibao 已提交
9353 9354 9355 9356
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9357 9358

    Returns:
G
gongweibao 已提交
9359
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9360

9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9372 9373 9374
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9375 9376
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9390 9391
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9392
    Get the shape of the input.
G
fix  
gongweibao 已提交
9393 9394

    Args:
C
chengduozh 已提交
9395
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9396 9397

    Returns:
C
fix doc  
chengduozh 已提交
9398
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9399

9400 9401 9402 9403 9404 9405
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9406 9407 9408
    """

    helper = LayerHelper('shape', **locals())
9409
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9410
    helper.append_op(
G
fix  
gongweibao 已提交
9411
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9412 9413

    return out
G
merge  
gongweibao 已提交
9414 9415


Z
zhoukunsheng 已提交
9416 9417 9418 9419
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9420
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9442 9443 9444 9445
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9446
    if in_dygraph_mode():
X
Xin Pan 已提交
9447 9448 9449
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9450 9451 9452 9453
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9454 9455
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9456
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9457 9458 9459
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9460

S
sneaxiy 已提交
9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9472
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9473 9474 9475 9476 9477 9478 9479 9480
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9481
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9482
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9483 9484 9485 9486 9487 9488

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9489
    if name is None:
X
Xin Pan 已提交
9490
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9491 9492 9493
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9494 9495 9496 9497 9498 9499 9500 9501 9502 9503

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9504
    return helper.append_activation(out)
S
sneaxiy 已提交
9505 9506


X
Xin Pan 已提交
9507
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9508 9509 9510
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9511
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9512 9513 9514
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9515
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9516 9517 9518
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9519
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9520 9521 9522
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9523
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9524 9525 9526
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9527
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9528 9529 9530
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9531
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9532 9533 9534
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9535 9536 9537 9538 9539 9540 9541 9542
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9543
for func in [
9544 9545 9546 9547 9548 9549 9550 9551 9552
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9553 9554 9555 9556 9557
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9558 9559
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9560
        ])
M
minqiyang 已提交
9561 9562


9563
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9564 9565
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9566 9567
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9568 9569 9570

    if out is None:
        if name is None:
X
Xin Pan 已提交
9571
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9587
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9599 9600 9601 9602 9603 9604 9605 9606 9607

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9608 9609 9610 9611 9612 9613 9614
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9615
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9627 9628 9629 9630 9631 9632 9633 9634 9635

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9636 9637 9638 9639 9640 9641 9642
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9643
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9655 9656 9657 9658 9659 9660 9661 9662 9663

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9664 9665 9666 9667 9668 9669 9670
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9671
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9672 9673 9674 9675 9676 9677 9678 9679 9680 9681
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9682 9683 9684 9685 9686 9687 9688

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9689 9690 9691 9692
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9708 9709 9710 9711

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9712
            import paddle.fluid as fluid
9713 9714 9715
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9716 9717 9718 9719 9720
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9721 9722 9723 9724
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9748 9749 9750 9751 9752 9753 9754

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9755 9756 9757 9758 9759
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9760 9761 9762 9763
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9764 9765 9766 9767 9768 9769 9770 9771

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9790
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9791 9792 9793 9794 9795 9796 9797 9798 9799 9800
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9843
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9844 9845 9846 9847 9848 9849 9850 9851 9852
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9853 9854
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9855 9856 9857 9858 9859 9860
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9861 9862 9863
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9864 9865
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9866 9867 9868 9869 9870 9871
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9872
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9873
        name(basestring|None): Name of the output.
9874 9875
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9876 9877 9878

    Returns:
        out(${out_type}): ${out_comment}
9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9893 9894 9895 9896 9897
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9898
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9899 9900 9901 9902 9903 9904 9905 9906
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9907 9908
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9925 9926 9927 9928 9929 9930 9931 9932 9933

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
9934 9935 9936 9937
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9938
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9939 9940 9941 9942 9943 9944 9945 9946 9947 9948
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9949 9950


J
JiabinYang 已提交
9951
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9952
    """
J
JiabinYang 已提交
9953
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9954 9955 9956

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9957
    The attr blocksize indicates the input block size.
9958 9959

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9960
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9961 9962

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9963
    (but keeping all data)
J
JiabinYang 已提交
9964

J
JiabinYang 已提交
9965
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9966
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9967 9968 9969 9970 9971
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9972
    Args:
J
JiabinYang 已提交
9973
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9974
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9975 9976

    Returns:
J
JiabinYang 已提交
9977
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9978 9979

    Raises:
J
JiabinYang 已提交
9980
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9981 9982 9983 9984 9985

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9986
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9987
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9988
                x=data, blocksize=2)
9989 9990 9991 9992 9993 9994

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9995 9996
    """

J
JiabinYang 已提交
9997
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9998

J
JiabinYang 已提交
9999 10000
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10001 10002

    if name is None:
J
JiabinYang 已提交
10003 10004
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10005 10006 10007 10008 10009
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10010
        type="space_to_depth",
J
JiabinYang 已提交
10011
        inputs={"X": x},
J
JiabinYang 已提交
10012
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10013
        outputs={"Out": out})
J
JiabinYang 已提交
10014 10015
    return out

J
JiabinYang 已提交
10016

S
sneaxiy 已提交
10017 10018
@templatedoc()
def sequence_reverse(x, name=None):
10019
    """
S
sneaxiy 已提交
10020 10021 10022 10023 10024 10025 10026 10027 10028
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10029
    assert not in_dygraph_mode(), (
10030
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10031 10032
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10033
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10034 10035 10036 10037 10038 10039 10040 10041 10042 10043
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10044 10045


10046 10047 10048 10049 10050 10051
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10052 10053 10054 10055 10056
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10057

10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10070
        act (str, default None): Activation to be applied to the output of this layer.
10071 10072 10073 10074 10075 10076 10077

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10078
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10090
    return helper.append_activation(out)
10091 10092


B
barrierye 已提交
10093
def similarity_focus(input, axis, indexes, name=None):
10094
    """
B
barrierye 已提交
10095
    SimilarityFocus Operator
B
barrierye 已提交
10096 10097

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10098

10099 10100 10101
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10102
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10103 10104 10105 10106 10107 10108 10109
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10110
       each index.
B
barrierye 已提交
10111 10112 10113 10114
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10164
    Args:
10165
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10166
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10167
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10168
            1, 2 or 3.
B
barrierye 已提交
10169
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10170 10171

    Returns:
H
haowang101779990 已提交
10172 10173
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10174

B
barrierye 已提交
10175 10176
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10177

B
barrierye 已提交
10178
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10179 10180
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10193 10194 10195 10196 10197
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10198 10199 10200 10201 10202 10203 10204
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10205 10206


M
minqiyang 已提交
10207 10208
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10209 10210
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10211 10212
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10251
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10252
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10253 10254 10255 10256 10257 10258

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10259

10260
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10261
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10262 10263
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10264 10265
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10266 10267 10268 10269 10270 10271 10272
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10273 10274


D
dengkaipeng 已提交
10275
@templatedoc()
10276 10277
def grid_sampler(x, grid, name=None):
    """
10278
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10279
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10280 10281 10282 10283
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10284
    interpolation value of 4 nearest corner points.
10285

H
haowang101779990 已提交
10286
    .. code-block:: text
10287

H
haowang101779990 已提交
10288 10289
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10290

H
haowang101779990 已提交
10291 10292
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10293

H
haowang101779990 已提交
10294 10295 10296
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10297

H
haowang101779990 已提交
10298 10299 10300 10301 10302 10303 10304 10305 10306
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10307

H
haowang101779990 已提交
10308 10309 10310 10311
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10312

H
haowang101779990 已提交
10313 10314 10315 10316
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10317

H
haowang101779990 已提交
10318 10319 10320 10321
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10322

H
haowang101779990 已提交
10323 10324
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10325 10326

    Args:
10327 10328 10329
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10330 10331

    Returns:
H
haowang101779990 已提交
10332
        Variable: Output of shape [N, C, H, W] data samples input X
10333 10334
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10335 10336 10337 10338 10339 10340 10341 10342
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10343

D
dengkaipeng 已提交
10344 10345 10346 10347 10348 10349 10350 10351 10352
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10353
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10354 10355
    ipts = {'X': x, 'Grid': grid}

10356
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10357 10358 10359
    return out


G
gmcather 已提交
10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10387 10388
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10427
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10428 10429 10430 10431 10432 10433 10434
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10435

H
heqiaozhi 已提交
10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10450 10451 10452 10453
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10454
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10455 10456
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10457
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10458 10459

    .. math::
H
haowang101779990 已提交
10460 10461 10462
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10463 10464

    Where:
H
haowang101779990 已提交
10465 10466
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10481

G
gmcather 已提交
10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10498 10499 10500 10501 10502 10503 10504 10505 10506 10507


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10508
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10509

Q
Qiao Longfei 已提交
10510
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10511 10512 10513
    For example:

    .. math::
H
haowang101779990 已提交
10514
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10515

Q
Qiao Longfei 已提交
10516
    In this formula:
10517 10518
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10519
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10520
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10521 10522 10523
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10524 10525
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10526 10527 10528
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10529
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10530
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10531
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10532 10533 10534 10535
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10536
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10537 10538 10539 10540

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10541 10542 10543
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10544 10545
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10546
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10547 10548 10549 10550

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10551
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10592 10593


S
shippingwang 已提交
10594
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10595 10596
    """
    **Shuffle Channel Operator**
10597

S
shippingwang 已提交
10598 10599 10600 10601 10602 10603
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10604
    
S
shippingwang 已提交
10605
    .. code-block:: text
10606

S
shippingwang 已提交
10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10635
    Args: 
S
shippingwang 已提交
10636 10637
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10638 10639

    Returns:
S
shippingwang 已提交
10640 10641
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10642 10643

    Raises:
S
shippingwang 已提交
10644
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10645 10646 10647

    Examples:
        .. code-block:: python
10648 10649

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10650
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10651 10652 10653
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10654
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10655 10656 10657 10658 10659 10660 10661 10662 10663

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10664
    return out
S
Add  
shippingwang 已提交
10665 10666


10667
@templatedoc()
D
dengkaipeng 已提交
10668
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10669 10670 10671 10672 10673 10674 10675 10676
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10677
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10678
        name (str, default None): The name of this layer.
10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10691
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10704 10705
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10706 10707 10708
    return out


S
sneaxiy 已提交
10709
class PyFuncRegistry(object):
S
sneaxiy 已提交
10710 10711 10712
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10713
        if func is None or not callable(func):
S
sneaxiy 已提交
10714 10715 10716
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10717
        # find named args using reflection
S
sneaxiy 已提交
10718 10719 10720 10721 10722 10723 10724
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10725 10726 10727
        '''
        Why record self here?

M
minqiyang 已提交
10728 10729
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10730
           to find the registered function corresponding
M
minqiyang 已提交
10731
           to :code:`idx`.
S
sneaxiy 已提交
10732

M
minqiyang 已提交
10733 10734
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10735
           whose reference count is 1 would cause
M
minqiyang 已提交
10736
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10737 10738
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10739
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10754 10755 10756 10757 10758 10759 10760 10761 10762
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10763

S
sneaxiy 已提交
10764 10765
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10766 10767

        ret = []
S
sneaxiy 已提交
10768 10769 10770
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10771 10772
                continue

S
sneaxiy 已提交
10773 10774
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10775

S
sneaxiy 已提交
10776 10777 10778
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10779

S
sneaxiy 已提交
10780
        return tuple(ret)
S
sneaxiy 已提交
10781 10782


S
sneaxiy 已提交
10783 10784 10785 10786
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10787

S
sneaxiy 已提交
10788 10789 10790 10791 10792 10793 10794 10795
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10796
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10797

S
sneaxiy 已提交
10798 10799
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10800 10801 10802 10803
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10804
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10805
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10806 10807
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10808 10809 10810 10811 10812
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10813
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10814
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10815
                                       None means no backward. Default None.
S
sneaxiy 已提交
10816
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10817
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10818 10819
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10820
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10821 10822 10823

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10824 10825

    Examples:
M
minqiyang 已提交
10826

S
sneaxiy 已提交
10827 10828 10829 10830 10831
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10832
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10833 10834
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10835
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10836 10837 10838
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10839
        >>>
S
sneaxiy 已提交
10840 10841 10842 10843 10844
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10845
        >>>     print(x)
S
sneaxiy 已提交
10846 10847 10848 10849 10850 10851
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10852
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10853 10854
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10855 10856
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10857 10858 10859 10860 10861 10862 10863 10864
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10865
    """
S
sneaxiy 已提交
10866
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10867 10868 10869
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10870
        x = [x]
S
sneaxiy 已提交
10871 10872
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10873

S
sneaxiy 已提交
10874 10875 10876
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10877
        out_list = [out]
S
sneaxiy 已提交
10878
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10879
        out_list = out
S
sneaxiy 已提交
10880 10881 10882
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10883

S
sneaxiy 已提交
10884 10885
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10886
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10887 10888

    for each_out in out_list:
S
sneaxiy 已提交
10889 10890
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10891 10892
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10893

S
sneaxiy 已提交
10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10909 10910 10911 10912

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10913 10914
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10915 10916 10917
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10918
        })
S
sneaxiy 已提交
10919
    return out
S
sneaxiy 已提交
10920 10921 10922


# For debug usage
S
sneaxiy 已提交
10923 10924 10925 10926
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
10940 10941 10942 10943 10944
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10957 10958 10959 10960
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10986

M
minqiyang 已提交
10987

M
minqiyang 已提交
10988
def huber_loss(input, label, delta):
10989
    """
M
minqiyang 已提交
10990 10991 10992
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10993 10994 10995 10996

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10997
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10998 10999 11000 11001

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11002
        huber\_loss = 0.5 * (label - input) * (label - input)
11003 11004 11005 11006 11007 11008 11009


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11010
        delta (float): The parameter of huber loss, which controls
11011 11012 11013
                       the range of outliers

    Returns:
M
minqiyang 已提交
11014
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11015 11016 11017 11018 11019

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
11020
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
11021
    """
M
minqiyang 已提交
11022
    helper = LayerHelper('huber_loss', **locals())
11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11034 11035


D
dengkaipeng 已提交
11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11098 11099 11100
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11101
          # edges must be directional
T
Tao Luo 已提交
11102 11103 11104 11105
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11106
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11107 11108
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11109
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11110
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11134 11135


C
ceci3 已提交
11136
from .ops import square
C
ceci3 已提交
11137
from .control_flow import equal
C
ceci3 已提交
11138 11139


C
ceci3 已提交
11140 11141 11142
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11143

C
ceci3 已提交
11144
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11145 11146

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11147
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11148 11149 11150 11151 11152
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11153 11154
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11155 11156 11157 11158 11159 11160 11161

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11162 11163 11164 11165 11166 11167 11168 11169
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11170 11171 11172 11173 11174 11175 11176
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11177
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11178 11179
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11180 11181
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11182 11183 11184 11185
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11186 11187 11188
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11189 11190 11191
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11192 11193


R
ruri 已提交
11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11223
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11224 11225 11226 11227 11228 11229 11230 11231 11232

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11233
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11294 11295 11296 11297


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11298

H
heqiaozhi 已提交
11299
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11300

H
fix doc  
heqiaozhi 已提交
11301
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11302 11303 11304
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11305
    
H
fix doc  
heqiaozhi 已提交
11306
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11307

H
heqiaozhi 已提交
11308
    Args:
H
fix doc  
heqiaozhi 已提交
11309 11310

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11311 11312
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11313 11314
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11315

H
heqiaozhi 已提交
11316
    Returns:
H
fix doc  
heqiaozhi 已提交
11317 11318 11319

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11320
    Examples:
H
fix doc  
heqiaozhi 已提交
11321

H
heqiaozhi 已提交
11322
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11323

H
heqiaozhi 已提交
11324 11325 11326 11327 11328 11329 11330 11331 11332 11333
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11334

H
heqiaozhi 已提交
11335 11336 11337 11338 11339 11340 11341 11342 11343
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11344
    return out
Z
zhoukunsheng 已提交
11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out