Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
88083632
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
88083632
编写于
1月 30, 2019
作者:
X
xuezhong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cell clip and proj clip, fix bug for h0
上级
294d5944
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
353 addition
and
135 deletion
+353
-135
paddle/fluid/operators/lstm_op.h
paddle/fluid/operators/lstm_op.h
+5
-3
paddle/fluid/operators/lstmp_op.cc
paddle/fluid/operators/lstmp_op.cc
+10
-11
paddle/fluid/operators/lstmp_op.h
paddle/fluid/operators/lstmp_op.h
+87
-35
paddle/fluid/operators/math/detail/lstm_cpu_kernel.h
paddle/fluid/operators/math/detail/lstm_cpu_kernel.h
+20
-18
paddle/fluid/operators/math/detail/lstm_gpu_kernel.h
paddle/fluid/operators/math/detail/lstm_gpu_kernel.h
+16
-14
paddle/fluid/operators/math/detail/lstm_kernel.h
paddle/fluid/operators/math/detail/lstm_kernel.h
+42
-13
paddle/fluid/operators/math/lstm_compute.cc
paddle/fluid/operators/math/lstm_compute.cc
+5
-4
paddle/fluid/operators/math/lstm_compute.cu
paddle/fluid/operators/math/lstm_compute.cu
+6
-6
paddle/fluid/operators/math/lstm_compute.h
paddle/fluid/operators/math/lstm_compute.h
+2
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+35
-9
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+3
-0
python/paddle/fluid/tests/unittests/test_lstmp_op.py
python/paddle/fluid/tests/unittests/test_lstmp_op.py
+122
-20
未找到文件。
paddle/fluid/operators/lstm_op.h
浏览文件 @
88083632
...
...
@@ -151,9 +151,10 @@ class LSTMKernel : public framework::OpKernel<T> {
lstm_value
.
output_value
=
out_t
.
data
<
T
>
();
lstm_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstm_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
T
cell_clip
=
0.0
;
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstm_value
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
device_ctx
,
lstm_value
,
frame_size
,
cur_batch_size
,
cell_clip
,
gate_act
,
cell_act
,
cand_act
);
lstm_value
.
prev_state_value
=
lstm_value
.
state_value
;
}
...
...
@@ -312,9 +313,10 @@ class LSTMGradKernel : public framework::OpKernel<T> {
}
int
cur_batch_size
=
bend
-
bstart
;
T
cell_clip
=
0.0
;
math
::
LstmUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstm_value
,
lstm_grad
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
cell_clip
,
gate_act
,
cell_act
,
cand_act
);
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
...
...
paddle/fluid/operators/lstmp_op.cc
浏览文件 @
88083632
...
...
@@ -73,12 +73,6 @@ class LSTMPOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0) of LSTMP operator should not be null after "
"Input(H0) provided."
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
ctx
->
SetOutputDim
(
"OrderedP0"
,
{
h_dims
[
0
],
proj_dims
[
1
]});
}
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
...
...
@@ -180,11 +174,6 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
"This LoDTensor is obtained in the forward and used in the "
"backward."
)
.
AsIntermediate
();
AddOutput
(
"OrderedP0"
,
"(Tensor) the projection of the initial hidden state "
"H0. This is a tensor with shape (N x P), where N is the "
"batch size and P is the hidden size."
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"use_peepholes"
,
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections."
)
...
...
@@ -193,6 +182,16 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, defalut: False) "
"whether to compute reversed LSTMP."
)
.
SetDefault
(
false
);
AddAttr
<
float
>
(
"cell_clip"
,
"(float, defalut: 0.0) "
"Clip for Tensor for cell state tensor when clip value is "
"greater than 0.0"
)
.
SetDefault
(
0.0
);
AddAttr
<
float
>
(
"proj_clip"
,
"(float, defalut: 0.0) "
"Clip for Tensor for projection tensor when clip value is "
"greater than 0.0"
)
.
SetDefault
(
0.0
);
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default: sigmoid)"
...
...
paddle/fluid/operators/lstmp_op.h
浏览文件 @
88083632
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
...
...
@@ -21,17 +22,50 @@ limitations under the License. */
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
using
platform
::
Transform
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
class
_ClipFunctor
{
public:
explicit
_ClipFunctor
(
const
T
min
,
const
T
max
)
:
min_
(
min
),
max_
(
max
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
if
(
x
<
min_
)
return
min_
;
else
if
(
x
>
max_
)
return
max_
;
else
return
x
;
}
private:
T
min_
;
T
max_
;
};
template
<
typename
T
>
class
_ClipGradFunctor
{
public:
explicit
_ClipGradFunctor
(
const
T
min
,
const
T
max
)
:
min_
(
min
),
max_
(
max
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
,
const
T
&
y
)
const
{
return
(
y
>
min_
&&
y
<
max_
)
?
x
:
0
;
}
private:
T
min_
;
T
max_
;
};
template
<
typename
DeviceContext
,
typename
T
>
inline
void
ReorderInitState
(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
src
,
...
...
@@ -60,6 +94,25 @@ class LSTMPKernel : public framework::OpKernel<T> {
PADDLE_THROW
(
"unsupported activation type"
);
}
void
Print
(
const
Tensor
&
t
,
std
::
string
name
)
const
{
VLOG
(
1
)
<<
name
<<
"size = "
<<
t
.
numel
();
size_t
size
=
t
.
numel
();
T
*
d
=
t
.
data
<
T
>
();
#ifdef PADDLE_WITH_CUDA
std
::
vector
<
T
>
vec
;
platform
::
DeviceContextPool
::
Instance
().
Get
(
t
.
place
())
->
Wait
();
if
(
platform
::
is_gpu_place
(
t
.
place
()))
{
vec
.
resize
(
size
);
cudaMemcpy
(
vec
.
data
(),
d
,
sizeof
(
T
)
*
size
,
cudaMemcpyDeviceToHost
);
d
=
vec
.
data
();
}
#endif
VLOG
(
1
)
<<
name
<<
" data_ptr = "
<<
static_cast
<
void
*>
(
d
);
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
VLOG
(
1
)
<<
d
[
i
]
<<
","
;
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
...
...
@@ -67,9 +120,11 @@ class LSTMPKernel : public framework::OpKernel<T> {
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
hidden_t0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
ordered_proj0
=
ctx
.
Output
<
Tensor
>
(
"OrderedP0"
);
auto
*
cell_t0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
proj_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"proj_clip"
));
auto
cell_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"cell_clip"
));
auto
*
batch_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
proj_out
=
ctx
.
Output
<
LoDTensor
>
(
"Projection"
);
...
...
@@ -110,6 +165,7 @@ class LSTMPKernel : public framework::OpKernel<T> {
}
lstmp_value
.
prev_state_value
=
nullptr
;
Tensor
ordered_c0
;
Tensor
ordered_h0
;
framework
::
Vector
<
size_t
>
order
(
batch_gate
->
lod
()[
2
]);
...
...
@@ -169,18 +225,10 @@ class LSTMPKernel : public framework::OpKernel<T> {
// Since the batch computing for LSTMP reorders the input sequence
// according to their length. The initialized hidden state also needs
// to reorder.
Tensor
ordered_h0
;
ordered_proj0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
VLOG
(
1
)
<<
"qxz h0 used"
;
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
hidden_t0
,
order
,
&
ordered_h0
,
true
);
blas
.
MatMul
(
ordered_h0
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
ordered_proj0
,
static_cast
<
T
>
(
0.0
));
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
proj0_dev
=
EigenMatrix
<
T
>::
From
(
*
ordered_proj0
);
ActCompute
(
cell_act
,
place
,
proj0_dev
,
proj0_dev
);
}
blas
.
MatMul
(
*
ordered_proj0
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
blas
.
MatMul
(
ordered_h0
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
...
...
@@ -189,8 +237,8 @@ class LSTMPKernel : public framework::OpKernel<T> {
lstmp_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstmp_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstmp_value
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
device_ctx
,
lstmp_value
,
frame_size
,
cur_batch_size
,
cell_clip
,
gate_act
,
cell_act
,
cand_act
);
lstmp_value
.
prev_state_value
=
lstmp_value
.
state_value
;
blas
.
MatMul
(
hidden_t
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
proj_t
,
static_cast
<
T
>
(
0.0
));
...
...
@@ -198,6 +246,14 @@ class LSTMPKernel : public framework::OpKernel<T> {
auto
proj_t_dev
=
EigenMatrix
<
T
>::
From
(
proj_t
);
ActCompute
(
cell_act
,
place
,
proj_t_dev
,
proj_t_dev
);
}
if
(
proj_clip
&&
proj_clip
>
0.0
)
{
T
*
x_data
=
proj_t
.
data
<
T
>
();
int64_t
numel
=
proj_t
.
numel
();
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
x_data
,
x_data
+
numel
,
x_data
,
_ClipFunctor
<
T
>
(
-
1.0
*
proj_clip
,
proj_clip
));
}
}
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
...
...
@@ -239,6 +295,9 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
auto
*
proj_out
=
ctx
.
Input
<
LoDTensor
>
(
"Projection"
);
auto
*
cell_out
=
ctx
.
Input
<
LoDTensor
>
(
"Cell"
);
auto
proj_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"proj_clip"
));
auto
cell_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"cell_clip"
));
auto
*
batch_gate
=
ctx
.
Input
<
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_cell_pre_act
=
ctx
.
Input
<
LoDTensor
>
(
"BatchCellPreAct"
);
auto
*
batch_hidden
=
ctx
.
Input
<
LoDTensor
>
(
"BatchHidden"
);
...
...
@@ -253,7 +312,6 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
auto
*
bias_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
ordered_proj0
=
ctx
.
Input
<
Tensor
>
(
"OrderedP0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
h0_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"H0"
));
...
...
@@ -363,6 +421,17 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
Tensor
cur_proj
=
batch_proj
.
Slice
(
bstart
,
bend
);
Tensor
proj_g
=
batch_proj_g
.
Slice
(
bstart
,
bend
);
if
(
proj_clip
&&
proj_clip
>
0.0
)
{
T
*
dx_data
=
proj_g
.
data
<
T
>
();
T
*
x_data
=
cur_proj
.
data
<
T
>
();
int64_t
numel
=
proj_g
.
numel
();
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
dx_data
,
dx_data
+
numel
,
x_data
,
dx_data
,
_ClipGradFunctor
<
T
>
(
-
1.0
*
proj_clip
,
proj_clip
));
}
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
cur_proj_dev
=
EigenMatrix
<
T
>::
From
(
cur_proj
);
auto
proj_g_dev
=
EigenMatrix
<
T
>::
From
(
proj_g
);
...
...
@@ -407,7 +476,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
int
cur_batch_size
=
bend
-
bstart
;
math
::
LstmUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstmp_value
,
lstmp_grad
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
cell_clip
,
gate_act
,
cell_act
,
cand_act
);
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
...
...
@@ -426,31 +495,14 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
h0
,
order
,
&
ordered_h0
,
true
);
if
(
weight_g
)
{
blas
.
MatMul
(
*
ordered_proj0
,
true
,
gate_g
,
false
,
static_cast
<
T
>
(
1.0
),
weight_g
,
static_cast
<
T
>
(
1.0
));
blas
.
MatMul
(
ordered_h0
,
true
,
gate_g
,
false
,
static_cast
<
T
>
(
1.0
)
,
weight_g
,
static_cast
<
T
>
(
1.0
));
}
}
if
(
h0
&&
(
h0_g
||
proj_weight_g
))
{
ordered_h0_g
.
mutable_data
<
T
>
(
h0_g
->
dims
(),
ctx
.
GetPlace
());
Tensor
proj0_g
;
proj0_g
.
Resize
({
in_dims
[
0
],
proj_weight
->
dims
()[
1
]});
proj0_g
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
blas
.
MatMul
(
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
proj0_g
,
static_cast
<
T
>
(
0.0
));
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
proj0_dev
=
EigenMatrix
<
T
>::
From
(
*
ordered_proj0
);
auto
proj0_g_dev
=
EigenMatrix
<
T
>::
From
(
proj0_g
);
ActGradCompute
(
cell_act
,
place
,
proj0_dev
,
proj0_dev
,
proj0_g_dev
,
proj0_g_dev
);
}
if
(
h0_g
)
{
blas
.
MatMul
(
proj0_g
,
false
,
*
proj_weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
ordered_h0_g
,
static_cast
<
T
>
(
0.0
));
}
if
(
proj_weight_g
)
{
blas
.
MatMul
(
ordered_h0
,
true
,
proj0_g
,
false
,
static_cast
<
T
>
(
1.0
),
proj_weight_g
,
static_cast
<
T
>
(
1.0
));
}
&
ordered_h0_g
,
static_cast
<
T
>
(
0.0
));
}
}
}
...
...
paddle/fluid/operators/math/detail/lstm_cpu_kernel.h
浏览文件 @
88083632
...
...
@@ -32,7 +32,8 @@ namespace detail {
template
<
class
T
,
class
Op
>
void
naive_lstm_forward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
ActivationType
active_node
,
int
frame_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
T
r_value_in
;
...
...
@@ -67,7 +68,7 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
value_in
[
i
]
=
r_value_in
;
value_ig
[
i
]
=
r_value_ig
;
...
...
@@ -82,7 +83,7 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
void
naive_lstm_backward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
ActivationType
active_node
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
T
r_value_in
;
...
...
@@ -135,7 +136,7 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
grad_in
[
i
]
=
r_grad_in
;
grad_ig
[
i
]
=
r_grad_ig
;
...
...
@@ -154,7 +155,8 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
void
avx_lstm_forward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
ActivationType
active_node
,
int
frame_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
#ifdef __AVX__
...
...
@@ -194,7 +196,7 @@ void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
value_in
[
i
]
=
r_value_in
;
value_ig
[
i
]
=
r_value_ig
;
...
...
@@ -210,7 +212,7 @@ void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
void
avx_lstm_backward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
ActivationType
active_node
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
#ifdef __AVX__
...
...
@@ -268,7 +270,7 @@ void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
grad_in
[
i
]
=
r_grad_in
;
grad_ig
[
i
]
=
r_grad_ig
;
...
...
@@ -292,27 +294,27 @@ void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
void
cpu_lstm_forward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
ActivationType
active_node
,
ActivationType
active_gat
e
,
ActivationType
active_state
)
{
T
cell_clip
,
ActivationType
active_nod
e
,
ActivationType
active_
gate
,
ActivationType
active_
state
)
{
if
(
Op
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
std
::
is_same
<
T
,
float
>::
value
))
{
avx_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
active_node
,
active_gate
,
active_state
);
avx_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
cell_clip
,
active_
node
,
active_
gate
,
active_state
);
}
else
{
naive_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
active_node
,
active_gate
,
active_state
);
naive_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
cell_clip
,
active_
node
,
active_
gate
,
active_state
);
}
}
template
<
class
T
,
class
Op
>
void
cpu_lstm_backward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
ActivationType
active_node
,
int
frame_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
if
(
Op
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
std
::
is_same
<
T
,
float
>::
value
))
{
avx_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
active_node
,
active_gate
,
active_state
);
avx_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
cell_clip
,
active_
node
,
active_
gate
,
active_state
);
}
else
{
naive_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
naive_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
cell_clip
,
active_node
,
active_gate
,
active_state
);
}
}
...
...
paddle/fluid/operators/math/detail/lstm_gpu_kernel.h
浏览文件 @
88083632
...
...
@@ -31,7 +31,8 @@ namespace detail {
*/
template
<
class
T
,
class
Op
,
bool
is_batch
>
__global__
void
KeLstmForward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
,
int
batch_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
...
@@ -72,7 +73,7 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frame_size,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
value
.
gate_value
[
frame_idx
]
=
r_value_in
;
value
.
gate_value
[
frame_idx
+
frame_size
]
=
r_value_ig
;
...
...
@@ -91,7 +92,8 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frame_size,
template
<
class
T
,
class
Op
,
bool
is_batch
>
__global__
void
KeLstmBackward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
,
int
batch_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
...
@@ -148,8 +150,8 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_grad_in
,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
active_node
,
active_gate
,
active_state
);
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
&
cell_clip
,
active_
node
,
active_
gate
,
active_state
);
grad
.
gate_grad
[
frame_idx
]
=
r_grad_in
;
grad
.
gate_grad
[
frame_idx
+
frame_size
]
=
r_grad_ig
;
...
...
@@ -185,8 +187,8 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
void
gpu_lstm_forward
(
const
platform
::
DeviceContext
&
context
,
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
,
ActivationType
active_gat
e
,
ActivationType
active_state
)
{
T
cell_clip
,
ActivationType
active_nod
e
,
ActivationType
active_
gate
,
ActivationType
active_
state
)
{
dim3
threads
;
dim3
grid
;
if
(
batch_size
==
1
)
{
...
...
@@ -205,12 +207,12 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op,
if
(
batch_size
==
1
)
{
KeLstmForward
<
T
,
Op
,
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
frame_size
,
batch_size
,
active_node
,
active_gate
,
op
,
value
,
frame_size
,
batch_size
,
cell_clip
,
active_node
,
active_gate
,
active_state
);
}
else
{
KeLstmForward
<
T
,
Op
,
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
frame_size
,
batch_size
,
active_node
,
active_gate
,
op
,
value
,
frame_size
,
batch_size
,
cell_clip
,
active_node
,
active_gate
,
active_state
);
}
}
...
...
@@ -218,7 +220,7 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op,
template
<
class
T
,
class
Op
>
void
gpu_lstm_backward
(
const
platform
::
DeviceContext
&
context
,
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
dim3
threads
;
...
...
@@ -239,13 +241,13 @@ void gpu_lstm_backward(const platform::DeviceContext& context, Op op,
if
(
batch_size
==
1
)
{
KeLstmBackward
<
T
,
Op
,
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
grad
,
frame_size
,
batch_size
,
active_node
,
active_gat
e
,
active_state
);
op
,
value
,
grad
,
frame_size
,
batch_size
,
cell_clip
,
active_nod
e
,
active_
gate
,
active_
state
);
}
else
{
KeLstmBackward
<
T
,
Op
,
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
grad
,
frame_size
,
batch_size
,
active_node
,
active_gat
e
,
active_state
);
op
,
value
,
grad
,
frame_size
,
batch_size
,
cell_clip
,
active_nod
e
,
active_
gate
,
active_
state
);
}
}
...
...
paddle/fluid/operators/math/detail/lstm_kernel.h
浏览文件 @
88083632
...
...
@@ -29,7 +29,7 @@ class lstm {
public:
HOSTDEVICE
void
operator
()(
T
*
value_in
,
T
*
value_ig
,
T
*
value_fg
,
T
*
value_og
,
T
*
prev_state
,
T
*
state
,
T
*
state_atv
,
T
*
output
,
T
*
checkI
,
T
*
checkF
,
T
*
checkO
,
T
*
checkI
,
T
*
checkF
,
T
*
checkO
,
T
*
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
...
...
@@ -37,6 +37,14 @@ class lstm {
*
value_ig
=
activation
(
*
value_ig
+
(
*
prev_state
)
*
(
*
checkI
),
active_gate
);
*
value_fg
=
activation
(
*
value_fg
+
(
*
prev_state
)
*
(
*
checkF
),
active_gate
);
*
state
=
(
*
value_in
)
*
(
*
value_ig
)
+
(
*
prev_state
)
*
(
*
value_fg
);
if
(
*
cell_clip
>
0.0
)
{
if
(
*
state
<
-
1.0
*
(
*
cell_clip
))
{
*
state
=
-
1.0
*
(
*
cell_clip
);
}
if
(
*
state
>
*
cell_clip
)
{
*
state
=
*
cell_clip
;
}
}
*
value_og
=
activation
(
*
value_og
+
(
*
state
)
*
(
*
checkO
),
active_gate
);
*
state_atv
=
activation
(
*
state
,
active_state
);
*
output
=
(
*
value_og
)
*
(
*
state_atv
);
...
...
@@ -52,7 +60,7 @@ class lstm {
__m256
*
value_fg
,
__m256
*
value_og
,
__m256
*
prev_state
,
__m256
*
state
,
__m256
*
state_atv
,
__m256
*
output
,
__m256
*
checkI
,
__m256
*
checkF
,
__m256
*
checkO
,
__m256
*
checkF
,
__m256
*
checkO
,
T
*
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
...
...
@@ -65,6 +73,12 @@ class lstm {
active_gate
);
*
state
=
_mm256_add_ps
(
_mm256_mul_ps
(
*
value_in
,
*
value_ig
),
_mm256_mul_ps
(
*
prev_state
,
*
value_fg
));
if
(
*
cell_clip
>
0.0
f
)
{
__m256
min
=
_mm256_set1_ps
(
0.0
f
-
*
cell_clip
);
__m256
max
=
_mm256_set1_ps
(
*
cell_clip
);
*
state
=
_mm256_min_ps
(
max
,
*
state
);
*
state
=
_mm256_max_ps
(
min
,
*
state
);
}
*
value_og
=
activation
(
_mm256_add_ps
(
*
value_og
,
_mm256_mul_ps
(
*
state
,
*
checkO
)),
active_gate
);
*
state_atv
=
activation
(
*
state
,
active_state
);
...
...
@@ -86,15 +100,21 @@ class lstm {
T
*
prev_state
,
T
*
prev_state_grad
,
T
*
state
,
T
*
state_grad
,
T
*
state_atv
,
T
*
output_grad
,
T
*
checkI
,
T
*
checkF
,
T
*
checkO
,
T
*
checkIGrad
,
T
*
checkFGrad
,
T
*
checkOGrad
,
T
*
checkFGrad
,
T
*
checkOGrad
,
T
*
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
*
grad_og
=
activation
((
*
output_grad
)
*
(
*
state_atv
),
*
value_og
,
active_gate
);
*
state_grad
+=
activation
((
*
output_grad
)
*
(
*
value_og
),
*
state_atv
,
active_state
)
+
(
*
grad_og
)
*
(
*
checkO
);
if
(
*
cell_clip
>
0.0
f
)
{
if
(
*
state
>=
(
*
cell_clip
)
||
*
state
<=
(
0.0
f
-
(
*
cell_clip
)))
{
*
state_grad
=
0.0
f
;
}
else
{
*
state_grad
+=
activation
((
*
output_grad
)
*
(
*
value_og
),
*
state_atv
,
active_state
)
+
(
*
grad_og
)
*
(
*
checkO
);
}
}
*
grad_in
=
activation
((
*
state_grad
)
*
(
*
value_ig
),
*
value_in
,
active_node
);
*
grad_ig
=
activation
((
*
state_grad
)
*
(
*
value_in
),
*
value_ig
,
active_gate
);
*
grad_fg
=
...
...
@@ -117,15 +137,24 @@ class lstm {
__m256
*
prev_state
,
__m256
*
prev_state_grad
,
__m256
*
state
,
__m256
*
state_grad
,
__m256
*
state_atv
,
__m256
*
output_grad
,
__m256
*
checkI
,
__m256
*
checkF
,
__m256
*
checkO
,
__m256
*
checkIGrad
,
__m256
*
checkFGrad
,
__m256
*
checkOGrad
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
__m256
*
checkFGrad
,
__m256
*
checkOGrad
,
T
*
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
*
grad_og
=
activation
(
_mm256_mul_ps
(
*
output_grad
,
*
state_atv
),
*
value_og
,
active_gate
);
*
state_grad
=
_mm256_add_ps
(
activation
(
_mm256_mul_ps
(
*
output_grad
,
*
value_og
),
*
state_atv
,
active_state
),
*
state_grad
);
*
state_grad
=
_mm256_add_ps
(
_mm256_mul_ps
(
*
grad_og
,
*
checkO
),
*
state_grad
);
if
(
*
cell_clip
>
0.0
f
)
{
T
*
state_
=
reinterpret_cast
<
T
*>
(
state
);
if
(
*
state_
>=
(
*
cell_clip
)
||
*
state_
<=
(
0.0
f
-
(
*
cell_clip
)))
{
*
state_grad
=
_mm256_set1_ps
(
0.0
f
);
}
else
{
*
state_grad
=
_mm256_add_ps
(
activation
(
_mm256_mul_ps
(
*
output_grad
,
*
value_og
),
*
state_atv
,
active_state
),
*
state_grad
);
*
state_grad
=
_mm256_add_ps
(
_mm256_mul_ps
(
*
grad_og
,
*
checkO
),
*
state_grad
);
}
}
*
grad_in
=
activation
(
_mm256_mul_ps
(
*
state_grad
,
*
value_ig
),
*
value_in
,
active_node
);
*
grad_ig
=
activation
(
_mm256_mul_ps
(
*
state_grad
,
*
value_in
),
*
value_ig
,
...
...
paddle/fluid/operators/math/lstm_compute.cc
浏览文件 @
88083632
...
...
@@ -24,12 +24,12 @@ template <class T>
struct
LstmUnitFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
&
gate_act
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
detail
::
cpu_lstm_forward
(
detail
::
forward
::
lstm
<
T
>
(),
value
,
frame_size
,
cand_act
,
gate_act
,
cell_act
);
c
ell_clip
,
c
and_act
,
gate_act
,
cell_act
);
value
.
gate_value
+=
frame_size
*
4
;
value
.
state_value
+=
frame_size
;
value
.
state_active_value
+=
frame_size
;
...
...
@@ -45,13 +45,14 @@ template <class T>
struct
LstmUnitGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
detail
::
cpu_lstm_backward
(
detail
::
backward
::
lstm
<
T
>
(),
value
,
grad
,
frame_size
,
cand_act
,
gate_act
,
cell_act
);
frame_size
,
cell_clip
,
cand_act
,
gate_act
,
cell_act
);
value
.
gate_value
+=
frame_size
*
4
;
value
.
state_value
+=
frame_size
;
...
...
paddle/fluid/operators/math/lstm_compute.cu
浏览文件 @
88083632
...
...
@@ -24,12 +24,12 @@ template <class T>
struct
LstmUnitFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
&
gate_act
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
detail
::
gpu_lstm_forward
<
T
>
(
context
,
detail
::
forward
::
lstm
<
T
>
(),
value
,
frame_size
,
batch_size
,
c
and_act
,
gate
_act
,
cell_act
);
frame_size
,
batch_size
,
c
ell_clip
,
cand
_act
,
gate_act
,
cell_act
);
}
};
...
...
@@ -37,13 +37,13 @@ template <class T>
struct
LstmUnitGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
detail
::
gpu_lstm_backward
(
context
,
detail
::
backward
::
lstm
<
T
>
(),
value
,
grad
,
frame_size
,
batch_size
,
c
and_act
,
gate
_act
,
cell_act
);
frame_size
,
batch_size
,
c
ell_clip
,
cand
_act
,
gate_act
,
cell_act
);
}
};
...
...
paddle/fluid/operators/math/lstm_compute.h
浏览文件 @
88083632
...
...
@@ -50,7 +50,7 @@ template <typename DeviceContext, typename T>
class
LstmUnitFunctor
{
public:
static
void
compute
(
const
DeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
);
...
...
@@ -61,7 +61,7 @@ class LstmUnitGradFunctor {
public:
static
void
compute
(
const
DeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
&
gate_act
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
);
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
88083632
...
...
@@ -659,14 +659,18 @@ def lstm(input,
def
dynamic_lstmp
(
input
,
size
,
proj_size
,
h_0
=
None
,
c_0
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_peepholes
=
True
,
cell_clip
=
None
,
proj_clip
=
None
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
proj_activation
=
'
tanh
'
,
proj_activation
=
'
identity
'
,
dtype
=
'float32'
,
name
=
None
):
"""
...
...
@@ -736,6 +740,12 @@ def dynamic_lstmp(input,
mini-batch, D is the hidden size.
size(int): 4 * hidden size.
proj_size(int): The size of projection output.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the projection size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight and projection weight.
...
...
@@ -770,6 +780,11 @@ def dynamic_lstmp(input,
the bias is initialized zero. Default: None.
use_peepholes(bool): Whether to enable diagonal/peephole connections,
default `True`.
cell_clip(float): If provided the cell state is clipped
by this value prior to the cell output activation.
proj_clip(float): If `num_proj > 0` and `proj_clip` is
provided, then the projected values are clipped elementwise to within
`[-proj_clip, proj_clip]`.
is_reverse(bool): Whether to compute reversed LSTM, default `False`.
gate_activation(str): The activation for input gate, forget gate and
output gate. Choices = ["sigmoid", "tanh", "relu",
...
...
@@ -781,7 +796,7 @@ def dynamic_lstmp(input,
default "tanh".
proj_activation(str): The activation for projection output.
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "
tanh
".
default "
identity
".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
...
...
@@ -831,25 +846,36 @@ def dynamic_lstmp(input,
batch_hidden
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_gate
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_cell_pre_act
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'ProjWeight'
:
proj_weight
,
'Bias'
:
bias
}
batch_size
=
input
.
shape
[
0
]
if
h_0
:
assert
h_0
.
shape
==
(
batch_size
,
proj_size
),
\
'The shape of h0 should be (batch_size, %d)'
%
proj_size
inputs
[
'H0'
]
=
h_0
if
c_0
:
assert
c_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of c0 should be (batch_size, %d)'
%
size
inputs
[
'C0'
]
=
c_0
helper
.
append_op
(
type
=
'lstmp'
,
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'ProjWeight'
:
proj_weight
,
'Bias'
:
bias
},
inputs
=
inputs
,
outputs
=
{
'Projection'
:
projection
,
'Cell'
:
cell
,
'OrderedP0'
:
ordered_proj0
,
'BatchHidden'
:
batch_hidden
,
'BatchGate'
:
batch_gate
,
'BatchCellPreAct'
:
batch_cell_pre_act
},
attrs
=
{
'use_peepholes'
:
use_peepholes
,
'cell_clip'
:
cell_clip
,
'proj_clip'
:
proj_clip
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'cell_activation'
:
cell_activation
,
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
88083632
...
...
@@ -294,6 +294,7 @@ class OpTest(unittest.TestCase):
# fetch_list = map(block.var, fetch_list)
if
not
isinstance
(
fetch_list
[
0
],
fluid
.
framework
.
Variable
):
fetch_list
=
list
(
map
(
block
.
var
,
fetch_list
))
#import pdb; pdb.set_trace()
outs
=
executor
.
run
(
program
,
feed
=
feed_map
,
fetch_list
=
fetch_list
,
...
...
@@ -468,8 +469,10 @@ class OpTest(unittest.TestCase):
delta
=
numeric_grad_delta
,
in_place
=
in_place
)
for
input_to_check
in
inputs_to_check
]
#import pdb; pdb.set_trace()
analytic_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
output_names
,
no_grad_set
)
#import pdb; pdb.set_trace()
self
.
_assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
max_relative_error
,
...
...
python/paddle/fluid/tests/unittests/test_lstmp_op.py
浏览文件 @
88083632
...
...
@@ -36,12 +36,15 @@ def lstmp(
w_b
=
None
,
# 1 x 4D
w_c
=
None
,
# 1 x 3D
is_reverse
=
False
,
proj_clip
=
0.0
,
cell_clip
=
0.0
,
act_gate
=
None
,
act_cell
=
None
,
act_cand
=
None
,
act_proj
=
None
):
def
_step
(
x
,
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
,
act_proj
):
def
_step
(
x
,
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
proj_clip
,
cell_clip
,
act_gate
,
act_cell
,
act_cand
,
act_proj
):
#import pdb; pdb.set_trace()
g
=
np
.
dot
(
r_pre
,
w_r
)
# 1 x 4D
g
=
g
+
x
g
=
np
.
reshape
(
g
,
(
1
,
g
.
size
))
...
...
@@ -55,6 +58,21 @@ def lstmp(
g_f
=
act_gate
(
g_f
+
w_fc
*
c_pre
)
# 1 x D
c
=
g_f
*
c_pre
+
g_i
*
act_cand
(
c
)
# 1 x D
def
array_clip
(
a
,
clip
):
#print('clip:{}'.format(clip))
#print('old' + str(a))
size
=
np
.
prod
(
a
.
shape
)
new_a
=
np
.
reshape
(
a
,
(
size
))
for
i
in
range
(
size
):
new_a
[
i
]
=
max
(
new_a
[
i
],
-
1.0
*
clip
)
new_a
[
i
]
=
min
(
new_a
[
i
],
clip
)
new_a
=
np
.
reshape
(
new_a
,
a
.
shape
)
#print('new' + str(new_a))
return
new_a
if
cell_clip
>
0.0
:
c
=
array_clip
(
c
,
cell_clip
)
if
w_c
is
None
:
g_o
=
act_gate
(
g_o
)
# 1 x D
else
:
...
...
@@ -64,6 +82,8 @@ def lstmp(
# projection
r
=
np
.
dot
(
h
,
w_rh
)
r
=
act_proj
(
r
)
if
proj_clip
>
0.0
:
r
=
array_clip
(
r
,
proj_clip
)
return
r
,
c
def
_reverse
(
x
,
offset
):
...
...
@@ -87,13 +107,15 @@ def lstmp(
# compute one sequence
seq_len
=
lod
[
0
][
i
]
x
=
input
[
offset
[
i
]:
offset
[
i
+
1
],
:]
r_pre
=
np
.
dot
(
h0
[
i
],
w_rh
)
# 1 x P
r_pre
=
act_proj
(
r_pre
)
#r_pre = np.dot(h0[i], w_rh) # 1 x P
r_pre
=
h0
[
i
]
#r_pre = act_proj(r_pre)
c_pre
=
c0
[
i
]
# 1 x D
for
j
in
range
(
seq_len
):
# compute one step
r_pre
,
c_pre
=
_step
(
x
[
j
],
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
,
act_proj
)
r_pre
,
c_pre
=
_step
(
x
[
j
],
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
proj_clip
,
cell_clip
,
act_gate
,
act_cell
,
act_cand
,
act_proj
)
projection
.
append
(
r_pre
.
flatten
())
cell
.
append
(
c_pre
.
flatten
())
...
...
@@ -112,24 +134,98 @@ class TestLstmpOp(LstmTest.TestLstmOp):
def
reset_argument
(
self
):
pass
def
setUp2
(
self
):
self
.
set_argument
()
# projection size
self
.
P
=
2
self
.
reset_argument
()
self
.
op_type
=
'lstmp'
self
.
act_proj
=
'identity'
self
.
use_peepholes
=
False
self
.
has_initial_state
=
True
self
.
lod
=
[[
5
]]
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
proj_clip
=
0.5
cell_clip
=
0.0
#import pdb; pdb.set_trace()
x
=
np
.
array
([[
-
0.50806344
,
0.50909436
],
\
[
-
0.50087136
,
0.4904187
],
\
[
-
0.48933774
,
0.50408053
],
\
[
0.00896523
,
0.00770854
],
\
[
-
0.00851139
,
-
0.01005108
]])
wx
=
np
.
array
([[
0.2932311
,
-
0.8829277
,
1.100133
,
0.8197811
,
-
0.8194872
,
-
0.829262
,
0.7708865
,
-
0.62339246
,
-
0.7656475
,
0.4283645
,
-
0.27164033
,
-
0.3600223
],
\
[
-
0.609142
,
0.25025278
,
0.15731744
,
-
0.66051376
,
-
0.70994514
,
0.8344964
,
-
0.00551117
,
-
0.7072167
,
-
0.63929003
,
-
0.52340907
,
-
0.8842589
,
0.9531688
]])
x
=
np
.
dot
(
x
,
wx
)
w
=
np
.
array
([[
0.7808204
,
-
0.7412322
,
-
0.9458036
,
-
0.01664658
,
0.7930616
,
0.10208707
,
0.20036687
,
-
0.16743736
,
1.0295134
,
-
0.3118722
,
0.02241168
,
0.3154219
],
\
[
-
0.29026014
,
0.24638331
,
-
0.5435432
,
0.87635124
,
-
0.96091515
,
-
0.1411362
,
0.58606523
,
-
0.38996056
,
-
0.9003789
,
0.8540163
,
-
0.8831781
,
-
0.28499633
]])
w_rh
=
np
.
array
([[
0.15685119
,
0.05694652
],
[
-
0.9641068
,
-
1.5106804
],
[
0.3599193
,
1.2540514
]])
w_b
=
np
.
array
([[
-
0.49999997
,
0.5
,
-
0.49999997
,
-
0.5
,
0.5
,
0.5
,
0.49999997
,
-
0.49999997
,
0.49999997
,
-
0.5
,
0.49999997
,
0.5
]])
h0
=
np
.
array
([[
-
1.3392334e-04
,
-
6.8468950e-04
]])
c0
=
np
.
array
([[
4.5552300e-04
,
1.3302206e-03
,
-
3.6721351e-04
]])
w_c
=
None
self
.
lod
=
[[
5
]]
#import pdb; pdb.set_trace()
r
,
c
=
lstmp
(
x
,
self
.
lod
,
h0
,
c0
,
w
,
w_rh
,
w_b
,
w_c
,
self
.
is_reverse
,
proj_clip
,
cell_clip
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cell
],
ACTIVATION
[
self
.
act_cand
],
ACTIVATION
[
self
.
act_proj
])
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
,
'ProjWeight'
:
w_rh
}
self
.
inputs
[
'Bias'
]
=
w_b
if
self
.
has_initial_state
:
self
.
inputs
[
'H0'
]
=
h0
self
.
inputs
[
'C0'
]
=
c0
self
.
outputs
=
{
'Projection'
:
(
r
,
self
.
lod
),
'Cell'
:
(
c
,
self
.
lod
),
}
self
.
attrs
=
{
'use_peepholes'
:
self
.
use_peepholes
,
'is_reverse'
:
self
.
is_reverse
,
'proj_clip'
:
proj_clip
,
'cell_clip'
:
cell_clip
,
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
,
'proj_activation'
:
self
.
act_proj
}
def
setUp
(
self
):
self
.
set_argument
()
# projection size
self
.
P
=
10
#self.D = 9
self
.
act_proj
=
self
.
act_cell
self
.
reset_argument
()
self
.
op_type
=
'lstmp'
#self.use_peepholes=False
#self.lod=[[7]]
#self.act_proj='identity'
#self.act_proj='tanh'
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
#np.random.seed=123
x
=
np
.
random
.
normal
(
size
=
(
T
,
4
*
self
.
D
)).
astype
(
'float64'
)
if
self
.
has_initial_state
:
h0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
D
)).
astype
(
'float64'
)
h0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
P
)).
astype
(
'float64'
)
c0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
D
)).
astype
(
'float64'
)
else
:
h0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
h0
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
c0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
w
=
np
.
random
.
normal
(
size
=
(
self
.
P
,
4
*
self
.
D
)).
astype
(
'float64'
)
if
self
.
use_peepholes
:
...
...
@@ -140,9 +236,13 @@ class TestLstmpOp(LstmTest.TestLstmOp):
w_b
=
b
[:,
0
:
4
*
self
.
D
]
w_c
=
b
[:,
4
*
self
.
D
:]
if
self
.
use_peepholes
else
None
w_rh
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
self
.
P
)).
astype
(
'float64'
)
proj_clip
=
0.1
cell_clip
=
0.1
#import pdb; pdb.set_trace()
r
,
c
=
lstmp
(
x
,
self
.
lod
,
h0
,
c0
,
w
,
w_rh
,
w_b
,
w_c
,
self
.
is_reverse
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cell
],
ACTIVATION
[
self
.
act_cand
],
ACTIVATION
[
self
.
act_proj
])
proj_clip
,
cell_clip
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cell
],
ACTIVATION
[
self
.
act_cand
],
ACTIVATION
[
self
.
act_proj
])
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
,
'ProjWeight'
:
w_rh
}
...
...
@@ -159,6 +259,8 @@ class TestLstmpOp(LstmTest.TestLstmOp):
self
.
attrs
=
{
'use_peepholes'
:
self
.
use_peepholes
,
'is_reverse'
:
self
.
is_reverse
,
'proj_clip'
:
proj_clip
,
'cell_clip'
:
cell_clip
,
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
,
...
...
@@ -171,14 +273,14 @@ class TestLstmpOp(LstmTest.TestLstmOp):
def
test_check_grad
(
self
):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
(
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
)
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
)
class
TestLstmpOpHasInitial
(
TestLstmpOp
):
...
...
@@ -188,7 +290,6 @@ class TestLstmpOpHasInitial(TestLstmpOp):
def
test_check_grad
(
self
):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
...
@@ -196,11 +297,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'H0'
,
'C0'
],
[
'Projection'
],
numeric_grad_delta
=
0.0000005
,
max_relative_error
=
1e-2
)
def
test_check_grad_ingore_bias
(
self
):
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
...
@@ -208,11 +309,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
[
'Input'
,
'ProjWeight'
,
'Weight'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'Bias'
))
def
test_check_grad_ingore_weight
(
self
):
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
...
@@ -220,11 +321,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
[
'Input'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'Weight'
))
def
test_check_grad_ingore_proj_weight
(
self
):
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
...
@@ -232,11 +333,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'ProjWeight'
))
def
test_check_grad_ingore_input
(
self
):
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
...
@@ -244,11 +345,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
[
'Weight'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'Input'
))
def
test_check_grad_ingore_h0
(
self
):
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
...
@@ -256,11 +357,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'C0'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'H0'
))
def
test_check_grad_ingore_c0
(
self
):
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
...
@@ -268,6 +369,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'H0'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'C0'
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录