Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
3ab32532
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3ab32532
编写于
6月 13, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add conv3d Python API
上级
431491a2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
166 addition
and
2 deletion
+166
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+166
-2
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
3ab32532
...
...
@@ -1305,8 +1305,6 @@ def conv2d(input,
conv2d = fluid.layers.conv2d(
input=data, num_filters=2, filter_size=3, act="relu")
"""
if
stride
is
None
:
stride
=
[
1
,
1
]
num_channels
=
input
.
shape
[
1
]
...
...
@@ -1369,6 +1367,172 @@ def conv2d(input,
return
helper
.
append_activation
(
pre_act
)
def
conv3d
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
use_mkldnn
=
False
,
act
=
None
,
name
=
None
):
"""
**Convlution3D Layer**
The convolution3D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are in NCHW format. Where N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
The details of convolution layer, please refer UFLDL's `convolution,
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W
\\
ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`
\\
ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`
\\
sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D_{out}&=
\\
frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1
\\\\
H_{out}&=
\\
frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1
\\\\
W_{out}&=
\\
frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Args:
input (Variable): The input image with [N, C, D, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not.
act (str): Activation type. Default: None
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The tensor variable storing the convolution and
\
non-linearity activation result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[3, 12, 32, 32], dtype='float32')
conv2d = fluid.layers.conv3d(
input=data, num_filters=2, filter_size=3, act="relu")
"""
l_type
=
'conv3d'
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
num_channels
=
input
.
shape
[
1
]
if
groups
is
None
:
num_filter_channels
=
num_channels
else
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'filter_size'
)
stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
padding
=
utils
.
convert_to_list
(
padding
,
3
,
'padding'
)
dilation
=
utils
.
convert_to_list
(
dilation
,
3
,
'dilation'
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
input_shape
=
input
.
shape
filter_shape
=
[
num_filters
,
num_filter_channels
]
+
filter_size
def
_get_default_param_initializer
():
std
=
(
2.0
/
(
filter_size
[
0
]
**
3
*
num_channels
))
**
0.5
return
Normal
(
0.0
,
std
,
0
)
filter_param
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
filter_shape
,
dtype
=
dtype
,
default_initializer
=
_get_default_param_initializer
())
pre_bias
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
l_type
,
inputs
=
{
'Input'
:
input
,
'Filter'
:
filter_param
,
},
outputs
=
{
"Output"
:
pre_bias
},
attrs
=
{
'strides'
:
stride
,
'paddings'
:
padding
,
'dilations'
:
dilation
,
'groups'
:
groups
,
'use_cudnn'
:
use_cudnn
,
'use_mkldnn'
:
use_mkldnn
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
dim_start
=
1
,
dim_end
=
3
)
return
helper
.
append_activation
(
pre_act
)
def
sequence_pool
(
input
,
pool_type
):
"""
This function add the operator for sequence pooling.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录