Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2b6c0c09
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2b6c0c09
编写于
11月 25, 2018
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unit test
上级
cc6ef41d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
125 addition
and
16 deletion
+125
-16
paddle/fluid/operators/lookup_table_op.cc
paddle/fluid/operators/lookup_table_op.cc
+1
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+4
-0
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+104
-6
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+16
-10
未找到文件。
paddle/fluid/operators/lookup_table_op.cc
浏览文件 @
2b6c0c09
...
...
@@ -89,6 +89,7 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
false
);
// for parameter prefetch
AddAttr
<
bool
>
(
"remote_prefetch"
,
""
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"trainer_id"
,
"trainer id from 0 ~ worker_num."
).
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int64_t
>>
(
"height_sections"
,
"Height for each output SelectedRows."
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
2b6c0c09
...
...
@@ -285,6 +285,7 @@ def embedding(input,
size
,
is_sparse
=
False
,
is_distributed
=
False
,
remote_prefetch
=
False
,
padding_idx
=
None
,
param_attr
=
None
,
dtype
=
'float32'
):
...
...
@@ -326,6 +327,8 @@ def embedding(input,
"""
helper
=
LayerHelper
(
'embedding'
,
**
locals
())
if
remote_prefetch
:
assert
is_sparse
is
True
and
is_distributed
is
False
w
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
size
,
dtype
=
dtype
,
is_bias
=
False
)
tmp
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
...
@@ -339,6 +342,7 @@ def embedding(input,
attrs
=
{
'is_sparse'
:
is_sparse
,
'is_distributed'
:
is_distributed
,
'remote_prefetch'
:
remote_prefetch
,
'padding_idx'
:
padding_idx
})
return
tmp
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
2b6c0c09
...
...
@@ -447,19 +447,23 @@ class TestEmptyPserverOptimizeBlocks(TranspilerTest):
class
TestDistLookupTableBase
(
TranspilerTest
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
,
remote_prefetch
=
False
):
self
.
table_size
=
1000
self
.
emb_size
=
64
self
.
lookup_table_name
=
'shared_w'
def
emb_pool
(
ids
,
table_name
,
is_distributed
):
def
emb_pool
(
ids
,
table_name
,
is_distributed
,
remote_prefetch
):
emb
=
fluid
.
layers
.
embedding
(
input
=
ids
,
size
=
[
self
.
table_size
,
self
.
emb_size
],
dtype
=
'float32'
,
param_attr
=
table_name
,
is_sparse
=
is_sparse
,
is_distributed
=
is_distributed
)
is_distributed
=
is_distributed
,
remote_prefetch
=
remote_prefetch
)
pool
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'average'
)
return
pool
...
...
@@ -469,9 +473,12 @@ class TestDistLookupTableBase(TranspilerTest):
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
profile_ids
=
fluid
.
layers
.
data
(
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
title_emb
=
emb_pool
(
title_ids
,
self
.
lookup_table_name
,
is_distributed
)
brand_emb
=
emb_pool
(
brand_ids
,
self
.
lookup_table_name
,
is_distributed
)
profile_emb
=
emb_pool
(
profile_ids
,
"profile_emb"
,
False
)
title_emb
=
emb_pool
(
title_ids
,
self
.
lookup_table_name
,
is_distributed
,
False
)
brand_emb
=
emb_pool
(
brand_ids
,
self
.
lookup_table_name
,
is_distributed
,
False
)
profile_emb
=
emb_pool
(
profile_ids
,
"profile_emb"
,
False
,
remote_prefetch
)
fc0
=
fluid
.
layers
.
concat
(
input
=
[
title_emb
,
brand_emb
,
profile_emb
],
axis
=
1
)
predict
=
fluid
.
layers
.
fc
(
input
=
fc0
,
...
...
@@ -575,6 +582,57 @@ class TestDistLookupTable(TestDistLookupTableBase):
startup_ops
)
class
TestRemoteLookupTable
(
TestDistLookupTableBase
):
def
net_conf
(
self
):
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
False
,
remote_prefetch
=
True
)
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
6
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 4 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table sgd
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sum"
,
"sgd"
])
# 3 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"lookup_sparse_table"
])
# 5 save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
,
trainer_startup
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
startup_ops
=
[
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'uniform_random'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
,
'fake_init'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer_startup
.
blocks
[
0
].
ops
],
startup_ops
)
class
TestAsyncLocalLookupTable
(
TestDistLookupTableBase
):
def
net_conf
(
self
):
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
False
)
...
...
@@ -782,5 +840,45 @@ class TestNCCL2Transpile(TranspilerTest):
pass
# test for remote prefetch
class
TestRemoteLookupTable
(
TestDistLookupTableBase
):
def
net_conf
(
self
):
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
False
,
remote_prefetch
=
True
)
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
4
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 3 optimize for table 2 adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
2b6c0c09
...
...
@@ -236,21 +236,29 @@ class DistributeTranspiler(object):
else
:
raise
ValueError
(
"must set trainer_id > 0"
)
def
_get_all_sparse_update_op
(
self
,
main_program
):
def
_get_all_
remote_
sparse_update_op
(
self
,
main_program
):
sparse_update_ops
=
[]
sparse_update_op_types
=
[
"lookup_table"
]
for
op
in
main_program
.
global_block
().
ops
:
if
op
.
type
in
sparse_update_op_types
and
op
.
attr
(
'is_sparse'
)
is
True
and
not
op
.
attr
(
'is_distributed'
):
'remote_prefetch'
)
is
True
and
not
op
.
attr
(
'is_distributed'
):
sparse_update_ops
.
append
(
op
)
return
sparse_update_ops
def
_update_sparse_update_op
(
self
,
param_varname
,
height_sections
,
endpint_map
):
def
_update_
remote_
sparse_update_op
(
self
,
param_varname
,
height_sections
,
endpint_map
):
for
op
in
self
.
sparse_update_ops
:
if
param_varname
in
op
.
input_arg_names
:
op
.
_set_attr
(
'epmap'
,
endpint_map
)
op
.
_set_attr
(
'height_sections'
,
height_sections
)
op
.
_set_attr
(
'trainer_id'
,
self
.
trainer_id
)
def
_is_input_of_remote_sparse_update_op
(
self
,
param_name
):
for
op
in
self
.
sparse_update_ops
:
if
param_name
in
op
.
input_arg_names
:
return
True
return
False
def
transpile
(
self
,
trainer_id
,
...
...
@@ -316,7 +324,7 @@ class DistributeTranspiler(object):
self
.
grad_name_to_param_name
[
grad_var
.
name
]
=
param_var
.
name
# get all sparse update ops
self
.
sparse_update_ops
=
self
.
_get_all_sparse_update_op
(
self
.
sparse_update_ops
=
self
.
_get_all_
remote_
sparse_update_op
(
self
.
origin_program
)
self
.
sparse_param_to_height_sections
=
dict
()
...
...
@@ -449,8 +457,8 @@ class DistributeTranspiler(object):
if
param_varname
in
self
.
sparse_param_to_height_sections
:
height_sections
=
self
.
sparse_param_to_height_sections
[
param_varname
]
self
.
_update_
sparse_update_op
(
param_varname
,
height_sections
,
eps
)
self
.
_update_
remote_sparse_update_op
(
param_varname
,
height_sections
,
eps
)
else
:
program
.
global_block
().
append_op
(
type
=
"recv"
,
...
...
@@ -481,8 +489,6 @@ class DistributeTranspiler(object):
if
len
(
splited_var
)
<=
1
:
continue
orig_param
=
program
.
global_block
().
vars
[
param_varname
]
print
(
"sparse_param_to_height_sections: "
+
str
(
self
.
sparse_param_to_height_sections
))
if
param_varname
not
in
self
.
sparse_param_to_height_sections
:
program
.
global_block
().
append_op
(
type
=
"concat"
,
...
...
@@ -1448,7 +1454,7 @@ to transpile() call.")
for
v
in
splited_vars
:
height_sections
.
append
(
v
.
shape
[
0
])
sparse_param_name
=
self
.
grad_name_to_param_name
[
orig_var
.
name
]
if
s
parse_param_name
!=
self
.
table_name
:
if
s
elf
.
_is_input_of_remote_sparse_update_op
(
sparse_param_name
)
:
self
.
sparse_param_to_height_sections
[
sparse_param_name
]
=
height_sections
program
.
global_block
().
_insert_op
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录