nn.py 476.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124 125 126 127 128 129
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
130
    'selu',
X
Xin Pan 已提交
131 132 133
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
134
    'margin_rank_loss',
X
Xin Pan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
151
    'unique',
152
    'unique_with_counts',
X
Xin Pan 已提交
153 154 155 156 157 158 159 160 161 162
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
163 164
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
165 166 167 168 169 170 171
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
172
    'rank',
Z
zhoukunsheng 已提交
173
    'size',
X
Xin Pan 已提交
174 175 176 177 178 179 180 181 182 183
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
184
    'space_to_depth',
W
whs 已提交
185
    'affine_grid',
S
sneaxiy 已提交
186
    'sequence_reverse',
187
    'affine_channel',
B
barrierye 已提交
188
    'similarity_focus',
M
minqiyang 已提交
189
    'hash',
D
dengkaipeng 已提交
190
    'grid_sampler',
G
gmcather 已提交
191 192
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
193
    'bilinear_tensor_product',
C
chengduo 已提交
194 195
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
196
    'lstm',
S
shippingwang 已提交
197
    'shuffle_channel',
198
    'temporal_shift',
S
sneaxiy 已提交
199
    'py_func',
200
    'psroi_pool',
H
heqiaozhi 已提交
201
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
202
    'huber_loss',
D
dengkaipeng 已提交
203
    'kldiv_loss',
Z
zhaozhehao 已提交
204
    'tree_conv',
C
ceci3 已提交
205
    'npair_loss',
R
ruri 已提交
206
    'pixel_shuffle',
207
    'fsp_matrix',
H
heqiaozhi 已提交
208
    'continuous_value_model',
Z
zhoukunsheng 已提交
209
    'where',
Z
zhoukunsheng 已提交
210
    'sign',
211
    'deformable_conv',
212
    'unfold',
C
cjt222 已提交
213
    'deformable_roi_pooling',
K
Kevin 已提交
214
    'var_conv_2d',
215
    'shard_index',
Y
Yu Yang 已提交
216 217
]

J
jerrywgz 已提交
218 219
kIgnoreIndex = -100

Y
Yu Yang 已提交
220 221 222 223 224 225 226

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
227
       is_test=False,
228
       name=None):
Y
Yu Yang 已提交
229
    """
230
    **Fully Connected Layer**
Y
Yu Yang 已提交
231

232
    This function creates a fully connected layer in the network. It can take
233
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
234
    Args in detail). It creates a variable called weights for each input tensor,
235 236 237 238
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
239
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
240 241
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
242

243
    When the input is single tensor:
C
caoying03 已提交
244

245 246 247 248 249
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
250 251 252

    .. math::

253
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
254 255 256

    In the above equation:

257 258 259
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
260
    * :math:`b`: The bias parameter created by this layer (if needed).
261
    * :math:`Act`: The activation function.
C
caoying03 已提交
262
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
282
    Args:
R
ranqiu 已提交
283 284 285 286 287 288 289 290 291 292
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
293
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
294 295 296 297
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
298 299
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
300
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
301
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
302
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
303

304
    Returns:
F
fengjiayi 已提交
305
        Variable: The transformation result.
306 307

    Raises:
C
caoying03 已提交
308
        ValueError: If rank of the input tensor is less than 2.
309 310 311 312

    Examples:
        .. code-block:: python

313
          import paddle.fluid as fluid
314
          # when input is single tensor
F
fengjiayi 已提交
315
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
316
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
317 318 319 320 321

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
322
    """
C
caoying03 已提交
323
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
324 325 326 327

    dtype = helper.input_dtype()

    mul_results = []
328 329
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
330 331 332
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
333

Y
Yu Yang 已提交
334
        w = helper.create_parameter(
335
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
336
        tmp = helper.create_variable_for_type_inference(dtype)
337
        helper.append_op(
338 339 340
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
341
            outputs={"Out": tmp},
M
mozga-intel 已提交
342 343
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
344 345 346 347
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
348
    else:
X
Xin Pan 已提交
349
        pre_bias = helper.create_variable_for_type_inference(dtype)
350
        helper.append_op(
351 352 353
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
354
            attrs={"use_mkldnn": False})
355 356 357 358
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
359 360


H
HaoRen 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


447 448 449
def embedding(input,
              size,
              is_sparse=False,
450
              is_distributed=False,
451 452 453
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
454
    """
455 456
    **Embedding Layer**

457
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
458 459
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
460 461 462

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
463 464

    Args:
465
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
466
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
467 468 469 470
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
471
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
472 473 474 475 476 477 478 479
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
480

481 482 483
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
484

485 486
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
487

B
bdzhuxiaoning 已提交
488 489 490
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
491 492 493
    """

    helper = LayerHelper('embedding', **locals())
494
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
495 496
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
497 498
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
499
    tmp = helper.create_variable_for_type_inference(dtype)
500 501
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
502 503 504 505 506
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
507 508 509
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
510
            'remote_prefetch': remote_prefetch,
511 512
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
513 514 515
    return tmp


W
wopeizl 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
532

W
wopeizl 已提交
533 534 535 536 537 538 539 540 541 542 543
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
544

W
wopeizl 已提交
545 546 547 548
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
549

W
wopeizl 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
586
            
587
            import paddle.fluid as fluid
588 589
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
590
            hidden_dim = 512
591 592 593 594 595 596
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
597
                                           bias_attr=False)
598

W
wopeizl 已提交
599 600 601
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
602
    assert in_dygraph_mode(
603
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
647 648


P
phlrain 已提交
649 650 651 652 653 654
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
655
         dropout_prob=0.0,
P
phlrain 已提交
656 657 658 659 660
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
661
    """
P
phlrain 已提交
662
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
663 664

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
665
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
666 667
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
668
    .. math::
M
minqiyang 已提交
669 670 671 672 673 674 675

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
676
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
677 678 679 680

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
681 682

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
683 684 685 686 687 688
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
689 690 691
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
692
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
693

M
minqiyang 已提交
694
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
695 696 697 698 699
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
700
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
701 702 703 704 705
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
706
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
707 708
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
709 710
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
711 712 713 714 715 716
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
717
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
718

L
liuhongyu 已提交
719 720

    Returns:
M
minqiyang 已提交
721 722
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
723
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
724

H
haowang101779990 已提交
725 726 727 728
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
729
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
730 731
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
732
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
733 734 735 736


    Examples:
        .. code-block:: python
737
            
738 739 740
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

741 742 743 744 745
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
746 747 748 749 750 751
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
752 753 754 755 756
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
757 758 759 760
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
761 762 763
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
823 824 825 826 827 828 829 830 831 832
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
833
                  proj_activation='tanh',
834
                  dtype='float32',
X
xuezhong 已提交
835 836 837 838 839
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
840 841 842
    """
    **Dynamic LSTMP Layer**

843 844 845 846 847 848
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
849 850 851 852 853

    The formula is as follows:

    .. math::

854
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
855

856
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
857

858
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
859

860
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
861

862
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
863

864
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
865

866
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
867

Y
Yibing Liu 已提交
868 869 870 871 872 873
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
874
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
875
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
876
          bias vector).
Y
Yibing Liu 已提交
877 878 879
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
880
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
881
    * :math:`h`: The hidden state.
882
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
883 884
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
885
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
886
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
887
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
888 889
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
890 891 892 893

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
894

Y
Yibing Liu 已提交
895 896 897 898 899 900 901 902 903 904 905 906
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
907
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
908 909
                               hidden-hidden weight and projection weight.

910 911
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
912 913
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
914 915
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
916
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
917 918 919 920 921

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
922
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
923 924 925 926 927 928
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
929
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
930 931 932
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
933
                                - The shape is (1 x 7D).
C
chengduo 已提交
934 935 936 937 938

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
939 940 941 942 943 944 945 946 947
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
948
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
949 950
                              default "tanh".
        proj_activation(str): The activation for projection output.
951
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
952
                              default "tanh".
Y
Yibing Liu 已提交
953
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
954 955
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
956 957 958 959 960 961 962 963 964 965 966
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
967 968

    Returns:
969 970 971 972
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
973 974

    Examples:
975

Y
Yibing Liu 已提交
976 977
        .. code-block:: python

978
            import paddle.fluid as fluid
979 980 981 982
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
983
            hidden_dim, proj_dim = 512, 256
984
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
985
                                     act=None, bias_attr=None)
986 987 988
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
989 990 991 992
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
993
    """
994

L
lujun 已提交
995
    assert in_dygraph_mode(
996 997
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
998
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
999
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1000
    size = size // 4
Y
Yibing Liu 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1011 1012 1013 1014 1015 1016
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1032

X
xuezhong 已提交
1033 1034 1035 1036 1037
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1038 1039
    helper.append_op(
        type='lstmp',
1040
        inputs=inputs,
Y
Yibing Liu 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1050 1051
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1061 1062 1063 1064 1065 1066 1067
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1068 1069
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1070
    """
1071
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1072

1073 1074 1075
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1076

G
guosheng 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1086

G
guosheng 已提交
1087
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1088

Q
Qiao Longfei 已提交
1089 1090 1091

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1104
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1105 1106
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1107 1108 1109 1110
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1111
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1112 1113

    Args:
1114 1115
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1116
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1117
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1118 1119
            is the hidden size.
        size(int): The dimension of the gru cell.
1120
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1121 1122
            hidden-hidden weight matrix. Note:

1123
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1124
              :math:`D` is the hidden size.
1125
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1126
              The first part are weights of the update gate and reset gate with
1127
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1128
              candidate hidden state with shape :math:`(D \\times D)`.
1129 1130 1131 1132 1133

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1134
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1135
            the bias in the update gate, reset gate and candidate calculations.
1136 1137 1138
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1139 1140
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1141
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1142 1143 1144
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1145
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1146
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1147 1148 1149 1150
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1151 1152

    Returns:
G
guosheng 已提交
1153
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1154
            and sequence length is the same with the input.
1155

G
guosheng 已提交
1156
    Examples:
1157

G
guosheng 已提交
1158 1159
        .. code-block:: python

1160 1161
            import paddle.fluid as fluid

1162 1163 1164 1165
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1166
            hidden_dim = 512
1167
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1168
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1169 1170
    """

L
lujun 已提交
1171
    assert in_dygraph_mode(
1172 1173
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1174 1175 1176 1177 1178 1179 1180
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1181
    batch_size = input.shape[0]
G
guosheng 已提交
1182
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1183
    if h_0:
G
guosheng 已提交
1184
        assert h_0.shape == (
Y
Yancey 已提交
1185 1186 1187
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1188

X
Xin Pan 已提交
1189 1190 1191 1192
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1206 1207
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1208 1209 1210 1211
        })
    return hidden


Y
Yu Yang 已提交
1212 1213 1214
def gru_unit(input,
             hidden,
             size,
1215 1216
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1217
             activation='tanh',
Q
Qiao Longfei 已提交
1218 1219
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1220
    """
1221 1222 1223
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1224
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1225
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1226

1227 1228
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1229

1230
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1231

1232
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1249 1250

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1251 1252 1253
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1254 1255
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1256 1257
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1258 1259 1260
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1261 1262 1263

    Args:
        input (Variable): The fc transformed input value of current step.
1264
        hidden (Variable): The hidden value of gru unit from previous step.
1265
        size (integer): The input dimension value.
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1280
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1281
            the bias in the update gate, reset gate and candidate calculations.
1282 1283 1284
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1285 1286
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1287 1288 1289 1290
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1291

1292 1293 1294 1295 1296 1297
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1322
    size = size // 3
Y
Yu Yang 已提交
1323 1324

    # create weight
1325 1326
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1327

X
Xin Pan 已提交
1328 1329 1330
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1331
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1332
    # create bias
1333
    if helper.bias_attr:
Y
Yu Yang 已提交
1334 1335 1336
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1337
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1338 1339 1340

    helper.append_op(
        type='gru_unit',
1341
        inputs=inputs,
Y
Yu Yang 已提交
1342 1343 1344 1345 1346 1347
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1348 1349
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1350 1351 1352 1353 1354
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1355
@templatedoc()
1356
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1357 1358 1359 1360 1361 1362 1363
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1364
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1365 1366 1367 1368
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1369 1370 1371
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1372

J
JesseyXujin 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1386
    """
Y
Yu Yang 已提交
1387 1388 1389 1390 1391 1392
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1393 1394 1395 1396 1397 1398 1399 1400
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1416 1417 1418 1419
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1420

W
wopeizl 已提交
1421 1422
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1423

W
wopeizl 已提交
1424
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1425

W
wopeizl 已提交
1426
        label(${label_type}): ${label_comment}
1427

W
wopeizl 已提交
1428 1429
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1430

W
wopeizl 已提交
1431 1432
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1433

1434
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1435 1436 1437 1438 1439 1440 1441
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1442 1443 1444 1445 1446 1447 1448 1449
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1450
                "Transition": transition,
W
wopeizl 已提交
1451 1452
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1453

W
wopeizl 已提交
1454
    return viterbi_path
Y
Yu Yang 已提交
1455 1456


Y
yi.wu 已提交
1457
@templatedoc()
F
fengjiayi 已提交
1458
def cos_sim(X, Y):
Y
Yu Yang 已提交
1459
    """
Y
yi.wu 已提交
1460 1461 1462
    ${comment}

    Args:
1463 1464
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1465

Y
yi.wu 已提交
1466
    Returns:
1467
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1468 1469 1470 1471

    Examples:
        .. code-block:: python

1472
            import paddle.fluid as fluid
L
lvmengsi 已提交
1473 1474 1475
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1476
    """
F
fengjiayi 已提交
1477
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1478 1479 1480
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1491 1492 1493 1494 1495
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1496
            dropout_implementation="downgrade_in_infer"):
1497 1498 1499 1500 1501
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1502
    training. The dropout operator randomly sets (according to the given dropout
1503 1504 1505
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1506 1507
    dropout op can be removed from the program to make the program more efficient.

1508
    Args:
1509 1510
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1511 1512 1513 1514 1515 1516 1517
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1518 1519
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1520
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1521 1522

                                           - train: out = input * mask
C
ceci3 已提交
1523
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1524 1525 1526

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1527
                                        2. upscale_in_train, upscale the outcome at training time
1528

H
haowang101779990 已提交
1529 1530
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1531

H
haowang101779990 已提交
1532 1533
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1534

M
minqiyang 已提交
1535

1536
    Returns:
1537
        Variable: A tensor variable is the shape with `x`.
1538 1539

    Examples:
1540

1541 1542
        .. code-block:: python

1543
            import paddle.fluid as fluid
1544 1545
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1546 1547
    """

F
fengjiayi 已提交
1548
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1549 1550
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1551
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1552 1553 1554 1555

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1556 1557 1558 1559 1560
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1561 1562 1563 1564
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1565
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1566
            'dropout_implementation': dropout_implementation,
1567
        })
1568 1569 1570
    return out


J
jerrywgz 已提交
1571
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1572
    """
Y
Yibing Liu 已提交
1573 1574
    **Cross Entropy Layer**

1575 1576 1577
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1578 1579

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1580
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1581

Y
Yibing Liu 已提交
1582
        .. math::
Y
yangyaming 已提交
1583

Y
Yibing Liu 已提交
1584 1585 1586
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1587 1588
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1589 1590 1591 1592 1593

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1594
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1595 1596 1597
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1598 1599
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1600
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1601

Y
Yibing Liu 已提交
1602
    Args:
Y
yangyaming 已提交
1603
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1604 1605 1606 1607
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1608
        label (Variable|list): the ground truth which is a 2-D tensor. When
1609 1610 1611 1612
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1613
        soft_label (bool): a flag indicating whether to
1614
                                           interpretate the given labels as soft
1615
                                           labels. Default: `False`.
M
minqiyang 已提交
1616 1617
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1618
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1619 1620 1621 1622 1623

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1624 1625 1626
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1627

H
haowang101779990 已提交
1628 1629
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1630

H
haowang101779990 已提交
1631 1632
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1633 1634 1635 1636

    Examples:
        .. code-block:: python

1637
          import paddle.fluid as fluid
L
lvmengsi 已提交
1638 1639 1640 1641
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1642
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1643
    """
S
sneaxiy 已提交
1644 1645
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1646
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1647
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1648 1649 1650 1651 1652
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1653 1654
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1655 1656 1657
    return out


S
sneaxiy 已提交
1658 1659 1660 1661
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1662
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1663 1664 1665 1666 1667
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1668
                 'MatchX': [match_x],
S
sneaxiy 已提交
1669 1670 1671 1672 1673
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1674
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1675
    """
1676
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1677

1678
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1679
    The loss at a given point in one session is defined as:
1680 1681 1682

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1683 1684

    Learn more details by reading paper <session-based recommendations with recurrent
1685
    neural networks>.
F
frankwhzhang 已提交
1686

1687 1688 1689 1690 1691 1692
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1693 1694
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1695 1696 1697
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1698 1699 1700
    Examples:
        .. code-block:: python

1701 1702 1703 1704 1705 1706 1707
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1708
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1709
    """
1710 1711 1712 1713 1714
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1715
                'Label': [label]},
1716 1717 1718 1719
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1720
def square_error_cost(input, label):
Y
Yu Yang 已提交
1721
    """
1722 1723
    **Square error cost layer**

1724 1725
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1740 1741
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1742 1743

    Returns:
G
guosheng 已提交
1744
        Variable: The tensor variable storing the element-wise squared error \
1745
                  difference of input and label.
1746 1747 1748 1749

    Examples:
        .. code-block:: python

1750
          import paddle.fluid as fluid
R
ruri 已提交
1751 1752 1753
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1754

Y
Yu Yang 已提交
1755
    """
F
fengjiayi 已提交
1756
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1757
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1758 1759 1760 1761 1762 1763
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1764
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1765
    helper.append_op(
F
fengjiayi 已提交
1766 1767
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1768 1769 1770
    return square_out


Y
yi.wu 已提交
1771
@templatedoc()
Y
Yu Yang 已提交
1772 1773 1774 1775
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1776 1777
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1778
    """
Y
yi.wu 已提交
1779
    **Chunk Evaluator**
Y
yi.wu 已提交
1780

Y
yangyaming 已提交
1781
    This function computes and outputs the precision, recall and
1782
    F1-score of chunk detection.
Y
yi.wu 已提交
1783

M
minqiyang 已提交
1784
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1785
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1786 1787 1788 1789 1790 1791

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1792

Y
yi.wu 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1818

Y
yi.wu 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1843
    Args:
1844 1845 1846 1847 1848
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1849
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1850

Y
yi.wu 已提交
1851
    Returns:
Y
update  
yi.wu 已提交
1852 1853 1854
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1855

Y
yi.wu 已提交
1856 1857 1858
    Examples:
        .. code-block:: python

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1870
            crf = fluid.layers.linear_chain_crf(
1871
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1872
            crf_decode = fluid.layers.crf_decoding(
1873
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1874 1875 1876 1877 1878
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1879
    """
F
fengjiayi 已提交
1880
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1881 1882

    # prepare output
X
Xin Pan 已提交
1883 1884 1885 1886 1887 1888 1889
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1890

1891 1892 1893 1894 1895
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1896 1897
    helper.append_op(
        type="chunk_eval",
1898
        inputs=this_input,
Y
Yu Yang 已提交
1899 1900 1901
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1902 1903 1904 1905
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1906 1907 1908
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1909 1910
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1911
        })
1912 1913
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1914 1915


1916
@templatedoc()
Y
Yu Yang 已提交
1917 1918 1919 1920 1921 1922 1923
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1924 1925
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1926 1927 1928 1929
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1930 1931 1932 1933 1934 1935 1936

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1950

1951 1952
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1953 1954 1955 1956 1957 1958 1959

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1960 1961
    """

L
lujun 已提交
1962
    assert not in_dygraph_mode(), (
1963
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1964 1965 1966 1967 1968
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1969
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1980
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1981 1982 1983 1984 1985 1986
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1987
def sequence_softmax(input, use_cudnn=False, name=None):
1988 1989 1990
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1991
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2008 2009 2010
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2011

2012 2013 2014 2015 2016 2017 2018
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2019
             import paddle.fluid as fluid
2020 2021 2022 2023
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2024
    assert not in_dygraph_mode(), (
2025
        "sequence layer is not supported in dygraph mode yet.")
2026 2027
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2028
    softmax_out = helper.create_variable_for_type_inference(dtype)
2029 2030 2031 2032 2033 2034 2035 2036
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2037
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2038
    """
2039
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2040
    has the same shape as the input.
Q
qiaolongfei 已提交
2041

D
dengkaipeng 已提交
2042
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2043
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2044
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2045 2046 2047
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2048
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2049
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2050 2051 2052 2053 2054 2055 2056

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2057
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2058 2059 2060 2061 2062 2063 2064 2065

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2066 2067
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2068 2069
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2070 2071 2072
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2073 2074 2075 2076 2077 2078 2079 2080

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2081 2082
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2083
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2084
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2085
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2086 2087
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2088 2089

    """
2090 2091
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2092
    softmax_out = helper.create_variable_for_type_inference(dtype)
2093 2094 2095 2096
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2097 2098
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2099 2100 2101
    return softmax_out


Y
Yu Yang 已提交
2102 2103 2104
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2105 2106
           stride=1,
           padding=0,
2107
           dilation=1,
Y
Yu Yang 已提交
2108 2109 2110
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2111
           use_cudnn=True,
2112 2113
           act=None,
           name=None):
Y
Yu Yang 已提交
2114
    """
C
chengduoZH 已提交
2115
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2116 2117
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2118
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2119 2120 2121 2122 2123 2124 2125
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2126 2127 2128
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2129

2130
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2131

C
chengduoZH 已提交
2132 2133
    .. math::

C
refine  
chengduoZH 已提交
2134
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2135

T
tensor-tang 已提交
2136
    Where:
C
chengduoZH 已提交
2137

2138 2139 2140 2141 2142
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2143
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2144 2145 2146

    Example:

2147 2148
        - Input:

W
weixing02 已提交
2149
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2150

W
weixing02 已提交
2151
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2152

2153
        - Output:
T
tensor-tang 已提交
2154

W
weixing02 已提交
2155
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2156

C
chengduoZH 已提交
2157
        Where
2158 2159

        .. math::
C
chengduoZH 已提交
2160

W
weixing02 已提交
2161 2162
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2163 2164

    Args:
2165
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2166
        num_filters(int): The number of filter. It is as same as the output
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2184 2185 2186 2187 2188
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2189
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2190 2191 2192 2193 2194
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2195 2196
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2197 2198
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2199
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2200
            will be named automatically. Default: None
C
chengduoZH 已提交
2201 2202

    Returns:
G
guosheng 已提交
2203
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2204 2205
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2206
    Raises:
2207 2208
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2209

C
chengduoZH 已提交
2210 2211 2212
    Examples:
        .. code-block:: python

2213
          import paddle.fluid as fluid
2214 2215
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2216 2217 2218
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2219
    assert param_attr is not False, "param_attr should not be False here."
2220
    l_type = 'conv2d'
X
xzl 已提交
2221 2222
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2223
        l_type = 'depthwise_conv2d'
2224 2225 2226 2227

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2228 2229 2230 2231 2232
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2233
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2234

C
chengduoZH 已提交
2235 2236 2237
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2238
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2239

C
chengduoZH 已提交
2240 2241
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2242 2243

    input_shape = input.shape
M
minqiyang 已提交
2244
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2245 2246

    def _get_default_param_initializer():
C
chengduo 已提交
2247 2248
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2249 2250 2251 2252 2253 2254 2255 2256
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2257
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2258

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2273
    helper.append_op(
2274
        type=l_type,
Y
Yu Yang 已提交
2275 2276 2277 2278 2279
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2280 2281 2282
        attrs={
            'strides': stride,
            'paddings': padding,
2283
            'dilations': dilation,
C
chengduoZH 已提交
2284
            'groups': groups,
2285
            'use_cudnn': use_cudnn,
2286
            'use_mkldnn': False,
2287
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2288
        })
Y
Yu Yang 已提交
2289 2290 2291 2292 2293 2294

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2312 2313 2314 2315 2316 2317
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2327 2328
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2329 2330 2331
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2332
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2355
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2356 2357
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2358
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2359 2360
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2361
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2362 2363
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2364
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2365 2366
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2367
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2368 2369 2370 2371 2372 2373
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2384 2385
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2386 2387
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2388
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2389
            will be named automatically. Default: None.
C
chengduoZH 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2402
          import paddle.fluid as fluid
2403 2404
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2405 2406 2407
    """

    l_type = 'conv3d'
C
chengduo 已提交
2408
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2419
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2433 2434 2435
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2436 2437 2438 2439 2440 2441 2442 2443
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2444
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2459
            'use_mkldnn': False
C
chengduoZH 已提交
2460 2461
        })

2462
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2463 2464 2465 2466

    return helper.append_activation(pre_act)


2467
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2468
    """
Y
yangyaming 已提交
2469 2470 2471
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2482 2483
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2484 2485 2486 2487
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2488
         out.dim = [4, 1]
2489
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2490 2491

       for different pool_type:
2492 2493 2494
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2495
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2496 2497 2498 2499 2500
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2501

L
Luo Tao 已提交
2502
    Args:
2503
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2504
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2505
            It supports average, sum, sqrt and max.
2506 2507
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2508 2509 2510 2511 2512 2513 2514

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2515

2516 2517
             import paddle.fluid as fluid

Y
yangyaming 已提交
2518
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2519 2520 2521 2522 2523
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2524 2525
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2526
    """
L
lujun 已提交
2527
    assert not in_dygraph_mode(), (
2528
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2529
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2530
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2531 2532
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2533 2534 2535 2536 2537 2538

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2539 2540 2541 2542 2543
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2544

Y
yangyaming 已提交
2545 2546 2547 2548 2549
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2550 2551 2552
    return pool_out


C
add doc  
chengduoZH 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2569 2570 2571 2572
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2573
    """
L
lujun 已提交
2574
    assert not in_dygraph_mode(), (
2575
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2576
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2577
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2578 2579 2580 2581 2582
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2583
def sequence_first_step(input):
L
Luo Tao 已提交
2584
    """
L
Luo Tao 已提交
2585
    This function gets the first step of sequence.
L
Luo Tao 已提交
2586 2587 2588 2589

    .. code-block:: text

       x is a 1-level LoDTensor:
2590
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2591 2592 2593 2594 2595
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2596
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2597
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2598

L
Luo Tao 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2608

2609
             import paddle.fluid as fluid
Y
yangyaming 已提交
2610
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2611 2612 2613
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2614 2615 2616
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2617
def sequence_last_step(input):
L
Luo Tao 已提交
2618
    """
L
Luo Tao 已提交
2619
    This function gets the last step of sequence.
L
Luo Tao 已提交
2620 2621 2622 2623

    .. code-block:: text

       x is a 1-level LoDTensor:
2624
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2625 2626 2627 2628 2629
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2630
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2631
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2632

L
Luo Tao 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2642

2643
             import paddle.fluid as fluid
Y
yangyaming 已提交
2644
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2645 2646 2647
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2648 2649 2650
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2651 2652 2653 2654
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2655
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2656 2657 2658 2659 2660
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2661

H
haowang101779990 已提交
2662
              - Case:
Y
Yibing Liu 已提交
2663

2664
            Given the input Variable **input**:
2665

2666 2667 2668
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2669

2670
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2671

2672
            the output Variable will be
2673

2674 2675 2676
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2677

M
minqiyang 已提交
2678
    Note:
H
haowang101779990 已提交
2679
          The first dimension size of **input**, **offset** and **length**
2680
          should be equal. The **offset** should start from 0.
2681

Y
Yibing Liu 已提交
2682
    Args:
2683
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2684
                         sequences.
Y
Yibing Liu 已提交
2685 2686 2687 2688 2689 2690
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2691
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2692 2693 2694 2695 2696

    Examples:

        .. code-block:: python

2697
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2698 2699 2700 2701 2702
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2703
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2704 2705
                                                   length=length)
    """
L
lujun 已提交
2706
    assert not in_dygraph_mode(), (
2707
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2708 2709
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2710
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2725
@templatedoc()
Y
Yu Yang 已提交
2726
def pool2d(input,
C
chengduoZH 已提交
2727 2728
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2729 2730
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2731
           global_pooling=False,
C
chengduoZH 已提交
2732
           use_cudnn=True,
2733
           ceil_mode=False,
2734 2735
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2736
    """
F
fengjiayi 已提交
2737
    ${comment}
2738 2739

    Args:
2740 2741 2742
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2743
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2744
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2745 2746
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2747
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2748 2749 2750 2751 2752 2753
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2754 2755 2756
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2757
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2758
                        layer will be named automatically.
2759
        exclusive (bool): Whether to exclude padding points in average pooling
2760
                          mode, default is true
F
fengjiayi 已提交
2761

2762
    Returns:
F
fengjiayi 已提交
2763
        Variable: The pooling result.
F
fengjiayi 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2774
          import paddle.fluid as fluid
F
fengjiayi 已提交
2775 2776
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2777
          pool2d = fluid.layers.pool2d(
2778 2779 2780 2781
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2782
                            global_pooling=False)
Y
Yu Yang 已提交
2783 2784 2785 2786 2787
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2788

C
chengduoZH 已提交
2789 2790 2791 2792 2793
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2794 2795 2796 2797
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2798 2799
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2800

C
Add doc  
chengduoZH 已提交
2801
    l_type = 'pool2d'
2802 2803

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2804
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2805
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2806 2807

    helper.append_op(
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2819 2820
            "use_mkldnn": False,
            "exclusive": exclusive,
2821 2822 2823 2824 2825
        })

    return pool_out


D
dengkaipeng 已提交
2826
@templatedoc()
2827 2828 2829 2830 2831 2832 2833 2834
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2835 2836
           name=None,
           exclusive=True):
2837
    """
2838
    ${comment}
2839 2840

    Args:
D
dengkaipeng 已提交
2841 2842 2843 2844 2845
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2846 2847 2848 2849 2850
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2851 2852 2853 2854 2855 2856 2857
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2858
        exclusive (bool): Whether to exclude padding points in average pooling
2859
                          mode, default is true
2860

2861
    Returns:
2862
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2863 2864 2865 2866 2867

    Examples:

        .. code-block:: python

2868
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2869 2870 2871 2872 2873 2874 2875 2876
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2877 2878 2879 2880 2881
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2882

C
chengduoZH 已提交
2883 2884 2885 2886 2887
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2888 2889 2890
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2891

C
chengduoZH 已提交
2892 2893
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2894

2895 2896
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2897
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2898
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2899 2900

    helper.append_op(
2901
        type=l_type,
Y
Yu Yang 已提交
2902 2903 2904 2905 2906 2907 2908
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2909
            "paddings": pool_padding,
2910
            "use_cudnn": use_cudnn,
2911
            "ceil_mode": ceil_mode,
2912 2913
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2914 2915 2916 2917 2918
        })

    return pool_out


2919 2920 2921 2922 2923 2924 2925
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2926 2927 2928 2929 2930 2931 2932
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2947 2948 2949 2950 2951 2952 2953 2954 2955

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2956 2957
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2972
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2973
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2974
          # of input data into m * n grids averagely and performs poolings in each
2975 2976
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2977
          #
2978 2979 2980 2981 2982 2983 2984 2985
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2986
          import paddle.fluid as fluid
2987 2988
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2989
          pool_out = fluid.layers.adaptive_pool2d(
2990 2991
                            input=data,
                            pool_size=[3, 3],
2992
                            pool_type='avg')
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3003
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3029
    return (pool_out, mask) if require_index else pool_out
3030 3031 3032 3033 3034 3035 3036 3037 3038


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3039 3040 3041 3042 3043 3044 3045
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3064 3065 3066

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3067 3068 3069
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3070
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3071
            it must contain three integers, (Depth, Height, Width).
3072
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3073 3074
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3089 3090
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3091
          # of input data into l * m * n grids averagely and performs poolings in each
3092 3093
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3094
          #
3095 3096 3097 3098 3099 3100 3101 3102 3103
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3104
          #                 output[:, :, i, j, k] =
3105 3106
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3107 3108 3109

          import paddle.fluid as fluid

3110
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3111 3112
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3113
                            input=data,
D
dengkaipeng 已提交
3114
                            pool_size=[3, 3, 3],
3115
                            pool_type='avg')
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3126
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3152
    return (pool_out, mask) if require_index else pool_out
3153 3154


Y
Yu Yang 已提交
3155 3156 3157 3158 3159 3160 3161
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3162
               data_layout='NCHW',
Y
Yang Yang 已提交
3163
               in_place=False,
3164 3165
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3166
               moving_variance_name=None,
3167
               do_model_average_for_mean_and_var=False,
3168 3169
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3170
    """
Q
qiaolongfei 已提交
3171 3172 3173 3174
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3175

Q
qiaolongfei 已提交
3176
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3177

Q
qiaolongfei 已提交
3178 3179
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3180 3181 3182
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3195

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3209
    Args:
Q
qingqing01 已提交
3210
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3211
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3221 3222
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3223 3224 3225
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3226 3227
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3228 3229 3230
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3231
        data_layout(string, default NCHW): NCHW|NHWC
3232
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3233 3234
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3235 3236 3237
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3238
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3239 3240
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3241
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3242
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3243 3244 3245 3246 3247
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3248 3249

    Returns:
Q
qiaolongfei 已提交
3250
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3251 3252 3253 3254 3255

    Examples:

        .. code-block:: python

3256
            import paddle.fluid as fluid
L
lvmengsi 已提交
3257
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3258 3259
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3260
    """
C
chengduo 已提交
3261
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3262 3263 3264
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3265 3266 3267 3268
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3287
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3288

3289 3290
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3291 3292 3293
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3294
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3295
        shape=param_shape,
W
Wu Yi 已提交
3296
        dtype=dtype)
3297 3298 3299 3300 3301 3302
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3303
            trainable=False,
W
wanghaoshuang 已提交
3304
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3305
        shape=param_shape,
W
Wu Yi 已提交
3306
        dtype=dtype)
3307
    variance.stop_gradient = True
Y
Yu Yang 已提交
3308 3309 3310 3311 3312 3313

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3314 3315 3316 3317
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3318

X
Xin Pan 已提交
3319 3320
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3338 3339 3340 3341
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3342
            "data_layout": data_layout,
X
Xin Pan 已提交
3343
            "use_mkldnn": False,
3344 3345
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3346
        })
Y
Yu Yang 已提交
3347 3348 3349 3350

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3402 3403
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3404

3405 3406
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3472
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3473 3474 3475 3476

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3477
@templatedoc()
G
guosheng 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3488
    ${comment}
G
guosheng 已提交
3489 3490 3491

    The formula is as follows:

Y
yuyang18 已提交
3492
    ..  math::
G
guosheng 已提交
3493 3494 3495 3496 3497 3498 3499

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3500 3501 3502 3503 3504 3505 3506 3507
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3508

G
guosheng 已提交
3509 3510
    Args:
        input(Variable): The input tensor variable.
3511
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3512
            normalization. Default True.
3513
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3514 3515
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3516
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3517
            Default 1.
3518
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3519
            division by zero. Default 1e-05.
G
guosheng 已提交
3520
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3521 3522
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3523 3524
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3525
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3526 3527
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3528
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3529
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3530
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3531 3532 3533
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3534 3535

    Returns:
Y
yuyang18 已提交
3536
        ${y_comment}
G
guosheng 已提交
3537 3538 3539

    Examples:

3540
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3541 3542 3543
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3544
    """
L
lujun 已提交
3545
    assert in_dygraph_mode(
L
lujun 已提交
3546
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3561
    if shift:
G
guosheng 已提交
3562 3563 3564 3565 3566 3567
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3568 3569 3570 3571 3572
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3600
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3622
        >>> import paddle.fluid as fluid
D
Dun 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3649 3650
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3668
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3669 3670 3671
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3672
    This layer calculates the spectral normalization value of weight parameters of
3673
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3674
    Parameters. Calculations are showed as follows.
3675

D
dengkaipeng 已提交
3676 3677 3678
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3679
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3692
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3693 3694 3695 3696

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3697

D
dengkaipeng 已提交
3698
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3699 3700
                

D
dengkaipeng 已提交
3701 3702 3703 3704
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3705 3706 3707
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3708 3709 3710
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3711
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3712 3713

    Examples:
K
Kaipeng Deng 已提交
3714
       .. code-block:: python
D
dengkaipeng 已提交
3715

K
Kaipeng Deng 已提交
3716 3717 3718 3719 3720
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3721 3722
    """
    helper = LayerHelper('spectral_norm', **locals())
3723
    dtype = weight.dtype
D
dengkaipeng 已提交
3724 3725 3726

    # create intput and parameters
    inputs = {'Weight': weight}
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3745 3746

    # create output
3747
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3748 3749

    helper.append_op(
3750
        type="spectral_norm",
D
Dun 已提交
3751
        inputs=inputs,
3752 3753 3754 3755 3756 3757
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3758

3759
    return out
D
Dun 已提交
3760 3761


Y
Yu Yang 已提交
3762 3763 3764 3765
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3766 3767 3768
                     padding=0,
                     stride=1,
                     dilation=1,
3769
                     groups=None,
C
caoying03 已提交
3770
                     param_attr=None,
3771
                     bias_attr=None,
C
chengduoZH 已提交
3772
                     use_cudnn=True,
3773
                     act=None,
C
caoying03 已提交
3774
                     name=None):
Y
Yu Yang 已提交
3775
    """
3776 3777 3778 3779 3780 3781 3782 3783
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3784
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3785
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3786 3787 3788
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3789 3790 3791 3792 3793

    For each input :math:`X`, the equation is:

    .. math::

3794
        Out = \sigma (W \\ast X + b)
3795

3796
    Where:
3797 3798 3799

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3800 3801 3802 3803
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3804

3805 3806 3807 3808
    Example:

        - Input:

3809
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3810

3811
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3812 3813 3814

        - Output:

3815
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3816 3817

        Where
Y
Yu Yang 已提交
3818

3819 3820
        .. math::

3821 3822
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3832 3833

    Args:
3834 3835 3836 3837
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3838 3839 3840 3841
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3870
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3871 3872 3873
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3874
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3875
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3876 3877

    Returns:
3878
        Variable: The tensor variable storing the convolution transpose result.
3879 3880

    Raises:
3881 3882
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3883 3884 3885 3886

    Examples:
       .. code-block:: python

3887
          import paddle.fluid as fluid
3888 3889
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3890
    """
C
chengduo 已提交
3891
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3892 3893 3894 3895 3896 3897 3898 3899
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3900 3901 3902
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3903 3904 3905
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3906

C
chengduoZH 已提交
3907 3908
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3909

Y
Yu Yang 已提交
3910 3911 3912 3913 3914
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3915

Y
Yu Yang 已提交
3916 3917
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3918

C
chengduoZH 已提交
3919
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3920
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3921
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3922
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3923
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3924 3925 3926
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3927

3928 3929 3930 3931 3932 3933 3934
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3935
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3936
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3937

Y
Yu Yang 已提交
3938 3939 3940
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3941
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3942
    helper.append_op(
3943
        type=op_type,
Y
Yu Yang 已提交
3944 3945
        inputs={'Input': [input],
                'Filter': [img_filter]},
3946
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3947
        attrs={
3948
            'output_size': output_size,
3949 3950 3951 3952 3953
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3954 3955
        })

3956 3957 3958
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3959 3960


3961
def conv3d_transpose(input,
Y
Yu Yang 已提交
3962 3963 3964
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3965 3966 3967
                     padding=0,
                     stride=1,
                     dilation=1,
3968
                     groups=None,
C
caoying03 已提交
3969
                     param_attr=None,
3970
                     bias_attr=None,
C
chengduoZH 已提交
3971
                     use_cudnn=True,
3972
                     act=None,
C
caoying03 已提交
3973
                     name=None):
Y
Yu Yang 已提交
3974
    """
3975
    **Convlution3D transpose layer**
3976

3977
    The convolution3D transpose layer calculates the output based on the input,
3978
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3979 3980 3981 3982 3983
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3984
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3985 3986 3987
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3988 3989 3990 3991 3992

    For each input :math:`X`, the equation is:

    .. math::

3993
        Out = \sigma (W \\ast X + b)
3994 3995 3996

    In the above equation:

3997 3998
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3999 4000 4001 4002
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4003

4004 4005 4006 4007
    Example:

        - Input:

4008
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4009

4010
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4011 4012 4013

        - Output:

4014
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4015 4016

        Where
Y
Yu Yang 已提交
4017

4018 4019
        .. math::

4020 4021 4022
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4023 4024

    Args:
4025
        input(Variable): The input image with [N, C, D, H, W] format.
4026 4027 4028
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4029
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4030 4031
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4032
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4033 4034 4035
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4036 4037
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4038
        stride(int|tuple): The stride size. If stride is a tuple, it must
4039 4040
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4041
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4042 4043 4044
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4045 4046 4047 4048 4049
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4059 4060
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4061 4062
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4063 4064
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4065 4066

    Returns:
4067
        Variable: The tensor variable storing the convolution transpose result.
4068 4069

    Raises:
4070 4071
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4072 4073 4074 4075

    Examples:
       .. code-block:: python

4076
          import paddle.fluid as fluid
4077 4078
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4079
    """
C
chengduo 已提交
4080
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4081 4082
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4083
    if not isinstance(input, Variable):
4084
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4085 4086
    input_channel = input.shape[1]

4087 4088 4089
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4090

C
chengduoZH 已提交
4091 4092 4093
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4094 4095 4096 4097 4098 4099
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4100 4101 4102
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4103

4104
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4105
                         padding[0] - 1) // dilation[0] + 1
4106
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4107
                         padding[1] - 1) // dilation[1] + 1
4108
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4109
                         padding[2] - 1) // dilation[2] + 1
4110
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4111
    else:
4112 4113
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4114

4115
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4116
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4117 4118 4119
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4120
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4121
    helper.append_op(
4122
        type=l_type,
Y
Yu Yang 已提交
4123 4124
        inputs={'Input': [input],
                'Filter': [img_filter]},
4125
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4126 4127 4128 4129
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4130
            'groups': groups,
C
chengduoZH 已提交
4131 4132
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4133

4134 4135
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4136
    return out
Y
yangyaming 已提交
4137 4138


Y
yangyaming 已提交
4139
def sequence_expand(x, y, ref_level=-1, name=None):
4140
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4141 4142 4143 4144
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4145 4146 4147 4148 4149

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4150
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4151
                x.data = [[a], [b], [c], [d]]
4152 4153 4154
                x.dims = [4, 1]

            y is a LoDTensor:
4155 4156
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4157

Y
yangyaming 已提交
4158
            ref_level: 0
4159

Y
yangyaming 已提交
4160
            then output is a 1-level LoDTensor:
4161
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4162
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4163 4164 4165 4166
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4167
                x.data = [[a], [b], [c]]
4168 4169 4170
                x.dims = [3, 1]

            y is a LoDTensor:
4171
                y.lod = [[2, 0, 3]]
4172

Y
yangyaming 已提交
4173
            ref_level: -1
4174

Y
yangyaming 已提交
4175 4176 4177
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4178 4179 4180
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4181 4182
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4183
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4184
                        will be named automatically.
4185 4186 4187 4188 4189 4190

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4191
	
4192
            import paddle.fluid as fluid
4193
            import paddle.fluid.layers as layers
4194 4195 4196
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4197
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4198
    """
L
lujun 已提交
4199
    assert not in_dygraph_mode(), (
4200
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4201
    helper = LayerHelper('sequence_expand', input=x, **locals())
4202
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4203
    tmp = helper.create_variable_for_type_inference(dtype)
4204
    helper.append_op(
Y
yangyaming 已提交
4205 4206 4207 4208 4209
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4210
    return tmp
4211 4212


C
chengduo 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4261 4262
            
            import paddle.fluid as fluid
4263
            import paddle.fluid.layers as layers
C
chengduo 已提交
4264 4265 4266 4267 4268 4269

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4270
    assert not in_dygraph_mode(), (
4271
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4272 4273
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4274
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4275 4276 4277 4278 4279 4280 4281 4282
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4283
@templatedoc()
4284
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4285 4286 4287 4288 4289
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4290 4291 4292
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4293
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4294 4295 4296 4297
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4298 4299 4300
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4301

F
fengjiayi 已提交
4302
    Returns:
M
minqiyang 已提交
4303
        Variable: The padded sequence batch and the original lengths before
4304
                  padding. All sequences has the same length.
M
minqiyang 已提交
4305

F
fengjiayi 已提交
4306 4307 4308
    Examples:
        .. code-block:: python

4309
            import paddle.fluid as fluid
F
fengjiayi 已提交
4310 4311 4312 4313
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4314
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4315
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4316 4317 4318
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4319
    assert not in_dygraph_mode(), (
4320
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4321 4322
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4323 4324
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4325 4326 4327 4328

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4329 4330 4331 4332 4333 4334
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4335 4336
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4337
        attrs={'padded_length': maxlen})
4338
    return out, length
F
fengjiayi 已提交
4339 4340


4341
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4342
    """
4343
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4344

4345 4346
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4356 4357 4358
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4359
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4360 4361 4362 4363 4364 4365

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4366
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4367 4368 4369 4370 4371 4372

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4373 4374
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4375 4376 4377 4378 4379 4380 4381

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4382
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4383 4384 4385 4386 4387
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4388
    assert not in_dygraph_mode(), (
4389
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4390 4391
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4392
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4404 4405 4406 4407 4408 4409 4410
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4411
                is_accumulated=True,
4412 4413
                name=None,
                return_parent_idx=False):
4414
    """
4415 4416
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4417 4418 4419

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4420 4421

    This layer does the search in beams for one time step. Specifically, it
4422 4423 4424
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4436 4437 4438 4439

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4440

4441
    Args:
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4465 4466
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4467 4468
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4469 4470 4471 4472
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4473

4474
    Returns:
4475 4476 4477 4478
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4479 4480 4481 4482

    Examples:
        .. code-block:: python

4483 4484
            import paddle.fluid as fluid

4485 4486 4487
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4500
                axis=0)
4501
            selected_ids, selected_scores = fluid.layers.beam_search(
4502 4503 4504 4505 4506 4507 4508
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4509
    helper = LayerHelper('beam_search', **locals())
4510 4511 4512 4513 4514 4515
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4516

X
Xin Pan 已提交
4517 4518 4519
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4520 4521 4522 4523 4524
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4525 4526 4527

    helper.append_op(
        type='beam_search',
4528
        inputs=inputs,
Q
Qiao Longfei 已提交
4529 4530 4531
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4532
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4533 4534 4535 4536 4537 4538
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4539
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4540
        })
4541 4542 4543 4544
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4545 4546


4547 4548 4549 4550 4551 4552 4553
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4554

4555 4556 4557 4558 4559 4560 4561 4562 4563
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4564

4565 4566 4567 4568 4569 4570
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4571

4572 4573
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4574

4575 4576
            import paddle.fluid as fluid

4577 4578
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4579 4580 4581
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4582 4583 4584
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4585 4586
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4602 4603 4604 4605
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4606
              param_attr=None,
C
caoying03 已提交
4607 4608
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4609 4610 4611 4612
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4613
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4614

4615
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4616

4617
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4618

4619
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4620 4621 4622

            h_t & = o_t tanh(c_t)

4623 4624 4625 4626 4627 4628
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4629 4630 4631

        .. math::

4632
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4633 4634 4635 4636 4637 4638 4639 4640

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4641
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4642 4643

    Args:
Y
yangyaming 已提交
4644 4645 4646 4647 4648 4649
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4650
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4663 4664
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4665 4666

    Returns:
Y
yangyaming 已提交
4667
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4668 4669

    Raises:
4670 4671 4672 4673
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4674 4675 4676 4677 4678

    Examples:

        .. code-block:: python

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4706
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4707 4708 4709 4710
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4711 4712
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4713 4714 4715
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4716
    size = cell_t_prev.shape[1]
4717
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4718 4719
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4720
                param_attr=param_attr,
4721
                bias_attr=bias_attr)
Y
yangyaming 已提交
4722
    dtype = x_t.dtype
X
Xin Pan 已提交
4723 4724
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4725 4726 4727 4728 4729 4730 4731 4732 4733

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4734
    return h, c
G
guosheng 已提交
4735 4736


C
caoying03 已提交
4737
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4738
    """
Y
yangyaming 已提交
4739
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4740 4741 4742

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4743
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4744 4745
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4746 4747
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4748
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4749
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4750
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4751 4752
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4753 4754 4755

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4756

G
guosheng 已提交
4757 4758 4759
    Examples:
        .. code-block:: python

4760
            import paddle.fluid as fluid
G
guosheng 已提交
4761 4762 4763
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4764
            # Each example is followed by the corresponding output tensor.
4765
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4766 4767 4768 4769
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4770

4771
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4772 4773
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4774
            # Each example is followed by the corresponding output tensor.
4775 4776 4777
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4778

G
guosheng 已提交
4779 4780
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4781
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4782 4783
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4784 4785 4786 4787 4788
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4789
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4790 4791 4792 4793
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4794 4795


C
caoying03 已提交
4796
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4797
    """
Y
Yibing Liu 已提交
4798
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4799 4800 4801

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4802 4803 4804
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4805
            must be in the range :math:`[-rank(input), rank(input))`. If
4806
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4807
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4808 4809
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4810
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4811
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4812
                       will be named automatically.
G
guosheng 已提交
4813 4814

    Returns:
Y
Yibing Liu 已提交
4815
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4816

G
guosheng 已提交
4817 4818 4819
    Examples:
        .. code-block:: python

4820
            import paddle.fluid as fluid
G
guosheng 已提交
4821 4822 4823 4824
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4825
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4826 4827 4828
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4829
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4830

4831
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4832 4833 4834
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4835 4836 4837
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4838 4839
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4840
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4841 4842
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4843 4844 4845 4846 4847
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4848
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4849 4850 4851 4852
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4853 4854


C
caoying03 已提交
4855
def reduce_max(input, dim=None, keep_dim=False, name=None):
4856
    """
Y
yangyaming 已提交
4857
    Computes the maximum of tensor elements over the given dimension.
4858 4859 4860

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4861
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4862 4863 4864
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4865
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4866 4867
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4868
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4869 4870
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4871 4872 4873

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4874

4875 4876 4877
    Examples:
        .. code-block:: python

4878
            import paddle.fluid as fluid
4879 4880 4881 4882
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4883
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4884 4885 4886 4887
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4888

4889
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4890 4891 4892
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4893 4894 4895
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4896 4897
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4898
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4899 4900
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4901 4902 4903 4904 4905
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4906
            'dim': dim if dim != None else [0],
4907 4908 4909 4910 4911 4912
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4913
def reduce_min(input, dim=None, keep_dim=False, name=None):
4914
    """
Y
yangyaming 已提交
4915
    Computes the minimum of tensor elements over the given dimension.
4916 4917 4918

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4919
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4920 4921 4922
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4923
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4924 4925
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4926
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4927 4928
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4929 4930 4931

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4932

4933 4934 4935
    Examples:
        .. code-block:: python

4936
            import paddle.fluid as fluid
4937 4938 4939 4940
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4941
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4942 4943 4944 4945
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4946

4947
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4948 4949 4950
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4951 4952 4953
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4954 4955
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4956
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4957 4958
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4959 4960 4961 4962 4963
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4964
            'dim': dim if dim != None else [0],
4965 4966 4967 4968
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4969 4970


4971 4972 4973 4974 4975 4976
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4977
        dim (list|int|None): The dimensions along which the product is performed. If
4978 4979
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4980 4981
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4982 4983 4984
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4985
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4986
            layer will be named automatically.
4987 4988 4989 4990 4991 4992 4993

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4994
            import paddle.fluid as fluid
4995 4996 4997 4998
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4999
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5000 5001 5002
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5003
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5004
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5005

5006
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5007 5008 5009
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5010 5011 5012
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5013 5014
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5015
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5016 5017
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5018 5019 5020 5021 5022
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5023
            'dim': dim if dim != None else [0],
5024 5025 5026 5027 5028 5029
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5030 5031
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5032
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5052
        
5053
            import paddle.fluid as fluid
5054 5055 5056
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5057 5058 5059
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5060 5061 5062 5063 5064 5065 5066
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5087
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5107

5108
            import paddle.fluid as fluid
5109 5110 5111
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5112 5113 5114
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5115 5116 5117 5118 5119 5120 5121
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5136 5137 5138 5139 5140
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5141
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5142
    """
C
caoying03 已提交
5143
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5144 5145 5146

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5147 5148 5149 5150 5151
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5152
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5153
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5154
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5155 5156
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5157 5158

    Returns:
D
dzhwinter 已提交
5159
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5160 5161 5162 5163

    Examples:
        .. code-block:: python

5164 5165 5166 5167 5168 5169
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5170
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5171 5172 5173 5174 5175 5176 5177 5178
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5179 5180 5181 5182 5183 5184 5185 5186
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5187
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5188 5189 5190
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5191
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5214
    .. math::
5215 5216

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5217 5218 5219 5220 5221

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5222
        x(Variable|list): The input tensor to l2_normalize layer.
5223
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5224 5225
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5226
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5227
            the default value is 1e-12.
5228
        name(str|None): A name for this layer(optional). If set None, the layer \
5229
            will be named automatically.
C
caoying03 已提交
5230 5231

    Returns:
5232
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5233 5234

    Examples:
5235

C
caoying03 已提交
5236 5237
        .. code-block:: python

5238
            import paddle.fluid as fluid
5239 5240 5241 5242
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5243 5244
    """

F
fengjiayi 已提交
5245 5246
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5247 5248
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5249 5250
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5251
    helper.append_op(
5252 5253 5254 5255
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5256
        attrs={
5257 5258
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5259 5260
        })
    return out
5261 5262


S
sneaxiy 已提交
5263
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5264
    """
Y
ying 已提交
5265 5266 5267 5268
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5269

C
chengduoZH 已提交
5270
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5271
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5272

5273 5274 5275 5276 5277
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5278
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5279

C
chengduoZH 已提交
5280
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5281
      performs in the following way.
G
guosheng 已提交
5282

5283
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5284
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5285
        last two dimensions and a batched matrix multiply supporting broadcast
5286
        applies on the two tensors.
G
guosheng 已提交
5287

Y
ying 已提交
5288 5289
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5290
    removed after matrix multiplication.
G
guosheng 已提交
5291 5292 5293

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5294 5295 5296
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5297
        alpha (float): The scale of output. Default 1.0.
5298
        name(str|None): A name for this layer(optional). If set None, the layer
5299
            will be named automatically.
G
guosheng 已提交
5300 5301

    Returns:
石晓伟 已提交
5302
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5303

G
guosheng 已提交
5304 5305 5306
    Examples:
        .. code-block:: python

5307
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5308
            # x: [B, ..., M, K], y: [B, ..., K, N]
5309
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5310

5311
            # x: [B, M, K], y: [B, K, N]
5312
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5313

5314
            # x: [B, M, K], y: [K, N]
5315
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5316

5317
            # x: [M, K], y: [K, N]
5318
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5319 5320

            # x: [B, M, K], y: [K]
5321
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5322

5323
            # x: [K], y: [K]
5324
            # fluid.layers.matmul(x, y)  # out: [1]
5325

Y
ying 已提交
5326
            # x: [M], y: [N]
5327 5328
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5329
            import paddle.fluid as fluid
5330 5331 5332
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5333
    """
Y
ying 已提交
5334 5335 5336 5337 5338 5339 5340

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5341
            y_shape = y_shape + [1]
Y
ying 已提交
5342 5343 5344 5345 5346 5347 5348

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5349 5350
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5351

C
chengduo 已提交
5352
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5353
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5354 5355 5356
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5357
                if dim_x != y_shape[i]:
C
chengduo 已提交
5358 5359
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5360 5361 5362

    __check_input(x, y)

5363
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5364
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5365
    helper.append_op(
5366 5367 5368 5369
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5370 5371 5372
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5373
            'alpha': float(alpha),
S
sneaxiy 已提交
5374
        })
5375
    return out
5376 5377


5378
def topk(input, k, name=None):
Q
qingqing01 已提交
5379 5380 5381 5382
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5383
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5384 5385 5386 5387 5388 5389
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5411 5412 5413
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5414
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5415
                 of input.
5416
        name(str|None): A name for this layer(optional). If set None, the layer
5417
                       will be named automatically.
F
fengjiayi 已提交
5418
                       Default: None
Q
qingqing01 已提交
5419 5420

    Returns:
5421 5422 5423
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5424
        within the last dimension of input.
Q
qingqing01 已提交
5425

F
fengjiayi 已提交
5426 5427
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5428 5429 5430 5431

    Examples:
        .. code-block:: python

5432
            import paddle.fluid as fluid
5433 5434
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5435 5436 5437
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5438 5439
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5440 5441 5442 5443 5444 5445
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5446 5447
    helper.append_op(
        type="top_k",
W
whs 已提交
5448
        inputs=inputs,
Q
qingqing01 已提交
5449 5450
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5451
        attrs=attrs)
Q
qingqing01 已提交
5452 5453 5454 5455 5456
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5457 5458 5459 5460 5461 5462
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5463
    """
R
ruri 已提交
5464
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5465 5466 5467 5468 5469 5470 5471 5472
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5473

Y
ying 已提交
5474
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5475

5476
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5477
    the total number denoted by `batch_size`, and the separation is specified
5478 5479
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5480

5481
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5482 5483
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5484

5485
    Args:
5486 5487
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5488
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5489
                          the length of reference string.
5490
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5491
                                     calculating edit distance.
5492 5493
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5494

W
wanghaoshuang 已提交
5495
    Returns:
5496 5497 5498
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5499 5500 5501

    Examples:
        .. code-block:: python
5502
            
R
ruri 已提交
5503 5504
            import paddle.fluid as fluid

5505 5506 5507 5508
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5509

5510 5511 5512 5513 5514 5515 5516 5517
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5518

5519
    """
5520
    helper = LayerHelper("edit_distance", **locals())
5521

5522
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5523
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5524 5525
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5526 5527 5528 5529 5530

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5531
            attrs={"tokens": ignored_tokens})
5532 5533 5534 5535 5536
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5537
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5538
            attrs={"tokens": ignored_tokens})
5539 5540
        label = erased_label

5541 5542 5543 5544 5545
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5546
    # edit distance op
X
Xin Pan 已提交
5547 5548
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5549 5550
    helper.append_op(
        type="edit_distance",
5551
        inputs=this_inputs,
5552 5553
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5554 5555
        attrs={"normalized": normalized})

5556
    return edit_distance_out, sequence_num
5557 5558 5559 5560 5561


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5562

Y
ying 已提交
5563 5564 5565 5566
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5584
        input.lod = [[4, 4]]
M
minqiyang 已提交
5585

W
whs 已提交
5586
        Computation:
5587

W
whs 已提交
5588 5589 5590 5591 5592 5593
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5594 5595 5596 5597 5598

        output.data = [[2],
                       [1],
                       [3]]

5599
        output.lod = [[2, 1]]
5600

W
whs 已提交
5601

5602 5603
    Args:

Y
ying 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5613
        name (str): The name of this layer. It is optional.
5614 5615

    Returns:
H
haowang101779990 已提交
5616 5617 5618
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5619
                  LoD [[]] and dims [1, 1].
5620 5621 5622 5623

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5624
            import paddle.fluid as fluid
5625 5626
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5627
    """
5628
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5629
    _, topk_indices = topk(input, k=1)
5630 5631

    # ctc align op
X
Xin Pan 已提交
5632
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5633 5634 5635
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5636
        outputs={"Output": [ctc_out]},
5637 5638
        attrs={"merge_repeated": True,
               "blank": blank})
5639
    return ctc_out
5640 5641


W
Wu Yi 已提交
5642
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5643
    """
5644 5645
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5646
    to compute Connectionist Temporal Classification (CTC) loss.
5647 5648
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5649 5650 5651
    input tensor.

    Args:
5652
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5653 5654 5655 5656
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5657
       label (Variable): The ground truth of variable-length sequence,
5658 5659 5660
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5661 5662
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5663 5664 5665
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5666
         follewed by a mean_op.
W
Wu Yi 已提交
5667
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5668 5669

    Returns:
5670 5671
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5672 5673

    Examples:
5674

W
wanghaoshuang 已提交
5675
        .. code-block:: python
5676

B
Bai Yifan 已提交
5677 5678 5679 5680 5681
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5682
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5683 5684

    """
F
fengjiayi 已提交
5685
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5686 5687
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5688 5689 5690 5691 5692 5693
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5694 5695 5696 5697 5698
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5699
    return loss_out
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5715 5716 5717
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5718 5719 5720 5721 5722
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5723

5724
            out.lod  = [[0, 1, 3]]
5725 5726 5727 5728

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5729 5730 5731 5732 5733 5734 5735
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5736 5737 5738

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5739 5740

    Returns:
5741

5742 5743 5744 5745 5746
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5747 5748 5749
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5750
    """
L
lujun 已提交
5751
    assert not in_dygraph_mode(), (
5752
        "sequence layer is not supported in dygraph mode yet.")
5753
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5754
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5755 5756 5757 5758 5759 5760
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5761 5762


5763 5764 5765 5766
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5767 5768 5769 5770 5771 5772
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5773
        num_neg_samples=None,
5774 5775 5776
        name=None,
        sampler="uniform",
        custom_dist=None,
5777 5778
        seed=0,
        is_sparse=False):
5779 5780 5781 5782 5783 5784 5785
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5786 5787
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5788
            sample is 1.0.
C
chengduo 已提交
5789 5790 5791 5792 5793 5794 5795 5796 5797
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5798
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5799 5800
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5801 5802 5803
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5804
        custom_dist (float[]): A float[] with size=num_total_classes.
5805 5806 5807 5808
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5809
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5810

5811
    Returns:
Y
Yibing Liu 已提交
5812 5813 5814 5815 5816 5817
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5852
    """
Y
Yang Yu 已提交
5853 5854 5855
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5856 5857

    dim = input.shape[1]
Y
Yang Yu 已提交
5858 5859 5860 5861 5862 5863
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5864
    inputs = {}
C
chengduo 已提交
5865 5866 5867 5868 5869 5870 5871
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5872 5873 5874
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5875

5876 5877 5878 5879
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5880 5881 5882 5883 5884 5885 5886

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5887 5888
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5889
        custom_dist_len = num_total_classes
5890 5891 5892 5893 5894 5895
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5896
            if normal_prob - 1.0 > 0:
5897
                bigs.append((i, normal_prob))
5898
            elif 1.0 - normal_prob > 0:
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5914
            if big_left - 1.0 > 0:
5915
                bigs.append((big_idx, big_left))
5916
            elif 1.0 - big_left > 0:
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5946 5947 5948 5949
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5950 5951 5952 5953 5954
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5955 5956 5957 5958
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5959

Y
Yang Yu 已提交
5960 5961
    attrs = {
        'num_total_classes': int(num_total_classes),
5962 5963
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5964
        'sampler': sampler,
5965 5966
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5967
    }
Y
Yang Yu 已提交
5968 5969 5970

    helper.append_op(
        type='nce',
C
chengduo 已提交
5971
        inputs=inputs,
Y
Yang Yu 已提交
5972 5973 5974 5975 5976 5977
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5978
    return cost / (num_neg_samples + 1)
5979 5980


C
chengduo 已提交
5981 5982
def hsigmoid(input,
             label,
5983
             num_classes,
C
chengduo 已提交
5984 5985
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5986
             name=None,
5987 5988 5989
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5990
             is_sparse=False):
W
weixing02 已提交
5991 5992
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5993
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5994
    complete binary tree, or you can use is_custom to pass your own tree to
5995
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5996 5997 5998 5999 6000 6001
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6002
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6003
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6004

6005 6006
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6007 6008 6009 6010
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6011
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6012
       related to the same batch of inputs.
6013

W
weixing02 已提交
6014
    Args:
M
minqiyang 已提交
6015
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6016 6017 6018 6019
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6020 6021
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6022
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6034
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6035
            it should be in leaf -> root order
M
minqiyang 已提交
6036 6037 6038
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6039
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6040
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6041
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6042
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6043
             of W and input will be sparse.
W
weixing02 已提交
6044 6045

    Returns:
J
JiabinYang 已提交
6046
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6047 6048 6049 6050 6051

    Examples:

        .. code-block:: python

6052
            import paddle.fluid as fluid
G
guosheng 已提交
6053 6054 6055
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6056 6057 6058 6059
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6060 6061
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6062
    dim = input.shape[1]
6063
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6064 6065 6066
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6067 6068 6069 6070 6071 6072 6073 6074 6075
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6076
    if (is_custom) and (path_code is None):
6077
        raise ValueError("path_code should not be None with custom tree")
6078
    elif (is_custom) and (path_table is None):
6079
        raise ValueError("path_table should not be None with custom tree")
6080
    elif (is_custom) and (num_classes is None):
6081
        raise ValueError("num_classes should not be None with custom tree")
6082 6083 6084
    else:
        pass

J
JiabinYang 已提交
6085
    weights = None
6086 6087 6088 6089
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6090
    if not is_custom:
J
JiabinYang 已提交
6091 6092 6093 6094 6095 6096 6097 6098
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6099
            shape=[num_classes, dim],
J
JiabinYang 已提交
6100 6101
            is_bias=False,
            dtype=input.dtype)
6102 6103 6104
    inputs = {
        "X": input,
        "W": weights,
6105
        "PathTable": path_table,
6106
        "PathCode": path_code,
6107 6108
        "Label": label
    }
W
weixing02 已提交
6109
    if helper.bias_attr:
6110
        if not is_custom:
J
JiabinYang 已提交
6111 6112
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6113
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6114 6115 6116 6117 6118 6119
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6120
                shape=[num_classes, 1],
J
JiabinYang 已提交
6121 6122 6123
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6124 6125
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6126
        inputs=inputs,
W
weixing02 已提交
6127
        outputs={"Out": out,
6128 6129 6130 6131 6132 6133 6134
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6135 6136 6137
    return out


Y
fix ci.  
ying 已提交
6138
def transpose(x, perm, name=None):
Y
ying 已提交
6139 6140 6141 6142 6143 6144 6145
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6146 6147 6148
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6149 6150 6151 6152 6153 6154 6155

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6156
            # use append_batch_size=False to avoid prepending extra
6157
            # batch size in shape
6158
            import paddle.fluid as fluid
6159
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6160
                            dtype='float32', append_batch_size=False)
6161
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6162 6163
    """

Y
fix ci.  
ying 已提交
6164
    if len(perm) != len(x.shape):
Y
ying 已提交
6165 6166
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6167
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6168 6169 6170 6171 6172 6173
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6174 6175

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6176 6177
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6178
    helper.append_op(
6179
        type='transpose2',
Y
fix ci.  
ying 已提交
6180
        inputs={'X': [x]},
6181 6182
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6183 6184
        attrs={'axis': perm})
    return out
6185 6186


6187 6188 6189 6190 6191 6192 6193
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6194
    """
6195 6196 6197 6198 6199 6200 6201
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6230 6231 6232 6233 6234 6235 6236 6237 6238
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6239 6240 6241
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6242 6243 6244 6245 6246
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6274 6275 6276
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6289
            output.dims = {8, 8}
6290

6291
            output.lod = [[4, 4]]
6292

T
Tink_Y 已提交
6293
    Examples:
6294 6295 6296

        .. code-block:: python

B
Bai Yifan 已提交
6297 6298 6299
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6300
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6301 6302
                input=data, stride=[1, 1], filter_size=[2, 2])

6303 6304

    """
L
lujun 已提交
6305
    assert not in_dygraph_mode(), (
6306
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6317
    inputs = {"X": input}
6318
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6319 6320 6321 6322 6323
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6324
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6325
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6326
    helper.append_op(
6327
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6328
    return out
6329 6330


Y
yuyang18 已提交
6331
@templatedoc()
6332
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6333 6334
    """
    ${comment}
6335 6336

    Args:
Y
yuyang18 已提交
6337
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6338 6339
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6340 6341 6342 6343 6344
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6345
        ${out_comment}.
6346 6347

    Examples:
Y
yuyang18 已提交
6348 6349 6350 6351
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6352 6353 6354 6355 6356 6357
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6358
    out = helper.create_variable_for_type_inference(dtype)
6359 6360 6361 6362 6363
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6364
    return helper.append_activation(out)
6365 6366


Y
yuyang18 已提交
6367
@templatedoc()
6368 6369
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6370 6371
    ${comment}

L
lujun 已提交
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6415 6416

    Args:
Y
yuyang18 已提交
6417 6418
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6419 6420

    Returns:
Y
yuyang18 已提交
6421
        ${out_comment}.
6422 6423
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6424 6425 6426 6427 6428

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6429
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6430 6431 6432 6433 6434 6435
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6436 6437


6438 6439 6440
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6441
                               ignore_index=kIgnoreIndex,
6442
                               numeric_stable_mode=True,
6443 6444
                               return_softmax=False,
                               axis=-1):
6445 6446
    """
    **Softmax With Cross Entropy Operator.**
6447

6448
    Cross entropy loss with softmax is used as the output layer extensively. This
6449 6450 6451
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6452

6453 6454 6455
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6456

6457 6458 6459 6460
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6461

6462
    The equation is as follows:
6463

6464
    1) Hard label (one-hot label, so every sample has exactly one class)
6465

6466 6467 6468 6469
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6470

6471 6472 6473
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6474

6475 6476 6477 6478
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6479 6480
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6481 6482

    .. math::
6483

H
haowang101779990 已提交
6484
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6485

H
haowang101779990 已提交
6486
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6487

H
haowang101779990 已提交
6488
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6489 6490 6491

    and then cross entropy loss is calculated by softmax and label.

6492
    Args:
6493 6494 6495 6496 6497 6498
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6499
        soft_label (bool): A flag to indicate whether to interpretate the given
6500
            labels as soft labels. Default False.
M
minqiyang 已提交
6501 6502
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6503 6504
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6505 6506
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6507 6508 6509 6510
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6511
                                    Note that the speed may be slower when use
6512
                                    stable algorithm. Default: True
6513
        return_softmax (bool): A flag indicating whether to return the softmax
6514
                               along with the cross entropy loss. Default: False
6515 6516 6517
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6518

6519
    Returns:
H
haowang101779990 已提交
6520 6521
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6522 6523 6524 6525
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6526 6527 6528 6529

    Examples:
        .. code-block:: python

6530 6531
            import paddle.fluid as fluid

6532 6533 6534
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6535 6536
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6537 6538
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6539 6540
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6541 6542 6543 6544 6545 6546
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6547 6548 6549
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6550 6551
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6552
        })
6553 6554 6555 6556

    if return_softmax:
        return loss, softmax

6557 6558 6559
    return loss


6560 6561 6562
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6563
                                       num_true=1,
6564
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6565 6566 6567
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6568
                                       seed=0):
X
xuezhong 已提交
6569 6570 6571 6572 6573
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6574
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6575 6576 6577 6578 6579 6580 6581 6582
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6583
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6584 6585 6586 6587 6588 6589 6590 6591
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6592
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6604
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6605 6606 6607 6608 6609
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6610
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6611
            logits.
X
xuezhong 已提交
6612 6613 6614 6615 6616
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6617 6618 6619
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6620 6621 6622 6623 6624 6625 6626
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6627 6628 6629
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6630
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6631
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6632
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6633
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6634 6635 6636 6637 6638 6639 6640 6641
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6642 6643
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6644 6645
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6646 6647 6648 6649 6650

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6651
            'Labels': label,
X
xuezhong 已提交
6652 6653
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6654 6655 6656 6657
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6658
            'SampledLabels': sampled_label,
6659 6660 6661
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6662 6663
        },
        attrs={
X
xuezhong 已提交
6664
            'use_customized_samples': use_customized_samples,
6665
            'uniq': True,
X
xuezhong 已提交
6666 6667 6668 6669
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6670 6671
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6672 6673 6674 6675 6676 6677
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6678 6679
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6680
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6681
                'Label': sampled_softlabel},
X
xuezhong 已提交
6682 6683 6684
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6685
            'soft_label': True,
X
xuezhong 已提交
6686 6687 6688
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6689
    return loss / num_true
X
xuezhong 已提交
6690 6691


6692 6693
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6694 6695
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6696
    For each instance, it computes the smooth L1 loss element by element first
6697
    and then sums all the losses. So the shape of ouput Variable is
6698
    [batch_size, 1].
6699

6700 6701
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6702
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6703
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6704
            L1 loss op with same shape as :attr:`x`.
6705
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6706 6707
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6708
            by this tensor element by element.
6709
        outside_weight (Variable|None): A tensor with rank at least 2. This
6710 6711
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6712
            element by element.
6713
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6714 6715
           scalar with default value 1.0.

6716
    Returns:
6717
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6718 6719 6720 6721

    Examples:
        .. code-block:: python

6722
            import paddle.fluid as fluid
6723
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6724 6725
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6726
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6727
            out = fluid.layers.smooth_l1(x=fc, y=label)
6728
    """
6729

6730
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6731 6732
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6743
        attrs={'sigma': sigma if sigma is not None else 1.0})
6744
    return loss
6745 6746


6747
def one_hot(input, depth, allow_out_of_range=False):
6748
    """
Y
Yibing Liu 已提交
6749
    This layer creates the one-hot representations for input indices.
6750 6751

    Args:
Y
Yibing Liu 已提交
6752 6753
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6754 6755 6756 6757
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6758 6759

    Returns:
Y
Yibing Liu 已提交
6760
        Variable: The one-hot representations of input.
6761 6762

    Examples:
C
caoying03 已提交
6763
        .. code-block:: python
6764

6765
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6766 6767
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6768 6769
    """
    helper = LayerHelper("one_hot", **locals())
6770

X
Xin Pan 已提交
6771
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6782
            depth.stop_gradient = True
6783 6784
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6785 6786
    helper.append_op(
        type="one_hot",
6787 6788
        inputs=inputs,
        attrs=attrs,
6789 6790
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6791
    return one_hot_out
Y
Yu Yang 已提交
6792 6793


Y
Yu Yang 已提交
6794
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6795
    """
Y
yi.wu 已提交
6796 6797 6798
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6799 6800 6801 6802 6803 6804

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6805 6806
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6807 6808 6809 6810

    Examples:
        .. code-block:: python

6811
           import paddle.fluid as fluid
Y
yi.wu 已提交
6812
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6813
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6814 6815
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6816 6817
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6818 6819 6820 6821 6822
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6823
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6824
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6825 6826
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6827
            outputs={'Out': [counter]},
M
minqiyang 已提交
6828 6829
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6830 6831 6832
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6833 6834


6835
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6836
    """
C
caoying03 已提交
6837 6838
    Gives a new shape to the input Tensor without changing its data.

6839 6840 6841 6842 6843
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6844

6845
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6846

6847 6848 6849 6850
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6851
    2. 0 means the actual dimension value is going to be copied from the
6852 6853 6854 6855
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6856 6857

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6858
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6859
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6860

6861
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6862 6863
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6864 6865
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6866
    dimensions.
C
caoying03 已提交
6867

6868
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6869 6870 6871 6872
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6873 6874

    Args:
6875
        x(variable): The input tensor.
C
caoying03 已提交
6876 6877
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6878 6879 6880 6881 6882
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6883 6884
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6885 6886 6887
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6888
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6889
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6890

6891
    Returns:
G
guosheng 已提交
6892 6893 6894 6895
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6896

X
Xin Pan 已提交
6897 6898 6899
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6900 6901
    Examples:
        .. code-block:: python
G
guosheng 已提交
6902

6903
            import paddle.fluid as fluid
6904
            data = fluid.layers.data(
6905
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6906
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6907
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6908 6909 6910
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6911
        raise ValueError("Input shape must be a python list or tuple.")
6912

X
Xin Pan 已提交
6913 6914 6915 6916 6917
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6918

6919 6920
    # Validate the shape
    unk_dim_idx = -1
6921
    contain_var = False
6922
    for dim_idx, dim_size in enumerate(shape):
6923 6924 6925 6926
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6939
    helper = LayerHelper("reshape2", **locals())
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6962 6963
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6964
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6965
    helper.append_op(
6966
        type="reshape2",
X
Xin Pan 已提交
6967
        inputs=inputs,
6968
        attrs=attrs,
6969 6970
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6971

D
dzhwinter 已提交
6972
    return helper.append_activation(out)
6973

6974

6975
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6976
    """
M
minqiyang 已提交
6977 6978 6979
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6980
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6981

H
haowang101779990 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7003

Y
Yibing Liu 已提交
7004
    Args:
7005
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7006
        axes (list): List of integers, indicating the dimensions to be squeezed.
7007
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7008 7009 7010 7011 7012 7013 7014

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7015
            import paddle.fluid as fluid
7016
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7017
            x = layers.data(name='x', shape=[5, 1, 10])
7018
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7019
    """
L
lujun 已提交
7020
    assert not in_dygraph_mode(), (
L
lujun 已提交
7021
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7022
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7023 7024
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7025
    helper.append_op(
7026
        type="squeeze2",
7027
        inputs={"X": input},
Y
Yibing Liu 已提交
7028
        attrs={"axes": axes},
7029 7030
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7031

7032 7033 7034
    return out


7035
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7036
    """
M
minqiyang 已提交
7037 7038 7039
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7040

M
minqiyang 已提交
7041
    For example:
H
haowang101779990 已提交
7042 7043 7044

    .. code-block:: text

M
minqiyang 已提交
7045
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7046
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7047

Y
Yibing Liu 已提交
7048
    Args:
7049
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7050
        axes (list): List of integers, indicating the dimensions to be inserted.
7051
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7052 7053 7054 7055 7056 7057 7058

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7059 7060 7061
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7062 7063
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7064 7065
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7066
    helper.append_op(
7067
        type="unsqueeze2",
7068
        inputs={"X": input},
Y
Yibing Liu 已提交
7069
        attrs={"axes": axes},
7070 7071
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7072

7073 7074
    return out

7075

Y
yangyaming 已提交
7076
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7077
    """
Y
Yibing Liu 已提交
7078
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7079 7080 7081 7082
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7083
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7084 7085 7086 7087 7088 7089

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7090
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7091 7092 7093
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7094
            target_lod: [4, 2]
Y
yangyaming 已提交
7095 7096

            then we get a 1-level LoDTensor:
7097
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7098 7099 7100 7101 7102 7103
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7104
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7105 7106 7107 7108
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7109
                y.data = [[2, 4]]
Y
yangyaming 已提交
7110 7111 7112
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7113
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7114 7115 7116 7117 7118 7119
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7120
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7121 7122 7123 7124
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7125
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7126 7127 7128 7129
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7130
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7131 7132 7133 7134
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7135
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7136
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7137
                           from :attr:`y`.
Y
yangyaming 已提交
7138
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7139
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7140 7141

    Returns:
Y
Yibing Liu 已提交
7142
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7143 7144

    Raises:
Y
Yibing Liu 已提交
7145
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7146 7147 7148 7149

    Examples:
        .. code-block:: python

7150
            import paddle.fluid as fluid
7151 7152 7153
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7154 7155
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7156
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7194
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7195 7196 7197 7198 7199 7200

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7201

7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7212 7213 7214
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7215 7216
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7217 7218 7219 7220 7221 7222 7223 7224

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7225
    helper.append_op(
7226
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7227
    return out
D
dragonwarrior 已提交
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7239
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7268
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7269 7270
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7283 7284 7285
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7299 7300 7301 7302


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7303
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7304
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7305

G
guosheng 已提交
7306
    Specifically, the number of values padded before the contents of :attr:`x`
7307
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7308
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7309
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7332
                         The length of :attr:paddings must be
G
guosheng 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7343

G
guosheng 已提交
7344
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7345 7346
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7347 7348 7349 7350 7351
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7352
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7353 7354 7355 7356 7357 7358 7359
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7360 7361


C
chengduo 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7393 7394
		And
            pad_value = -1,
C
chengduo 已提交
7395

T
Tink_Y 已提交
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7426 7427 7428
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7429 7430 7431 7432 7433
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7434
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7435 7436 7437 7438 7439 7440 7441 7442 7443
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7444 7445 7446 7447 7448 7449 7450
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7451 7452
    called label-smoothing regularization (LSR).

7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7476
                              be :math:`(1, class\_num)`.
7477 7478
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7479
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7480 7481 7482 7483 7484 7485 7486 7487 7488
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7489
            
7490
            import paddle.fluid as fluid
7491
            import paddle.fluid.layers as layers
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7502
    smooth_label = helper.create_variable_for_type_inference(dtype)
7503 7504 7505 7506 7507 7508 7509
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7510 7511


W
wopeizl 已提交
7512 7513 7514 7515 7516 7517 7518
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7519 7520 7521 7522 7523
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7564 7565


J
jerrywgz 已提交
7566 7567 7568 7569 7570 7571
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7572 7573
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7574 7575 7576 7577 7578
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7579 7580 7581 7582 7583
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7594
            import paddle.fluid as fluid
J
jerrywgz 已提交
7595 7596 7597 7598
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7599 7600 7601
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7602 7603 7604 7605 7606 7607
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7608
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7649 7650
        .. code-block:: python

S
SunGaofeng 已提交
7651 7652 7653
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7654
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7655
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7656 7657
    """
    label = one_hot(label, depth=input.shape[-1])
7658
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7659 7660 7661 7662 7663 7664
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7665 7666


7667 7668 7669 7670
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7671
                 resample='BILINEAR',
7672 7673
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7674
                 align_mode=1):
7675
    """
Q
qiaolongfei 已提交
7676
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7677

K
Kaipeng Deng 已提交
7678 7679 7680
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7681 7682

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7683

7684
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7685

K
Kaipeng Deng 已提交
7686 7687
        'TRILINEAR' : Trilinear interpolation

7688
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7689

7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7700 7701 7702 7703 7704
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7705
    Align_corners and align_mode are optinal parameters,the calculation method 
7706 7707 7708 7709
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7710
    .. code-block:: text
7711

T
Tink_Y 已提交
7712
        For scale:
7713
          
T
Tink_Y 已提交
7714
            if align_corners = True && out_size > 1 :
7715

T
Tink_Y 已提交
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7727

T
Tink_Y 已提交
7728 7729
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7730

T
Tink_Y 已提交
7731 7732
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7733

T
Tink_Y 已提交
7734 7735
          else:
              align_corners = True
7736

T
Tink_Y 已提交
7737 7738
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7739

T
Tink_Y 已提交
7740 7741
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7742

T
Tink_Y 已提交
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7753

T
Tink_Y 已提交
7754 7755 7756 7757
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7758

T
Tink_Y 已提交
7759 7760
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7761

K
Kaipeng Deng 已提交
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
7784 7785 7786 7787 7788 7789
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
7790 7791 7792
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

7793 7794


7795
    Args:
7796
        input (Variable): The input tensor of image resize layer,
7797
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7798 7799 7800
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
7801
        out_shape(list|tuple|Variable|None): Output shape of image resize
K
Kaipeng Deng 已提交
7802 7803 7804 7805
                                    layer, the shape is (out_h, out_w) when
                                    input is a 4-D tensor and is
                                    (out_d, out_h, out_w) when input is a
                                    5-D tensor. Default: None
D
dengkaipeng 已提交
7806
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7807
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7808
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7809
             Default: None.
7810 7811
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
7812 7813
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
7814 7815 7816
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7817
                                :attr:`out_shape` and :attr:`scale` specifying
7818 7819 7820 7821 7822 7823 7824
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7825 7826
                                constructing stage.
                                Default: None
7827 7828 7829 7830
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7831
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7832 7833
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7834 7835

    Returns:
Q
update  
qiaolongfei 已提交
7836
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7837 7838
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
7839

7840 7841 7842
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
7843 7844 7845 7846
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7847
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7848 7849
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7850
        ValueError: scale should be greater than zero.
7851 7852
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7853

7854 7855 7856
    Examples:
        .. code-block:: python

7857
            import paddle.fluid as fluid
R
ruri 已提交
7858
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7859
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7860
    """
7861 7862
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7863
        'TRILINEAR': 'trilinear',
7864 7865
        'NEAREST': 'nearest',
    }
7866 7867
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7868 7869
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7870
    resample_type = resample_methods[resample]
7871

K
Kaipeng Deng 已提交
7872 7873 7874 7875 7876
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7877 7878 7879 7880 7881
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7882
    if out_shape is None and scale is None:
7883
        raise ValueError("One of out_shape and scale must not be None.")
7884
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7885
    dtype = helper.input_dtype()
7886 7887 7888 7889

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7890
    inputs = {"X": input}
D
dengkaipeng 已提交
7891
    attrs = {
K
Kaipeng Deng 已提交
7892
        "out_d": 0,
D
dengkaipeng 已提交
7893 7894
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7895 7896 7897 7898 7899
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7900
    if out_shape is not None:
7901 7902 7903 7904
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7905
            inputs['OutSize'] = out_shape
7906 7907
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7908 7909
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
K
Kaipeng Deng 已提交
7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_h'] = out_shape[0]
                attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_d'] = out_shape[0]
                attrs['out_h'] = out_shape[1]
                attrs['out_w'] = out_shape[2]
7925

7926
    else:
D
dengkaipeng 已提交
7927 7928
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7929
        attrs['scale'] = float(scale)
7930

7931 7932 7933 7934 7935
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7936
    out = helper.create_variable_for_type_inference(dtype)
7937
    helper.append_op(
7938
        type='{}_interp'.format(resample_type),
7939
        inputs=inputs,
7940
        outputs={"Out": out},
D
dengkaipeng 已提交
7941
        attrs=attrs)
7942
    return out
F
stash  
fengjiayi 已提交
7943 7944


7945
@templatedoc(op_type="bilinear_interp")
7946 7947 7948 7949
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7950 7951
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7952
                    align_mode=1):
7953
    """
7954 7955
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7956 7957
    in priority order.

7958 7959 7960 7961
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7962 7963
    again in the other direction.

7964
    For details of bilinear interpolation, please refer to Wikipedia:
7965
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7966

T
tink2123 已提交
7967
    Align_corners and align_mode are optinal parameters,the calculation 
7968 7969 7970 7971
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7972
    .. code-block:: text
7973

T
Tink_Y 已提交
7974
        For scale:
7975
          
T
Tink_Y 已提交
7976
            if align_corners = True && out_size > 1 :
7977

T
Tink_Y 已提交
7978 7979 7980 7981 7982
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7983

T
Tink_Y 已提交
7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7994 7995


T
Tink_Y 已提交
7996
          else:
T
tink2123 已提交
7997

T
Tink_Y 已提交
7998 7999
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8000

T
Tink_Y 已提交
8001 8002
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8003 8004 8005



Y
yuyang18 已提交
8006
    Args:
K
Kaipeng Deng 已提交
8007
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8008

D
dengkaipeng 已提交
8009 8010 8011
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8012

Y
yuyang18 已提交
8013
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8014
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8015
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8016
             Default: None.
Y
yuyang18 已提交
8017 8018

        name(str|None): The output variable name.
8019 8020 8021
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8022
                                :attr:`out_shape` and :attr:`scale` specifying
8023 8024 8025 8026 8027 8028 8029
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8030 8031
                                constructing stage.
                                Default: None
8032 8033
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8034 8035

    Returns:
K
Kaipeng Deng 已提交
8036
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8037 8038 8039 8040

    Examples:
        .. code-block:: python

8041
            import paddle.fluid as fluid
R
ruri 已提交
8042
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8043
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
8044 8045
    """

8046 8047
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8048 8049


K
Kaipeng Deng 已提交
8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
        input(${x_type}): input should be a 4-D tensor.

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_d, out_h, out_w).
                                    Default: None

        scale(float|None): The multiplier for the input depth, height or width.
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
                                constructing stage.
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
            out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8156
@templatedoc(op_type="nearest_interp")
8157 8158 8159 8160
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8161 8162
                   actual_shape=None,
                   align_corners=True):
8163
    """
8164
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8165 8166
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8167 8168
    out_shape and scale in priority order.

8169 8170
    Example:

T
Tink_Y 已提交
8171 8172 8173 8174 8175
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8176

T
Tink_Y 已提交
8177 8178 8179 8180 8181 8182 8183 8184
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8185
          
T
Tink_Y 已提交
8186 8187
          if:
              align_corners = False
8188

T
Tink_Y 已提交
8189 8190
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8191

T
Tink_Y 已提交
8192 8193
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8194

T
Tink_Y 已提交
8195 8196
          else:
              align_corners = True
8197

T
Tink_Y 已提交
8198 8199
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8200

T
Tink_Y 已提交
8201 8202
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8203 8204


8205
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8206
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8207 8208

    Args:
K
Kaipeng Deng 已提交
8209
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8210

D
dengkaipeng 已提交
8211 8212 8213
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8214

Y
yuyang18 已提交
8215
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8216
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8217
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8218
             Default: None.
Y
yuyang18 已提交
8219 8220

        name(str|None): The output variable name.
8221 8222 8223
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8224
                                :attr:`out_shape` and :attr:`scale` specifying
8225 8226 8227 8228 8229 8230 8231
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8232 8233
                                constructing stage.
                                Default: None
8234
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8235 8236

    Returns:
K
Kaipeng Deng 已提交
8237
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8238 8239 8240 8241

    Examples:
        .. code-block:: python

8242
            import paddle.fluid as fluid
R
ruri 已提交
8243
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8244
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8245 8246
    """

8247 8248
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8249 8250 8251 8252


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8253 8254 8255
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8256 8257 8258 8259 8260 8261 8262
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8263
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8264

8265
    Returns:
Q
update  
qiaolongfei 已提交
8266
        Variable: The output is a 4-D tensor of the shape
8267
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8268 8269 8270 8271

    Examples:
        .. code-block:: python

8272
            import paddle.fluid as fluid
R
ruri 已提交
8273 8274
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8285 8286 8287
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8288 8289 8290
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8291
def gather(input, index, overwrite=True):
W
whs 已提交
8292
    """
Q
qiaolongfei 已提交
8293 8294
    **Gather Layer**

8295
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8296 8297 8298 8299
    of X indexed by `index` and concatenate them together.

    .. math::

8300
        Out = X[Index]
W
whs 已提交
8301 8302 8303 8304 8305 8306 8307


    .. code-block:: text


                Given:

8308 8309
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8320
        input (Variable): The source input with rank>=1.
W
whs 已提交
8321
        index (Variable): The index input with rank=1.
8322 8323 8324 8325 8326 8327
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8328 8329 8330 8331 8332

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8333

W
whs 已提交
8334 8335
        .. code-block:: python

8336
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8337 8338
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8339 8340 8341 8342
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8343
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8344 8345 8346 8347
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8348 8349
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8350 8351 8352
    return out


8353
def scatter(input, index, updates, name=None, overwrite=True):
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8371 8372 8373 8374
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8375 8376 8377 8378 8379 8380 8381 8382

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8383 8384 8385 8386 8387
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8388

8389
            output = fluid.layers.scatter(input, index, updates)
8390 8391 8392
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8393
    out = helper.create_variable_for_type_inference(dtype)
8394 8395 8396 8397 8398
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8399
        attrs={'overwrite': overwrite},
8400 8401 8402 8403
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8404 8405 8406 8407 8408 8409 8410 8411 8412
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8413

Q
Qingsheng Li 已提交
8414
    Given the following input:
H
haowang101779990 已提交
8415

Q
Qingsheng Li 已提交
8416
    .. code-block:: text
H
haowang101779990 已提交
8417

Q
Qingsheng Li 已提交
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8430

Q
Qingsheng Li 已提交
8431
    .. code-block:: text
H
haowang101779990 已提交
8432

Q
Qingsheng Li 已提交
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8448
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8449 8450 8451 8452

    Examples:

        .. code-block:: python
8453
	
8454
            import paddle.fluid as fluid
8455
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8456

8457 8458 8459
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8460 8461 8462
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8463
    assert not in_dygraph_mode(), (
8464
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8465 8466
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8467
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8468 8469 8470 8471 8472 8473 8474 8475 8476
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8490

8491
    Examples:
8492
        >>> import paddle.fluid as fluid
8493 8494
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8495
    """
F
stash  
fengjiayi 已提交
8496
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8497
    dtype = x.dtype
X
Xin Pan 已提交
8498
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8499
    if seed is None:
8500
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8501
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8502
    if isinstance(seed, int):
F
fengjiayi 已提交
8503 8504 8505 8506 8507
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8508 8509 8510 8511
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8512
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8513 8514
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8515 8516
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8517
    return out
W
whs 已提交
8518 8519


8520
def log(x, name=None):
W
wanghaoshuang 已提交
8521 8522 8523 8524 8525
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8526
        Out = \\ln(x)
W
wanghaoshuang 已提交
8527 8528

    Args:
8529
        x (Variable): Input tensor.
8530 8531
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8532 8533 8534 8535 8536 8537 8538 8539

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8540
            import paddle.fluid as fluid
8541
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8542
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8543 8544
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8545
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8546
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8547
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8548 8549 8550
    return out


8551
def relu(x, name=None):
W
wanghaoshuang 已提交
8552 8553
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8554
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8555 8556 8557 8558
    the tensor elementwise.

    .. math::

8559
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8560 8561

    Args:
8562
        x (Variable): The input tensor.
8563 8564
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8565 8566 8567 8568 8569 8570 8571 8572

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8573
            import paddle.fluid as fluid
8574
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8575
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8576 8577
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8578
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8579
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8580 8581
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8582
    return out
8583 8584


C
chengduo 已提交
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8609 8610 8611 8612 8613 8614
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8630 8631 8632
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8633 8634 8635 8636
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8637
    .. math::
8638

H
haowang101779990 已提交
8639
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8640

8641
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8642 8643 8644 8645 8646
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8647
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8648
                           Its shape should be the same as input.
8649
        num_classes (int): The possible number of labels.
W
whs 已提交
8650 8651

    Returns:
M
minqiyang 已提交
8652 8653
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8654
                     Three variables:
M
minqiyang 已提交
8655

H
haowang101779990 已提交
8656 8657 8658
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8659 8660 8661 8662

    Examples:

        .. code-block:: python
8663

B
Bai Yifan 已提交
8664 8665 8666 8667 8668
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8669 8670 8671
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8672 8673 8674
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8675 8676
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8677 8678
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8679
        outputs={
W
whs 已提交
8680 8681 8682
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8683 8684 8685
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8728
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8729
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8730
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8748
            import paddle.fluid as fluid
8749 8750 8751 8752 8753 8754
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8755
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8756 8757 8758 8759 8760

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8761
            isinstance(shape, Variable)):
8762 8763 8764 8765 8766
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8767
    out = helper.create_variable_for_type_inference(x.dtype)
8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8785 8786


W
whs 已提交
8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8804

W
whs 已提交
8805
              out_shape = [2, 3, 5, 5]
8806

W
whs 已提交
8807
          Step 1:
8808

W
whs 已提交
8809 8810 8811
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8812

W
whs 已提交
8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8858
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8859
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8872

S
SunGaofeng 已提交
8873
            import paddle.fluid as fluid
W
whs 已提交
8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8885
            isinstance(out_shape, Variable)):
W
whs 已提交
8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8907 8908
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8909

8910 8911
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8912
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8913 8914 8915
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8916

8917 8918
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8919

H
haowang101779990 已提交
8920 8921
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8922 8923
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8924

H
haowang101779990 已提交
8925 8926 8927 8928 8929 8930 8931 8932
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8933 8934 8935

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8953
            import paddle.fluid as fluid
8954 8955 8956
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8971
    out = helper.create_variable_for_type_inference("float32")
8972 8973 8974 8975 8976 8977 8978 8979

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8980 8981


M
minqiyang 已提交
8982 8983
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8984
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8985
    which compares left score and right score passed in.
M
minqiyang 已提交
8986
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8987 8988 8989

    .. math::

H
haowang101779990 已提交
8990
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8991 8992

    Args:
M
minqiyang 已提交
8993
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8994 8995
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8996
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8997 8998
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8999

M
minqiyang 已提交
9000
    Returns:
M
minqiyang 已提交
9001
       Variable: The ranking loss.
H
haowang101779990 已提交
9002

M
minqiyang 已提交
9003
    Raises:
M
minqiyang 已提交
9004
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9005

M
minqiyang 已提交
9006
    Examples:
H
haowang101779990 已提交
9007

M
minqiyang 已提交
9008
        .. code-block:: python
H
haowang101779990 已提交
9009

9010
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9011 9012 9013
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9014 9015
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9016
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9017 9018 9019 9020 9021 9022
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9023 9024
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9048
        .. code-block:: text
W
whs 已提交
9049

T
Tink_Y 已提交
9050
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9051

T
Tink_Y 已提交
9052 9053
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9054

T
Tink_Y 已提交
9055
	      Case 0:
M
minqiyang 已提交
9056

T
Tink_Y 已提交
9057 9058 9059
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9060

T
Tink_Y 已提交
9061 9062 9063
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9064

T
Tink_Y 已提交
9065
	      Case 1:
M
minqiyang 已提交
9066

T
Tink_Y 已提交
9067 9068
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9069

T
Tink_Y 已提交
9070 9071 9072
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9073

T
Tink_Y 已提交
9074
	      Case 2:
M
minqiyang 已提交
9075

T
Tink_Y 已提交
9076 9077
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9078

T
Tink_Y 已提交
9079 9080 9081
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9082 9083


W
whs 已提交
9084 9085
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9086
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9104 9105 9106 9107 9108
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9109 9110 9111 9112
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9113
    out = helper.create_variable_for_type_inference(dtype)
9114 9115 9116 9117 9118 9119 9120 9121 9122
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9123
    helper.append_op(
9124
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9125 9126 9127 9128

    return out


9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9141 9142 9143 9144 9145

    Examples:

        .. code-block:: python

9146
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9147 9148
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9149 9150
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9151
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9172 9173 9174 9175 9176

    Examples:

        .. code-block:: python

9177
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9178 9179
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9180 9181
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9182
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9203 9204 9205 9206 9207

    Examples:

        .. code-block:: python

9208
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9209 9210
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9211 9212
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9213
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9235 9236 9237 9238 9239

    Examples:

        .. code-block:: python

9240
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9241
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9242
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9243 9244
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9245
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9268 9269 9270 9271 9272

    Examples:

        .. code-block:: python

9273
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9274 9275
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9276 9277
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9278
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9300 9301 9302 9303 9304

    Examples:

        .. code-block:: python

9305
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9306 9307
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9308 9309
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9310
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9311 9312 9313 9314 9315 9316 9317 9318
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9319 9320 9321 9322
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9323 9324
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9325

J
jerrywgz 已提交
9326 9327 9328 9329 9330 9331 9332 9333
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9334 9335
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9336
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9337
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9338
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9339
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9340
          will be named automatically.
J
jerrywgz 已提交
9341 9342 9343 9344 9345 9346 9347 9348

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9349 9350 9351
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9352
            mode = 'channel'
J
jerrywgz 已提交
9353 9354 9355
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9367
        attr=helper.param_attr,
J
jerrywgz 已提交
9368 9369 9370 9371
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9372
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9373 9374 9375 9376 9377 9378 9379 9380 9381
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9382 9383 9384 9385 9386 9387 9388 9389 9390 9391
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9392
    Returns:
9393
        output(${out_type}): ${out_comment}
9394 9395 9396

    Examples:

9397
    .. code-block:: python
9398

9399
            import paddle.fluid as fluid
H
haowang101779990 已提交
9400 9401
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9402 9403
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9404
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9423
    Returns:
9424
        output(${out_type}): ${out_comment}
9425 9426 9427 9428 9429

    Examples:

        .. code-block:: python

9430
            import paddle.fluid as fluid
H
haowang101779990 已提交
9431 9432
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9433 9434
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9435
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9453
    Returns:
9454
        output(${out_type}): ${out_comment}
9455 9456 9457

    Examples:

9458 9459 9460 9461 9462
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9463
            y = fluid.layers.soft_relu(x, threshold=20.0)
9464 9465
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9466
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9467 9468 9469 9470 9471 9472 9473 9474
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9475 9476 9477 9478
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9479

H
haowang101779990 已提交
9480
    For Example:
M
minqiyang 已提交
9481

H
haowang101779990 已提交
9482
    .. code-block:: text
9483

H
haowang101779990 已提交
9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9505 9506 9507

    Args:
        x (Variable): A tensor of rank >= axis.
9508 9509
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9510 9511 9512 9513 9514 9515 9516 9517
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9518 9519 9520
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9521 9522 9523 9524
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9525
        ValueError: If axis is not in range [0, rank(x)].
9526 9527 9528 9529 9530

    Examples:

        .. code-block:: python

9531
            import paddle.fluid as fluid
9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9543 9544
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9545
    helper.append_op(
9546
        type='flatten2',
9547
        inputs={"X": x},
9548 9549
        outputs={'Out': out,
                 'XShape': x_shape},
9550 9551
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9552 9553


C
chenweihang 已提交
9554
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9555
    """
C
chenweihang 已提交
9556
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9557
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9558 9559
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9560

H
haowang101779990 已提交
9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9578 9579

    Args:
C
chenweihang 已提交
9580 9581 9582
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9583 9584 9585 9586 9587 9588 9589

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9590 9591 9592
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9593 9594
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9595
    assert not in_dygraph_mode(), (
9596
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9597
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9598 9599
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9600 9601 9602 9603 9604 9605
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9606
    return out
9607

9608

S
sneaxiy 已提交
9609 9610 9611 9612 9613 9614 9615 9616 9617
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9618

S
sneaxiy 已提交
9619
    .. math::
9620

S
sneaxiy 已提交
9621 9622 9623
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9624
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9625 9626 9627 9628
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9629 9630 9631
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9632 9633
    Returns:
        Variable: The output sequence mask.
9634

9635 9636 9637
    Examples:
        .. code-block:: python
	
9638
            import paddle.fluid as fluid
9639 9640 9641 9642 9643
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9644
    """
L
lujun 已提交
9645
    assert not in_dygraph_mode(), (
9646
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9647

Q
qingqing01 已提交
9648
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9649
    if name is None:
X
Xin Pan 已提交
9650
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9651
    else:
X
Xin Pan 已提交
9652
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9653

9654 9655 9656 9657 9658 9659 9660 9661
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9662
    helper.append_op(
9663 9664 9665
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9666
    return out
S
sneaxiy 已提交
9667 9668


X
Xin Pan 已提交
9669
def stack(x, axis=0):
S
sneaxiy 已提交
9670 9671 9672 9673
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9674 9675 9676 9677 9678 9679 9680

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9681
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9682
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9683

C
chengduozh 已提交
9684 9685
    For Example:

C
chengduozh 已提交
9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9724
    Args:
9725
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9726
        axis (int|None): The axis along which all inputs are stacked.
9727

S
sneaxiy 已提交
9728 9729
    Returns:
        Variable: The stacked variable.
9730

9731 9732 9733
    Examples:
        .. code-block:: python

9734
            import paddle.fluid as fluid
9735
            import paddle.fluid.layers as layers
9736 9737
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9738 9739
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9740 9741
    """

X
Xin Pan 已提交
9742 9743 9744 9745 9746 9747
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9748
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9749
    helper.append_op(
S
sneaxiy 已提交
9750 9751
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9752

X
Xin Pan 已提交
9753
    return out
D
dzhwinter 已提交
9754 9755 9756 9757 9758 9759 9760


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9761

D
dzhwinter 已提交
9762 9763 9764
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9765
    raised.
D
dzhwinter 已提交
9766 9767

    Args:
M
minqiyang 已提交
9768
        x (Variable): Input variable.
D
dzhwinter 已提交
9769 9770
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9771

D
dzhwinter 已提交
9772 9773
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9774

9775 9776 9777 9778 9779 9780
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9781 9782 9783 9784 9785 9786 9787 9788 9789 9790
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9791
    for _ in range(num):
X
Xin Pan 已提交
9792
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9793 9794 9795 9796 9797 9798 9799 9800

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9813

W
whs 已提交
9814 9815 9816 9817
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9818

W
whs 已提交
9819
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9820

W
whs 已提交
9821
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9822

W
whs 已提交
9823 9824 9825 9826
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9827

W
whs 已提交
9828 9829 9830 9831 9832 9833 9834 9835 9836 9837
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9838 9839 9840
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9841 9842 9843 9844
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9845
    out = helper.create_variable_for_type_inference(dtype)
9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9863
                    ele.stop_gradient = True
9864 9865 9866
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
9867 9868
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
9869 9870 9871 9872 9873 9874 9875 9876 9877
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9878
    helper.append_op(
9879
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9880
    return out
S
sneaxiy 已提交
9881 9882


G
fix  
gongweibao 已提交
9883 9884 9885
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9886
@templatedoc()
G
fix  
gongweibao 已提交
9887 9888 9889 9890 9891 9892 9893 9894 9895
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9896
    ${comment}
G
fix  
gongweibao 已提交
9897 9898

    Args:
G
gongweibao 已提交
9899 9900 9901
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9902
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9903 9904 9905
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9906 9907
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9908
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9909

9910 9911 9912
    Examples:
        .. code-block:: python

9913
            import paddle.fluid as fluid
9914 9915
            import paddle.fluid.layers as layers 

9916 9917
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9918 9919 9920
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9921
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9938 9939


G
gongweibao 已提交
9940
@templatedoc()
X
Xin Pan 已提交
9941
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9942
    """
G
gongweibao 已提交
9943
    ${comment}
G
fix  
gongweibao 已提交
9944 9945

    Args:
G
gongweibao 已提交
9946 9947 9948 9949
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9950 9951 9952
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9953
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9954

9955 9956 9957
    Examples:
        .. code-block:: python

9958
            import paddle.fluid as fluid
J
JesseyXujin 已提交
9959
            import paddle.fluid.layers as layers
9960
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9961 9962 9963
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9964
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9975
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9976 9977 9978 9979 9980
        })

    return out


G
gongweibao 已提交
9981
@templatedoc()
G
fix  
gongweibao 已提交
9982
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9983
    """
G
gongweibao 已提交
9984
    ${comment}
G
fix  
gongweibao 已提交
9985 9986

    Args:
G
gongweibao 已提交
9987 9988 9989 9990
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9991
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9992 9993

    Returns:
G
gongweibao 已提交
9994
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9995

9996 9997 9998
    Examples:
        .. code-block:: python

9999
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10000
            x = fluid.layers.data(
10001 10002 10003 10004 10005
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10006
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10007 10008 10009
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10010
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10022
@templatedoc()
G
fix  
gongweibao 已提交
10023 10024 10025 10026 10027 10028 10029 10030 10031
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10032
    ${comment}
G
fix  
gongweibao 已提交
10033 10034

    Args:
G
gongweibao 已提交
10035 10036
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10037
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10038 10039 10040 10041
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10042
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10043 10044

    Returns:
G
gongweibao 已提交
10045
        out (Variable): ${out_comment}
10046 10047 10048 10049

    Examples:
        .. code-block:: python

10050
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10051
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10052

Y
Yibing Liu 已提交
10053
            out = fluid.layers.gaussian_random_batch_size_like(
10054
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10055 10056 10057
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10058
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10077
@templatedoc()
X
Xin Pan 已提交
10078
def sum(x):
G
fix  
gongweibao 已提交
10079
    """
G
gongweibao 已提交
10080
    ${comment}
G
fix  
gongweibao 已提交
10081 10082

    Args:
G
gongweibao 已提交
10083
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10084 10085

    Returns:
G
gongweibao 已提交
10086
        out (Variable): ${out_comment}
10087 10088 10089 10090

    Examples:
        .. code-block:: python

10091
            import paddle.fluid as fluid
10092 10093 10094 10095
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10096 10097 10098
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10099 10100
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10101 10102 10103 10104
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10105
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10106 10107 10108 10109

    return out


G
gongweibao 已提交
10110
@templatedoc()
G
fix  
gongweibao 已提交
10111 10112
def slice(input, axes, starts, ends):
    """
10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10128

10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
10146
    Args:
G
gongweibao 已提交
10147 10148 10149 10150
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
10151 10152

    Returns:
G
gongweibao 已提交
10153
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10154

10155 10156 10157
    Examples:
        .. code-block:: python

10158 10159
            import paddle.fluid as fluid
 
10160 10161 10162 10163
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

10164
            input = fluid.layers.data(
10165 10166
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10167
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
10168 10169 10170
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
10171 10172
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10186 10187
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10188
    Get the shape of the input.
G
fix  
gongweibao 已提交
10189 10190

    Args:
C
chengduozh 已提交
10191
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10192 10193

    Returns:
C
fix doc  
chengduozh 已提交
10194
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10195

10196 10197 10198
    Examples:
        .. code-block:: python

10199 10200 10201
            import paddle.fluid as fluid

            input = fluid.layers.data(
10202
                name="input", shape=[3, 100, 100], dtype="float32")
10203
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10204 10205 10206
    """

    helper = LayerHelper('shape', **locals())
10207
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10208
    helper.append_op(
G
fix  
gongweibao 已提交
10209
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10210 10211

    return out
G
merge  
gongweibao 已提交
10212 10213


Z
zhoukunsheng 已提交
10214 10215 10216 10217
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10218
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10219 10220 10221 10222 10223 10224 10225 10226 10227 10228

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10229 10230 10231 10232
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10233 10234 10235 10236 10237 10238 10239 10240
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10270 10271 10272 10273
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10274
    if in_dygraph_mode():
X
Xin Pan 已提交
10275 10276 10277
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10278 10279 10280 10281
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10282 10283
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10284
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10285 10286 10287
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10288

S
sneaxiy 已提交
10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10300
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10301 10302 10303 10304 10305 10306 10307 10308
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10309
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10310
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10311 10312 10313

    Returns:
        out(${out_type}): ${out_comment}
10314 10315 10316 10317 10318 10319 10320 10321

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10322 10323 10324
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10325
    if name is None:
X
Xin Pan 已提交
10326
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10327 10328 10329
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10330 10331 10332 10333 10334 10335 10336 10337 10338 10339

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10340
    return helper.append_activation(out)
S
sneaxiy 已提交
10341 10342


X
Xin Pan 已提交
10343
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10344 10345 10346
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10347
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10348 10349 10350
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10351
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10352 10353 10354
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10355
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10356 10357 10358
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10359
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10360 10361 10362
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10363
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10364 10365 10366
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10367
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10368 10369 10370
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10371 10372 10373 10374 10375 10376 10377 10378
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10379
for func in [
10380 10381 10382 10383 10384 10385 10386 10387 10388
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10389 10390 10391 10392 10393
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10394 10395
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10396
        ])
10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10434 10435


10436
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10437 10438
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10439 10440
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10441 10442 10443

    if out is None:
        if name is None:
X
Xin Pan 已提交
10444
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10460
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10472 10473 10474 10475

    Examples:
        .. code-block:: python

10476
            import paddle.fluid as fluid
10477
            left = fluid.layers.data(
石晓伟 已提交
10478
                name='left', shape=[1], dtype='bool')
10479
            right = fluid.layers.data(
石晓伟 已提交
10480
                name='right', shape=[1], dtype='bool')
10481
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10482 10483 10484 10485 10486 10487 10488
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10489
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10501 10502 10503 10504

    Examples:
        .. code-block:: python

10505
            import paddle.fluid as fluid
10506
            left = fluid.layers.data(
石晓伟 已提交
10507
                name='left', shape=[1], dtype='bool')
10508
            right = fluid.layers.data(
石晓伟 已提交
10509
                name='right', shape=[1], dtype='bool')
10510
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10511 10512 10513 10514 10515 10516 10517
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10518
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10530 10531 10532 10533

    Examples:
        .. code-block:: python

10534
            import paddle.fluid as fluid
10535
            left = fluid.layers.data(
石晓伟 已提交
10536
                name='left', shape=[1], dtype='bool')
10537
            right = fluid.layers.data(
石晓伟 已提交
10538
                name='right', shape=[1], dtype='bool')
10539
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10540 10541 10542 10543 10544 10545 10546
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10547
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10548 10549 10550 10551 10552 10553 10554 10555 10556 10557
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10558 10559 10560 10561

    Examples:
        .. code-block:: python

10562
            import paddle.fluid as fluid
10563
            left = fluid.layers.data(
石晓伟 已提交
10564
                name='left', shape=[1], dtype='bool')
10565
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10566 10567 10568 10569
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10585 10586 10587 10588

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10589
            import paddle.fluid as fluid
10590 10591 10592
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10593 10594 10595 10596 10597
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10598 10599
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10600 10601 10602

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10626 10627 10628 10629

    Examples:
        .. code-block:: python

10630
            import paddle.fluid as fluid
10631 10632 10633
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10634 10635 10636 10637 10638
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10639 10640
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10641 10642 10643

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10644 10645 10646 10647 10648 10649 10650 10651

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10665 10666 10667 10668

    Examples:
        .. code-block:: python

10669
            import paddle.fluid as fluid
10670 10671 10672
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10673 10674 10675 10676 10677
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10678
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10679 10680 10681 10682 10683 10684 10685 10686 10687 10688
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10700 10701 10702 10703

    Examples:
        .. code-block:: python

10704
            import paddle.fluid as fluid
10705 10706 10707 10708 10709
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10748 10749 10750 10751 10752
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10753
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10754 10755 10756 10757 10758 10759 10760 10761 10762
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10763 10764
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10765 10766 10767 10768 10769 10770
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10771 10772 10773
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10774 10775
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10776 10777 10778 10779 10780 10781
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10782
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10783
        name(basestring|None): Name of the output.
10784 10785
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10786 10787 10788

    Returns:
        out(${out_type}): ${out_comment}
10789 10790 10791 10792

    Examples:
        .. code-block:: python

10793
            import paddle.fluid as fluid
10794 10795 10796 10797 10798 10799 10800 10801 10802 10803
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10804 10805 10806 10807 10808
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10809
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10810 10811 10812 10813 10814 10815 10816 10817
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10818 10819
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10836 10837 10838 10839

    Examples:
        .. code-block:: python

10840
            import paddle.fluid as fluid
J
jerrywgz 已提交
10841 10842 10843 10844 10845
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10846 10847 10848 10849
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10850
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10851 10852 10853 10854 10855 10856 10857 10858 10859 10860
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10861 10862


J
JiabinYang 已提交
10863
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10864
    """
J
JiabinYang 已提交
10865
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10866 10867 10868

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10869
    The attr blocksize indicates the input block size.
10870 10871

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10872
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10873 10874

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10875
    (but keeping all data)
J
JiabinYang 已提交
10876

J
JiabinYang 已提交
10877
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10878
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10879 10880 10881 10882 10883
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10884
    Args:
J
JiabinYang 已提交
10885
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10886
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10887 10888

    Returns:
J
JiabinYang 已提交
10889
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10890 10891

    Raises:
J
JiabinYang 已提交
10892
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10893 10894 10895

    Examples:
        .. code-block:: python
10896 10897 10898
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10899 10900

            data = fluid.layers.data(
10901
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10902
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10903
                x=data, blocksize=2)
10904

10905
            exe = fluid.Executor(fluid.CPUPlace())
10906 10907 10908 10909
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10910

J
JiabinYang 已提交
10911 10912
    """

J
JiabinYang 已提交
10913
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10914

J
JiabinYang 已提交
10915 10916
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10917 10918

    if name is None:
J
JiabinYang 已提交
10919 10920
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10921 10922 10923 10924 10925
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10926
        type="space_to_depth",
J
JiabinYang 已提交
10927
        inputs={"X": x},
J
JiabinYang 已提交
10928
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10929
        outputs={"Out": out})
J
JiabinYang 已提交
10930 10931
    return out

J
JiabinYang 已提交
10932

S
sneaxiy 已提交
10933 10934
@templatedoc()
def sequence_reverse(x, name=None):
10935
    """
S
sneaxiy 已提交
10936 10937 10938 10939 10940 10941 10942 10943
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10944 10945 10946 10947 10948 10949 10950

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10951
    """
L
lujun 已提交
10952
    assert not in_dygraph_mode(), (
10953
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10954 10955
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10956
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10957 10958 10959 10960 10961 10962 10963 10964 10965 10966
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10967 10968


10969 10970 10971 10972 10973 10974
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10975 10976 10977 10978 10979
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10980

10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10993
        act (str, default None): Activation to be applied to the output of this layer.
10994 10995 10996

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

11011 11012 11013 11014
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11015
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11027
    return helper.append_activation(out)
11028 11029


B
barrierye 已提交
11030
def similarity_focus(input, axis, indexes, name=None):
11031
    """
B
barrierye 已提交
11032
    SimilarityFocus Operator
B
barrierye 已提交
11033 11034

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11035

11036 11037 11038
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11039
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11040 11041 11042 11043 11044 11045 11046
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11047
       each index.
B
barrierye 已提交
11048 11049 11050 11051
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11101
    Args:
11102
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
11103
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
11104
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11105
            1, 2 or 3.
B
barrierye 已提交
11106
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11107 11108

    Returns:
H
haowang101779990 已提交
11109 11110
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11111

B
barrierye 已提交
11112 11113
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11114

11115
            import paddle.fluid as fluid
B
barrierye 已提交
11116
            data = fluid.layers.data(
Y
Yibing Liu 已提交
11117 11118
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11131 11132 11133 11134 11135
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11136 11137 11138 11139 11140 11141 11142
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11143 11144


M
minqiyang 已提交
11145 11146
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
11147 11148
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
11149 11150
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11151 11152 11153 11154 11155 11156 11157 11158

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
11159
        input.data = 
11160
            [[1, 2],
11161
             [3, 4]]
M
minqiyang 已提交
11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11175 11176
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11177 11178 11179 11180
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11181
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11182 11183
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11184
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11185
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11186 11187

    Returns:
11188
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11189 11190 11191

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11192

11193 11194
            import paddle.fluid as fluid

11195 11196 11197 11198
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11199 11200


11201 11202 11203 11204
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11205 11206
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11207 11208
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11209 11210 11211 11212 11213 11214 11215
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11216 11217


D
dengkaipeng 已提交
11218
@templatedoc()
11219 11220
def grid_sampler(x, grid, name=None):
    """
11221
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11222
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11223 11224 11225 11226
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11227
    interpolation value of 4 nearest corner points.
11228

H
haowang101779990 已提交
11229
    .. code-block:: text
11230

H
haowang101779990 已提交
11231 11232
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11233

H
haowang101779990 已提交
11234 11235
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11236

H
haowang101779990 已提交
11237 11238 11239
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11240

H
haowang101779990 已提交
11241 11242 11243 11244 11245 11246 11247 11248 11249
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11250

H
haowang101779990 已提交
11251 11252 11253 11254
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11255

H
haowang101779990 已提交
11256 11257 11258 11259
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11260

H
haowang101779990 已提交
11261 11262 11263 11264
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11265

H
haowang101779990 已提交
11266 11267
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11268 11269

    Args:
11270 11271 11272
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11273 11274

    Returns:
H
haowang101779990 已提交
11275
        Variable: Output of shape [N, C, H, W] data samples input X
11276 11277
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11278 11279 11280 11281
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11282 11283 11284 11285 11286
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11287
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11288

D
dengkaipeng 已提交
11289 11290 11291 11292 11293 11294 11295 11296 11297
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11298
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11299 11300
    ipts = {'X': x, 'Grid': grid}

11301
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11302 11303 11304
    return out


G
gmcather 已提交
11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11332
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11333 11334
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11373
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11374 11375 11376 11377 11378 11379 11380
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11381 11382
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11383

11384 11385 11386 11387 11388
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11389
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11390

H
heqiaozhi 已提交
11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11404 11405 11406 11407
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11408
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11409 11410
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11411
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11412 11413

    .. math::
H
haowang101779990 已提交
11414 11415 11416
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11417 11418

    Where:
H
haowang101779990 已提交
11419 11420
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11434 11435 11436 11437 11438 11439 11440 11441 11442
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11443

G
gmcather 已提交
11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11460 11461 11462 11463 11464 11465 11466 11467 11468 11469


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11470
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11471

Q
Qiao Longfei 已提交
11472
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11473 11474 11475
    For example:

    .. math::
H
haowang101779990 已提交
11476
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11477

Q
Qiao Longfei 已提交
11478
    In this formula:
11479 11480
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11481
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11482
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11483 11484 11485
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11486 11487
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11488 11489 11490
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11491
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11492
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11493
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11494 11495 11496 11497
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11498
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11499 11500 11501 11502

    Examples:
        .. code-block:: python

11503
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11504 11505 11506
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11507 11508
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11509
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11510 11511 11512 11513

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11514
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11545 11546 11547 11548 11549 11550 11551 11552

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11553 11554 11555 11556 11557 11558 11559 11560 11561 11562
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11563 11564


S
shippingwang 已提交
11565
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11566 11567
    """
    **Shuffle Channel Operator**
11568

S
shippingwang 已提交
11569 11570 11571 11572 11573 11574
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11575
    
S
shippingwang 已提交
11576
    .. code-block:: text
11577

S
shippingwang 已提交
11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11606
    Args: 
S
shippingwang 已提交
11607 11608
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11609 11610

    Returns:
S
shippingwang 已提交
11611 11612
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11613 11614

    Raises:
S
shippingwang 已提交
11615
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11616 11617 11618

    Examples:
        .. code-block:: python
11619

11620
            import paddle.fluid as fluid
11621
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11622
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11623 11624 11625
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11626
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11627 11628 11629 11630 11631 11632 11633 11634 11635

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11636
    return out
S
Add  
shippingwang 已提交
11637 11638


11639
@templatedoc()
D
dengkaipeng 已提交
11640
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11641 11642 11643 11644 11645 11646 11647 11648
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11649
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11650
        name (str, default None): The name of this layer.
11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11662
            import paddle.fluid as fluid
11663
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11664
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11677 11678
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11679 11680 11681
    return out


S
sneaxiy 已提交
11682
class PyFuncRegistry(object):
S
sneaxiy 已提交
11683 11684 11685
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11686
        if func is None or not callable(func):
S
sneaxiy 已提交
11687 11688 11689
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11690
        # find named args using reflection
S
sneaxiy 已提交
11691 11692 11693 11694 11695 11696 11697
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11698 11699 11700
        '''
        Why record self here?

M
minqiyang 已提交
11701 11702
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11703
           to find the registered function corresponding
M
minqiyang 已提交
11704
           to :code:`idx`.
S
sneaxiy 已提交
11705

M
minqiyang 已提交
11706 11707
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11708
           whose reference count is 1 would cause
M
minqiyang 已提交
11709
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11710 11711
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11712
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11727 11728 11729 11730 11731 11732 11733 11734 11735
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11736

S
sneaxiy 已提交
11737 11738
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11739 11740

        ret = []
S
sneaxiy 已提交
11741 11742 11743
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11744 11745
                continue

S
sneaxiy 已提交
11746 11747
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11748

S
sneaxiy 已提交
11749 11750 11751
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11752

S
sneaxiy 已提交
11753
        return tuple(ret)
S
sneaxiy 已提交
11754 11755


S
sneaxiy 已提交
11756 11757 11758 11759
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11760

S
sneaxiy 已提交
11761 11762 11763 11764 11765 11766 11767 11768
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11769
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11770

S
sneaxiy 已提交
11771 11772
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11773 11774 11775 11776
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11777
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11778
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11779 11780
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11781 11782 11783 11784 11785
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11786
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11787
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11788
                                       None means no backward. Default None.
S
sneaxiy 已提交
11789
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11790
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11791 11792
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11793
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11794 11795 11796

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11797 11798

    Examples:
M
minqiyang 已提交
11799

S
sneaxiy 已提交
11800 11801 11802 11803 11804
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11805
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11806 11807
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11808
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11809 11810 11811
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11812
        >>>
S
sneaxiy 已提交
11813 11814 11815 11816 11817
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11818
        >>>     print(x)
S
sneaxiy 已提交
11819 11820 11821 11822 11823 11824
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11825
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11826 11827
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11828 11829
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11830 11831 11832 11833 11834 11835 11836 11837
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11838
    """
S
sneaxiy 已提交
11839
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11840 11841 11842
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11843
        x = [x]
S
sneaxiy 已提交
11844 11845
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11846

S
sneaxiy 已提交
11847 11848 11849
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11850
        out_list = [out]
S
sneaxiy 已提交
11851
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11852
        out_list = out
S
sneaxiy 已提交
11853 11854 11855
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11856

S
sneaxiy 已提交
11857 11858
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11859
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11860 11861

    for each_out in out_list:
S
sneaxiy 已提交
11862 11863
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11864 11865
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11866

S
sneaxiy 已提交
11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11882 11883 11884 11885

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11886 11887
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11888 11889 11890
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11891
        })
S
sneaxiy 已提交
11892
    return out
S
sneaxiy 已提交
11893 11894 11895


# For debug usage
S
sneaxiy 已提交
11896 11897 11898 11899
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11913 11914 11915 11916 11917
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11930 11931 11932 11933
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11959

M
minqiyang 已提交
11960

M
minqiyang 已提交
11961
def huber_loss(input, label, delta):
11962
    """
M
minqiyang 已提交
11963 11964 11965
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11966 11967 11968 11969

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11970
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11971 11972 11973 11974

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11975
        huber\_loss = 0.5 * (label - input) * (label - input)
11976 11977 11978 11979 11980 11981 11982


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11983
        delta (float): The parameter of huber loss, which controls
11984 11985 11986
                       the range of outliers

    Returns:
M
minqiyang 已提交
11987
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11988 11989 11990 11991

    Examples:
        .. code-block:: python

11992 11993 11994 11995 11996 11997 11998 11999 12000
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

12001
    """
M
minqiyang 已提交
12002
    helper = LayerHelper('huber_loss', **locals())
12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
12014 12015


D
dengkaipeng 已提交
12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

12033
            import paddle.fluid as fluid
D
dengkaipeng 已提交
12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

12079
          import paddle.fluid as fluid
T
Tao Luo 已提交
12080 12081 12082
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
12083
          # edges must be directional
T
Tao Luo 已提交
12084 12085 12086 12087
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
12088
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
12089 12090
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
12091
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
12092
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
12116 12117


C
ceci3 已提交
12118
from .ops import square
C
ceci3 已提交
12119
from .control_flow import equal
C
ceci3 已提交
12120 12121


C
ceci3 已提交
12122 12123 12124
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
12125

C
ceci3 已提交
12126
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
12127 12128

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
12129
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
12130 12131 12132 12133 12134
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
12135 12136
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
12137 12138 12139 12140 12141 12142 12143

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

12144
       import paddle.fluid as fluid
C
ceci3 已提交
12145 12146 12147 12148 12149 12150 12151 12152
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
12153 12154 12155 12156 12157 12158 12159
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
12160
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
12161 12162
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
12163 12164
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12165 12166 12167 12168
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12169 12170 12171
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12172 12173 12174
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12175 12176


R
ruri 已提交
12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12206
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12207 12208 12209 12210 12211 12212 12213 12214 12215

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12216
            import paddle.fluid as fluid
R
ruri 已提交
12217
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12268 12269 12270 12271 12272 12273
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12274 12275 12276 12277 12278 12279 12280 12281
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12282 12283 12284 12285


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12286

H
heqiaozhi 已提交
12287
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12288

H
fix doc  
heqiaozhi 已提交
12289
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12290 12291 12292
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12293
    
H
fix doc  
heqiaozhi 已提交
12294
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12295

H
heqiaozhi 已提交
12296
    Args:
H
fix doc  
heqiaozhi 已提交
12297 12298

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12299 12300
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12301
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12302
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12303

H
heqiaozhi 已提交
12304
    Returns:
H
fix doc  
heqiaozhi 已提交
12305 12306 12307

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12308
    Examples:
H
fix doc  
heqiaozhi 已提交
12309

H
heqiaozhi 已提交
12310
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12311

12312
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12313 12314 12315 12316 12317 12318 12319 12320 12321 12322
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12323

H
heqiaozhi 已提交
12324 12325 12326 12327 12328 12329 12330 12331 12332
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12333
    return out
Z
zhoukunsheng 已提交
12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12352
             import paddle.fluid as fluid
12353 12354 12355
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12356
             # condition is a tensor [True, False, True]
12357 12358 12359
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12360 12361

             # condition is a tensor [[True, False], [False, True]]
12362 12363 12364
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12365 12366

             # condition is a tensor [False, False, False]
12367 12368 12369 12370
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12371 12372 12373 12374 12375 12376 12377 12378 12379
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12397 12398 12399
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12400
          # [1, 0, -1]
12401 12402
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12415 12416


Z
zhoukunsheng 已提交
12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12610
          import paddle.fluid as fluid
12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12842
        import paddle.fluid as fluid
C
cjt222 已提交
12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
12904 12905


K
Kevin 已提交
12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out