nn.py 485.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124 125 126 127 128 129
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
130
    'selu',
X
Xin Pan 已提交
131 132 133
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
134
    'margin_rank_loss',
X
Xin Pan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
151
    'unique',
152
    'unique_with_counts',
X
Xin Pan 已提交
153 154 155 156 157 158 159 160 161 162
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
163 164
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
165 166 167 168 169 170 171
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
172
    'rank',
Z
zhoukunsheng 已提交
173
    'size',
X
Xin Pan 已提交
174 175 176 177 178 179 180 181 182 183
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
184
    'space_to_depth',
W
whs 已提交
185
    'affine_grid',
S
sneaxiy 已提交
186
    'sequence_reverse',
187
    'affine_channel',
B
barrierye 已提交
188
    'similarity_focus',
M
minqiyang 已提交
189
    'hash',
D
dengkaipeng 已提交
190
    'grid_sampler',
G
gmcather 已提交
191 192
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
193
    'bilinear_tensor_product',
C
chengduo 已提交
194 195
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
196
    'lstm',
S
shippingwang 已提交
197
    'shuffle_channel',
198
    'temporal_shift',
S
sneaxiy 已提交
199
    'py_func',
200
    'psroi_pool',
H
heqiaozhi 已提交
201
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
202
    'huber_loss',
D
dengkaipeng 已提交
203
    'kldiv_loss',
Z
zhaozhehao 已提交
204
    'tree_conv',
C
ceci3 已提交
205
    'npair_loss',
R
ruri 已提交
206
    'pixel_shuffle',
207
    'fsp_matrix',
H
heqiaozhi 已提交
208
    'continuous_value_model',
Z
zhoukunsheng 已提交
209
    'where',
Z
zhoukunsheng 已提交
210
    'sign',
211
    'deformable_conv',
212
    'unfold',
C
cjt222 已提交
213
    'deformable_roi_pooling',
A
Aurelius84 已提交
214
    'match_matrix_tensor',
J
Jiawei Wang 已提交
215
    'filter_by_instag',
K
Kevin 已提交
216
    'var_conv_2d',
217
    'shard_index',
H
huangjun12 已提交
218
    'hard_swish',
Y
Yu Yang 已提交
219 220
]

J
jerrywgz 已提交
221 222
kIgnoreIndex = -100

Y
Yu Yang 已提交
223 224 225 226 227 228 229

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
230
       name=None):
Y
Yu Yang 已提交
231
    """
232
    **Fully Connected Layer**
Y
Yu Yang 已提交
233

234
    This function creates a fully connected layer in the network. It can take
235
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
236
    Args in detail). It creates a variable called weights for each input tensor,
237 238 239 240
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
241
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
242 243
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
244

245
    When the input is single tensor:
C
caoying03 已提交
246

247 248 249 250 251
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
252 253 254

    .. math::

255
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
256 257 258

    In the above equation:

259 260 261
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
262
    * :math:`b`: The bias parameter created by this layer (if needed).
263
    * :math:`Act`: The activation function.
C
caoying03 已提交
264
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
284
    Args:
R
ranqiu 已提交
285 286 287 288 289 290 291 292 293 294
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
295
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
296 297 298 299
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
300 301
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
302 303
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
304

305
    Returns:
F
fengjiayi 已提交
306
        Variable: The transformation result.
307 308

    Raises:
C
caoying03 已提交
309
        ValueError: If rank of the input tensor is less than 2.
310 311 312 313

    Examples:
        .. code-block:: python

314
          import paddle.fluid as fluid
315
          # when input is single tensor
F
fengjiayi 已提交
316
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
317
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
318 319 320 321 322

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
323
    """
C
caoying03 已提交
324
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
325 326 327 328

    dtype = helper.input_dtype()

    mul_results = []
329 330
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
331 332 333
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
334

Y
Yu Yang 已提交
335
        w = helper.create_parameter(
336
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
337
        tmp = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
342
            outputs={"Out": tmp},
M
mozga-intel 已提交
343 344
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
345 346 347 348
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
349
    else:
X
Xin Pan 已提交
350
        pre_bias = helper.create_variable_for_type_inference(dtype)
351
        helper.append_op(
352 353 354
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
355
            attrs={"use_mkldnn": False})
356 357 358 359
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
360 361


H
HaoRen 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


448 449 450
def embedding(input,
              size,
              is_sparse=False,
451
              is_distributed=False,
452 453 454
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
455
    """
456 457
    **Embedding Layer**

458
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
459 460
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
461 462 463

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
464 465

    Args:
466
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
467
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
468 469 470 471
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
472
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
473 474 475 476 477 478 479 480
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
481

482 483 484
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
485

486 487
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
488

B
bdzhuxiaoning 已提交
489 490 491
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
492 493 494
    """

    helper = LayerHelper('embedding', **locals())
495
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
496 497
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
498 499
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
500
    tmp = helper.create_variable_for_type_inference(dtype)
501 502
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
503 504 505 506 507
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
508 509 510
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
511
            'remote_prefetch': remote_prefetch,
512 513
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
514 515 516
    return tmp


W
wopeizl 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
533

W
wopeizl 已提交
534 535 536 537 538 539 540 541 542 543 544
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
545

W
wopeizl 已提交
546 547 548 549
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
550

W
wopeizl 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
587
            
588
            import paddle.fluid as fluid
589 590
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
591
            hidden_dim = 512
592 593 594 595 596 597
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
598
                                           bias_attr=False)
599

W
wopeizl 已提交
600 601 602
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
603
    assert in_dygraph_mode(
604
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
648 649


P
phlrain 已提交
650 651 652 653 654 655
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
656
         dropout_prob=0.0,
P
phlrain 已提交
657 658 659 660 661
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
662
    """
P
phlrain 已提交
663
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
664 665

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
666
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
667 668
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
669
    .. math::
M
minqiyang 已提交
670 671 672 673 674 675 676

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
677
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
678 679 680 681

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
682 683

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
684 685 686 687 688 689
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
690 691 692
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
693
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
694

M
minqiyang 已提交
695
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
696 697 698 699 700
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
701
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
702 703 704 705 706
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
707
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
708 709
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
710 711
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
712 713 714 715 716 717
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
718
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
719

L
liuhongyu 已提交
720 721

    Returns:
M
minqiyang 已提交
722 723
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
724
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
725

H
haowang101779990 已提交
726 727 728 729
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
730
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
731 732
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
733
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
734 735 736 737


    Examples:
        .. code-block:: python
738
            
739 740 741
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

742 743 744 745 746
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
747 748 749 750 751 752
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
753 754 755 756 757
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
758 759 760 761
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
762 763 764
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832 833
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
834
                  proj_activation='tanh',
835
                  dtype='float32',
X
xuezhong 已提交
836 837 838 839 840
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
841 842 843
    """
    **Dynamic LSTMP Layer**

844 845 846 847 848 849
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
850 851 852 853 854

    The formula is as follows:

    .. math::

855
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
856

857
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
858

859
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
860

861
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
862

863
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
864

865
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
866

867
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
868

Y
Yibing Liu 已提交
869 870 871 872 873 874
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
875
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
876
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
877
          bias vector).
Y
Yibing Liu 已提交
878 879 880
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
881
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
882
    * :math:`h`: The hidden state.
883
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
884 885
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
886
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
887
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
888
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
889 890
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
891 892 893 894

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
895

Y
Yibing Liu 已提交
896 897 898 899 900 901 902 903 904 905 906 907
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
908
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
909 910
                               hidden-hidden weight and projection weight.

911 912
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
913 914
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
915 916
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
917
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
918 919 920 921 922

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
923
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
924 925 926 927 928 929
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
930
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
931 932 933
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
934
                                - The shape is (1 x 7D).
C
chengduo 已提交
935 936 937 938 939

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
940 941 942 943 944 945 946 947 948
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
949
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
950 951
                              default "tanh".
        proj_activation(str): The activation for projection output.
952
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
953
                              default "tanh".
Y
Yibing Liu 已提交
954
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
955 956
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
957 958 959 960 961 962 963 964 965 966 967
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
968 969

    Returns:
970 971 972 973
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
974 975

    Examples:
976

Y
Yibing Liu 已提交
977 978
        .. code-block:: python

979
            import paddle.fluid as fluid
980 981 982 983
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
984
            hidden_dim, proj_dim = 512, 256
985
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
986
                                     act=None, bias_attr=None)
987 988 989
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
990 991 992 993
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
994
    """
995

L
lujun 已提交
996
    assert in_dygraph_mode(
997 998
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
999
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1000
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1001
    size = size // 4
Y
Yibing Liu 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1012 1013 1014 1015 1016 1017
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1033

X
xuezhong 已提交
1034 1035 1036 1037 1038
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1039 1040
    helper.append_op(
        type='lstmp',
1041
        inputs=inputs,
Y
Yibing Liu 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1051 1052
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1062 1063 1064 1065 1066 1067 1068
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1069 1070
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1071
    """
1072
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1073

1074 1075 1076
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1077

G
guosheng 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1087

G
guosheng 已提交
1088
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1089

Q
Qiao Longfei 已提交
1090 1091 1092

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1105
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1106 1107
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1108 1109 1110 1111
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1112
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1113 1114

    Args:
1115 1116
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1117
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1118
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1119 1120
            is the hidden size.
        size(int): The dimension of the gru cell.
1121
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1122 1123
            hidden-hidden weight matrix. Note:

1124
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1125
              :math:`D` is the hidden size.
1126
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1127
              The first part are weights of the update gate and reset gate with
1128
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1129
              candidate hidden state with shape :math:`(D \\times D)`.
1130 1131 1132 1133 1134

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1135
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1136
            the bias in the update gate, reset gate and candidate calculations.
1137 1138 1139
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1140 1141
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1142
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1143 1144 1145
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1146
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1147
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1148 1149 1150 1151
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1152 1153

    Returns:
G
guosheng 已提交
1154
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1155
            and sequence length is the same with the input.
1156

G
guosheng 已提交
1157
    Examples:
1158

G
guosheng 已提交
1159 1160
        .. code-block:: python

1161 1162
            import paddle.fluid as fluid

1163 1164 1165 1166
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1167
            hidden_dim = 512
1168
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1169
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1170 1171
    """

L
lujun 已提交
1172
    assert in_dygraph_mode(
1173 1174
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1175 1176 1177 1178 1179 1180 1181
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1182
    batch_size = input.shape[0]
G
guosheng 已提交
1183
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1184
    if h_0:
G
guosheng 已提交
1185
        assert h_0.shape == (
Y
Yancey 已提交
1186 1187 1188
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1189

X
Xin Pan 已提交
1190 1191 1192 1193
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1207 1208
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1209 1210 1211 1212
        })
    return hidden


Y
Yu Yang 已提交
1213 1214 1215
def gru_unit(input,
             hidden,
             size,
1216 1217
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1218
             activation='tanh',
Q
Qiao Longfei 已提交
1219 1220
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1221
    """
1222 1223 1224
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1225
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1226
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1227

1228 1229
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1230

1231
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1232

1233
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1250 1251

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1252 1253 1254
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1255 1256
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1257 1258
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1259 1260 1261
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1262 1263 1264

    Args:
        input (Variable): The fc transformed input value of current step.
1265
        hidden (Variable): The hidden value of gru unit from previous step.
1266
        size (integer): The input dimension value.
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1281
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1282
            the bias in the update gate, reset gate and candidate calculations.
1283 1284 1285
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1286 1287
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1288 1289 1290 1291
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1292

1293 1294 1295 1296 1297 1298
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1323
    size = size // 3
Y
Yu Yang 已提交
1324 1325

    # create weight
1326 1327
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1328

X
Xin Pan 已提交
1329 1330 1331
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1332
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1333
    # create bias
1334
    if helper.bias_attr:
Y
Yu Yang 已提交
1335 1336 1337
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1338
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1339 1340 1341

    helper.append_op(
        type='gru_unit',
1342
        inputs=inputs,
Y
Yu Yang 已提交
1343 1344 1345 1346 1347 1348
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1349 1350
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1351 1352 1353 1354 1355
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1356
@templatedoc()
1357
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1358 1359 1360 1361 1362 1363 1364
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1365
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1366 1367 1368 1369
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1370 1371 1372
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1373

J
JesseyXujin 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1387
    """
Y
Yu Yang 已提交
1388 1389 1390 1391 1392 1393
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1394 1395 1396 1397 1398 1399 1400 1401
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1417 1418 1419 1420
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1421

W
wopeizl 已提交
1422 1423
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1424

W
wopeizl 已提交
1425
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1426

W
wopeizl 已提交
1427
        label(${label_type}): ${label_comment}
1428

W
wopeizl 已提交
1429 1430
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1431

W
wopeizl 已提交
1432 1433
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1434

1435
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1436 1437 1438 1439 1440 1441 1442
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1443 1444 1445 1446 1447 1448 1449 1450
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1451
                "Transition": transition,
W
wopeizl 已提交
1452 1453
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1454

W
wopeizl 已提交
1455
    return viterbi_path
Y
Yu Yang 已提交
1456 1457


Y
yi.wu 已提交
1458
@templatedoc()
F
fengjiayi 已提交
1459
def cos_sim(X, Y):
Y
Yu Yang 已提交
1460
    """
Y
yi.wu 已提交
1461 1462 1463
    ${comment}

    Args:
1464 1465
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1466

Y
yi.wu 已提交
1467
    Returns:
1468
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1469 1470 1471 1472

    Examples:
        .. code-block:: python

1473
            import paddle.fluid as fluid
L
lvmengsi 已提交
1474 1475 1476
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1477
    """
F
fengjiayi 已提交
1478
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1479 1480 1481
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1492 1493 1494 1495 1496
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1497
            dropout_implementation="downgrade_in_infer"):
1498 1499 1500 1501 1502
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1503
    training. The dropout operator randomly sets (according to the given dropout
1504 1505 1506
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1507 1508
    dropout op can be removed from the program to make the program more efficient.

1509
    Args:
1510 1511
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1512 1513 1514 1515 1516 1517 1518
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1519 1520
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1521
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1522 1523

                                           - train: out = input * mask
C
ceci3 已提交
1524
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1525 1526 1527

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1528
                                        2. upscale_in_train, upscale the outcome at training time
1529

H
haowang101779990 已提交
1530 1531
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1532

H
haowang101779990 已提交
1533 1534
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1535

M
minqiyang 已提交
1536

1537
    Returns:
1538
        Variable: A tensor variable is the shape with `x`.
1539 1540

    Examples:
1541

1542 1543
        .. code-block:: python

1544
            import paddle.fluid as fluid
1545 1546
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1547 1548
    """

F
fengjiayi 已提交
1549
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1550 1551
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1552
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1553 1554 1555 1556

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1557 1558 1559 1560 1561
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1562 1563 1564 1565
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1566
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1567
            'dropout_implementation': dropout_implementation,
1568
        })
1569 1570 1571
    return out


J
jerrywgz 已提交
1572
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1573
    """
Y
Yibing Liu 已提交
1574 1575
    **Cross Entropy Layer**

1576 1577 1578
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1579 1580

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1581
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1582

Y
Yibing Liu 已提交
1583
        .. math::
Y
yangyaming 已提交
1584

Y
Yibing Liu 已提交
1585 1586 1587
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1588 1589
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1590 1591 1592 1593 1594

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1595
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1596 1597 1598
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1599 1600
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1601
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1602

Y
Yibing Liu 已提交
1603
    Args:
Y
yangyaming 已提交
1604
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1605 1606 1607 1608
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1609
        label (Variable|list): the ground truth which is a 2-D tensor. When
1610 1611 1612 1613
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1614
        soft_label (bool): a flag indicating whether to
1615
                                           interpretate the given labels as soft
1616
                                           labels. Default: `False`.
M
minqiyang 已提交
1617 1618
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1619
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1620 1621 1622 1623 1624

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1625 1626 1627
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1628

H
haowang101779990 已提交
1629 1630
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1631

H
haowang101779990 已提交
1632 1633
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1634 1635 1636 1637

    Examples:
        .. code-block:: python

1638
          import paddle.fluid as fluid
L
lvmengsi 已提交
1639 1640 1641 1642
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1643
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1644
    """
S
sneaxiy 已提交
1645 1646
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1647
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1648
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1649 1650 1651 1652 1653
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1654 1655
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1656 1657 1658
    return out


S
sneaxiy 已提交
1659 1660 1661 1662
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1663
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1664 1665 1666 1667 1668
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1669
                 'MatchX': [match_x],
S
sneaxiy 已提交
1670 1671 1672 1673 1674
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1675
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1676
    """
1677
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1678

1679
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1680
    The loss at a given point in one session is defined as:
1681 1682 1683

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1684 1685

    Learn more details by reading paper <session-based recommendations with recurrent
1686
    neural networks>.
F
frankwhzhang 已提交
1687

1688 1689 1690 1691 1692 1693
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1694 1695
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1696 1697 1698
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1699 1700 1701
    Examples:
        .. code-block:: python

1702 1703 1704 1705 1706 1707 1708
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1709
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1710
    """
1711 1712 1713 1714 1715
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1716
                'Label': [label]},
1717 1718 1719 1720
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1721
def square_error_cost(input, label):
Y
Yu Yang 已提交
1722
    """
1723 1724
    **Square error cost layer**

1725 1726
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1741 1742
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1743 1744

    Returns:
G
guosheng 已提交
1745
        Variable: The tensor variable storing the element-wise squared error \
1746
                  difference of input and label.
1747 1748 1749 1750

    Examples:
        .. code-block:: python

1751
          import paddle.fluid as fluid
R
ruri 已提交
1752 1753 1754
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1755

Y
Yu Yang 已提交
1756
    """
F
fengjiayi 已提交
1757
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1758
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1759 1760 1761 1762 1763 1764
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1765
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1766
    helper.append_op(
F
fengjiayi 已提交
1767 1768
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1769 1770 1771
    return square_out


Y
yi.wu 已提交
1772
@templatedoc()
Y
Yu Yang 已提交
1773 1774 1775 1776
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1777 1778
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1779
    """
Y
yi.wu 已提交
1780
    **Chunk Evaluator**
Y
yi.wu 已提交
1781

Y
yangyaming 已提交
1782
    This function computes and outputs the precision, recall and
1783
    F1-score of chunk detection.
Y
yi.wu 已提交
1784

M
minqiyang 已提交
1785
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1786
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1787 1788 1789 1790 1791 1792

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1793

Y
yi.wu 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1819

Y
yi.wu 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1844
    Args:
1845 1846 1847 1848 1849
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1850
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1851

Y
yi.wu 已提交
1852
    Returns:
Y
update  
yi.wu 已提交
1853 1854 1855
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1856

Y
yi.wu 已提交
1857 1858 1859
    Examples:
        .. code-block:: python

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1871
            crf = fluid.layers.linear_chain_crf(
1872
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1873
            crf_decode = fluid.layers.crf_decoding(
1874
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1875 1876 1877 1878 1879
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1880
    """
F
fengjiayi 已提交
1881
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1882 1883

    # prepare output
X
Xin Pan 已提交
1884 1885 1886 1887 1888 1889 1890
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1891

1892 1893 1894 1895 1896
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1897 1898
    helper.append_op(
        type="chunk_eval",
1899
        inputs=this_input,
Y
Yu Yang 已提交
1900 1901 1902
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1903 1904 1905 1906
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1907 1908 1909
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1910 1911
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1912
        })
1913 1914
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1915 1916


1917
@templatedoc()
Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923 1924
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1925 1926
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1927 1928 1929 1930
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1931 1932 1933 1934 1935 1936 1937

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1951

1952 1953
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1954 1955 1956 1957 1958 1959 1960

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1961 1962
    """

L
lujun 已提交
1963
    assert not in_dygraph_mode(), (
1964
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1965 1966 1967 1968 1969
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1970
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1981
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1982 1983 1984 1985 1986 1987
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1988
def sequence_softmax(input, use_cudnn=False, name=None):
1989 1990 1991
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1992
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2009 2010 2011
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2012

2013 2014 2015 2016 2017 2018 2019
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2020
             import paddle.fluid as fluid
2021 2022 2023 2024
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2025
    assert not in_dygraph_mode(), (
2026
        "sequence layer is not supported in dygraph mode yet.")
2027 2028
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2029
    softmax_out = helper.create_variable_for_type_inference(dtype)
2030 2031 2032 2033 2034 2035 2036 2037
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2038
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2039
    """
2040
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2041
    has the same shape as the input.
Q
qiaolongfei 已提交
2042

D
dengkaipeng 已提交
2043
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2044
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2045
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2046 2047 2048
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2049
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2050
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2051 2052 2053 2054 2055 2056 2057

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2058
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2059 2060 2061 2062 2063 2064 2065 2066

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2067 2068
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2069 2070
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2071 2072 2073
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2074 2075 2076 2077 2078 2079 2080 2081

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2082 2083
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2084
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2085
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2086
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2087 2088
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2089 2090

    """
2091 2092
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2093
    softmax_out = helper.create_variable_for_type_inference(dtype)
2094 2095 2096 2097
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2098 2099
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2100 2101 2102
    return softmax_out


Y
Yu Yang 已提交
2103 2104 2105
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2106 2107
           stride=1,
           padding=0,
2108
           dilation=1,
Y
Yu Yang 已提交
2109 2110 2111
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2112
           use_cudnn=True,
2113 2114
           act=None,
           name=None):
Y
Yu Yang 已提交
2115
    """
C
chengduoZH 已提交
2116
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2117 2118
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2119
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2120 2121 2122 2123 2124 2125
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2126
    for more details.
2127 2128 2129
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2130

2131
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2132

C
chengduoZH 已提交
2133 2134
    .. math::

C
refine  
chengduoZH 已提交
2135
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2136

T
tensor-tang 已提交
2137
    Where:
C
chengduoZH 已提交
2138

2139 2140 2141 2142 2143
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2144
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2145 2146 2147

    Example:

2148 2149
        - Input:

W
weixing02 已提交
2150
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2151

W
weixing02 已提交
2152
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2153

2154
        - Output:
T
tensor-tang 已提交
2155

W
weixing02 已提交
2156
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2157

C
chengduoZH 已提交
2158
        Where
2159 2160

        .. math::
C
chengduoZH 已提交
2161

W
weixing02 已提交
2162 2163
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2164 2165

    Args:
2166
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2167
        num_filters(int): The number of filter. It is as same as the output
2168
            image channel.
2169
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2185 2186 2187 2188 2189
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2190
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2191 2192 2193 2194 2195
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2196 2197
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2198 2199
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2200
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2201
            will be named automatically. Default: None
C
chengduoZH 已提交
2202 2203

    Returns:
G
guosheng 已提交
2204
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2205 2206
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2207
    Raises:
2208 2209
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2210

C
chengduoZH 已提交
2211 2212 2213
    Examples:
        .. code-block:: python

2214
          import paddle.fluid as fluid
2215 2216
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2217 2218 2219
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2220
    assert param_attr is not False, "param_attr should not be False here."
2221
    l_type = 'conv2d'
X
xzl 已提交
2222 2223
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2224
        l_type = 'depthwise_conv2d'
2225 2226 2227 2228

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2229 2230 2231 2232 2233
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2234
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2235

C
chengduoZH 已提交
2236 2237 2238
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2239
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2240

C
chengduoZH 已提交
2241 2242
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2243 2244

    input_shape = input.shape
M
minqiyang 已提交
2245
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2246 2247

    def _get_default_param_initializer():
C
chengduo 已提交
2248 2249
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2250 2251 2252 2253 2254 2255 2256 2257
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2258
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2274
    helper.append_op(
2275
        type=l_type,
Y
Yu Yang 已提交
2276 2277 2278 2279 2280
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2281 2282 2283
        attrs={
            'strides': stride,
            'paddings': padding,
2284
            'dilations': dilation,
C
chengduoZH 已提交
2285
            'groups': groups,
2286
            'use_cudnn': use_cudnn,
2287
            'use_mkldnn': False,
2288
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2289
        })
Y
Yu Yang 已提交
2290 2291 2292 2293 2294 2295

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2313 2314 2315 2316 2317 2318
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2328 2329
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2330 2331 2332
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2333
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2356
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2357 2358
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2359
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2360 2361
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2362
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2363 2364
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2365
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2366 2367
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2368
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2369 2370 2371 2372 2373 2374
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2385 2386
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2387 2388
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2389
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2390
            will be named automatically. Default: None.
C
chengduoZH 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2403
          import paddle.fluid as fluid
2404 2405
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2406 2407 2408
    """

    l_type = 'conv3d'
C
chengduo 已提交
2409
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2420
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2434 2435 2436
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2437 2438 2439 2440 2441 2442 2443 2444
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2445
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2460
            'use_mkldnn': False
C
chengduoZH 已提交
2461 2462
        })

2463
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2464 2465 2466 2467

    return helper.append_activation(pre_act)


2468
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2469
    """
Y
yangyaming 已提交
2470 2471 2472
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2483 2484
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2485 2486 2487 2488
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2489
         out.dim = [4, 1]
2490
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2491 2492

       for different pool_type:
2493 2494 2495
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2496
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2497 2498 2499 2500 2501
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2502

L
Luo Tao 已提交
2503
    Args:
2504
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2505
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2506
            It supports average, sum, sqrt and max.
2507 2508
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2509 2510 2511 2512 2513 2514 2515

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2516

2517 2518
             import paddle.fluid as fluid

Y
yangyaming 已提交
2519
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2520 2521 2522 2523 2524
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2525 2526
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2527
    """
L
lujun 已提交
2528
    assert not in_dygraph_mode(), (
2529
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2530
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2531
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2532 2533
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2534 2535 2536 2537 2538 2539

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2540 2541 2542 2543 2544
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2545

Y
yangyaming 已提交
2546 2547 2548 2549 2550
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2551 2552 2553
    return pool_out


C
add doc  
chengduoZH 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2570 2571 2572 2573
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2574
    """
L
lujun 已提交
2575
    assert not in_dygraph_mode(), (
2576
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2577
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2578
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2579 2580 2581 2582 2583
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2584
def sequence_first_step(input):
L
Luo Tao 已提交
2585
    """
L
Luo Tao 已提交
2586
    This function gets the first step of sequence.
L
Luo Tao 已提交
2587 2588 2589 2590

    .. code-block:: text

       x is a 1-level LoDTensor:
2591
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2592 2593 2594 2595 2596
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2597
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2598
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2599

L
Luo Tao 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2609

2610
             import paddle.fluid as fluid
Y
yangyaming 已提交
2611
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2612 2613 2614
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2615 2616 2617
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2618
def sequence_last_step(input):
L
Luo Tao 已提交
2619
    """
L
Luo Tao 已提交
2620
    This function gets the last step of sequence.
L
Luo Tao 已提交
2621 2622 2623 2624

    .. code-block:: text

       x is a 1-level LoDTensor:
2625
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2626 2627 2628 2629 2630
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2631
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2632
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2633

L
Luo Tao 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2643

2644
             import paddle.fluid as fluid
Y
yangyaming 已提交
2645
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2646 2647 2648
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2649 2650 2651
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2652 2653 2654 2655
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2656
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2657 2658 2659 2660 2661
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2662

H
haowang101779990 已提交
2663
              - Case:
Y
Yibing Liu 已提交
2664

2665
            Given the input Variable **input**:
2666

2667 2668 2669
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2670

2671
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2672

2673
            the output Variable will be
2674

2675 2676 2677
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2678

M
minqiyang 已提交
2679
    Note:
H
haowang101779990 已提交
2680
          The first dimension size of **input**, **offset** and **length**
2681
          should be equal. The **offset** should start from 0.
2682

Y
Yibing Liu 已提交
2683
    Args:
2684
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2685
                         sequences.
Y
Yibing Liu 已提交
2686 2687 2688 2689 2690 2691
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2692
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2693 2694 2695 2696 2697

    Examples:

        .. code-block:: python

2698
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2699 2700 2701 2702 2703
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2704
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2705 2706
                                                   length=length)
    """
L
lujun 已提交
2707
    assert not in_dygraph_mode(), (
2708
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2709 2710
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2711
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2726
@templatedoc()
Y
Yu Yang 已提交
2727
def pool2d(input,
C
chengduoZH 已提交
2728 2729
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2730 2731
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2732
           global_pooling=False,
C
chengduoZH 已提交
2733
           use_cudnn=True,
2734
           ceil_mode=False,
2735 2736
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2737
    """
F
fengjiayi 已提交
2738
    ${comment}
2739 2740

    Args:
2741 2742 2743
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2744
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2745
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2746 2747
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2748
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2749 2750 2751 2752 2753 2754
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2755 2756 2757
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2758
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2759
                        layer will be named automatically.
2760
        exclusive (bool): Whether to exclude padding points in average pooling
2761
                          mode, default is true
F
fengjiayi 已提交
2762

2763
    Returns:
F
fengjiayi 已提交
2764
        Variable: The pooling result.
F
fengjiayi 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2775
          import paddle.fluid as fluid
F
fengjiayi 已提交
2776 2777
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2778
          pool2d = fluid.layers.pool2d(
2779 2780 2781 2782
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2783
                            global_pooling=False)
Y
Yu Yang 已提交
2784 2785 2786 2787 2788
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2789

C
chengduoZH 已提交
2790 2791 2792 2793 2794
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2795 2796 2797 2798
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2799 2800
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2801

C
Add doc  
chengduoZH 已提交
2802
    l_type = 'pool2d'
2803 2804

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2805
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2806
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2807 2808

    helper.append_op(
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2820 2821
            "use_mkldnn": False,
            "exclusive": exclusive,
2822 2823 2824 2825 2826
        })

    return pool_out


D
dengkaipeng 已提交
2827
@templatedoc()
2828 2829 2830 2831 2832 2833 2834 2835
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2836 2837
           name=None,
           exclusive=True):
2838
    """
2839
    ${comment}
2840 2841

    Args:
D
dengkaipeng 已提交
2842 2843 2844 2845 2846
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2847 2848 2849 2850 2851
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2852 2853 2854 2855 2856 2857 2858
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2859
        exclusive (bool): Whether to exclude padding points in average pooling
2860
                          mode, default is true
2861

2862
    Returns:
2863
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2864 2865 2866 2867 2868

    Examples:

        .. code-block:: python

2869
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2870 2871 2872 2873 2874 2875 2876 2877
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2878 2879 2880 2881 2882
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2883

C
chengduoZH 已提交
2884 2885 2886 2887 2888
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2889 2890 2891
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2892

C
chengduoZH 已提交
2893 2894
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2895

2896 2897
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2898
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2899
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2900 2901

    helper.append_op(
2902
        type=l_type,
Y
Yu Yang 已提交
2903 2904 2905 2906 2907 2908 2909
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2910
            "paddings": pool_padding,
2911
            "use_cudnn": use_cudnn,
2912
            "ceil_mode": ceil_mode,
2913 2914
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2915 2916 2917 2918 2919
        })

    return pool_out


2920 2921 2922 2923 2924 2925 2926
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2927 2928 2929 2930 2931 2932 2933
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2948 2949 2950 2951 2952 2953 2954 2955 2956

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2957 2958
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2973
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2974
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2975
          # of input data into m * n grids averagely and performs poolings in each
2976 2977
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2978
          #
2979 2980 2981 2982 2983 2984 2985 2986
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2987
          import paddle.fluid as fluid
2988 2989
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2990
          pool_out = fluid.layers.adaptive_pool2d(
2991 2992
                            input=data,
                            pool_size=[3, 3],
2993
                            pool_type='avg')
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3004
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3030
    return (pool_out, mask) if require_index else pool_out
3031 3032 3033 3034 3035 3036 3037 3038 3039


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3040 3041 3042 3043 3044 3045 3046
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3047

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3065 3066 3067

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3068 3069 3070
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3071
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3072
            it must contain three integers, (Depth, Height, Width).
3073
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3074 3075
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3090 3091
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3092
          # of input data into l * m * n grids averagely and performs poolings in each
3093 3094
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3095
          #
3096 3097 3098 3099 3100 3101 3102 3103 3104
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3105
          #                 output[:, :, i, j, k] =
3106 3107
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3108 3109 3110

          import paddle.fluid as fluid

3111
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3112 3113
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3114
                            input=data,
D
dengkaipeng 已提交
3115
                            pool_size=[3, 3, 3],
3116
                            pool_type='avg')
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3127
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3153
    return (pool_out, mask) if require_index else pool_out
3154 3155


Y
Yu Yang 已提交
3156 3157 3158 3159 3160 3161 3162
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3163
               data_layout='NCHW',
Y
Yang Yang 已提交
3164
               in_place=False,
3165 3166
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3167
               moving_variance_name=None,
3168
               do_model_average_for_mean_and_var=False,
3169 3170
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3171
    """
Q
qiaolongfei 已提交
3172 3173 3174 3175
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3176

Q
qiaolongfei 已提交
3177
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3178

Q
qiaolongfei 已提交
3179 3180
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3181 3182 3183
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3196

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3210 3211 3212 3213
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3214
    Args:
Q
qingqing01 已提交
3215
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3216
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3226 3227
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3228 3229 3230
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3231 3232
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3233 3234 3235
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3236
        data_layout(string, default NCHW): NCHW|NHWC
3237
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3238 3239
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3240 3241 3242
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3243
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3244 3245
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3246
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3247
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3248 3249 3250 3251 3252
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3253 3254

    Returns:
Q
qiaolongfei 已提交
3255
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3256 3257 3258 3259 3260

    Examples:

        .. code-block:: python

3261
            import paddle.fluid as fluid
L
lvmengsi 已提交
3262
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3263 3264
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3265
    """
C
chengduo 已提交
3266
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3267 3268 3269
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3270 3271 3272 3273
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3292
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3293

3294 3295
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3296 3297 3298
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3299
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3300
        shape=param_shape,
W
Wu Yi 已提交
3301
        dtype=dtype)
3302 3303 3304 3305 3306 3307
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3308
            trainable=False,
W
wanghaoshuang 已提交
3309
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3310
        shape=param_shape,
W
Wu Yi 已提交
3311
        dtype=dtype)
3312
    variance.stop_gradient = True
Y
Yu Yang 已提交
3313 3314 3315 3316 3317 3318

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3319 3320 3321 3322
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3323

X
Xin Pan 已提交
3324 3325
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3343 3344 3345 3346
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3347
            "data_layout": data_layout,
X
Xin Pan 已提交
3348
            "use_mkldnn": False,
3349 3350
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3351
        })
Y
Yu Yang 已提交
3352 3353 3354 3355

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3407 3408
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3409

3410 3411
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3477
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3478 3479 3480 3481

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3482
@templatedoc()
G
guosheng 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3493
    ${comment}
G
guosheng 已提交
3494 3495 3496

    The formula is as follows:

Y
yuyang18 已提交
3497
    ..  math::
G
guosheng 已提交
3498 3499 3500 3501 3502 3503 3504

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3505 3506 3507 3508 3509 3510 3511 3512
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3513

G
guosheng 已提交
3514 3515
    Args:
        input(Variable): The input tensor variable.
3516
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3517
            normalization. Default True.
3518
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3519 3520
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3521
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3522
            Default 1.
3523
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3524
            division by zero. Default 1e-05.
G
guosheng 已提交
3525
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3526 3527
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3528 3529
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3530
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3531 3532
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3533
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3534
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3535
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3536 3537 3538
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3539 3540

    Returns:
Y
yuyang18 已提交
3541
        ${y_comment}
G
guosheng 已提交
3542 3543 3544

    Examples:

3545
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3546 3547 3548
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3549
    """
L
lujun 已提交
3550
    assert in_dygraph_mode(
L
lujun 已提交
3551
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3566
    if shift:
G
guosheng 已提交
3567 3568 3569 3570 3571 3572
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3573 3574 3575 3576 3577
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3605
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3627
        >>> import paddle.fluid as fluid
D
Dun 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3654 3655
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3673
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3674 3675 3676
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3677
    This layer calculates the spectral normalization value of weight parameters of
3678
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3679
    Parameters. Calculations are showed as follows.
3680

D
dengkaipeng 已提交
3681 3682 3683
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3684
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3697
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3698 3699 3700 3701

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3702

D
dengkaipeng 已提交
3703
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3704 3705
                

D
dengkaipeng 已提交
3706 3707 3708 3709
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3710 3711 3712
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3713 3714 3715
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3716
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3717 3718

    Examples:
K
Kaipeng Deng 已提交
3719
       .. code-block:: python
D
dengkaipeng 已提交
3720

K
Kaipeng Deng 已提交
3721 3722 3723 3724 3725
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3726 3727
    """
    helper = LayerHelper('spectral_norm', **locals())
3728
    dtype = weight.dtype
D
dengkaipeng 已提交
3729 3730 3731

    # create intput and parameters
    inputs = {'Weight': weight}
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3750 3751

    # create output
3752
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3753 3754

    helper.append_op(
3755
        type="spectral_norm",
D
Dun 已提交
3756
        inputs=inputs,
3757 3758 3759 3760 3761 3762
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3763

3764
    return out
D
Dun 已提交
3765 3766


Y
Yu Yang 已提交
3767 3768 3769 3770
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3771 3772 3773
                     padding=0,
                     stride=1,
                     dilation=1,
3774
                     groups=None,
C
caoying03 已提交
3775
                     param_attr=None,
3776
                     bias_attr=None,
C
chengduoZH 已提交
3777
                     use_cudnn=True,
3778
                     act=None,
C
caoying03 已提交
3779
                     name=None):
Y
Yu Yang 已提交
3780
    """
3781 3782 3783 3784 3785 3786 3787 3788
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3789
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3790
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3791 3792 3793
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3794 3795 3796 3797 3798

    For each input :math:`X`, the equation is:

    .. math::

3799
        Out = \sigma (W \\ast X + b)
3800

3801
    Where:
3802 3803 3804

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3805 3806 3807 3808
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3809

3810 3811 3812 3813
    Example:

        - Input:

3814
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3815

3816
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3817 3818 3819

        - Output:

3820
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3821 3822

        Where
Y
Yu Yang 已提交
3823

3824 3825
        .. math::

3826 3827
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3828 3829 3830 3831 3832 3833 3834 3835 3836
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3837 3838

    Args:
3839 3840 3841 3842
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3843 3844 3845 3846
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3875
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3876 3877 3878
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3879
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3880
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3881 3882

    Returns:
3883
        Variable: The tensor variable storing the convolution transpose result.
3884 3885

    Raises:
3886 3887
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3888 3889 3890 3891

    Examples:
       .. code-block:: python

3892
          import paddle.fluid as fluid
3893 3894
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3895
    """
C
chengduo 已提交
3896
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3897 3898 3899 3900 3901 3902 3903 3904
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3905 3906 3907
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3908 3909 3910
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3911

C
chengduoZH 已提交
3912 3913
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3914

Y
Yu Yang 已提交
3915 3916 3917 3918 3919
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3920

Y
Yu Yang 已提交
3921 3922
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3923

C
chengduoZH 已提交
3924
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3925
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3926
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3927
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3928
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3929 3930 3931
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3932

3933 3934 3935 3936 3937 3938 3939
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3940
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3941
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3942

Y
Yu Yang 已提交
3943 3944 3945
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3946
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3947
    helper.append_op(
3948
        type=op_type,
Y
Yu Yang 已提交
3949 3950
        inputs={'Input': [input],
                'Filter': [img_filter]},
3951
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3952
        attrs={
3953
            'output_size': output_size,
3954 3955 3956 3957 3958
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3959 3960
        })

3961 3962 3963
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3964 3965


3966
def conv3d_transpose(input,
Y
Yu Yang 已提交
3967 3968 3969
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3970 3971 3972
                     padding=0,
                     stride=1,
                     dilation=1,
3973
                     groups=None,
C
caoying03 已提交
3974
                     param_attr=None,
3975
                     bias_attr=None,
C
chengduoZH 已提交
3976
                     use_cudnn=True,
3977
                     act=None,
C
caoying03 已提交
3978
                     name=None):
Y
Yu Yang 已提交
3979
    """
3980
    **Convlution3D transpose layer**
3981

3982
    The convolution3D transpose layer calculates the output based on the input,
3983
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3984 3985 3986 3987 3988
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3989
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3990 3991 3992
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3993 3994 3995 3996 3997

    For each input :math:`X`, the equation is:

    .. math::

3998
        Out = \sigma (W \\ast X + b)
3999 4000 4001

    In the above equation:

4002 4003
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4004 4005 4006 4007
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4008

4009 4010 4011 4012
    Example:

        - Input:

4013
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4014

4015
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4016 4017 4018

        - Output:

4019
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4020 4021

        Where
Y
Yu Yang 已提交
4022

4023 4024
        .. math::

4025 4026 4027
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4028 4029

    Args:
4030
        input(Variable): The input image with [N, C, D, H, W] format.
4031 4032 4033
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4034
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4035 4036
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4037
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4038 4039 4040
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4041 4042
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4043
        stride(int|tuple): The stride size. If stride is a tuple, it must
4044 4045
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4046
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4047 4048 4049
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4050 4051 4052 4053 4054
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4064 4065
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4066 4067
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4068 4069
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4070 4071

    Returns:
4072
        Variable: The tensor variable storing the convolution transpose result.
4073 4074

    Raises:
4075 4076
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4077 4078 4079 4080

    Examples:
       .. code-block:: python

4081
          import paddle.fluid as fluid
4082 4083
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4084
    """
C
chengduo 已提交
4085
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4086 4087
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4088
    if not isinstance(input, Variable):
4089
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4090 4091
    input_channel = input.shape[1]

4092 4093 4094
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4095

C
chengduoZH 已提交
4096 4097 4098
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4099 4100 4101 4102 4103 4104
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4105 4106 4107
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4108

4109
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4110
                         padding[0] - 1) // dilation[0] + 1
4111
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4112
                         padding[1] - 1) // dilation[1] + 1
4113
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4114
                         padding[2] - 1) // dilation[2] + 1
4115
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4116
    else:
4117 4118
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4119

4120
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4121
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4122 4123 4124
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4125
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4126
    helper.append_op(
4127
        type=l_type,
Y
Yu Yang 已提交
4128 4129
        inputs={'Input': [input],
                'Filter': [img_filter]},
4130
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4131 4132 4133 4134
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4135
            'groups': groups,
C
chengduoZH 已提交
4136 4137
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4138

4139 4140
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4141
    return out
Y
yangyaming 已提交
4142 4143


Y
yangyaming 已提交
4144
def sequence_expand(x, y, ref_level=-1, name=None):
4145
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4146 4147 4148 4149
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4150 4151 4152 4153 4154

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4155
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4156
                x.data = [[a], [b], [c], [d]]
4157 4158 4159
                x.dims = [4, 1]

            y is a LoDTensor:
4160 4161
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4162

Y
yangyaming 已提交
4163
            ref_level: 0
4164

Y
yangyaming 已提交
4165
            then output is a 1-level LoDTensor:
4166
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4167
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4168 4169 4170 4171
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4172
                x.data = [[a], [b], [c]]
4173 4174 4175
                x.dims = [3, 1]

            y is a LoDTensor:
4176
                y.lod = [[2, 0, 3]]
4177

Y
yangyaming 已提交
4178
            ref_level: -1
4179

Y
yangyaming 已提交
4180 4181 4182
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4183 4184 4185
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4186 4187
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4188
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4189
                        will be named automatically.
4190 4191 4192 4193 4194 4195

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4196
	
4197
            import paddle.fluid as fluid
4198
            import paddle.fluid.layers as layers
4199 4200 4201
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4202
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4203
    """
L
lujun 已提交
4204
    assert not in_dygraph_mode(), (
4205
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4206
    helper = LayerHelper('sequence_expand', input=x, **locals())
4207
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4208
    tmp = helper.create_variable_for_type_inference(dtype)
4209
    helper.append_op(
Y
yangyaming 已提交
4210 4211 4212 4213 4214
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4215
    return tmp
4216 4217


C
chengduo 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4266 4267
            
            import paddle.fluid as fluid
4268
            import paddle.fluid.layers as layers
C
chengduo 已提交
4269 4270 4271 4272 4273 4274

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4275
    assert not in_dygraph_mode(), (
4276
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4277 4278
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4279
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4280 4281 4282 4283 4284 4285 4286 4287
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4288
@templatedoc()
4289
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4290 4291 4292 4293 4294
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4295 4296 4297
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4298
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4299 4300 4301 4302
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4303 4304 4305
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4306

F
fengjiayi 已提交
4307
    Returns:
M
minqiyang 已提交
4308
        Variable: The padded sequence batch and the original lengths before
4309
                  padding. All sequences has the same length.
M
minqiyang 已提交
4310

F
fengjiayi 已提交
4311 4312 4313
    Examples:
        .. code-block:: python

4314
            import paddle.fluid as fluid
F
fengjiayi 已提交
4315 4316 4317 4318
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4319
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4320
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4321 4322 4323
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4324
    assert not in_dygraph_mode(), (
4325
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4326 4327
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4328 4329
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4330 4331 4332 4333

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4334 4335 4336 4337 4338 4339
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4340 4341
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4342
        attrs={'padded_length': maxlen})
4343
    return out, length
F
fengjiayi 已提交
4344 4345


4346
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4347
    """
4348
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4349

4350 4351
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4361 4362 4363
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4364
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4365 4366 4367 4368 4369 4370

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4371
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4372 4373 4374 4375 4376 4377

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4378 4379
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4380 4381 4382 4383 4384 4385 4386

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4387
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4388 4389 4390 4391 4392
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4393
    assert not in_dygraph_mode(), (
4394
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4395 4396
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4397
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4409 4410 4411 4412 4413 4414 4415
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4416
                is_accumulated=True,
4417 4418
                name=None,
                return_parent_idx=False):
4419
    """
4420 4421
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4422 4423 4424

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4425 4426

    This layer does the search in beams for one time step. Specifically, it
4427 4428 4429
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4441 4442 4443 4444

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4445

4446
    Args:
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4470 4471
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4472 4473
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4474 4475 4476 4477
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4478

4479
    Returns:
4480 4481 4482 4483
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4484 4485 4486 4487

    Examples:
        .. code-block:: python

4488 4489
            import paddle.fluid as fluid

4490 4491 4492
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4505
                axis=0)
4506
            selected_ids, selected_scores = fluid.layers.beam_search(
4507 4508 4509 4510 4511 4512 4513
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4514
    helper = LayerHelper('beam_search', **locals())
4515 4516 4517 4518 4519 4520
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4521

X
Xin Pan 已提交
4522 4523 4524
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4525 4526 4527 4528 4529
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4530 4531 4532

    helper.append_op(
        type='beam_search',
4533
        inputs=inputs,
Q
Qiao Longfei 已提交
4534 4535 4536
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4537
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4538 4539 4540 4541 4542 4543
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4544
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4545
        })
4546 4547 4548 4549
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4550 4551


4552 4553 4554 4555 4556 4557 4558
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4569

4570 4571 4572 4573 4574 4575
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4576

4577 4578
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4579

4580 4581
            import paddle.fluid as fluid

4582 4583
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4584 4585 4586
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4587 4588 4589
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4590 4591
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4607 4608 4609 4610
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4611
              param_attr=None,
C
caoying03 已提交
4612 4613
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4614 4615 4616 4617
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4618
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4619

4620
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4621

4622
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4623

4624
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4625 4626 4627

            h_t & = o_t tanh(c_t)

4628 4629 4630 4631 4632 4633
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4634 4635 4636

        .. math::

4637
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4638 4639 4640 4641 4642 4643 4644 4645

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4646
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4647 4648

    Args:
Y
yangyaming 已提交
4649 4650 4651 4652 4653 4654
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4655
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4668 4669
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4670 4671

    Returns:
Y
yangyaming 已提交
4672
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4673 4674

    Raises:
4675 4676 4677 4678
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4679 4680 4681 4682 4683

    Examples:

        .. code-block:: python

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4711
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4712 4713 4714 4715
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4716 4717
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4718 4719 4720
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4721
    size = cell_t_prev.shape[1]
4722
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4723 4724
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4725
                param_attr=param_attr,
4726
                bias_attr=bias_attr)
Y
yangyaming 已提交
4727
    dtype = x_t.dtype
X
Xin Pan 已提交
4728 4729
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4739
    return h, c
G
guosheng 已提交
4740 4741


C
caoying03 已提交
4742
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4743
    """
Y
yangyaming 已提交
4744
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4745 4746 4747

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4748
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4749 4750
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4751 4752
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4753
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4754
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4755
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4756 4757
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4758 4759 4760

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4761

G
guosheng 已提交
4762 4763 4764
    Examples:
        .. code-block:: python

4765
            import paddle.fluid as fluid
G
guosheng 已提交
4766 4767 4768
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4769
            # Each example is followed by the corresponding output tensor.
4770
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4771 4772 4773 4774
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4775

4776
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4777 4778
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4779
            # Each example is followed by the corresponding output tensor.
4780 4781 4782
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4783

G
guosheng 已提交
4784 4785
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4786
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4787 4788
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4789 4790 4791 4792 4793
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4794
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4795 4796 4797 4798
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4799 4800


C
caoying03 已提交
4801
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4802
    """
Y
Yibing Liu 已提交
4803
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4804 4805 4806

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4807 4808 4809
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4810
            must be in the range :math:`[-rank(input), rank(input))`. If
4811
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4812
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4813 4814
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4815
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4816
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4817
                       will be named automatically.
G
guosheng 已提交
4818 4819

    Returns:
Y
Yibing Liu 已提交
4820
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4821

G
guosheng 已提交
4822 4823 4824
    Examples:
        .. code-block:: python

4825
            import paddle.fluid as fluid
G
guosheng 已提交
4826 4827 4828 4829
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4830
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4831 4832 4833
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4834
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4835

4836
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4837 4838 4839
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4840 4841 4842
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4843 4844
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4845
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4846 4847
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4848 4849 4850 4851 4852
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4853
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4854 4855 4856 4857
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4858 4859


C
caoying03 已提交
4860
def reduce_max(input, dim=None, keep_dim=False, name=None):
4861
    """
Y
yangyaming 已提交
4862
    Computes the maximum of tensor elements over the given dimension.
4863 4864 4865

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4866
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4867 4868 4869
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4870
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4871 4872
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4873
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4874 4875
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4876 4877 4878

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4879

4880 4881 4882
    Examples:
        .. code-block:: python

4883
            import paddle.fluid as fluid
4884 4885 4886 4887
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4888
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4889 4890 4891 4892
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4893

4894
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4895 4896 4897
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4898 4899 4900
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4901 4902
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4903
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4904 4905
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4906 4907 4908 4909 4910
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4911
            'dim': dim if dim != None else [0],
4912 4913 4914 4915 4916 4917
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4918
def reduce_min(input, dim=None, keep_dim=False, name=None):
4919
    """
Y
yangyaming 已提交
4920
    Computes the minimum of tensor elements over the given dimension.
4921 4922 4923

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4924
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4925 4926 4927
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4928
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4929 4930
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4931
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4932 4933
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4934 4935 4936

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4937

4938 4939 4940
    Examples:
        .. code-block:: python

4941
            import paddle.fluid as fluid
4942 4943 4944 4945
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4946
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4947 4948 4949 4950
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4951

4952
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4953 4954 4955
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4956 4957 4958
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4959 4960
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4961
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4962 4963
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4964 4965 4966 4967 4968
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4969
            'dim': dim if dim != None else [0],
4970 4971 4972 4973
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4974 4975


4976 4977 4978 4979 4980 4981
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4982
        dim (list|int|None): The dimensions along which the product is performed. If
4983 4984
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4985 4986
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4987 4988 4989
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4990
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4991
            layer will be named automatically.
4992 4993 4994 4995 4996 4997 4998

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4999
            import paddle.fluid as fluid
5000 5001 5002 5003
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5004
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5005 5006 5007
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5008
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5009
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5010

5011
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5012 5013 5014
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5015 5016 5017
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5018 5019
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5020
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5021 5022
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5023 5024 5025 5026 5027
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5028
            'dim': dim if dim != None else [0],
5029 5030 5031 5032 5033 5034
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5035 5036
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5037
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5057
        
5058
            import paddle.fluid as fluid
5059 5060 5061
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5062 5063 5064
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5065 5066 5067 5068 5069 5070 5071
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5092
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5112

5113
            import paddle.fluid as fluid
5114 5115 5116
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5117 5118 5119
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5120 5121 5122 5123 5124 5125 5126
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5141 5142 5143 5144 5145
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5146
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5147
    """
C
caoying03 已提交
5148
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5149 5150 5151

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5152 5153 5154 5155 5156
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5157
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5158
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5159
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5160 5161
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5162 5163

    Returns:
D
dzhwinter 已提交
5164
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5165 5166 5167 5168

    Examples:
        .. code-block:: python

5169 5170 5171 5172 5173 5174
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5175
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5176 5177 5178 5179 5180 5181 5182 5183
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5184 5185 5186 5187 5188 5189 5190 5191
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5192
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5193 5194 5195
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5196
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5210 5211 5212 5213 5214 5215 5216 5217 5218


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5219
    .. math::
5220 5221

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5222 5223 5224 5225 5226

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5227
        x(Variable|list): The input tensor to l2_normalize layer.
5228
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5229 5230
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5231
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5232
            the default value is 1e-12.
5233
        name(str|None): A name for this layer(optional). If set None, the layer \
5234
            will be named automatically.
C
caoying03 已提交
5235 5236

    Returns:
5237
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5238 5239

    Examples:
5240

C
caoying03 已提交
5241 5242
        .. code-block:: python

5243
            import paddle.fluid as fluid
5244 5245 5246 5247
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5248 5249
    """

F
fengjiayi 已提交
5250 5251
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5252 5253
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5254 5255
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5256
    helper.append_op(
5257 5258 5259 5260
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5261
        attrs={
5262 5263
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5264 5265
        })
    return out
5266 5267


S
sneaxiy 已提交
5268
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5269
    """
Y
ying 已提交
5270 5271 5272 5273
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5274

C
chengduoZH 已提交
5275
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5276
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5277

5278 5279 5280 5281 5282
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5283
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5284

C
chengduoZH 已提交
5285
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5286
      performs in the following way.
G
guosheng 已提交
5287

5288
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5289
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5290
        last two dimensions and a batched matrix multiply supporting broadcast
5291
        applies on the two tensors.
G
guosheng 已提交
5292

Y
ying 已提交
5293 5294
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5295
    removed after matrix multiplication.
G
guosheng 已提交
5296 5297 5298

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5299 5300 5301
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5302
        alpha (float): The scale of output. Default 1.0.
5303
        name(str|None): A name for this layer(optional). If set None, the layer
5304
            will be named automatically.
G
guosheng 已提交
5305 5306

    Returns:
石晓伟 已提交
5307
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5308

G
guosheng 已提交
5309 5310 5311
    Examples:
        .. code-block:: python

5312
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5313
            # x: [B, ..., M, K], y: [B, ..., K, N]
5314
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5315

5316
            # x: [B, M, K], y: [B, K, N]
5317
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5318

5319
            # x: [B, M, K], y: [K, N]
5320
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5321

5322
            # x: [M, K], y: [K, N]
5323
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5324 5325

            # x: [B, M, K], y: [K]
5326
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5327

5328
            # x: [K], y: [K]
5329
            # fluid.layers.matmul(x, y)  # out: [1]
5330

Y
ying 已提交
5331
            # x: [M], y: [N]
5332 5333
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5334
            import paddle.fluid as fluid
5335 5336 5337
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5338
    """
Y
ying 已提交
5339 5340 5341 5342 5343 5344 5345

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5346
            y_shape = y_shape + [1]
Y
ying 已提交
5347 5348 5349 5350 5351 5352 5353

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5354 5355
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5356

C
chengduo 已提交
5357
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5358
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5359 5360 5361
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5362
                if dim_x != y_shape[i]:
C
chengduo 已提交
5363 5364
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5365 5366 5367

    __check_input(x, y)

5368
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5369
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5370
    helper.append_op(
5371 5372 5373 5374
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5375 5376 5377
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5378
            'alpha': float(alpha),
S
sneaxiy 已提交
5379
        })
5380
    return out
5381 5382


5383
def topk(input, k, name=None):
Q
qingqing01 已提交
5384 5385 5386 5387
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5388
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5389 5390 5391 5392 5393 5394
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5416 5417 5418
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5419
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5420
                 of input.
5421
        name(str|None): A name for this layer(optional). If set None, the layer
5422
                       will be named automatically.
F
fengjiayi 已提交
5423
                       Default: None
Q
qingqing01 已提交
5424 5425

    Returns:
5426 5427 5428
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5429
        within the last dimension of input.
Q
qingqing01 已提交
5430

F
fengjiayi 已提交
5431 5432
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5433 5434 5435 5436

    Examples:
        .. code-block:: python

5437
            import paddle.fluid as fluid
5438 5439
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5440 5441 5442
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5443 5444
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5445 5446 5447 5448 5449 5450
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5451 5452
    helper.append_op(
        type="top_k",
W
whs 已提交
5453
        inputs=inputs,
Q
qingqing01 已提交
5454 5455
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5456
        attrs=attrs)
Q
qingqing01 已提交
5457 5458 5459 5460 5461
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5462 5463 5464 5465 5466 5467
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5468
    """
R
ruri 已提交
5469
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5470 5471 5472 5473 5474 5475 5476 5477
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5478

Y
ying 已提交
5479
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5480

5481
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5482
    the total number denoted by `batch_size`, and the separation is specified
5483 5484
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5485

5486
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5487 5488
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5489

5490
    Args:
5491 5492
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5493
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5494
                          the length of reference string.
5495
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5496
                                     calculating edit distance.
5497 5498
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5499

W
wanghaoshuang 已提交
5500
    Returns:
5501 5502 5503
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5504 5505 5506

    Examples:
        .. code-block:: python
5507
            
R
ruri 已提交
5508 5509
            import paddle.fluid as fluid

5510 5511 5512 5513
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5514

5515 5516 5517 5518 5519 5520 5521 5522
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5523

5524
    """
5525
    helper = LayerHelper("edit_distance", **locals())
5526

5527
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5528
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5529 5530
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5531 5532 5533 5534 5535

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5536
            attrs={"tokens": ignored_tokens})
5537 5538 5539 5540 5541
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5542
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5543
            attrs={"tokens": ignored_tokens})
5544 5545
        label = erased_label

5546 5547 5548 5549 5550
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5551
    # edit distance op
X
Xin Pan 已提交
5552 5553
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5554 5555
    helper.append_op(
        type="edit_distance",
5556
        inputs=this_inputs,
5557 5558
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5559 5560
        attrs={"normalized": normalized})

5561
    return edit_distance_out, sequence_num
5562 5563 5564 5565 5566


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5567

Y
ying 已提交
5568 5569 5570 5571
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5589
        input.lod = [[4, 4]]
M
minqiyang 已提交
5590

W
whs 已提交
5591
        Computation:
5592

W
whs 已提交
5593 5594 5595 5596 5597 5598
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5599 5600 5601 5602 5603

        output.data = [[2],
                       [1],
                       [3]]

5604
        output.lod = [[2, 1]]
5605

W
whs 已提交
5606

5607 5608
    Args:

Y
ying 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5618
        name (str): The name of this layer. It is optional.
5619 5620

    Returns:
H
haowang101779990 已提交
5621 5622 5623
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5624
                  LoD [[]] and dims [1, 1].
5625 5626 5627 5628

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5629
            import paddle.fluid as fluid
5630 5631
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5632
    """
5633
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5634
    _, topk_indices = topk(input, k=1)
5635 5636

    # ctc align op
X
Xin Pan 已提交
5637
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5638 5639 5640
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5641
        outputs={"Output": [ctc_out]},
5642 5643
        attrs={"merge_repeated": True,
               "blank": blank})
5644
    return ctc_out
5645 5646


5647 5648 5649 5650 5651 5652 5653
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            use_cudnn=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5654
    """
5655 5656
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5657
    to compute Connectionist Temporal Classification (CTC) loss.
5658 5659
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5660 5661 5662
    input tensor.

    Args:
5663
       input (Variable): The unscaled probabilities of variable-length sequences,
5664 5665 5666
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5667
         sequences' length and num_classes is the true number of classes.
5668 5669 5670 5671
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5672
       label (Variable): The ground truth of variable-length sequence,
5673 5674 5675
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5676
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5677 5678
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5679 5680 5681
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5682
         follewed by a mean_op.
W
Wu Yi 已提交
5683
       use_cudnn (bool, default false): Whether to use cudnn.
5684 5685 5686 5687
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5688 5689

    Returns:
5690 5691
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5692 5693 5694

    Examples:
        .. code-block:: python
5695

5696
            # using LoDTensor
B
Bai Yifan 已提交
5697
            import paddle.fluid as fluid
5698 5699 5700
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5701
                                      dtype='float32', lod_level=1)
5702 5703 5704
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5705
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5706

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
5725
    """
F
fengjiayi 已提交
5726
    helper = LayerHelper('warpctc', **locals())
5727 5728 5729 5730 5731
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
5732 5733
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
5734

W
wanghaoshuang 已提交
5735 5736
    helper.append_op(
        type='warpctc',
5737
        inputs=this_inputs,
W
wanghaoshuang 已提交
5738 5739
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5740 5741 5742 5743 5744
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5745
    return loss_out
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5761 5762 5763
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5764 5765 5766 5767 5768
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5769

5770
            out.lod  = [[0, 1, 3]]
5771 5772 5773 5774

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5775 5776 5777 5778 5779 5780 5781
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5782 5783 5784

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5785 5786

    Returns:
5787

5788 5789 5790 5791 5792
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5793 5794 5795
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5796
    """
L
lujun 已提交
5797
    assert not in_dygraph_mode(), (
5798
        "sequence layer is not supported in dygraph mode yet.")
5799
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5800
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5801 5802 5803 5804 5805 5806
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5807 5808


5809 5810 5811 5812
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5813 5814 5815 5816 5817 5818
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5819
        num_neg_samples=None,
5820 5821 5822
        name=None,
        sampler="uniform",
        custom_dist=None,
5823 5824
        seed=0,
        is_sparse=False):
5825 5826 5827 5828 5829 5830 5831
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5832 5833
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5834
            sample is 1.0.
C
chengduo 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5844
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5845 5846
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5847 5848 5849
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5850
        custom_dist (float[]): A float[] with size=num_total_classes.
5851 5852 5853 5854
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5855
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5856

5857
    Returns:
Y
Yibing Liu 已提交
5858 5859 5860 5861 5862 5863
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5898
    """
Y
Yang Yu 已提交
5899 5900 5901
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5902 5903

    dim = input.shape[1]
Y
Yang Yu 已提交
5904 5905 5906 5907 5908 5909
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5910
    inputs = {}
C
chengduo 已提交
5911 5912 5913 5914 5915 5916 5917
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5918 5919 5920
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5921

5922 5923 5924 5925
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5926 5927 5928 5929 5930 5931 5932

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5933 5934
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5935
        custom_dist_len = num_total_classes
5936 5937 5938 5939 5940 5941
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5942
            if normal_prob - 1.0 > 0:
5943
                bigs.append((i, normal_prob))
5944
            elif 1.0 - normal_prob > 0:
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5960
            if big_left - 1.0 > 0:
5961
                bigs.append((big_idx, big_left))
5962
            elif 1.0 - big_left > 0:
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5992 5993 5994 5995
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5996 5997 5998 5999 6000
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6001 6002 6003 6004
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6005

Y
Yang Yu 已提交
6006 6007
    attrs = {
        'num_total_classes': int(num_total_classes),
6008 6009
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6010
        'sampler': sampler,
6011 6012
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6013
    }
Y
Yang Yu 已提交
6014 6015 6016

    helper.append_op(
        type='nce',
C
chengduo 已提交
6017
        inputs=inputs,
Y
Yang Yu 已提交
6018 6019 6020 6021 6022 6023
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6024
    return cost / (num_neg_samples + 1)
6025 6026


C
chengduo 已提交
6027 6028
def hsigmoid(input,
             label,
6029
             num_classes,
C
chengduo 已提交
6030 6031
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6032
             name=None,
6033 6034 6035
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6036
             is_sparse=False):
W
weixing02 已提交
6037 6038
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6039
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6040
    complete binary tree, or you can use is_custom to pass your own tree to
6041
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6042 6043 6044 6045 6046 6047
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6048
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6049
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6050

6051 6052
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6053 6054 6055 6056
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6057
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6058
       related to the same batch of inputs.
6059

W
weixing02 已提交
6060
    Args:
M
minqiyang 已提交
6061
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6062 6063 6064 6065
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6066 6067
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6068
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6080
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6081
            it should be in leaf -> root order
M
minqiyang 已提交
6082 6083 6084
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6085
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6086
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6087
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6088
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6089
             of W and input will be sparse.
W
weixing02 已提交
6090 6091

    Returns:
J
JiabinYang 已提交
6092
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6093 6094 6095 6096 6097

    Examples:

        .. code-block:: python

6098
            import paddle.fluid as fluid
G
guosheng 已提交
6099 6100 6101
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6102 6103 6104 6105
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6106 6107
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6108
    dim = input.shape[1]
6109
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6110 6111 6112
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6113 6114 6115 6116 6117 6118 6119 6120 6121
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6122
    if (is_custom) and (path_code is None):
6123
        raise ValueError("path_code should not be None with custom tree")
6124
    elif (is_custom) and (path_table is None):
6125
        raise ValueError("path_table should not be None with custom tree")
6126
    elif (is_custom) and (num_classes is None):
6127
        raise ValueError("num_classes should not be None with custom tree")
6128 6129 6130
    else:
        pass

J
JiabinYang 已提交
6131
    weights = None
6132 6133 6134 6135
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6136
    if not is_custom:
J
JiabinYang 已提交
6137 6138 6139 6140 6141 6142 6143 6144
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6145
            shape=[num_classes, dim],
J
JiabinYang 已提交
6146 6147
            is_bias=False,
            dtype=input.dtype)
6148 6149 6150
    inputs = {
        "X": input,
        "W": weights,
6151
        "PathTable": path_table,
6152
        "PathCode": path_code,
6153 6154
        "Label": label
    }
W
weixing02 已提交
6155
    if helper.bias_attr:
6156
        if not is_custom:
J
JiabinYang 已提交
6157 6158
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6159
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6160 6161 6162 6163 6164 6165
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6166
                shape=[num_classes, 1],
J
JiabinYang 已提交
6167 6168 6169
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6170 6171
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6172
        inputs=inputs,
W
weixing02 已提交
6173
        outputs={"Out": out,
6174 6175 6176 6177 6178 6179 6180
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6181 6182 6183
    return out


Y
fix ci.  
ying 已提交
6184
def transpose(x, perm, name=None):
Y
ying 已提交
6185 6186 6187 6188 6189 6190 6191
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6192 6193 6194
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6195 6196 6197 6198 6199 6200 6201

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6202
            # use append_batch_size=False to avoid prepending extra
6203
            # batch size in shape
6204
            import paddle.fluid as fluid
6205
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6206
                            dtype='float32', append_batch_size=False)
6207
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6208 6209
    """

Y
fix ci.  
ying 已提交
6210
    if len(perm) != len(x.shape):
Y
ying 已提交
6211 6212
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6213
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6214 6215 6216 6217 6218 6219
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6220 6221

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6222 6223
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6224
    helper.append_op(
6225
        type='transpose2',
Y
fix ci.  
ying 已提交
6226
        inputs={'X': [x]},
6227 6228
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6229 6230
        attrs={'axis': perm})
    return out
6231 6232


6233 6234 6235 6236 6237 6238 6239
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6240
    """
6241 6242 6243 6244 6245 6246 6247
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6276 6277 6278 6279 6280 6281 6282 6283 6284
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6285 6286 6287
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6288 6289 6290 6291 6292
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6320 6321 6322
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6335
            output.dims = {8, 8}
6336

6337
            output.lod = [[4, 4]]
6338

T
Tink_Y 已提交
6339
    Examples:
6340 6341 6342

        .. code-block:: python

B
Bai Yifan 已提交
6343 6344 6345
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6346
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6347 6348
                input=data, stride=[1, 1], filter_size=[2, 2])

6349 6350

    """
L
lujun 已提交
6351
    assert not in_dygraph_mode(), (
6352
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6363
    inputs = {"X": input}
6364
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6365 6366 6367 6368 6369
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6370
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6371
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6372
    helper.append_op(
6373
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6374
    return out
6375 6376


Y
yuyang18 已提交
6377
@templatedoc()
6378
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6379 6380
    """
    ${comment}
6381 6382

    Args:
Y
yuyang18 已提交
6383
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6384 6385
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6386 6387 6388 6389 6390
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6391
        ${out_comment}.
6392 6393

    Examples:
Y
yuyang18 已提交
6394 6395 6396 6397
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6398 6399 6400 6401 6402 6403
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6404
    out = helper.create_variable_for_type_inference(dtype)
6405 6406 6407 6408 6409
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6410
    return helper.append_activation(out)
6411 6412


Y
yuyang18 已提交
6413
@templatedoc()
6414 6415
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6416 6417
    ${comment}

L
lujun 已提交
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6461 6462

    Args:
Y
yuyang18 已提交
6463 6464
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6465 6466

    Returns:
Y
yuyang18 已提交
6467
        ${out_comment}.
6468 6469
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6470 6471 6472 6473 6474

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6475
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6476 6477 6478 6479 6480 6481
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6482 6483


6484 6485 6486
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6487
                               ignore_index=kIgnoreIndex,
6488
                               numeric_stable_mode=True,
6489 6490
                               return_softmax=False,
                               axis=-1):
6491 6492
    """
    **Softmax With Cross Entropy Operator.**
6493

6494
    Cross entropy loss with softmax is used as the output layer extensively. This
6495 6496 6497
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6498

6499 6500 6501
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6502

6503 6504 6505 6506
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6507

6508
    The equation is as follows:
6509

6510
    1) Hard label (one-hot label, so every sample has exactly one class)
6511

6512 6513 6514 6515
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6516

6517 6518 6519
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6520

6521 6522 6523 6524
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6525 6526
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6527 6528

    .. math::
6529

H
haowang101779990 已提交
6530
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6531

H
haowang101779990 已提交
6532
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6533

H
haowang101779990 已提交
6534
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6535 6536 6537

    and then cross entropy loss is calculated by softmax and label.

6538
    Args:
6539 6540 6541 6542 6543 6544
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6545
        soft_label (bool): A flag to indicate whether to interpretate the given
6546
            labels as soft labels. Default False.
M
minqiyang 已提交
6547 6548
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6549 6550
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6551 6552
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6553 6554 6555 6556
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6557
                                    Note that the speed may be slower when use
6558
                                    stable algorithm. Default: True
6559
        return_softmax (bool): A flag indicating whether to return the softmax
6560
                               along with the cross entropy loss. Default: False
6561 6562 6563
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6564

6565
    Returns:
H
haowang101779990 已提交
6566 6567
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6568 6569 6570 6571
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6572 6573 6574 6575

    Examples:
        .. code-block:: python

6576 6577
            import paddle.fluid as fluid

6578 6579 6580
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6581 6582
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6583 6584
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6585 6586
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6587 6588 6589 6590 6591 6592
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6593 6594 6595
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6596 6597
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6598
        })
6599 6600 6601 6602

    if return_softmax:
        return loss, softmax

6603 6604 6605
    return loss


6606 6607 6608
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6609
                                       num_true=1,
6610
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6611 6612 6613
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6614
                                       seed=0):
X
xuezhong 已提交
6615 6616 6617 6618 6619
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6620
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6621 6622 6623 6624 6625 6626 6627 6628
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6629
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6630 6631 6632 6633 6634 6635 6636 6637
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6638
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6650
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6651 6652 6653 6654 6655
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6656
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6657
            logits.
X
xuezhong 已提交
6658 6659 6660 6661 6662
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6663 6664 6665
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6666 6667 6668 6669 6670 6671 6672
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6673 6674 6675
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6676
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6677
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6678
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6679
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6680 6681 6682 6683 6684 6685 6686 6687
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6688 6689
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6690 6691
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6692 6693 6694 6695 6696

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6697
            'Labels': label,
X
xuezhong 已提交
6698 6699
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6700 6701 6702 6703
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6704
            'SampledLabels': sampled_label,
6705 6706 6707
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6708 6709
        },
        attrs={
X
xuezhong 已提交
6710
            'use_customized_samples': use_customized_samples,
6711
            'uniq': True,
X
xuezhong 已提交
6712 6713 6714 6715
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6716 6717
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6718 6719 6720 6721 6722 6723
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6724 6725
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6726
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6727
                'Label': sampled_softlabel},
X
xuezhong 已提交
6728 6729 6730
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6731
            'soft_label': True,
X
xuezhong 已提交
6732 6733 6734
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6735
    return loss / num_true
X
xuezhong 已提交
6736 6737


6738 6739
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6740 6741
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6742
    For each instance, it computes the smooth L1 loss element by element first
6743
    and then sums all the losses. So the shape of ouput Variable is
6744
    [batch_size, 1].
6745

6746 6747
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6748
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6749
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6750
            L1 loss op with same shape as :attr:`x`.
6751
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6752 6753
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6754
            by this tensor element by element.
6755
        outside_weight (Variable|None): A tensor with rank at least 2. This
6756 6757
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6758
            element by element.
6759
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6760 6761
           scalar with default value 1.0.

6762
    Returns:
6763
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6764 6765 6766 6767

    Examples:
        .. code-block:: python

6768
            import paddle.fluid as fluid
6769
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6770 6771
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6772
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6773
            out = fluid.layers.smooth_l1(x=fc, y=label)
6774
    """
6775

6776
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6777 6778
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6789
        attrs={'sigma': sigma if sigma is not None else 1.0})
6790
    return loss
6791 6792


6793
def one_hot(input, depth, allow_out_of_range=False):
6794
    """
Y
Yibing Liu 已提交
6795
    This layer creates the one-hot representations for input indices.
6796 6797

    Args:
Y
Yibing Liu 已提交
6798 6799
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6800 6801 6802 6803
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6804 6805

    Returns:
Y
Yibing Liu 已提交
6806
        Variable: The one-hot representations of input.
6807 6808

    Examples:
C
caoying03 已提交
6809
        .. code-block:: python
6810

6811
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6812 6813
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6814 6815
    """
    helper = LayerHelper("one_hot", **locals())
6816

X
Xin Pan 已提交
6817
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6828
            depth.stop_gradient = True
6829 6830
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6831 6832
    helper.append_op(
        type="one_hot",
6833 6834
        inputs=inputs,
        attrs=attrs,
6835 6836
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6837
    return one_hot_out
Y
Yu Yang 已提交
6838 6839


Y
Yu Yang 已提交
6840
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6841
    """
Y
yi.wu 已提交
6842 6843 6844
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6845 6846 6847 6848 6849 6850

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6851 6852
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6853 6854 6855 6856

    Examples:
        .. code-block:: python

6857
           import paddle.fluid as fluid
Y
yi.wu 已提交
6858
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6859
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6860 6861
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6862 6863
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6864 6865 6866 6867 6868
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6869
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6870
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6871 6872
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6873
            outputs={'Out': [counter]},
M
minqiyang 已提交
6874 6875
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6876 6877 6878
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6879 6880


6881
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6882
    """
C
caoying03 已提交
6883 6884
    Gives a new shape to the input Tensor without changing its data.

6885 6886 6887 6888 6889
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6890

6891
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6892

6893 6894 6895 6896
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6897
    2. 0 means the actual dimension value is going to be copied from the
6898 6899 6900 6901
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6902 6903

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6904
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6905
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6906

6907
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6908 6909
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6910 6911
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6912
    dimensions.
C
caoying03 已提交
6913

6914
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6915 6916 6917 6918
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6919 6920

    Args:
6921
        x(variable): The input tensor.
C
caoying03 已提交
6922 6923
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6924 6925 6926 6927 6928
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6929 6930
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6931 6932 6933
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6934
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6935
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6936

6937
    Returns:
G
guosheng 已提交
6938 6939 6940 6941
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6942

X
Xin Pan 已提交
6943 6944 6945
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6946 6947
    Examples:
        .. code-block:: python
G
guosheng 已提交
6948

6949
            import paddle.fluid as fluid
6950
            data = fluid.layers.data(
6951
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6952
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6953
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6954 6955 6956
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6957
        raise ValueError("Input shape must be a python list or tuple.")
6958

X
Xin Pan 已提交
6959 6960 6961 6962 6963
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6964

6965 6966
    # Validate the shape
    unk_dim_idx = -1
6967
    contain_var = False
6968
    for dim_idx, dim_size in enumerate(shape):
6969 6970 6971 6972
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6985
    helper = LayerHelper("reshape2", **locals())
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
7008 7009
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7010
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7011
    helper.append_op(
7012
        type="reshape2",
X
Xin Pan 已提交
7013
        inputs=inputs,
7014
        attrs=attrs,
7015 7016
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7017

D
dzhwinter 已提交
7018
    return helper.append_activation(out)
7019

7020

7021
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7022
    """
M
minqiyang 已提交
7023 7024 7025
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7026
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7027

H
haowang101779990 已提交
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7049

Y
Yibing Liu 已提交
7050
    Args:
7051
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7052
        axes (list): List of integers, indicating the dimensions to be squeezed.
7053
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7054 7055 7056 7057 7058 7059 7060

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7061
            import paddle.fluid as fluid
7062
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7063
            x = layers.data(name='x', shape=[5, 1, 10])
7064
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7065
    """
L
lujun 已提交
7066
    assert not in_dygraph_mode(), (
L
lujun 已提交
7067
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7068
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7069 7070
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7071
    helper.append_op(
7072
        type="squeeze2",
7073
        inputs={"X": input},
Y
Yibing Liu 已提交
7074
        attrs={"axes": axes},
7075 7076
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7077

7078 7079 7080
    return out


7081
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7082
    """
M
minqiyang 已提交
7083 7084 7085
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7086

M
minqiyang 已提交
7087
    For example:
H
haowang101779990 已提交
7088 7089 7090

    .. code-block:: text

M
minqiyang 已提交
7091
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7092
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7093

Y
Yibing Liu 已提交
7094
    Args:
7095
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7096
        axes (list): List of integers, indicating the dimensions to be inserted.
7097
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7098 7099 7100 7101 7102 7103 7104

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7105 7106 7107
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7108 7109
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7110 7111
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7112
    helper.append_op(
7113
        type="unsqueeze2",
7114
        inputs={"X": input},
Y
Yibing Liu 已提交
7115
        attrs={"axes": axes},
7116 7117
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7118

7119 7120
    return out

7121

Y
yangyaming 已提交
7122
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7123
    """
Y
Yibing Liu 已提交
7124
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7125 7126 7127 7128
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7129
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7130 7131 7132 7133 7134 7135

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7136
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7137 7138 7139
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7140
            target_lod: [4, 2]
Y
yangyaming 已提交
7141 7142

            then we get a 1-level LoDTensor:
7143
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7144 7145 7146 7147 7148 7149
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7150
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7151 7152 7153 7154
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7155
                y.data = [[2, 4]]
Y
yangyaming 已提交
7156 7157 7158
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7159
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7160 7161 7162 7163 7164 7165
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7166
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7167 7168 7169 7170
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7171
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7172 7173 7174 7175
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7176
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7177 7178 7179 7180
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7181
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7182
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7183
                           from :attr:`y`.
Y
yangyaming 已提交
7184
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7185
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7186 7187

    Returns:
Y
Yibing Liu 已提交
7188
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7189 7190

    Raises:
Y
Yibing Liu 已提交
7191
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7192 7193 7194 7195

    Examples:
        .. code-block:: python

7196
            import paddle.fluid as fluid
7197 7198 7199
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7200 7201
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7202
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7240
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7241 7242 7243 7244 7245 7246

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7247

7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7258 7259 7260
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7261 7262
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7263 7264 7265 7266 7267 7268 7269 7270

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7271
    helper.append_op(
7272
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7273
    return out
D
dragonwarrior 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7285
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7314
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7315 7316
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7329 7330 7331
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7345 7346 7347 7348


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7349
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7350
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7351

G
guosheng 已提交
7352
    Specifically, the number of values padded before the contents of :attr:`x`
7353
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7354
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7355
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7378
                         The length of :attr:paddings must be
G
guosheng 已提交
7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7389

G
guosheng 已提交
7390
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7391 7392
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7393 7394 7395 7396 7397
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7398
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7399 7400 7401 7402 7403 7404 7405
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7406 7407


C
chengduo 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7439 7440
		And
            pad_value = -1,
C
chengduo 已提交
7441

T
Tink_Y 已提交
7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7472 7473 7474
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7475 7476 7477 7478 7479
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7480
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7481 7482 7483 7484 7485 7486 7487 7488 7489
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7490 7491 7492 7493 7494 7495 7496
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7497 7498
    called label-smoothing regularization (LSR).

7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7522
                              be :math:`(1, class\_num)`.
7523 7524
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7525
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7526 7527 7528 7529 7530 7531 7532 7533 7534
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7535
            
7536
            import paddle.fluid as fluid
7537
            import paddle.fluid.layers as layers
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7548
    smooth_label = helper.create_variable_for_type_inference(dtype)
7549 7550 7551 7552 7553 7554 7555
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7556 7557


W
wopeizl 已提交
7558 7559 7560 7561 7562 7563 7564
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7565 7566 7567 7568 7569
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7610 7611


J
jerrywgz 已提交
7612 7613 7614 7615 7616 7617
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7618 7619
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7620 7621 7622 7623 7624
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7625 7626 7627 7628 7629
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7640
            import paddle.fluid as fluid
J
jerrywgz 已提交
7641 7642 7643 7644
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7645 7646 7647
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7648 7649 7650 7651 7652 7653
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7654
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7695 7696
        .. code-block:: python

S
SunGaofeng 已提交
7697 7698 7699
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7700
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7701
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7702 7703
    """
    label = one_hot(label, depth=input.shape[-1])
7704
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7705 7706 7707 7708 7709 7710
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7711 7712


7713 7714 7715 7716
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7717
                 resample='BILINEAR',
7718 7719
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7720
                 align_mode=1):
7721
    """
Q
qiaolongfei 已提交
7722
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7723

K
Kaipeng Deng 已提交
7724 7725 7726
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7727 7728

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7729

7730
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7731

K
Kaipeng Deng 已提交
7732 7733
        'TRILINEAR' : Trilinear interpolation

7734
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7735

7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7746 7747 7748 7749 7750
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7751
    Align_corners and align_mode are optinal parameters,the calculation method 
7752 7753 7754 7755
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7756
    .. code-block:: text
7757

T
Tink_Y 已提交
7758
        For scale:
7759
          
T
Tink_Y 已提交
7760
            if align_corners = True && out_size > 1 :
7761

T
Tink_Y 已提交
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7773

T
Tink_Y 已提交
7774 7775
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7776

T
Tink_Y 已提交
7777 7778
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7779

T
Tink_Y 已提交
7780 7781
          else:
              align_corners = True
7782

T
Tink_Y 已提交
7783 7784
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7785

T
Tink_Y 已提交
7786 7787
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7788

T
Tink_Y 已提交
7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7799

T
Tink_Y 已提交
7800 7801 7802 7803
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7804

T
Tink_Y 已提交
7805 7806
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7807

K
Kaipeng Deng 已提交
7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
7830 7831 7832 7833 7834 7835
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
7836 7837 7838
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

7839 7840


7841
    Args:
7842
        input (Variable): The input tensor of image resize layer,
7843
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7844 7845 7846
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
7847
        out_shape(list|tuple|Variable|None): Output shape of image resize
K
Kaipeng Deng 已提交
7848 7849 7850 7851
                                    layer, the shape is (out_h, out_w) when
                                    input is a 4-D tensor and is
                                    (out_d, out_h, out_w) when input is a
                                    5-D tensor. Default: None
D
dengkaipeng 已提交
7852
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7853
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7854
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7855
             Default: None.
7856 7857
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
7858 7859
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
7860 7861 7862
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7863
                                :attr:`out_shape` and :attr:`scale` specifying
7864 7865 7866 7867 7868 7869 7870
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7871 7872
                                constructing stage.
                                Default: None
7873 7874 7875 7876
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7877
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7878 7879
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7880 7881

    Returns:
Q
update  
qiaolongfei 已提交
7882
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7883 7884
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
7885

7886 7887 7888
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
7889 7890 7891 7892
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7893
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7894 7895
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7896
        ValueError: scale should be greater than zero.
7897 7898
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7899

7900 7901 7902
    Examples:
        .. code-block:: python

7903
            import paddle.fluid as fluid
R
ruri 已提交
7904
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7905
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7906
    """
7907 7908
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7909
        'TRILINEAR': 'trilinear',
7910 7911
        'NEAREST': 'nearest',
    }
7912 7913
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7914 7915
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7916
    resample_type = resample_methods[resample]
7917

K
Kaipeng Deng 已提交
7918 7919 7920 7921 7922
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7923 7924 7925 7926 7927
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7928
    if out_shape is None and scale is None:
7929
        raise ValueError("One of out_shape and scale must not be None.")
7930
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7931
    dtype = helper.input_dtype()
7932 7933 7934 7935

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7936
    inputs = {"X": input}
D
dengkaipeng 已提交
7937
    attrs = {
K
Kaipeng Deng 已提交
7938
        "out_d": 0,
D
dengkaipeng 已提交
7939 7940
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7941 7942 7943 7944 7945
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7946
    if out_shape is not None:
7947 7948 7949 7950
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7951
            inputs['OutSize'] = out_shape
7952 7953
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7954 7955
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
K
Kaipeng Deng 已提交
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_h'] = out_shape[0]
                attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_d'] = out_shape[0]
                attrs['out_h'] = out_shape[1]
                attrs['out_w'] = out_shape[2]
7971

7972
    else:
D
dengkaipeng 已提交
7973 7974
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7975
        attrs['scale'] = float(scale)
7976

7977 7978 7979 7980 7981
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7982
    out = helper.create_variable_for_type_inference(dtype)
7983
    helper.append_op(
7984
        type='{}_interp'.format(resample_type),
7985
        inputs=inputs,
7986
        outputs={"Out": out},
D
dengkaipeng 已提交
7987
        attrs=attrs)
7988
    return out
F
stash  
fengjiayi 已提交
7989 7990


7991
@templatedoc(op_type="bilinear_interp")
7992 7993 7994 7995
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7996 7997
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7998
                    align_mode=1):
7999
    """
8000 8001
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8002 8003
    in priority order.

8004 8005 8006 8007
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8008 8009
    again in the other direction.

8010
    For details of bilinear interpolation, please refer to Wikipedia:
8011
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8012

T
tink2123 已提交
8013
    Align_corners and align_mode are optinal parameters,the calculation 
8014 8015 8016 8017
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8018
    .. code-block:: text
8019

T
Tink_Y 已提交
8020
        For scale:
8021
          
T
Tink_Y 已提交
8022
            if align_corners = True && out_size > 1 :
8023

T
Tink_Y 已提交
8024 8025 8026 8027 8028
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
8029

T
Tink_Y 已提交
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8040 8041


T
Tink_Y 已提交
8042
          else:
T
tink2123 已提交
8043

T
Tink_Y 已提交
8044 8045
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8046

T
Tink_Y 已提交
8047 8048
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8049 8050 8051



Y
yuyang18 已提交
8052
    Args:
K
Kaipeng Deng 已提交
8053
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8054

D
dengkaipeng 已提交
8055 8056 8057
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8058

Y
yuyang18 已提交
8059
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8060
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8061
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8062
             Default: None.
Y
yuyang18 已提交
8063 8064

        name(str|None): The output variable name.
8065 8066 8067
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8068
                                :attr:`out_shape` and :attr:`scale` specifying
8069 8070 8071 8072 8073 8074 8075
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8076 8077
                                constructing stage.
                                Default: None
8078 8079
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8080 8081

    Returns:
K
Kaipeng Deng 已提交
8082
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8083 8084 8085 8086

    Examples:
        .. code-block:: python

8087
            import paddle.fluid as fluid
R
ruri 已提交
8088
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8089
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
8090 8091
    """

8092 8093
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8094 8095


K
Kaipeng Deng 已提交
8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
        input(${x_type}): input should be a 4-D tensor.

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_d, out_h, out_w).
                                    Default: None

        scale(float|None): The multiplier for the input depth, height or width.
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
                                constructing stage.
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
            out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8202
@templatedoc(op_type="nearest_interp")
8203 8204 8205 8206
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8207 8208
                   actual_shape=None,
                   align_corners=True):
8209
    """
8210
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8211 8212
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8213 8214
    out_shape and scale in priority order.

8215 8216
    Example:

T
Tink_Y 已提交
8217 8218 8219 8220 8221
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8222

T
Tink_Y 已提交
8223 8224 8225 8226 8227 8228 8229 8230
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8231
          
T
Tink_Y 已提交
8232 8233
          if:
              align_corners = False
8234

T
Tink_Y 已提交
8235 8236
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8237

T
Tink_Y 已提交
8238 8239
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8240

T
Tink_Y 已提交
8241 8242
          else:
              align_corners = True
8243

T
Tink_Y 已提交
8244 8245
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8246

T
Tink_Y 已提交
8247 8248
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8249 8250


8251
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8252
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8253 8254

    Args:
K
Kaipeng Deng 已提交
8255
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8256

D
dengkaipeng 已提交
8257 8258 8259
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8260

Y
yuyang18 已提交
8261
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8262
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8263
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8264
             Default: None.
Y
yuyang18 已提交
8265 8266

        name(str|None): The output variable name.
8267 8268 8269
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8270
                                :attr:`out_shape` and :attr:`scale` specifying
8271 8272 8273 8274 8275 8276 8277
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8278 8279
                                constructing stage.
                                Default: None
8280
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8281 8282

    Returns:
K
Kaipeng Deng 已提交
8283
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8284 8285 8286 8287

    Examples:
        .. code-block:: python

8288
            import paddle.fluid as fluid
R
ruri 已提交
8289
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8290
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8291 8292
    """

8293 8294
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8295 8296 8297 8298


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8299 8300 8301
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8302 8303 8304 8305 8306 8307 8308
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8309
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8310

8311
    Returns:
Q
update  
qiaolongfei 已提交
8312
        Variable: The output is a 4-D tensor of the shape
8313
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8314 8315 8316 8317

    Examples:
        .. code-block:: python

8318
            import paddle.fluid as fluid
R
ruri 已提交
8319 8320
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8331 8332 8333
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8334 8335 8336
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8337
def gather(input, index, overwrite=True):
W
whs 已提交
8338
    """
Q
qiaolongfei 已提交
8339 8340
    **Gather Layer**

8341
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8342 8343 8344 8345
    of X indexed by `index` and concatenate them together.

    .. math::

8346
        Out = X[Index]
W
whs 已提交
8347 8348 8349 8350 8351 8352 8353


    .. code-block:: text


                Given:

8354 8355
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8356 8357 8358 8359 8360 8361 8362 8363 8364 8365
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8366
        input (Variable): The source input with rank>=1.
W
whs 已提交
8367
        index (Variable): The index input with rank=1.
8368 8369 8370 8371 8372 8373
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8374 8375 8376 8377 8378

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8379

W
whs 已提交
8380 8381
        .. code-block:: python

8382
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8383 8384
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8385 8386 8387 8388
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8389
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8390 8391 8392 8393
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8394 8395
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8396 8397 8398
    return out


8399
def scatter(input, index, updates, name=None, overwrite=True):
8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8417 8418 8419 8420
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8421 8422 8423 8424 8425 8426 8427 8428

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8429 8430 8431 8432 8433
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8434

8435
            output = fluid.layers.scatter(input, index, updates)
8436 8437 8438
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8439
    out = helper.create_variable_for_type_inference(dtype)
8440 8441 8442 8443 8444
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8445
        attrs={'overwrite': overwrite},
8446 8447 8448 8449
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8450 8451 8452 8453 8454 8455 8456 8457 8458
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8459

Q
Qingsheng Li 已提交
8460
    Given the following input:
H
haowang101779990 已提交
8461

Q
Qingsheng Li 已提交
8462
    .. code-block:: text
H
haowang101779990 已提交
8463

Q
Qingsheng Li 已提交
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8476

Q
Qingsheng Li 已提交
8477
    .. code-block:: text
H
haowang101779990 已提交
8478

Q
Qingsheng Li 已提交
8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8494
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8495 8496 8497 8498

    Examples:

        .. code-block:: python
8499
	
8500
            import paddle.fluid as fluid
8501
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8502

8503 8504 8505
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8506 8507 8508
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8509
    assert not in_dygraph_mode(), (
8510
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8511 8512
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8513
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8514 8515 8516 8517 8518 8519 8520 8521 8522
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8536

8537
    Examples:
8538
        >>> import paddle.fluid as fluid
8539 8540
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8541
    """
F
stash  
fengjiayi 已提交
8542
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8543
    dtype = x.dtype
X
Xin Pan 已提交
8544
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8545
    if seed is None:
8546
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8547
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8548
    if isinstance(seed, int):
F
fengjiayi 已提交
8549 8550 8551 8552 8553
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8554 8555 8556 8557
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8558
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8559 8560
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8561 8562
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8563
    return out
W
whs 已提交
8564 8565


8566
def log(x, name=None):
W
wanghaoshuang 已提交
8567 8568 8569 8570 8571
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8572
        Out = \\ln(x)
W
wanghaoshuang 已提交
8573 8574

    Args:
8575
        x (Variable): Input tensor.
8576 8577
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8578 8579 8580 8581 8582 8583 8584 8585

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8586
            import paddle.fluid as fluid
8587
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8588
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8589 8590
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8591
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8592
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8593
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8594 8595 8596
    return out


8597
def relu(x, name=None):
W
wanghaoshuang 已提交
8598 8599
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8600
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8601 8602 8603 8604
    the tensor elementwise.

    .. math::

8605
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8606 8607

    Args:
8608
        x (Variable): The input tensor.
8609 8610
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8611 8612 8613 8614 8615 8616 8617 8618

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8619
            import paddle.fluid as fluid
8620
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8621
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8622 8623
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8624
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8625
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8626 8627
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8628
    return out
8629 8630


C
chengduo 已提交
8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8655 8656 8657 8658 8659 8660
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8676 8677 8678
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8679 8680 8681 8682
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8683
    .. math::
8684

H
haowang101779990 已提交
8685
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8686

8687
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8688 8689 8690 8691 8692
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8693
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8694
                           Its shape should be the same as input.
8695
        num_classes (int): The possible number of labels.
W
whs 已提交
8696 8697

    Returns:
M
minqiyang 已提交
8698 8699
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8700
                     Three variables:
M
minqiyang 已提交
8701

H
haowang101779990 已提交
8702 8703 8704
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8705 8706 8707 8708

    Examples:

        .. code-block:: python
8709

B
Bai Yifan 已提交
8710 8711 8712 8713 8714
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8715 8716 8717
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8718 8719 8720
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8721 8722
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8723 8724
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8725
        outputs={
W
whs 已提交
8726 8727 8728
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8729 8730 8731
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8774
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8775
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8776
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8794
            import paddle.fluid as fluid
8795 8796 8797 8798 8799 8800
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8801
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8802 8803 8804 8805 8806

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8807
            isinstance(shape, Variable)):
8808 8809 8810 8811 8812
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8813
    out = helper.create_variable_for_type_inference(x.dtype)
8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8831 8832


W
whs 已提交
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8850

W
whs 已提交
8851
              out_shape = [2, 3, 5, 5]
8852

W
whs 已提交
8853
          Step 1:
8854

W
whs 已提交
8855 8856 8857
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8858

W
whs 已提交
8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8904
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8905
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8918

S
SunGaofeng 已提交
8919
            import paddle.fluid as fluid
W
whs 已提交
8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8931
            isinstance(out_shape, Variable)):
W
whs 已提交
8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8953 8954
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8955

8956 8957
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8958
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8959 8960 8961
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8962

8963 8964
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8965

H
haowang101779990 已提交
8966 8967
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8968 8969
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8970

H
haowang101779990 已提交
8971 8972 8973 8974 8975 8976 8977 8978
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8979 8980 8981

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8999
            import paddle.fluid as fluid
9000 9001 9002
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9017
    out = helper.create_variable_for_type_inference("float32")
9018 9019 9020 9021 9022 9023 9024 9025

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9026 9027


M
minqiyang 已提交
9028 9029
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9030
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9031
    which compares left score and right score passed in.
M
minqiyang 已提交
9032
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9033 9034 9035

    .. math::

H
haowang101779990 已提交
9036
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9037 9038

    Args:
M
minqiyang 已提交
9039
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9040 9041
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9042
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9043 9044
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9045

M
minqiyang 已提交
9046
    Returns:
M
minqiyang 已提交
9047
       Variable: The ranking loss.
H
haowang101779990 已提交
9048

M
minqiyang 已提交
9049
    Raises:
M
minqiyang 已提交
9050
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9051

M
minqiyang 已提交
9052
    Examples:
H
haowang101779990 已提交
9053

M
minqiyang 已提交
9054
        .. code-block:: python
H
haowang101779990 已提交
9055

9056
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9057 9058 9059
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9060 9061
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9062
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9063 9064 9065 9066 9067 9068
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9069 9070
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9094
        .. code-block:: text
W
whs 已提交
9095

T
Tink_Y 已提交
9096
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9097

T
Tink_Y 已提交
9098 9099
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9100

T
Tink_Y 已提交
9101
	      Case 0:
M
minqiyang 已提交
9102

T
Tink_Y 已提交
9103 9104 9105
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9106

T
Tink_Y 已提交
9107 9108 9109
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9110

T
Tink_Y 已提交
9111
	      Case 1:
M
minqiyang 已提交
9112

T
Tink_Y 已提交
9113 9114
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9115

T
Tink_Y 已提交
9116 9117 9118
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9119

T
Tink_Y 已提交
9120
	      Case 2:
M
minqiyang 已提交
9121

T
Tink_Y 已提交
9122 9123
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9124

T
Tink_Y 已提交
9125 9126 9127
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9128 9129


W
whs 已提交
9130 9131
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9132
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9150 9151 9152 9153 9154
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9155 9156 9157 9158
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9159
    out = helper.create_variable_for_type_inference(dtype)
9160 9161 9162 9163 9164 9165 9166 9167 9168
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9169
    helper.append_op(
9170
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9171 9172 9173 9174

    return out


9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9187 9188 9189 9190 9191

    Examples:

        .. code-block:: python

9192
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9193 9194
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9195 9196
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9197
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9218 9219 9220 9221 9222

    Examples:

        .. code-block:: python

9223
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9224 9225
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9226 9227
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9228
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9249 9250 9251 9252 9253

    Examples:

        .. code-block:: python

9254
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9255 9256
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9257 9258
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9259
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9281 9282 9283 9284 9285

    Examples:

        .. code-block:: python

9286
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9287
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9288
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9289 9290
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9314 9315 9316 9317 9318

    Examples:

        .. code-block:: python

9319
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9320 9321
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9322 9323
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9324
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9346 9347 9348 9349 9350

    Examples:

        .. code-block:: python

9351
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9352 9353
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9354 9355
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9356
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9357 9358 9359 9360 9361 9362 9363 9364
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9365 9366 9367 9368
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9369 9370
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9371

J
jerrywgz 已提交
9372 9373 9374 9375 9376 9377 9378 9379
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9380 9381
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9382
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9383
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9384
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9385
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9386
          will be named automatically.
J
jerrywgz 已提交
9387 9388 9389 9390 9391 9392 9393 9394

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9395 9396 9397
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9398
            mode = 'channel'
J
jerrywgz 已提交
9399 9400 9401
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9413
        attr=helper.param_attr,
J
jerrywgz 已提交
9414 9415 9416 9417
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9418
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9419 9420 9421 9422 9423 9424 9425 9426 9427
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9428 9429 9430 9431 9432 9433 9434 9435 9436 9437
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9438
    Returns:
9439
        output(${out_type}): ${out_comment}
9440 9441 9442

    Examples:

9443
    .. code-block:: python
9444

9445
            import paddle.fluid as fluid
H
haowang101779990 已提交
9446 9447
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9448 9449
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9450
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9469
    Returns:
9470
        output(${out_type}): ${out_comment}
9471 9472 9473 9474 9475

    Examples:

        .. code-block:: python

9476
            import paddle.fluid as fluid
H
haowang101779990 已提交
9477 9478
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9479 9480
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9481
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9499
    Returns:
9500
        output(${out_type}): ${out_comment}
9501 9502 9503

    Examples:

9504 9505 9506 9507 9508
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9509
            y = fluid.layers.soft_relu(x, threshold=20.0)
9510 9511
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9512
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9513 9514 9515 9516 9517 9518 9519 9520
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9521 9522 9523 9524
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9525

H
haowang101779990 已提交
9526
    For Example:
M
minqiyang 已提交
9527

H
haowang101779990 已提交
9528
    .. code-block:: text
9529

H
haowang101779990 已提交
9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9551 9552 9553

    Args:
        x (Variable): A tensor of rank >= axis.
9554 9555
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9556 9557 9558 9559 9560 9561 9562 9563
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9564 9565 9566
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9567 9568 9569 9570
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9571
        ValueError: If axis is not in range [0, rank(x)].
9572 9573 9574 9575 9576

    Examples:

        .. code-block:: python

9577
            import paddle.fluid as fluid
9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9589 9590
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9591
    helper.append_op(
9592
        type='flatten2',
9593
        inputs={"X": x},
9594 9595
        outputs={'Out': out,
                 'XShape': x_shape},
9596 9597
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9598 9599


C
chenweihang 已提交
9600
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9601
    """
C
chenweihang 已提交
9602
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9603
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9604 9605
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9606

H
haowang101779990 已提交
9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9624 9625

    Args:
C
chenweihang 已提交
9626 9627 9628
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9629 9630 9631 9632 9633 9634 9635

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9636 9637 9638
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9639 9640
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9641
    assert not in_dygraph_mode(), (
9642
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9643
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9644 9645
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9646 9647 9648 9649 9650 9651
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9652
    return out
9653

9654

S
sneaxiy 已提交
9655 9656 9657 9658 9659 9660 9661 9662 9663
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9664

S
sneaxiy 已提交
9665
    .. math::
9666

S
sneaxiy 已提交
9667 9668 9669
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9670
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9671 9672 9673 9674
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9675 9676 9677
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9678 9679
    Returns:
        Variable: The output sequence mask.
9680

9681 9682 9683
    Examples:
        .. code-block:: python
	
9684
            import paddle.fluid as fluid
9685 9686 9687 9688 9689
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9690
    """
Q
qingqing01 已提交
9691
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9692
    if name is None:
X
Xin Pan 已提交
9693
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9694
    else:
X
Xin Pan 已提交
9695
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9696

9697 9698 9699 9700 9701 9702 9703 9704
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9705
    helper.append_op(
9706 9707 9708
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9709
    return out
S
sneaxiy 已提交
9710 9711


X
Xin Pan 已提交
9712
def stack(x, axis=0):
S
sneaxiy 已提交
9713 9714 9715 9716
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9717 9718 9719 9720 9721 9722 9723

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9724
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9725
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9726

C
chengduozh 已提交
9727 9728
    For Example:

C
chengduozh 已提交
9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9767
    Args:
9768
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9769
        axis (int|None): The axis along which all inputs are stacked.
9770

S
sneaxiy 已提交
9771 9772
    Returns:
        Variable: The stacked variable.
9773

9774 9775 9776
    Examples:
        .. code-block:: python

9777
            import paddle.fluid as fluid
9778
            import paddle.fluid.layers as layers
9779 9780
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9781 9782
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9783 9784
    """

X
Xin Pan 已提交
9785 9786 9787 9788 9789 9790
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9791
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9792
    helper.append_op(
S
sneaxiy 已提交
9793 9794
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9795

X
Xin Pan 已提交
9796
    return out
D
dzhwinter 已提交
9797 9798


J
Jiawei Wang 已提交
9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
9869 9870 9871 9872 9873
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9874

D
dzhwinter 已提交
9875 9876 9877
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9878
    raised.
D
dzhwinter 已提交
9879 9880

    Args:
M
minqiyang 已提交
9881
        x (Variable): Input variable.
D
dzhwinter 已提交
9882 9883
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9884

D
dzhwinter 已提交
9885 9886
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9887

9888 9889 9890 9891 9892 9893
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9894 9895 9896 9897 9898 9899 9900 9901 9902 9903
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9904
    for _ in range(num):
X
Xin Pan 已提交
9905
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9906 9907 9908 9909 9910 9911 9912 9913

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9926

W
whs 已提交
9927 9928 9929 9930
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9931

W
whs 已提交
9932
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9933

W
whs 已提交
9934
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9935

W
whs 已提交
9936 9937 9938 9939
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9940

W
whs 已提交
9941 9942 9943 9944 9945 9946 9947 9948 9949 9950
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9951 9952 9953
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9954 9955 9956 9957
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9958
    out = helper.create_variable_for_type_inference(dtype)
9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9976
                    ele.stop_gradient = True
9977 9978 9979
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
9980 9981
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
9982 9983 9984 9985 9986 9987 9988 9989 9990
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9991
    helper.append_op(
9992
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9993
    return out
S
sneaxiy 已提交
9994 9995


G
fix  
gongweibao 已提交
9996 9997 9998
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9999
@templatedoc()
G
fix  
gongweibao 已提交
10000 10001 10002 10003 10004 10005 10006 10007 10008
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10009
    ${comment}
G
fix  
gongweibao 已提交
10010 10011

    Args:
G
gongweibao 已提交
10012 10013 10014
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10015
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10016 10017 10018
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10019 10020
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10021
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10022

10023 10024 10025
    Examples:
        .. code-block:: python

10026
            import paddle.fluid as fluid
10027 10028
            import paddle.fluid.layers as layers 

10029 10030
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10031 10032 10033
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10034
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10051 10052


G
gongweibao 已提交
10053
@templatedoc()
X
Xin Pan 已提交
10054
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10055
    """
G
gongweibao 已提交
10056
    ${comment}
G
fix  
gongweibao 已提交
10057 10058

    Args:
G
gongweibao 已提交
10059 10060 10061 10062
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10063 10064 10065
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10066
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10067

10068 10069 10070
    Examples:
        .. code-block:: python

10071
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10072
            import paddle.fluid.layers as layers
10073
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10074 10075 10076
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10077
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10078 10079 10080 10081 10082 10083 10084 10085 10086 10087
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10088
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10089 10090 10091 10092 10093
        })

    return out


G
gongweibao 已提交
10094
@templatedoc()
G
fix  
gongweibao 已提交
10095
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10096
    """
G
gongweibao 已提交
10097
    ${comment}
G
fix  
gongweibao 已提交
10098 10099

    Args:
G
gongweibao 已提交
10100 10101 10102 10103
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10104
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10105 10106

    Returns:
G
gongweibao 已提交
10107
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10108

10109 10110 10111
    Examples:
        .. code-block:: python

10112
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10113
            x = fluid.layers.data(
10114 10115 10116 10117 10118
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10119
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10120 10121 10122
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10123
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10135
@templatedoc()
G
fix  
gongweibao 已提交
10136 10137 10138 10139 10140 10141 10142 10143 10144
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10145
    ${comment}
G
fix  
gongweibao 已提交
10146 10147

    Args:
G
gongweibao 已提交
10148 10149
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10150
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10151 10152 10153 10154
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10155
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10156 10157

    Returns:
G
gongweibao 已提交
10158
        out (Variable): ${out_comment}
10159 10160 10161 10162

    Examples:
        .. code-block:: python

10163
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10164
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10165

Y
Yibing Liu 已提交
10166
            out = fluid.layers.gaussian_random_batch_size_like(
10167
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10168 10169 10170
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10171
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10190
@templatedoc()
X
Xin Pan 已提交
10191
def sum(x):
G
fix  
gongweibao 已提交
10192
    """
G
gongweibao 已提交
10193
    ${comment}
G
fix  
gongweibao 已提交
10194 10195

    Args:
G
gongweibao 已提交
10196
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10197 10198

    Returns:
G
gongweibao 已提交
10199
        out (Variable): ${out_comment}
10200 10201 10202 10203

    Examples:
        .. code-block:: python

10204
            import paddle.fluid as fluid
10205 10206 10207 10208
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10209 10210 10211
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10212 10213
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10214 10215 10216 10217
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10218
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10219 10220 10221 10222

    return out


G
gongweibao 已提交
10223
@templatedoc()
G
fix  
gongweibao 已提交
10224 10225
def slice(input, axes, starts, ends):
    """
10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10241

10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
10259
    Args:
G
gongweibao 已提交
10260 10261 10262 10263
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
10264 10265

    Returns:
G
gongweibao 已提交
10266
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10267

10268 10269 10270
    Examples:
        .. code-block:: python

10271 10272
            import paddle.fluid as fluid
 
10273 10274 10275 10276
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

10277
            input = fluid.layers.data(
10278 10279
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10280
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
10281 10282 10283
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
10284 10285
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10299 10300
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10301
    Get the shape of the input.
G
fix  
gongweibao 已提交
10302 10303

    Args:
C
chengduozh 已提交
10304
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10305 10306

    Returns:
C
fix doc  
chengduozh 已提交
10307
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10308

10309 10310 10311
    Examples:
        .. code-block:: python

10312 10313 10314
            import paddle.fluid as fluid

            input = fluid.layers.data(
10315
                name="input", shape=[3, 100, 100], dtype="float32")
10316
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10317 10318 10319
    """

    helper = LayerHelper('shape', **locals())
10320
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10321
    helper.append_op(
G
fix  
gongweibao 已提交
10322
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10323 10324

    return out
G
merge  
gongweibao 已提交
10325 10326


Z
zhoukunsheng 已提交
10327 10328 10329 10330
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10331
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10332 10333 10334 10335 10336 10337 10338 10339 10340 10341

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10342 10343 10344 10345
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10346 10347 10348 10349 10350 10351 10352 10353
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10383 10384 10385 10386
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10387
    if in_dygraph_mode():
X
Xin Pan 已提交
10388 10389 10390
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10391 10392 10393 10394
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10395 10396
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10397
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10398 10399 10400
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10401

S
sneaxiy 已提交
10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10413
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10414 10415 10416 10417 10418 10419 10420 10421
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10422
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10423
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10424 10425 10426

    Returns:
        out(${out_type}): ${out_comment}
10427 10428 10429 10430 10431 10432 10433 10434

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10435 10436 10437
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10438
    if name is None:
X
Xin Pan 已提交
10439
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10440 10441 10442
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10443 10444 10445 10446 10447 10448 10449 10450 10451 10452

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10453
    return helper.append_activation(out)
S
sneaxiy 已提交
10454 10455


X
Xin Pan 已提交
10456
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10457 10458 10459
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10460
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10461 10462 10463
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10464
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10465 10466 10467
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10468
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10469 10470 10471
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10472
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10473 10474 10475
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10476
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10477 10478 10479
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10480
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10481 10482 10483
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10484 10485 10486 10487 10488 10489 10490 10491
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10492
for func in [
10493 10494 10495 10496 10497 10498 10499 10500 10501
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10502 10503 10504 10505 10506
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10507 10508
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10509
        ])
10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10547 10548


10549
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10550 10551
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10552 10553
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10554 10555 10556

    if out is None:
        if name is None:
X
Xin Pan 已提交
10557
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10573
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10585 10586 10587 10588

    Examples:
        .. code-block:: python

10589
            import paddle.fluid as fluid
10590
            left = fluid.layers.data(
石晓伟 已提交
10591
                name='left', shape=[1], dtype='bool')
10592
            right = fluid.layers.data(
石晓伟 已提交
10593
                name='right', shape=[1], dtype='bool')
10594
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10595 10596 10597 10598 10599 10600 10601
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10602
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10614 10615 10616 10617

    Examples:
        .. code-block:: python

10618
            import paddle.fluid as fluid
10619
            left = fluid.layers.data(
石晓伟 已提交
10620
                name='left', shape=[1], dtype='bool')
10621
            right = fluid.layers.data(
石晓伟 已提交
10622
                name='right', shape=[1], dtype='bool')
10623
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10624 10625 10626 10627 10628 10629 10630
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10631
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10643 10644 10645 10646

    Examples:
        .. code-block:: python

10647
            import paddle.fluid as fluid
10648
            left = fluid.layers.data(
石晓伟 已提交
10649
                name='left', shape=[1], dtype='bool')
10650
            right = fluid.layers.data(
石晓伟 已提交
10651
                name='right', shape=[1], dtype='bool')
10652
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10653 10654 10655 10656 10657 10658 10659
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10660
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10661 10662 10663 10664 10665 10666 10667 10668 10669 10670
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10671 10672 10673 10674

    Examples:
        .. code-block:: python

10675
            import paddle.fluid as fluid
10676
            left = fluid.layers.data(
石晓伟 已提交
10677
                name='left', shape=[1], dtype='bool')
10678
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10679 10680 10681 10682
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10698 10699 10700 10701

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10702
            import paddle.fluid as fluid
10703 10704 10705
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10706 10707 10708 10709 10710
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10711 10712
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10713 10714 10715

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10739 10740 10741 10742

    Examples:
        .. code-block:: python

10743
            import paddle.fluid as fluid
10744 10745 10746
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10747 10748 10749 10750 10751
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10752 10753
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10754 10755 10756

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10757 10758 10759 10760 10761 10762 10763 10764

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10778 10779 10780 10781

    Examples:
        .. code-block:: python

10782
            import paddle.fluid as fluid
10783 10784 10785
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10786 10787 10788 10789 10790
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10791
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10792 10793 10794 10795 10796 10797 10798 10799 10800 10801
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10813 10814 10815 10816

    Examples:
        .. code-block:: python

10817
            import paddle.fluid as fluid
10818 10819 10820 10821 10822
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10861 10862 10863 10864 10865
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10866
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10867 10868 10869 10870 10871 10872 10873 10874 10875
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10876 10877
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10878 10879 10880 10881 10882 10883
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10884 10885 10886
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10887 10888
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10889 10890 10891 10892 10893 10894
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10895
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10896
        name(basestring|None): Name of the output.
10897 10898
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10899 10900 10901

    Returns:
        out(${out_type}): ${out_comment}
10902 10903 10904 10905

    Examples:
        .. code-block:: python

10906
            import paddle.fluid as fluid
10907 10908 10909 10910 10911 10912 10913 10914 10915 10916
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10917 10918 10919 10920 10921
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10922
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10923 10924 10925 10926 10927 10928 10929 10930
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10931 10932
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10949 10950 10951 10952

    Examples:
        .. code-block:: python

10953
            import paddle.fluid as fluid
J
jerrywgz 已提交
10954 10955 10956 10957 10958
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10959 10960 10961 10962
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10963
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10964 10965 10966 10967 10968 10969 10970 10971 10972 10973
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10974 10975


J
JiabinYang 已提交
10976
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10977
    """
J
JiabinYang 已提交
10978
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10979 10980 10981

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10982
    The attr blocksize indicates the input block size.
10983 10984

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10985
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10986 10987

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10988
    (but keeping all data)
J
JiabinYang 已提交
10989

J
JiabinYang 已提交
10990
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10991
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10992 10993 10994 10995 10996
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10997
    Args:
J
JiabinYang 已提交
10998
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10999
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
11000 11001

    Returns:
J
JiabinYang 已提交
11002
        Variable: The output LoDtensor.
J
JiabinYang 已提交
11003 11004

    Raises:
J
JiabinYang 已提交
11005
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
11006 11007 11008

    Examples:
        .. code-block:: python
11009 11010 11011
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11012 11013

            data = fluid.layers.data(
11014
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
11015
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11016
                x=data, blocksize=2)
11017

11018
            exe = fluid.Executor(fluid.CPUPlace())
11019 11020 11021 11022
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
11023

J
JiabinYang 已提交
11024 11025
    """

J
JiabinYang 已提交
11026
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11027

J
JiabinYang 已提交
11028 11029
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11030 11031

    if name is None:
J
JiabinYang 已提交
11032 11033
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11034 11035 11036 11037 11038
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11039
        type="space_to_depth",
J
JiabinYang 已提交
11040
        inputs={"X": x},
J
JiabinYang 已提交
11041
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11042
        outputs={"Out": out})
J
JiabinYang 已提交
11043 11044
    return out

J
JiabinYang 已提交
11045

S
sneaxiy 已提交
11046 11047
@templatedoc()
def sequence_reverse(x, name=None):
11048
    """
S
sneaxiy 已提交
11049 11050 11051 11052 11053 11054 11055 11056
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
11057 11058 11059 11060 11061 11062 11063

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
11064
    """
L
lujun 已提交
11065
    assert not in_dygraph_mode(), (
11066
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
11067 11068
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
11069
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11070 11071 11072 11073 11074 11075 11076 11077 11078 11079
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
11080 11081


11082 11083 11084 11085 11086 11087
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11088 11089 11090 11091 11092
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11093

11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
11106
        act (str, default None): Activation to be applied to the output of this layer.
11107 11108 11109

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

11124 11125 11126 11127
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11128
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11140
    return helper.append_activation(out)
11141 11142


B
barrierye 已提交
11143
def similarity_focus(input, axis, indexes, name=None):
11144
    """
B
barrierye 已提交
11145
    SimilarityFocus Operator
B
barrierye 已提交
11146 11147

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11148

11149 11150 11151
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11152
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11153 11154 11155 11156 11157 11158 11159
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11160
       each index.
B
barrierye 已提交
11161 11162 11163 11164
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11214
    Args:
11215
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
11216
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
11217
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11218
            1, 2 or 3.
B
barrierye 已提交
11219
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11220 11221

    Returns:
H
haowang101779990 已提交
11222 11223
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11224

B
barrierye 已提交
11225 11226
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11227

11228
            import paddle.fluid as fluid
B
barrierye 已提交
11229
            data = fluid.layers.data(
Y
Yibing Liu 已提交
11230 11231
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11244 11245 11246 11247 11248
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11249 11250 11251 11252 11253 11254 11255
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11256 11257


M
minqiyang 已提交
11258 11259
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
11260 11261
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
11262 11263
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11264 11265 11266 11267 11268 11269 11270 11271

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
11272
        input.data = 
11273
            [[1, 2],
11274
             [3, 4]]
M
minqiyang 已提交
11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11288 11289
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11290 11291 11292 11293
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11294
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11295 11296
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11297
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11298
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11299 11300

    Returns:
11301
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11302 11303 11304

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11305

11306 11307
            import paddle.fluid as fluid

11308 11309 11310 11311
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11312 11313


11314 11315 11316 11317
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11318 11319
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11320 11321
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11322 11323 11324 11325 11326 11327 11328
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11329 11330


D
dengkaipeng 已提交
11331
@templatedoc()
11332 11333
def grid_sampler(x, grid, name=None):
    """
11334
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11335
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11336 11337 11338 11339
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11340
    interpolation value of 4 nearest corner points.
11341

H
haowang101779990 已提交
11342
    .. code-block:: text
11343

H
haowang101779990 已提交
11344 11345
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11346

H
haowang101779990 已提交
11347 11348
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11349

H
haowang101779990 已提交
11350 11351 11352
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11353

H
haowang101779990 已提交
11354 11355 11356 11357 11358 11359 11360 11361 11362
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11363

H
haowang101779990 已提交
11364 11365 11366 11367
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11368

H
haowang101779990 已提交
11369 11370 11371 11372
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11373

H
haowang101779990 已提交
11374 11375 11376 11377
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11378

H
haowang101779990 已提交
11379 11380
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11381 11382

    Args:
11383 11384 11385
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11386 11387

    Returns:
H
haowang101779990 已提交
11388
        Variable: Output of shape [N, C, H, W] data samples input X
11389 11390
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11391 11392 11393 11394
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11395 11396 11397 11398 11399
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11400
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11401

D
dengkaipeng 已提交
11402 11403 11404 11405 11406 11407 11408 11409 11410
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11411
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11412 11413
    ipts = {'X': x, 'Grid': grid}

11414
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11415 11416 11417
    return out


G
gmcather 已提交
11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11445
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11446 11447
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11486
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11487 11488 11489 11490 11491 11492 11493
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11494 11495
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11496

11497 11498 11499 11500 11501
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11502
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11503

H
heqiaozhi 已提交
11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11517 11518 11519 11520
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11521
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11522 11523
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11524
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11525 11526

    .. math::
H
haowang101779990 已提交
11527 11528 11529
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11530 11531

    Where:
H
haowang101779990 已提交
11532 11533
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11547 11548 11549 11550 11551 11552 11553 11554 11555
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11556

G
gmcather 已提交
11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11573 11574 11575 11576 11577 11578 11579 11580 11581 11582


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11583
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11584

Q
Qiao Longfei 已提交
11585
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11586 11587 11588
    For example:

    .. math::
H
haowang101779990 已提交
11589
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11590

Q
Qiao Longfei 已提交
11591
    In this formula:
11592 11593
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11594
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11595
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11596 11597 11598
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11599 11600
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11601 11602 11603
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11604
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11605
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11606
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11607 11608 11609 11610
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11611
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11612 11613 11614 11615

    Examples:
        .. code-block:: python

11616
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11617 11618 11619
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11620 11621
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11622
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11623 11624 11625 11626

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11627
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11658 11659 11660 11661 11662 11663 11664 11665

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11666 11667 11668 11669 11670 11671 11672 11673 11674 11675
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11676 11677


S
shippingwang 已提交
11678
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11679 11680
    """
    **Shuffle Channel Operator**
11681

S
shippingwang 已提交
11682 11683 11684 11685 11686 11687
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11688
    
S
shippingwang 已提交
11689
    .. code-block:: text
11690

S
shippingwang 已提交
11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11719
    Args: 
S
shippingwang 已提交
11720 11721
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11722 11723

    Returns:
S
shippingwang 已提交
11724 11725
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11726 11727

    Raises:
S
shippingwang 已提交
11728
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11729 11730 11731

    Examples:
        .. code-block:: python
11732

11733
            import paddle.fluid as fluid
11734
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11735
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11736 11737 11738
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11739
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11740 11741 11742 11743 11744 11745 11746 11747 11748

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11749
    return out
S
Add  
shippingwang 已提交
11750 11751


11752
@templatedoc()
D
dengkaipeng 已提交
11753
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11754 11755 11756 11757 11758 11759 11760 11761
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11762
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11763
        name (str, default None): The name of this layer.
11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11775
            import paddle.fluid as fluid
11776
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11777
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11790 11791
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11792 11793 11794
    return out


S
sneaxiy 已提交
11795
class PyFuncRegistry(object):
S
sneaxiy 已提交
11796 11797 11798
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11799
        if func is None or not callable(func):
S
sneaxiy 已提交
11800 11801 11802
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11803
        # find named args using reflection
S
sneaxiy 已提交
11804 11805 11806 11807 11808 11809 11810
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11811 11812 11813
        '''
        Why record self here?

M
minqiyang 已提交
11814 11815
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11816
           to find the registered function corresponding
M
minqiyang 已提交
11817
           to :code:`idx`.
S
sneaxiy 已提交
11818

M
minqiyang 已提交
11819 11820
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11821
           whose reference count is 1 would cause
M
minqiyang 已提交
11822
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11823 11824
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11825
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11840 11841 11842 11843 11844 11845 11846 11847 11848
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11849

S
sneaxiy 已提交
11850 11851
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11852 11853

        ret = []
S
sneaxiy 已提交
11854 11855 11856
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11857 11858
                continue

S
sneaxiy 已提交
11859 11860
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11861

S
sneaxiy 已提交
11862 11863 11864
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11865

S
sneaxiy 已提交
11866
        return tuple(ret)
S
sneaxiy 已提交
11867 11868


S
sneaxiy 已提交
11869 11870 11871 11872
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11873

S
sneaxiy 已提交
11874 11875 11876 11877 11878 11879 11880 11881
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11882
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11883

S
sneaxiy 已提交
11884 11885
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11886 11887 11888 11889
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11890
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11891
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11892 11893
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11894 11895 11896 11897 11898
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11899
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11900
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11901
                                       None means no backward. Default None.
S
sneaxiy 已提交
11902
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11903
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11904 11905
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11906
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11907 11908 11909

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11910 11911

    Examples:
M
minqiyang 已提交
11912

S
sneaxiy 已提交
11913 11914 11915 11916 11917
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11918
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11919 11920
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11921
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11922 11923 11924
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11925
        >>>
S
sneaxiy 已提交
11926 11927 11928 11929 11930
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11931
        >>>     print(x)
S
sneaxiy 已提交
11932 11933 11934 11935 11936 11937
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11938
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11939 11940
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11941 11942
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11943 11944 11945 11946 11947 11948 11949 11950
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11951
    """
S
sneaxiy 已提交
11952
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11953 11954 11955
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11956
        x = [x]
S
sneaxiy 已提交
11957 11958
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11959

S
sneaxiy 已提交
11960 11961 11962
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11963
        out_list = [out]
S
sneaxiy 已提交
11964
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11965
        out_list = out
S
sneaxiy 已提交
11966 11967 11968
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11969

S
sneaxiy 已提交
11970 11971
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11972
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11973 11974

    for each_out in out_list:
S
sneaxiy 已提交
11975 11976
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11977 11978
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11979

S
sneaxiy 已提交
11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11995 11996 11997 11998

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11999 12000
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12001 12002 12003
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12004
        })
S
sneaxiy 已提交
12005
    return out
S
sneaxiy 已提交
12006 12007 12008


# For debug usage
S
sneaxiy 已提交
12009 12010 12011 12012
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12026 12027 12028 12029 12030
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12043 12044 12045 12046
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12072

M
minqiyang 已提交
12073

M
minqiyang 已提交
12074
def huber_loss(input, label, delta):
12075
    """
M
minqiyang 已提交
12076 12077 12078
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
12079 12080 12081 12082

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
12083
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
12084 12085 12086 12087

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
12088
        huber\_loss = 0.5 * (label - input) * (label - input)
12089 12090 12091 12092 12093 12094 12095


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
12096
        delta (float): The parameter of huber loss, which controls
12097 12098 12099
                       the range of outliers

    Returns:
M
minqiyang 已提交
12100
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
12101 12102 12103 12104

    Examples:
        .. code-block:: python

12105 12106 12107 12108 12109 12110 12111 12112 12113
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

12114
    """
M
minqiyang 已提交
12115
    helper = LayerHelper('huber_loss', **locals())
12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
12127 12128


D
dengkaipeng 已提交
12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

12146
            import paddle.fluid as fluid
D
dengkaipeng 已提交
12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

12192
          import paddle.fluid as fluid
T
Tao Luo 已提交
12193 12194 12195
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
12196
          # edges must be directional
T
Tao Luo 已提交
12197 12198 12199 12200
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
12201
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
12202 12203
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
12204
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
12205
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
12229 12230


C
ceci3 已提交
12231
from .ops import square
C
ceci3 已提交
12232
from .control_flow import equal
C
ceci3 已提交
12233 12234


C
ceci3 已提交
12235 12236 12237
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
12238

C
ceci3 已提交
12239
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
12240 12241

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
12242
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
12243 12244 12245 12246 12247
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
12248 12249
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
12250 12251 12252 12253 12254 12255 12256

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

12257
       import paddle.fluid as fluid
C
ceci3 已提交
12258 12259 12260 12261 12262 12263 12264 12265
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
12266 12267 12268 12269 12270 12271 12272
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
12273
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
12274 12275
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
12276 12277
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12278 12279 12280 12281
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12282 12283 12284
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12285 12286 12287
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12288 12289


R
ruri 已提交
12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12319
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12320 12321 12322 12323 12324 12325 12326 12327 12328

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12329
            import paddle.fluid as fluid
R
ruri 已提交
12330
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12381 12382 12383 12384 12385 12386
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12387 12388 12389 12390 12391 12392 12393 12394
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12395 12396 12397 12398


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12399

H
heqiaozhi 已提交
12400
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12401

H
fix doc  
heqiaozhi 已提交
12402
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12403 12404 12405
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12406
    
H
fix doc  
heqiaozhi 已提交
12407
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12408

H
heqiaozhi 已提交
12409
    Args:
H
fix doc  
heqiaozhi 已提交
12410 12411

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12412 12413
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12414
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12415
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12416

H
heqiaozhi 已提交
12417
    Returns:
H
fix doc  
heqiaozhi 已提交
12418 12419 12420

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12421
    Examples:
H
fix doc  
heqiaozhi 已提交
12422

H
heqiaozhi 已提交
12423
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12424

12425
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12426 12427 12428 12429 12430 12431 12432 12433 12434 12435
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12436

H
heqiaozhi 已提交
12437 12438 12439 12440 12441 12442 12443 12444 12445
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12446
    return out
Z
zhoukunsheng 已提交
12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12465
             import paddle.fluid as fluid
12466 12467 12468
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12469
             # condition is a tensor [True, False, True]
12470 12471 12472
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12473 12474

             # condition is a tensor [[True, False], [False, True]]
12475 12476 12477
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12478 12479

             # condition is a tensor [False, False, False]
12480 12481 12482 12483
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12484 12485 12486 12487 12488 12489 12490 12491 12492
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12510 12511 12512
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12513
          # [1, 0, -1]
12514 12515
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12528 12529


Z
zhoukunsheng 已提交
12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12723
          import paddle.fluid as fluid
12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12955
        import paddle.fluid as fluid
C
cjt222 已提交
12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13017 13018


K
Kevin 已提交
13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


A
Aurelius84 已提交
13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215
def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = layers.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out