nn.py 232.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
Q
Qingsheng Li 已提交
103
    'sequence_scatter',
104
    'random_crop',
Y
yuyang18 已提交
105 106 107
    'mean_iou',
    'relu',
    'log',
108
    'crop',
109
    'rank_loss',
110 111 112 113 114 115
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
J
jerrywgz 已提交
116
    'prelu',
117 118 119
    'brelu',
    'leaky_relu',
    'soft_relu',
120
    'flatten',
Q
qingqing01 已提交
121
    'sequence_mask',
S
sneaxiy 已提交
122
    'stack',
W
whs 已提交
123
    'pad2d',
D
dzhwinter 已提交
124
    'unstack',
125
    'sequence_enumerate',
W
whs 已提交
126
    'expand',
C
add api  
chengduoZH 已提交
127
    'sequence_concat',
S
sneaxiy 已提交
128 129 130 131 132 133 134 135
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Y
Yu Yang 已提交
136 137 138 139 140 141 142 143
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
144
       use_mkldnn=False,
Y
Yu Yang 已提交
145
       act=None,
J
Jacek Czaja 已提交
146
       is_test=False,
147
       name=None):
Y
Yu Yang 已提交
148
    """
149
    **Fully Connected Layer**
Y
Yu Yang 已提交
150

151 152 153 154 155 156 157 158
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
159
    to the output as well.
C
caoying03 已提交
160

C
caoying03 已提交
161
    This process can be formulated as follows:
162 163 164

    .. math::

165
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
166 167 168

    In the above equation:

C
caoying03 已提交
169 170 171 172
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
173
    * :math:`Act`: The activation function.
C
caoying03 已提交
174
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
175 176

    Args:
R
ranqiu 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
192 193
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
194
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
195
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
196 197
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
198
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
199

200
    Returns:
F
fengjiayi 已提交
201
        Variable: The transformation result.
202 203

    Raises:
C
caoying03 已提交
204
        ValueError: If rank of the input tensor is less than 2.
205 206 207 208

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
209
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
210
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
211
    """
C
caoying03 已提交
212

C
caoying03 已提交
213
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
214 215 216 217

    dtype = helper.input_dtype()

    mul_results = []
218 219
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
220 221 222
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
223

Y
Yu Yang 已提交
224
        w = helper.create_parameter(
225 226
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
227
        helper.append_op(
228 229 230
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
231
            outputs={"Out": tmp},
M
mozga-intel 已提交
232 233
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
234 235 236 237
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
238
    else:
239 240
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
241 242 243 244
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
245 246 247 248
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
249 250


251 252 253
def embedding(input,
              size,
              is_sparse=False,
254
              is_distributed=False,
255 256 257
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
258
    """
259 260
    **Embedding Layer**

261
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
262 263
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
264 265 266

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
267 268

    Args:
269 270 271 272 273
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
274
        is_distributed(bool): Whether to run lookup table from remote parameter server.
275 276
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
277
            with zeros whenever lookup encounters it in :attr:`input`. If
278
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
279 280
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
281
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
282

283 284 285
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
286

287 288
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
289

C
chengduoZH 已提交
290
          dict_size = len(dataset.ids)
291
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
292
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
293 294 295 296 297 298
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
299 300
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
301 302 303 304 305
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
306 307 308 309 310
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
311 312 313
    return tmp


Y
yi.wu 已提交
314
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
315 316
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
317 318
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
319 320 321 322 323 324 325
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
326 327
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
328
    """
Y
yi.wu 已提交
329
    ${comment}
Y
Yibing Liu 已提交
330 331

    Args:
Y
yi.wu 已提交
332 333
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
334 335 336 337 338 339 340
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

341
        param_attr(ParamAttr|None): The parameter attribute for the learnable
342
                               hidden-hidden weights.
Y
Yibing Liu 已提交
343 344 345

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
346 347
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
348
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
349 350 351
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
352

353
                              1. `use_peepholes = False`
Y
yi.wu 已提交
354 355
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
356
                              2. `use_peepholes = True`
Y
yi.wu 已提交
357
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
358
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
359
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
360 361 362 363 364 365 366 367
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
368 369

    Returns:
Y
Yibing Liu 已提交
370 371
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
372

Y
Yibing Liu 已提交
373
    Examples:
Y
Yibing Liu 已提交
374 375
        .. code-block:: python

Y
Yibing Liu 已提交
376 377
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
378
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
379 380
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
381
    """
382

Y
Yu Yang 已提交
383
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
384
    size = size // 4
Y
Yu Yang 已提交
385 386 387 388 389 390 391 392 393 394 395 396
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
397 398 399 400 401 402 403 404 405 406
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
407 408 409

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
410
        inputs=inputs,
Y
Yu Yang 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
427 428 429 430 431 432 433 434 435 436 437
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
438 439
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
440 441 442
    """
    **Dynamic LSTMP Layer**

443 444 445 446 447 448
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
449 450 451 452 453

    The formula is as follows:

    .. math::

454
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
455

456
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
457

458
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
459

460
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
461

462
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
463

464
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
465

466
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
467

Y
Yibing Liu 已提交
468 469 470 471 472 473
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
474
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
475
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
476
          bias vector).
Y
Yibing Liu 已提交
477 478 479
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
480
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
481
    * :math:`h`: The hidden state.
482
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
483 484
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
485
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
486
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
487
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
488 489
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
490 491 492 493

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
494

Y
Yibing Liu 已提交
495 496 497 498 499 500 501 502 503 504 505 506
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
507
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
508 509
                               hidden-hidden weight and projection weight.

510 511
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
512 513
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
514 515
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
516 517
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
518 519 520 521 522 523
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
524
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
525 526 527
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
528
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
529 530 531 532 533 534 535 536 537
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
538
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
539 540
                              default "tanh".
        proj_activation(str): The activation for projection output.
541
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
542 543
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
544 545
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
546 547

    Returns:
548 549 550 551
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
552 553

    Examples:
554

Y
Yibing Liu 已提交
555 556
        .. code-block:: python

557 558 559 560
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
561
            hidden_dim, proj_dim = 512, 256
562
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
563
                                     act=None, bias_attr=None)
564 565 566
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
567 568 569 570
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
571
    """
572

Y
Yibing Liu 已提交
573
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
574
    size = size // 4
Y
Yibing Liu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
619 620 621 622 623 624 625 626 627
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
628
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
629

630
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
631
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
632

G
guosheng 已提交
633 634 635 636 637 638 639 640 641
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
642

G
guosheng 已提交
643
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
644

G
guosheng 已提交
645
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
646 647
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
648 649 650 651
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
652
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
653 654

    Args:
655 656
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
657
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
658
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
659 660
            is the hidden size.
        size(int): The dimension of the gru cell.
661
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
662 663
            hidden-hidden weight matrix. Note:

664
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
665
              :math:`D` is the hidden size.
666
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
667
              The first part are weights of the update gate and reset gate with
668
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
669
              candidate hidden state with shape :math:`(D \\times D)`.
670
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
671
            hidden-hidden bias.
672
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
673 674 675
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
676
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
677
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
678 679 680 681
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
682 683

    Returns:
G
guosheng 已提交
684
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
685
            and sequence length is the same with the input.
686

G
guosheng 已提交
687
    Examples:
688

G
guosheng 已提交
689 690
        .. code-block:: python

691 692 693 694
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
695
            hidden_dim = 512
696
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
697 698 699 700 701 702 703 704 705 706
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
707
    batch_size = input.shape[0]
G
guosheng 已提交
708 709 710
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
711 712 713
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
737 738 739
def gru_unit(input,
             hidden,
             size,
740 741
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
742
             activation='tanh',
743
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
744
    """
745
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
746

747 748
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
749

750
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
751

752
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
753

754
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
755 756

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
757 758 759
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
760 761
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

762 763
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
764 765 766
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
767 768 769 770 771

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
772 773
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
774 775 776 777
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
778

779 780 781 782 783 784
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
785

786
             # assuming we have x_t_data and prev_hidden of size=10
787
             x_t = fluid.layers.fc(input=x_t_data, size=30)
788 789
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
790 791 792 793 794 795 796 797 798 799 800 801

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
802
    size = size // 3
Y
Yu Yang 已提交
803 804

    # create weight
805 806
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
807

808 809 810 811
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
812
    # create bias
813
    if helper.bias_attr:
Y
Yu Yang 已提交
814 815 816
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
817
        inputs['Bias'] = bias
Y
Yu Yang 已提交
818 819 820

    helper.append_op(
        type='gru_unit',
821
        inputs=inputs,
Y
Yu Yang 已提交
822 823 824 825 826 827
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
828 829
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
830 831 832 833 834
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
835
@templatedoc()
836
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
837 838 839 840 841 842 843
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
844
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
845 846 847 848
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
849 850 851
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
852 853

    """
Y
Yu Yang 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
879
@templatedoc()
880
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
881 882 883 884 885
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
886

Y
yuyang18 已提交
887
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
888

Y
yuyang18 已提交
889 890 891
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
892
        Variable: ${viterbi_path_comment}
893

Y
yi.wu 已提交
894 895 896 897 898
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
899
    """
Y
Yu Yang 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
913
@templatedoc()
F
fengjiayi 已提交
914
def cos_sim(X, Y):
Y
Yu Yang 已提交
915
    """
Y
yi.wu 已提交
916 917 918
    ${comment}

    Args:
919 920
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
921

Y
yi.wu 已提交
922
    Returns:
923
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
924
    """
F
fengjiayi 已提交
925
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


939
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
940 941 942 943 944
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
945
    training. The dropout operator randomly sets (according to the given dropout
946 947 948 949
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
950 951
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
952 953 954 955 956 957 958
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
959 960

    Returns:
961
        Variable: A tensor variable is the shape with `x`.
962 963

    Examples:
964

965 966
        .. code-block:: python

967 968
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
969 970
    """

F
fengjiayi 已提交
971
    helper = LayerHelper('dropout', **locals())
972 973
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
974 975 976 977

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

978 979 980 981 982
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
983 984 985 986 987 988
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
989 990 991
    return out


992
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
993
    """
Y
Yibing Liu 已提交
994 995
    **Cross Entropy Layer**

996 997 998
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
999 1000

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1001
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1002

Y
Yibing Liu 已提交
1003
        .. math::
Y
yangyaming 已提交
1004

Y
Yibing Liu 已提交
1005 1006 1007
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1008 1009
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1010 1011 1012 1013 1014

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1015
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1016 1017 1018
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1019 1020
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1021
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1022

Y
Yibing Liu 已提交
1023
    Args:
Y
yangyaming 已提交
1024
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1025 1026 1027 1028
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1029
        label (Variable|list): the ground truth which is a 2-D tensor. When
1030 1031 1032 1033
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1034
        soft_label (bool): a flag indicating whether to
1035
                                           interpretate the given labels as soft
1036 1037 1038 1039
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1040 1041 1042 1043 1044

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1045 1046 1047 1048 1049
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1050 1051 1052 1053 1054 1055

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1056
    """
F
fengjiayi 已提交
1057
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1058 1059 1060 1061 1062 1063
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1064 1065
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1066 1067 1068
    return out


F
fengjiayi 已提交
1069
def square_error_cost(input, label):
Y
Yu Yang 已提交
1070
    """
1071 1072
    **Square error cost layer**

1073 1074
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1089 1090
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1091 1092

    Returns:
G
guosheng 已提交
1093
        Variable: The tensor variable storing the element-wise squared error \
1094
                  difference of input and label.
1095 1096 1097 1098 1099 1100 1101 1102

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1103
    """
F
fengjiayi 已提交
1104
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1114 1115
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1116 1117 1118
    return square_out


Y
yi.wu 已提交
1119
@templatedoc()
Y
Yu Yang 已提交
1120 1121 1122 1123
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1124
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1125
    """
Y
yi.wu 已提交
1126
    **Chunk Evaluator**
Y
yi.wu 已提交
1127

Y
yangyaming 已提交
1128
    This function computes and outputs the precision, recall and
1129
    F1-score of chunk detection.
Y
yi.wu 已提交
1130

Y
yi.wu 已提交
1131 1132 1133 1134 1135 1136 1137 1138
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1139

Y
yi.wu 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1165

Y
yi.wu 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1190
    Args:
1191 1192 1193 1194 1195
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1196

Y
yi.wu 已提交
1197
    Returns:
Y
update  
yi.wu 已提交
1198 1199 1200
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1201

Y
yi.wu 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1214
    """
F
fengjiayi 已提交
1215
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1216 1217 1218 1219 1220

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1221 1222 1223
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1224 1225 1226 1227 1228 1229 1230 1231

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1232 1233 1234 1235
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1236 1237 1238
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1239 1240
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1241
        })
1242 1243
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1244 1245


1246
@templatedoc()
Y
Yu Yang 已提交
1247 1248 1249 1250 1251 1252 1253
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1254
                  act=None):
Y
Yu Yang 已提交
1255 1256 1257 1258
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1269

1270 1271
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1290
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1291 1292 1293 1294 1295 1296
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1297
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1298 1299 1300
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1301
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1320
        library is installed. Default: False
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1344
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1345
    """
1346
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1347
    has the same shape as the input.
Q
qiaolongfei 已提交
1348

1349 1350 1351 1352 1353 1354
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1355
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1356 1357 1358 1359 1360 1361 1362

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1363
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1398 1399 1400
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1401 1402
           stride=1,
           padding=0,
1403
           dilation=1,
Y
Yu Yang 已提交
1404 1405 1406
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1407
           use_cudnn=True,
1408
           use_mkldnn=False,
1409 1410
           act=None,
           name=None):
Y
Yu Yang 已提交
1411
    """
C
chengduoZH 已提交
1412
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1413 1414
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1415
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1416 1417 1418 1419 1420 1421 1422
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1423 1424 1425
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1426

1427
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1428

C
chengduoZH 已提交
1429 1430
    .. math::

C
refine  
chengduoZH 已提交
1431
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1432

T
tensor-tang 已提交
1433
    Where:
C
chengduoZH 已提交
1434

1435 1436 1437 1438 1439
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1440
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1441 1442 1443

    Example:

1444 1445
        - Input:

W
weixing02 已提交
1446
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1447

W
weixing02 已提交
1448
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1449

1450
        - Output:
T
tensor-tang 已提交
1451

W
weixing02 已提交
1452
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1453

C
chengduoZH 已提交
1454
        Where
1455 1456

        .. math::
C
chengduoZH 已提交
1457

W
weixing02 已提交
1458 1459
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1460 1461

    Args:
1462
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1463
        num_filters(int): The number of filter. It is as same as the output
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1486 1487
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1488 1489 1490
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1491 1492

    Returns:
G
guosheng 已提交
1493
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1494 1495
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1496
    Raises:
1497 1498
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1499

C
chengduoZH 已提交
1500 1501 1502
    Examples:
        .. code-block:: python

1503 1504
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1505 1506 1507
    """

    num_channels = input.shape[1]
1508 1509

    l_type = 'conv2d'
X
xzl 已提交
1510 1511
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1512
        l_type = 'depthwise_conv2d'
1513 1514 1515 1516

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1517 1518 1519 1520 1521
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1522
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1523

C
chengduoZH 已提交
1524 1525 1526
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1527
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1528

C
chengduoZH 已提交
1529 1530
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1531 1532

    input_shape = input.shape
M
minqiyang 已提交
1533
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1548
        type=l_type,
Y
Yu Yang 已提交
1549 1550 1551 1552 1553
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1554 1555 1556
        attrs={
            'strides': stride,
            'paddings': padding,
1557
            'dilations': dilation,
C
chengduoZH 已提交
1558
            'groups': groups,
1559 1560
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1561
        })
Y
Yu Yang 已提交
1562 1563 1564 1565 1566 1567

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1586 1587 1588 1589 1590 1591
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1601 1602
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1603 1604 1605
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1606
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1632
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1633 1634
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1635
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1636 1637
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1638
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1639 1640
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1641
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1668 1669
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1684
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1725
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1726 1727 1728 1729

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1730
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1731
    """
Y
yangyaming 已提交
1732 1733 1734
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1746
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1747 1748 1749 1750 1751
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1752
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1753 1754 1755 1756 1757 1758 1759

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1760 1761
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1762

L
Luo Tao 已提交
1763 1764
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1765
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1766 1767 1768 1769 1770 1771 1772 1773
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1774

Y
yangyaming 已提交
1775
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1776 1777 1778 1779 1780
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1781 1782
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1783
    """
F
fengjiayi 已提交
1784
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1796 1797 1798 1799 1800
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1801 1802 1803
    return pool_out


C
add doc  
chengduoZH 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1829
def sequence_first_step(input):
L
Luo Tao 已提交
1830
    """
L
Luo Tao 已提交
1831
    This function gets the first step of sequence.
L
Luo Tao 已提交
1832 1833 1834 1835

    .. code-block:: text

       x is a 1-level LoDTensor:
1836
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1837 1838 1839 1840 1841
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1842
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1843
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1844

L
Luo Tao 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1854

Y
yangyaming 已提交
1855
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1856 1857 1858
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1859 1860 1861
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1862
def sequence_last_step(input):
L
Luo Tao 已提交
1863
    """
L
Luo Tao 已提交
1864
    This function gets the last step of sequence.
L
Luo Tao 已提交
1865 1866 1867 1868

    .. code-block:: text

       x is a 1-level LoDTensor:
1869
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1870 1871 1872 1873 1874
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1875
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1876
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1877

L
Luo Tao 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1887

Y
yangyaming 已提交
1888
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1889 1890 1891
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1892 1893 1894
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1895
@templatedoc()
Y
Yu Yang 已提交
1896
def pool2d(input,
C
chengduoZH 已提交
1897 1898
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1899 1900
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1901
           global_pooling=False,
C
chengduoZH 已提交
1902
           use_cudnn=True,
1903
           ceil_mode=False,
1904
           use_mkldnn=False,
C
caoying03 已提交
1905
           name=None):
Y
Yu Yang 已提交
1906
    """
F
fengjiayi 已提交
1907
    ${comment}
1908 1909

    Args:
1910 1911 1912
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1913
                          feature, and W is the width of the feature.
1914
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1915
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1916
        pool_type: ${pooling_type_comment}
1917 1918
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1919 1920 1921 1922
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1923
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1924 1925
                        layer will be named automatically.

1926
    Returns:
F
fengjiayi 已提交
1927
        Variable: The pooling result.
F
fengjiayi 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1941 1942 1943 1944
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1945
                            global_pooling=False)
Y
Yu Yang 已提交
1946 1947 1948 1949 1950
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1951

C
chengduoZH 已提交
1952 1953 1954 1955 1956
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1957 1958 1959 1960
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1961 1962
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1963

C
Add doc  
chengduoZH 已提交
1964
    l_type = 'pool2d'
1965 1966

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1967 1968 1969 1970
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2000
    pooling configurations mentioned in input parameters.
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2014

2015
    Returns:
2016
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2017 2018 2019 2020 2021
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2022

C
chengduoZH 已提交
2023 2024 2025 2026 2027
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2028 2029 2030
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2031

C
chengduoZH 已提交
2032 2033
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2034

2035 2036
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2037 2038 2039 2040
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2041
        type=l_type,
Y
Yu Yang 已提交
2042 2043 2044 2045 2046 2047 2048
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2049
            "paddings": pool_padding,
2050
            "use_cudnn": use_cudnn,
2051 2052
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2065
               data_layout='NCHW',
Y
Yang Yang 已提交
2066
               in_place=False,
2067
               use_mkldnn=False,
2068 2069
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2070
               moving_variance_name=None,
2071 2072
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2073
    """
Q
qiaolongfei 已提交
2074 2075 2076 2077
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2078

Q
qiaolongfei 已提交
2079
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2080

Q
qiaolongfei 已提交
2081 2082
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2083 2084 2085
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2098 2099

    Args:
Q
qiaolongfei 已提交
2100
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2101 2102 2103 2104
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2105 2106 2107
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2108
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2109 2110 2111 2112 2113
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2114
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2115
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2116 2117

    Returns:
Q
qiaolongfei 已提交
2118
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2119 2120 2121 2122 2123 2124 2125

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2149
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2150

2151 2152
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2153 2154 2155
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2156
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2157
        shape=param_shape,
2158 2159 2160 2161 2162 2163 2164
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2165
            trainable=False,
W
wanghaoshuang 已提交
2166
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2167
        shape=param_shape,
2168 2169
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2170 2171 2172 2173 2174 2175

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2176 2177
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2178

2179
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2197 2198 2199 2200
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2201 2202
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2203
        })
Y
Yu Yang 已提交
2204 2205 2206 2207

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2208
@templatedoc()
G
guosheng 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2219
    ${comment}
G
guosheng 已提交
2220 2221 2222

    The formula is as follows:

Y
yuyang18 已提交
2223
    ..  math::
G
guosheng 已提交
2224 2225 2226 2227 2228 2229 2230

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2231 2232 2233 2234 2235 2236 2237 2238
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2239

G
guosheng 已提交
2240 2241
    Args:
        input(Variable): The input tensor variable.
2242
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2243
            normalization.
2244
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2245
            normalization.
2246
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2247
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2248
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2249 2250 2251 2252 2253 2254
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2255
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2256 2257

    Returns:
Y
yuyang18 已提交
2258
        ${y_comment}
G
guosheng 已提交
2259 2260 2261

    Examples:

Y
yuyang18 已提交
2262 2263 2264
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2280
    if shift:
G
guosheng 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2305 2306 2307 2308
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2309 2310 2311
                     padding=0,
                     stride=1,
                     dilation=1,
2312
                     groups=None,
C
caoying03 已提交
2313
                     param_attr=None,
2314
                     bias_attr=None,
C
chengduoZH 已提交
2315
                     use_cudnn=True,
2316
                     act=None,
C
caoying03 已提交
2317
                     name=None):
Y
Yu Yang 已提交
2318
    """
2319 2320 2321 2322 2323 2324 2325 2326
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2327 2328
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2329 2330 2331
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2332 2333 2334 2335 2336

    For each input :math:`X`, the equation is:

    .. math::

2337
        Out = \sigma (W \\ast X + b)
2338

2339
    Where:
2340 2341 2342

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2343 2344 2345 2346
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2347

2348 2349 2350 2351
    Example:

        - Input:

2352
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2353

2354
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2355 2356 2357

        - Output:

2358
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2359 2360

        Where
Y
Yu Yang 已提交
2361

2362 2363
        .. math::

2364 2365 2366 2367
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2368 2369

    Args:
2370 2371 2372 2373
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2374 2375 2376 2377
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2405 2406

    Returns:
2407
        Variable: The tensor variable storing the convolution transpose result.
2408 2409

    Raises:
2410 2411
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2412 2413 2414 2415

    Examples:
       .. code-block:: python

2416 2417
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2418
    """
2419 2420 2421 2422 2423 2424 2425 2426 2427

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2428 2429 2430
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2431 2432 2433
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2434

C
chengduoZH 已提交
2435 2436
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2437

Y
Yu Yang 已提交
2438 2439 2440 2441 2442
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2443

Y
Yu Yang 已提交
2444 2445
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2446

C
chengduoZH 已提交
2447
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2448
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2449
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2450
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2451
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2452 2453 2454
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2455 2456 2457 2458 2459 2460 2461
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2462
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2463
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2464 2465 2466
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2467
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2468
    helper.append_op(
2469
        type=op_type,
Y
Yu Yang 已提交
2470 2471
        inputs={'Input': [input],
                'Filter': [img_filter]},
2472
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2473
        attrs={
2474
            'output_size': output_size,
2475 2476 2477 2478 2479
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2480 2481
        })

2482 2483 2484
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2485 2486


2487
def conv3d_transpose(input,
Y
Yu Yang 已提交
2488 2489 2490
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2491 2492 2493
                     padding=0,
                     stride=1,
                     dilation=1,
2494
                     groups=None,
C
caoying03 已提交
2495
                     param_attr=None,
2496
                     bias_attr=None,
C
chengduoZH 已提交
2497
                     use_cudnn=True,
2498
                     act=None,
C
caoying03 已提交
2499
                     name=None):
Y
Yu Yang 已提交
2500
    """
2501
    **Convlution3D transpose layer**
2502

2503
    The convolution3D transpose layer calculates the output based on the input,
2504
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2505 2506 2507 2508 2509 2510
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2511 2512 2513
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2514 2515 2516 2517 2518

    For each input :math:`X`, the equation is:

    .. math::

2519
        Out = \sigma (W \\ast X + b)
2520 2521 2522

    In the above equation:

2523 2524
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2525 2526 2527 2528
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2529

2530 2531 2532 2533
    Example:

        - Input:

2534
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2535

2536
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2537 2538 2539

        - Output:

2540
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2541 2542

        Where
Y
Yu Yang 已提交
2543

2544 2545
        .. math::

2546 2547 2548
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2549 2550

    Args:
2551
        input(Variable): The input image with [N, C, D, H, W] format.
2552 2553 2554
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2555
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2556 2557
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2558
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2559 2560 2561
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2562 2563
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2564
        stride(int|tuple): The stride size. If stride is a tuple, it must
2565 2566
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2567
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2568 2569 2570
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2571 2572 2573 2574 2575
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2576 2577 2578
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2579 2580 2581 2582 2583
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2584 2585

    Returns:
2586
        Variable: The tensor variable storing the convolution transpose result.
2587 2588

    Raises:
2589 2590
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2591 2592 2593 2594

    Examples:
       .. code-block:: python

2595 2596
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2597
    """
2598 2599
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2600
    if not isinstance(input, Variable):
2601
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2602 2603
    input_channel = input.shape[1]

2604 2605 2606
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2607

C
chengduoZH 已提交
2608 2609 2610
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2611 2612 2613 2614 2615 2616
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2617 2618 2619
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2620

2621
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2622
                         padding[0] - 1) // dilation[0] + 1
2623
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2624
                         padding[1] - 1) // dilation[1] + 1
2625
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2626
                         padding[2] - 1) // dilation[2] + 1
2627
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2628
    else:
2629 2630
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2631

2632
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2633
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2634 2635 2636
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2637
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2638
    helper.append_op(
2639
        type=l_type,
Y
Yu Yang 已提交
2640 2641
        inputs={'Input': [input],
                'Filter': [img_filter]},
2642
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2643 2644 2645 2646
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2647
            'groups': groups,
C
chengduoZH 已提交
2648 2649
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2650

2651 2652
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2653
    return out
Y
yangyaming 已提交
2654 2655


Y
yangyaming 已提交
2656
def sequence_expand(x, y, ref_level=-1, name=None):
2657
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2658 2659 2660 2661
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2662 2663 2664 2665 2666

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2667
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2668
                x.data = [[a], [b], [c], [d]]
2669 2670 2671
                x.dims = [4, 1]

            y is a LoDTensor:
2672 2673
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2674

Y
yangyaming 已提交
2675
            ref_level: 0
2676

Y
yangyaming 已提交
2677
            then output is a 1-level LoDTensor:
2678
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2679
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2680 2681 2682 2683
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2684
                x.data = [[a], [b], [c]]
2685 2686 2687
                x.dims = [3, 1]

            y is a LoDTensor:
2688
                y.lod = [[2, 0, 3]]
2689

Y
yangyaming 已提交
2690
            ref_level: -1
2691

Y
yangyaming 已提交
2692 2693 2694
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2695 2696 2697
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2698 2699
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2700
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2701
                        will be named automatically.
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2712
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2713
    """
Y
yangyaming 已提交
2714
    helper = LayerHelper('sequence_expand', input=x, **locals())
2715 2716 2717
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2718 2719 2720 2721 2722
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2723
    return tmp
2724 2725


C
chengduo 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2809 2810
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2826 2827 2828 2829 2830
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2831 2832 2833 2834 2835 2836
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2837 2838
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2839
        attrs={'padded_length': maxlen})
2840
    return out, length
F
fengjiayi 已提交
2841 2842


2843 2844 2845 2846 2847 2848 2849 2850 2851
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2852 2853
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2854 2855 2856

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2857 2858

    This layer does the search in beams for one time step. Specifically, it
2859 2860 2861 2862 2863 2864
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2865

2866 2867 2868 2869 2870 2871 2872 2873
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2874

2875
    Args:
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2901

2902
    Returns:
2903 2904
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2905 2906 2907 2908

    Examples:
        .. code-block:: python

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2937
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2955 2956 2957 2958 2959 2960 2961
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2972

2973 2974 2975 2976 2977 2978
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3005 3006 3007 3008
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3009
              param_attr=None,
C
caoying03 已提交
3010 3011
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3012 3013 3014 3015
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3016
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3017

3018
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3019

3020
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3021

3022
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3023 3024 3025

            h_t & = o_t tanh(c_t)

3026 3027 3028 3029 3030 3031
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3032 3033 3034

        .. math::

3035
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3036 3037 3038 3039 3040 3041 3042 3043

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3044
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3045 3046

    Args:
Y
yangyaming 已提交
3047 3048 3049 3050 3051 3052
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3053
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3054 3055
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3056 3057
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3058 3059
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3060 3061

    Returns:
Y
yangyaming 已提交
3062
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3063 3064

    Raises:
3065 3066 3067 3068
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3069 3070 3071 3072 3073 3074

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3075
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3076
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3077
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3094
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3095 3096 3097 3098
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3099 3100
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3101 3102 3103
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3104
    size = cell_t_prev.shape[1]
3105
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3106 3107
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3108
                param_attr=param_attr,
3109
                bias_attr=bias_attr)
Y
yangyaming 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3122
    return h, c
G
guosheng 已提交
3123 3124


C
caoying03 已提交
3125
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3126
    """
Y
yangyaming 已提交
3127
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3128 3129 3130

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3131
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3132 3133
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3134 3135
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3136
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3137
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3138
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3139 3140
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3141 3142 3143

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3144

G
guosheng 已提交
3145 3146 3147 3148 3149 3150
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3151
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3152 3153 3154 3155
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3156 3157 3158 3159

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3160
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3161 3162 3163
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3164 3165 3166
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3167 3168
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3169 3170 3171 3172 3173
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3174
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3175 3176 3177 3178
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3179 3180


C
caoying03 已提交
3181
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3182
    """
Y
Yibing Liu 已提交
3183
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3184 3185 3186

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3187 3188 3189
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3190
            must be in the range :math:`[-rank(input), rank(input))`. If
3191
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3192
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3193 3194
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3195
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3196
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3197
                       will be named automatically.
G
guosheng 已提交
3198 3199

    Returns:
Y
Yibing Liu 已提交
3200
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3201

G
guosheng 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3212 3213
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3214 3215 3216 3217 3218 3219 3220

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3221 3222 3223
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3224 3225
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3226 3227 3228 3229 3230
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3231
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3232 3233 3234 3235
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3236 3237


C
caoying03 已提交
3238
def reduce_max(input, dim=None, keep_dim=False, name=None):
3239
    """
Y
yangyaming 已提交
3240
    Computes the maximum of tensor elements over the given dimension.
3241 3242 3243

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3244
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3245 3246 3247
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3248
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3249 3250
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3251
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3252 3253
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3254 3255 3256

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3257

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3269 3270 3271 3272 3273 3274 3275

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3276 3277 3278
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3279 3280
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3281 3282 3283 3284 3285
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3286
            'dim': dim if dim != None else [0],
3287 3288 3289 3290 3291 3292
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3293
def reduce_min(input, dim=None, keep_dim=False, name=None):
3294
    """
Y
yangyaming 已提交
3295
    Computes the minimum of tensor elements over the given dimension.
3296 3297 3298

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3299
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3300 3301 3302
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3303
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3304 3305
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3306
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3307 3308
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3309 3310 3311

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3312

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3324 3325 3326 3327 3328 3329 3330

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3331 3332 3333
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3334 3335
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3336 3337 3338 3339 3340
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3341
            'dim': dim if dim != None else [0],
3342 3343 3344 3345
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3346 3347


3348 3349 3350 3351 3352 3353
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3354
        dim (list|int|None): The dimensions along which the product is performed. If
3355 3356
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3357 3358
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3359 3360 3361
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3362
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3363
            layer will be named automatically.
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3378
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3379
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3380 3381 3382 3383 3384 3385 3386

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3387 3388 3389
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3390 3391
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3392 3393 3394 3395 3396
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3397
            'dim': dim if dim != None else [0],
3398 3399 3400 3401 3402 3403
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3404
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3405
    """
C
caoying03 已提交
3406
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3407 3408 3409

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3410 3411 3412 3413 3414
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3415
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3416
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3417
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3418 3419
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3420 3421

    Returns:
D
dzhwinter 已提交
3422
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3432 3433
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3472
    .. math::
3473 3474

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3475 3476 3477 3478 3479

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3480
        x(Variable|list): The input tensor to l2_normalize layer.
3481
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3482 3483
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3484
        epsilon(float): The epsilon value is used to avoid division by zero, \
3485
            the defalut value is 1e-10.
3486
        name(str|None): A name for this layer(optional). If set None, the layer \
3487
            will be named automatically.
C
caoying03 已提交
3488 3489

    Returns:
3490
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3491 3492

    Examples:
3493

C
caoying03 已提交
3494 3495
        .. code-block:: python

3496 3497 3498 3499
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3500 3501
    """

F
fengjiayi 已提交
3502 3503
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3504 3505
    helper = LayerHelper("l2_normalize", **locals())

3506 3507
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3508
    helper.append_op(
3509 3510 3511 3512
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3513
        attrs={
3514 3515
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3516 3517
        })
    return out
3518 3519


S
sneaxiy 已提交
3520
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3521
    """
Y
ying 已提交
3522 3523 3524 3525
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3526

C
chengduoZH 已提交
3527
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3528
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3529

3530 3531 3532 3533 3534
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3535
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3536

C
chengduoZH 已提交
3537
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3538
      performs in the following way.
G
guosheng 已提交
3539

3540
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3541
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3542
        last two dimensions and a batched matrix multiply supporting broadcast
3543
        applies on the two tensors.
G
guosheng 已提交
3544

Y
ying 已提交
3545 3546
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3547
    removed after matrix multiplication.
G
guosheng 已提交
3548 3549 3550

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3551 3552 3553
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3554
        alpha (float): The scale of output. Default 1.0.
3555
        name(str|None): A name for this layer(optional). If set None, the layer
3556
            will be named automatically.
G
guosheng 已提交
3557 3558

    Returns:
3559
        Variable: The product Tensor variable.
G
guosheng 已提交
3560

G
guosheng 已提交
3561 3562 3563
    Examples:
        .. code-block:: python

3564
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3565 3566
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3567

3568 3569
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3570

3571 3572
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3573

3574 3575
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3576 3577 3578 3579

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3580 3581
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3582

Y
ying 已提交
3583
            # x: [M], y: [N]
3584
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3585
    """
Y
ying 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3598
            y_shape = y_shape + [1]
Y
ying 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3615
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3616
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3617
    helper.append_op(
3618 3619 3620 3621
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3622 3623 3624
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3625
            'alpha': float(alpha),
S
sneaxiy 已提交
3626
        })
3627
    return out
3628 3629


3630
def topk(input, k, name=None):
Q
qingqing01 已提交
3631 3632 3633 3634
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3635
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3636 3637 3638 3639 3640 3641
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3663 3664 3665
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3666
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3667
                 of input.
3668
        name(str|None): A name for this layer(optional). If set None, the layer
3669
                       will be named automatically.
F
fengjiayi 已提交
3670
                       Default: None
Q
qingqing01 已提交
3671 3672

    Returns:
3673 3674 3675
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3676
        within the last dimension of input.
Q
qingqing01 已提交
3677

F
fengjiayi 已提交
3678 3679
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3700
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3701
    """
Y
ying 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3711

Y
ying 已提交
3712
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3713

3714
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3715 3716
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3717
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3718

3719
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3720 3721
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3722

3723 3724 3725
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3726
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3727
                          the length of reference string.
3728
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3729
                                     calculating edit distance.
3730
        name (str): The name of this layer. It is optional.
3731

W
wanghaoshuang 已提交
3732
    Returns:
W
wanghaoshuang 已提交
3733
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3734 3735 3736 3737 3738

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3739
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3740
            cost = fluid.layers.edit_distance(input=x,label=y)
3741
    """
3742
    helper = LayerHelper("edit_distance", **locals())
3743

3744
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3745
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3746 3747 3748 3749 3750 3751 3752
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3753
            attrs={"tokens": ignored_tokens})
3754 3755 3756 3757 3758
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3759
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3760
            attrs={"tokens": ignored_tokens})
3761 3762
        label = erased_label

3763 3764
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3765
    sequence_num = helper.create_tmp_variable(dtype="int64")
3766 3767 3768 3769
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3770 3771
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3772 3773
        attrs={"normalized": normalized})

3774
    return edit_distance_out, sequence_num
3775 3776 3777 3778 3779


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3780

Y
ying 已提交
3781 3782 3783 3784
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3802
        input.lod = [[4, 4]]
3803 3804 3805 3806 3807 3808 3809

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3810
        output.lod = [[2, 1]]
3811 3812 3813

    Args:

Y
ying 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3823
        name (str): The name of this layer. It is optional.
3824 3825

    Returns:
3826
        Variable: CTC greedy decode result. If all the sequences in result were
3827
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3828 3829 3830 3831 3832

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3833

3834
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3835
    """
3836
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3837
    _, topk_indices = topk(input, k=1)
3838 3839 3840 3841 3842 3843

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3844
        outputs={"Output": [ctc_out]},
3845 3846
        attrs={"merge_repeated": True,
               "blank": blank})
3847
    return ctc_out
3848 3849


F
fengjiayi 已提交
3850
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3851
    """
3852 3853
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3854
    to compute Connectionist Temporal Classification (CTC) loss.
3855 3856
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3857 3858 3859
    input tensor.

    Args:
3860
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3861 3862 3863 3864
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3865
       label (Variable): The ground truth of variable-length sequence,
3866 3867 3868
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3869 3870
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3871 3872 3873
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3874
         follewed by a mean_op.
W
wanghaoshuang 已提交
3875 3876

    Returns:
3877 3878
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3879 3880

    Examples:
3881

W
wanghaoshuang 已提交
3882
        .. code-block:: python
3883

3884 3885 3886
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3887 3888

    """
F
fengjiayi 已提交
3889
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3916 3917 3918
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3919 3920 3921 3922 3923
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3924

3925
            out.lod  = [[0, 1, 3]]
3926 3927 3928 3929

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3930 3931 3932 3933 3934 3935 3936
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3937 3938 3939

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3940 3941

    Returns:
3942

3943 3944 3945 3946 3947
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3948
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3949
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3950 3951 3952 3953 3954 3955 3956 3957 3958
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3959 3960


3961 3962 3963 3964
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3965 3966 3967 3968 3969 3970 3971
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3972 3973 3974 3975 3976 3977 3978
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3979 3980
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3981
            sample is 1.0.
3982 3983 3984
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3985

3986
    Returns:
Y
Yibing Liu 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4014
    """
Y
Yang Yu 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4059
    return cost / (num_neg_samples + 1)
4060 4061


G
guosheng 已提交
4062
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4063 4064
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4065
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4075

W
weixing02 已提交
4076
    Args:
M
minqiyang 已提交
4077
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4078 4079 4080 4081 4082
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4083 4084
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4085
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4086 4087
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4088 4089 4090 4091 4092 4093 4094 4095

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4096 4097 4098
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4099 4100 4101 4102 4103 4104 4105 4106
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4107
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4108 4109 4110 4111 4112
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4113 4114 4115 4116 4117 4118 4119 4120
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4121 4122
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4123
        inputs=inputs,
W
weixing02 已提交
4124 4125 4126 4127 4128 4129
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4130
def transpose(x, perm, name=None):
Y
ying 已提交
4131 4132 4133 4134 4135 4136 4137
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4138 4139 4140
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4141 4142 4143 4144 4145 4146 4147 4148

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4149
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4150 4151
    """

Y
fix ci.  
ying 已提交
4152
    if len(perm) != len(x.shape):
Y
ying 已提交
4153 4154 4155
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4156 4157 4158 4159 4160 4161
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4162 4163

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4164
    out = helper.create_tmp_variable(x.dtype)
4165
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4166
    helper.append_op(
4167
        type='transpose2',
Y
fix ci.  
ying 已提交
4168
        inputs={'X': [x]},
4169 4170
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4171 4172
        attrs={'axis': perm})
    return out
4173 4174


4175 4176 4177 4178 4179 4180 4181
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4182
    """
4183 4184 4185 4186 4187 4188 4189
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4218 4219 4220 4221 4222 4223 4224 4225 4226
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4227 4228 4229
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4230 4231 4232 4233 4234
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4262 4263 4264
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4277
            output.dims = {8, 8}
4278

4279
            output.lod = [[4, 4]]
4280

D
dzhwinter 已提交
4281
     Examples:
4282 4283 4284

        .. code-block:: python

4285 4286
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4287 4288

    """
W
wanghaoshuang 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4299 4300 4301 4302 4303 4304 4305
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4306
    helper = LayerHelper('im2sequence', **locals())
4307 4308
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4309
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4310
    return out
4311 4312


Y
yuyang18 已提交
4313
@templatedoc()
4314
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4315 4316
    """
    ${comment}
4317 4318

    Args:
Y
yuyang18 已提交
4319
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4320 4321
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4322 4323 4324 4325 4326
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4327
        ${out_comment}.
4328 4329

    Examples:
Y
yuyang18 已提交
4330 4331 4332 4333
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4346
    return helper.append_activation(out)
4347 4348


Y
yuyang18 已提交
4349
@templatedoc()
4350 4351
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4352 4353 4354 4355 4356 4357 4358
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4359 4360

    Args:
Y
yuyang18 已提交
4361 4362
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4363 4364

    Returns:
Y
yuyang18 已提交
4365
        ${out_comment}.
4366 4367
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4368 4369 4370 4371 4372 4373

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4374 4375 4376 4377 4378 4379
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4380 4381


4382 4383 4384 4385
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4386 4387
    """
    **Softmax With Cross Entropy Operator.**
4388

4389 4390 4391 4392
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4393

4394 4395 4396
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4397

4398 4399 4400
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4401

4402
    The equation is as follows:
4403

4404
    1) Hard label (one-hot label, so every sample has exactly one class)
4405

4406 4407 4408 4409
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4410

4411 4412 4413
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4414

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4427 4428 4429 4430
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4431 4432 4433 4434 4435 4436 4437 4438 4439
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4440 4441
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4452 4453
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4454 4455 4456 4457 4458
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4459 4460
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4461
    For each instance, it computes the smooth L1 loss element by element first
4462
    and then sums all the losses. So the shape of ouput Variable is
4463
    [batch_size, 1].
4464

4465 4466
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4467
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4468
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4469
            L1 loss op with same shape as :attr:`x`.
4470
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4471 4472
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4473
            by this tensor element by element.
4474
        outside_weight (Variable|None): A tensor with rank at least 2. This
4475 4476
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4477
            element by element.
4478
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4479 4480
           scalar with default value 1.0.

4481
    Returns:
4482
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4483 4484 4485 4486 4487

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4488 4489
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4490
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4491
            out = fluid.layers.smooth_l1(x=fc, y=label)
4492
    """
4493

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4509 4510 4511 4512


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4513
    This layer creates the one-hot representations for input indices.
4514 4515

    Args:
Y
Yibing Liu 已提交
4516 4517
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4518 4519

    Returns:
Y
Yibing Liu 已提交
4520
        Variable: The one-hot representations of input.
4521 4522

    Examples:
C
caoying03 已提交
4523
        .. code-block:: python
4524

Y
Yibing Liu 已提交
4525 4526
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4527 4528 4529 4530 4531 4532 4533 4534 4535
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4536 4537


Y
Yu Yang 已提交
4538
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4539
    """
Y
yi.wu 已提交
4540 4541 4542
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4543 4544 4545 4546 4547 4548

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4549 4550
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4551 4552 4553 4554 4555 4556

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4557 4558
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4559 4560
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4561 4562 4563 4564 4565
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4566
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4567
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4568 4569
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4570 4571
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4572 4573 4574
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4575 4576


4577
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4578
    """
C
caoying03 已提交
4579 4580
    Gives a new shape to the input Tensor without changing its data.

4581 4582 4583 4584 4585
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4586

4587
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4588

4589 4590 4591 4592
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4593
    2. 0 means the actual dimension value is going to be copied from the
4594 4595 4596 4597
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4598 4599

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4600
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4601
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4602

4603
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4604 4605
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4606 4607
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4608
    dimensions.
C
caoying03 已提交
4609

4610
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4611 4612 4613 4614
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4615 4616

    Args:
4617
        x(variable): The input tensor.
C
caoying03 已提交
4618 4619
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4620 4621 4622 4623 4624
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4625
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4626 4627 4628 4629
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4630
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4631

4632 4633
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4634

X
Xin Pan 已提交
4635 4636 4637
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4638 4639
    Examples:
        .. code-block:: python
G
guosheng 已提交
4640

4641
            data = fluid.layers.data(
4642
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4643
            reshaped = fluid.layers.reshape(
4644
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4645 4646 4647
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4648
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4649 4650 4651 4652 4653
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4654

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4670
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4671
    out = helper.create_tmp_variable(dtype=x.dtype)
4672
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4673
    helper.append_op(
4674
        type="reshape2",
X
Xin Pan 已提交
4675
        inputs=inputs,
D
dzhwinter 已提交
4676
        attrs={"shape": shape},
4677 4678
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4679

D
dzhwinter 已提交
4680
    return helper.append_activation(out)
4681

4682

4683
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4707
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4708
        axes (list): List of integers, indicating the dimensions to be squeezed.
4709
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4710 4711 4712 4713 4714 4715 4716 4717

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4718
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4719 4720
    """
    helper = LayerHelper("squeeze", **locals())
4721
    out = helper.create_tmp_variable(dtype=input.dtype)
4722
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4723
    helper.append_op(
4724
        type="squeeze2",
4725
        inputs={"X": input},
Y
Yibing Liu 已提交
4726
        attrs={"axes": axes},
4727 4728
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4729

4730 4731 4732
    return out


4733
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4744
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4745
        axes (list): List of integers, indicating the dimensions to be inserted.
4746
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4747 4748 4749 4750 4751 4752 4753 4754

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4755
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4756 4757
    """
    helper = LayerHelper("unsqueeze", **locals())
4758
    out = helper.create_tmp_variable(dtype=input.dtype)
4759
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4760
    helper.append_op(
4761
        type="unsqueeze2",
4762
        inputs={"X": input},
Y
Yibing Liu 已提交
4763
        attrs={"axes": axes},
4764 4765
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4766

4767 4768
    return out

4769

Y
yangyaming 已提交
4770
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4771
    """
Y
Yibing Liu 已提交
4772
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4773 4774 4775 4776
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4777
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4778 4779 4780 4781 4782 4783

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4784
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4785 4786 4787
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4788
            target_lod: [4, 2]
Y
yangyaming 已提交
4789 4790

            then we get a 1-level LoDTensor:
4791
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4792 4793 4794 4795 4796 4797
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4798
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4799 4800 4801 4802
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4803
                y.data = [[2, 4]]
Y
yangyaming 已提交
4804 4805 4806
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4807
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4808 4809 4810 4811 4812 4813
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4814
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4815 4816 4817 4818
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4819
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4820 4821 4822 4823
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4824
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4825 4826 4827 4828 4829
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4830
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4831
                           from :attr:`y`.
Y
yangyaming 已提交
4832
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4833
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4834 4835

    Returns:
Y
Yibing Liu 已提交
4836
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4837 4838

    Raises:
Y
Yibing Liu 已提交
4839
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4875
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4904 4905
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4933 4934 4935 4936


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4937
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4938
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4939

G
guosheng 已提交
4940 4941 4942 4943
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4966
                         The length of :attr:paddings must be
G
guosheng 已提交
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4977

G
guosheng 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4992 4993


C
chengduo 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5074 5075 5076 5077 5078 5079 5080
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5081 5082
    called label-smoothing regularization (LSR).

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5106
                              be :math:`(1, class\_num)`.
5107 5108
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5109
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5137 5138


Y
yi.wu 已提交
5139
@templatedoc()
5140 5141
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5142
    ${comment}
5143 5144

    Args:
Y
yi.wu 已提交
5145 5146
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5147 5148 5149
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5150 5151

    Returns:
Y
update  
yi.wu 已提交
5152
        Variable: ${out_comment}.
5153 5154

    Examples:
5155 5156
        .. code-block:: python

5157
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5203 5204
        .. code-block:: python

W
whs 已提交
5205 5206 5207 5208
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5209
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5210 5211 5212 5213 5214 5215
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5216 5217


5218 5219 5220 5221 5222
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5223
    """
Q
qiaolongfei 已提交
5224
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5225

5226
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5227 5228 5229
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5230

5231
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5232

5233
    Args:
5234
        input (Variable): The input tensor of image resize layer,
5235 5236
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5237
        out_shape(list|tuple|Variable|None): Output shape of image resize
5238 5239
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5240
        scale(float|None): The multiplier for the input height or width.
5241 5242 5243
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5244 5245
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5246 5247
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5248 5249

    Returns:
Q
update  
qiaolongfei 已提交
5250 5251
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5252

5253 5254 5255
    Examples:
        .. code-block:: python

5256
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5257
    """
5258 5259 5260 5261
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5262 5263
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5264 5265
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5266 5267 5268 5269

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5270 5271 5272
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5273
    if out_shape is not None:
B
baiyf 已提交
5274 5275 5276
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5277 5278 5279 5280 5281 5282
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5283 5284 5285 5286
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5287 5288
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5289
        type=resample_methods[resample],
5290
        inputs=inputs,
5291 5292 5293 5294
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5295 5296


Y
yuyang18 已提交
5297
@templatedoc(op_type="bilinear_interp")
5298 5299
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5300 5301 5302 5303 5304 5305
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5306

Y
yuyang18 已提交
5307 5308 5309 5310 5311 5312 5313 5314
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5315 5316 5317 5318 5319 5320 5321
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5322 5323 5324
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5325 5326 5327 5328 5329 5330 5331
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5332
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5333

5334
    Returns:
Q
update  
qiaolongfei 已提交
5335
        Variable: The output is a 4-D tensor of the shape
5336
        (num_batches, channls, out_h, out_w).
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5347 5348 5349
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5350 5351 5352
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5353 5354
def gather(input, index):
    """
Q
qiaolongfei 已提交
5355 5356
    **Gather Layer**

5357
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5358 5359 5360 5361
    of X indexed by `index` and concatenate them together.

    .. math::

5362
        Out = X[Index]
W
whs 已提交
5363 5364 5365 5366 5367 5368 5369


    .. code-block:: text


                Given:

5370 5371
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5382
        input (Variable): The source input with rank>=1.
W
whs 已提交
5383 5384 5385 5386 5387 5388
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5389

W
whs 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5519

5520 5521 5522
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5523
    """
F
stash  
fengjiayi 已提交
5524
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5525
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5526
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5527
    if seed is None:
5528
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5529
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5530
    if isinstance(seed, int):
F
fengjiayi 已提交
5531 5532 5533 5534 5535
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5536 5537 5538 5539
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5540
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5541 5542
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5543 5544
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5545
    return out
W
whs 已提交
5546 5547


5548
def log(x, name=None):
W
wanghaoshuang 已提交
5549 5550 5551 5552 5553
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5554
        Out = \\ln(x)
W
wanghaoshuang 已提交
5555 5556

    Args:
5557
        x (Variable): Input tensor.
5558 5559
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5560 5561 5562 5563 5564 5565 5566 5567

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5568
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5569 5570
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5571
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5572
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5573
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5574 5575 5576
    return out


5577
def relu(x, name=None):
W
wanghaoshuang 已提交
5578 5579
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5580
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5581 5582 5583 5584
    the tensor elementwise.

    .. math::

5585
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5586 5587

    Args:
5588
        x (Variable): The input tensor.
5589 5590
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5591 5592 5593 5594 5595 5596 5597 5598

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5599
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5600 5601
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5602
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5603
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5604
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5605
    return out
5606 5607


W
whs 已提交
5608 5609 5610
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5611 5612 5613 5614
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5615
    .. math::
5616 5617

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5618

5619
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5620 5621 5622 5623 5624
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5625
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5626
                           Its shape should be the same as input.
5627
        num_classes (int): The possible number of labels.
W
whs 已提交
5628 5629 5630 5631

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5632
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5633 5634 5635 5636

    Examples:

        .. code-block:: python
5637

W
whs 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5647 5648
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5649
        outputs={
W
whs 已提交
5650 5651 5652
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5653 5654 5655
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5730
                    isinstance(shape, Variable)):
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5764

5765 5766
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5767

5768 5769 5770 5771
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5772

5773 5774 5775 5776 5777
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5778 5779 5780

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5825 5826


W
whs 已提交
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6071 6072
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6191

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6202 6203
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6219
        ValueError: If axis is not in range [0, rank(x)].
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6237
    x_shape = helper.create_tmp_variable(x.dtype)
6238
    helper.append_op(
6239
        type='flatten2',
6240
        inputs={"X": x},
6241 6242
        outputs={'Out': out,
                 'XShape': x_shape},
6243 6244
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6245 6246


C
chenweihang 已提交
6247
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6248
    """
C
chenweihang 已提交
6249
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
6250 6251 6252
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
6253 6254 6255 6256 6257
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6258
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6259 6260 6261 6262 6263 6264
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6265
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6266 6267 6268
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6269 6270 6271
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6283
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6284 6285 6286 6287 6288 6289
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6290

6291

S
sneaxiy 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6301

S
sneaxiy 已提交
6302
    .. math::
6303

S
sneaxiy 已提交
6304 6305 6306
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6307
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6308 6309 6310 6311
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6312 6313 6314
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6315 6316
    Returns:
        Variable: The output sequence mask.
6317

S
sneaxiy 已提交
6318 6319
    """

Q
qingqing01 已提交
6320
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6321 6322 6323 6324 6325
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6326 6327 6328
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6329 6330
        outputs={'Y': out},
        attrs={
6331
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6332 6333 6334
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6335 6336


X
Xin Pan 已提交
6337
def stack(x, axis=0):
S
sneaxiy 已提交
6338 6339 6340 6341
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6342 6343 6344 6345 6346 6347 6348

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6349
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6350
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6351 6352

    Args:
6353
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6354
        axis (int|None): The axis along which all inputs are stacked.
6355

S
sneaxiy 已提交
6356 6357
    Returns:
        Variable: The stacked variable.
6358

S
sneaxiy 已提交
6359 6360
    """

X
Xin Pan 已提交
6361 6362 6363 6364 6365 6366 6367 6368
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6369 6370
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6371

X
Xin Pan 已提交
6372
    return out
D
dzhwinter 已提交
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558


def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
        name(basestring|None): Name of the output. 

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
    return out


def elementwise_add(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


def elementwise_div(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


def elementwise_sub(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


def elementwise_mul(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


def elementwise_max(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


def elementwise_min(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


def elementwise_pow(x, y, axis=-1, use_mkldnn=False, act=None):
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "act(basestring|None): Activation to be applied to the output."
        ])