nn.py 153.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
Y
ying 已提交
28 29 30
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
31
    'dynamic_lstmp',
G
guosheng 已提交
32
    'dynamic_gru',
Y
ying 已提交
33 34 35 36 37 38 39 40 41 42
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
43 44
    'sequence_softmax',
    'softmax',
Y
ying 已提交
45 46 47 48 49 50 51 52 53 54
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
55
    'reduce_prod',
Y
ying 已提交
56 57 58 59
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
60 61
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
62 63
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
64
    'topk',
Y
ying 已提交
65 66
    'warpctc',
    'sequence_reshape',
67
    'transpose',
68
    'im2sequence',
69
    'nce',
Q
Qiao Longfei 已提交
70
    'beam_search',
71
    'row_conv',
72
    'multiplex',
G
guosheng 已提交
73
    'layer_norm',
74 75
    'softmax_with_cross_entropy',
    'smooth_l1',
76
    'one_hot',
Y
Yu Yang 已提交
77
    'autoincreased_step_counter',
C
caoying03 已提交
78
    'reshape',
Y
yangyaming 已提交
79
    'lod_reset',
D
dragonwarrior 已提交
80
    'lrn',
G
guosheng 已提交
81
    'pad',
82
    'label_smooth',
83
    'roi_pool',
W
whs 已提交
84
    'dice_loss',
F
fengjiayi 已提交
85 86
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
87
    'resize_bilinear',
W
whs 已提交
88
    'gather',
89
    'random_crop',
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
98
       use_mkldnn=False,
Y
Yu Yang 已提交
99
       act=None,
J
Jacek Czaja 已提交
100
       is_test=False,
101
       name=None):
Y
Yu Yang 已提交
102
    """
103
    **Fully Connected Layer**
Y
Yu Yang 已提交
104

C
caoying03 已提交
105
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
106 107 108 109 110 111
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
112
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
113

C
caoying03 已提交
114
    This process can be formulated as follows:
115 116 117

    .. math::

118
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
119 120 121

    In the above equation:

C
caoying03 已提交
122 123 124 125
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
126
    * :math:`Act`: The activation function.
C
caoying03 已提交
127
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
128 129

    Args:
R
ranqiu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
147
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
148 149
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
150
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
151

152
    Returns:
R
ranqiu 已提交
153
        A tensor variable storing the transformation result.
154 155

    Raises:
C
caoying03 已提交
156
        ValueError: If rank of the input tensor is less than 2.
157 158 159 160

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
161 162
          data = fluid.layers.data(
              name="data", shape=[32, 32], dtype="float32")
163
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
164
    """
C
caoying03 已提交
165

C
caoying03 已提交
166
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
167 168 169 170

    dtype = helper.input_dtype()

    mul_results = []
171 172
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
173 174 175
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
176

Y
Yu Yang 已提交
177
        w = helper.create_parameter(
178 179
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
180
        helper.append_op(
181 182 183
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
184
            outputs={"Out": tmp},
M
mozga-intel 已提交
185 186
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
187 188 189 190
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
191
    else:
192 193 194 195 196 197 198
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
199 200


201 202 203
def embedding(input,
              size,
              is_sparse=False,
204
              is_distributed=False,
205 206 207
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
208
    """
209 210
    **Embedding Layer**

211
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
212 213
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
214 215 216

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
217 218

    Args:
219 220 221 222 223
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
224
        is_distributed (bool): Whether to run lookup table from remote parameter server.
225 226
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
227 228
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
229 230
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
231
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
232

233 234 235
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
236

237 238
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
239

C
chengduoZH 已提交
240
          dict_size = len(dataset.ids)
241
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
242
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
243 244 245 246 247 248
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
249 250
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
251 252 253 254 255
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
256 257 258 259 260
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
261 262 263
    return tmp


Y
yi.wu 已提交
264
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
265 266
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
267 268
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
269 270 271 272 273 274 275
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
276 277
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
278
    """
Y
yi.wu 已提交
279
    ${comment}
Y
Yibing Liu 已提交
280 281

    Args:
Y
yi.wu 已提交
282 283
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
284 285 286 287 288 289 290
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

291
        param_attr(ParamAttr|None): The parameter attribute for the learnable
292
                               hidden-hidden weights.
Y
Yibing Liu 已提交
293 294 295

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
296 297
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
298
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
299 300 301
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
302

303
                              1. `use_peepholes = False`
Y
yi.wu 已提交
304 305
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
306
                              2. `use_peepholes = True`
Y
yi.wu 已提交
307
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
308
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
309
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
310 311 312 313 314 315 316 317
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
318 319

    Returns:
Y
Yibing Liu 已提交
320 321
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
322

Y
Yibing Liu 已提交
323
    Examples:
Y
Yibing Liu 已提交
324 325
        .. code-block:: python

Y
Yibing Liu 已提交
326 327
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
328
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
329 330
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
331
    """
332

Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
347 348 349 350 351 352 353 354 355 356
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
357 358 359

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
360
        inputs=inputs,
Y
Yu Yang 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
377 378 379 380 381 382 383 384 385 386 387
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
388 389
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
390 391 392
    """
    **Dynamic LSTMP Layer**

393 394 395 396 397 398
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
399 400 401 402 403

    The formula is as follows:

    .. math::

404
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
405

406
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
407

408
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
409

410
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
411

412
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
413

414
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
415

416
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
417

Y
Yibing Liu 已提交
418 419 420 421 422 423
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
424
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
425
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
426
          bias vector).
Y
Yibing Liu 已提交
427 428 429
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
430
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
431
    * :math:`h`: The hidden state.
432
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
433 434
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
435
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
436
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
437
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
438 439
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
440 441 442 443

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
444

Y
Yibing Liu 已提交
445 446 447 448 449 450 451 452 453 454 455 456
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
457
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
458 459
                               hidden-hidden weight and projection weight.

460 461
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
462 463
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
464 465
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
466 467
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
468 469 470 471 472 473
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
474
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
475 476 477
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
478
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
479 480 481 482 483 484 485 486 487
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
488 489
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
490 491
                              default "tanh".
        proj_activation(str): The activation for projection output.
F
stash  
fengjiayi 已提交
492 493
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
494 495
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
496 497
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
498 499

    Returns:
500 501
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
502 503 504 505 506
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
507
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
508 509
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
510 511 512
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
513 514 515 516
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
517
    """
518

Y
Yibing Liu 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
565 566 567 568 569 570 571 572 573 574 575
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

576
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
577
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
578

G
guosheng 已提交
579 580 581 582 583 584 585 586 587
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
588

G
guosheng 已提交
589
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
590

G
guosheng 已提交
591
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
592 593
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
594 595 596 597
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
598
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
599 600

    Args:
601 602
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
603
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
604
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
605 606
            is the hidden size.
        size(int): The dimension of the gru cell.
607
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
608 609
            hidden-hidden weight matrix. Note:

610
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
611
              :math:`D` is the hidden size.
612
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
613
              The first part are weights of the update gate and reset gate with
614
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
615
              candidate hidden state with shape :math:`(D \\times D)`.
616
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
617
            hidden-hidden bias.
618
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
619 620 621
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
622
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
623
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
624
        h_0 (Variable): The hidden output of the first time step.
G
guosheng 已提交
625 626

    Returns:
G
guosheng 已提交
627 628
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
629

G
guosheng 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
645
    batch_size = input.shape[0]
G
guosheng 已提交
646 647 648
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
649 650 651
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
675 676 677
def gru_unit(input,
             hidden,
             size,
678 679
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
680
             activation='tanh',
681
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
682
    """
683
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
684

685 686
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
687

688
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
689

690
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
691

692
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
693 694

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
695 696 697
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
698 699
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

700 701
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
702 703 704
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
705 706 707 708 709

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
710 711
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
712 713 714 715
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
716

717 718 719 720 721 722
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
723

724
             # assuming we have x_t_data and prev_hidden of size=10
725
             x_t = fluid.layers.fc(input=x_t_data, size=30)
726 727
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
743 744
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
745

746 747 748 749
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
750
    # create bias
751
    if helper.bias_attr:
Y
Yu Yang 已提交
752 753 754
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
755
        inputs['Bias'] = bias
Y
Yu Yang 已提交
756 757 758

    helper.append_op(
        type='gru_unit',
759
        inputs=inputs,
Y
Yu Yang 已提交
760 761 762 763 764 765
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
766 767
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
768 769 770 771 772
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
773
@templatedoc()
774
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
814
@templatedoc()
815
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
816 817 818 819 820
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
821

Y
yuyang18 已提交
822
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
823

Y
yuyang18 已提交
824 825 826
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
827
        Variable: ${viterbi_path_comment}
Y
yuyang18 已提交
828
    """
Y
Yu Yang 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
842
@templatedoc()
F
fengjiayi 已提交
843
def cos_sim(X, Y):
Y
Yu Yang 已提交
844
    """
Y
yi.wu 已提交
845 846 847
    ${comment}

    Args:
Y
yi.wu 已提交
848
        X (Variable): ${x_comment}
Y
update  
yi.wu 已提交
849
        Y (Variable): ${y_comment}
Y
yi.wu 已提交
850 851
    
    Returns:
852
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
853
    """
F
fengjiayi 已提交
854
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


868
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
869 870 871 872 873 874 875 876 877 878
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
879 880 881 882 883 884 885 886 887
        x (Variable): The input tensor.
         dropout_prob (float): Probability of setting units to zero.
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
888 889 890 891 892 893 894 895 896 897 898

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
899
    helper = LayerHelper('dropout', **locals())
900 901 902 903 904 905 906
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
907 908 909 910 911 912
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
913 914 915
    return out


F
fengjiayi 已提交
916
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
917
    """
Y
Yibing Liu 已提交
918 919
    **Cross Entropy Layer**

920 921 922
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
923 924

    1) One-hot cross-entropy:
F
fengjiayi 已提交
925
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
926

Y
Yibing Liu 已提交
927
        .. math::
Y
yangyaming 已提交
928

Y
Yibing Liu 已提交
929 930 931
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
932 933
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
934 935 936 937 938

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
939
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
940 941 942
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
943 944
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
945
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
946

Y
Yibing Liu 已提交
947
    Args:
Y
yangyaming 已提交
948
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
949 950 951 952
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
953
        label (Variable|list): the ground truth which is a 2-D tensor. When
954 955 956 957
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
958
        soft_label (bool): a flag indicating whether to
959 960
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
961 962 963 964 965

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
966 967 968 969 970
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
971 972 973 974 975 976

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
977
    """
F
fengjiayi 已提交
978
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
979 980 981 982 983 984
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
985
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
986 987 988
    return out


F
fengjiayi 已提交
989
def square_error_cost(input, label):
Y
Yu Yang 已提交
990
    """
991 992
    **Square error cost layer**

993 994
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1009 1010
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1011 1012

    Returns:
G
guosheng 已提交
1013
        Variable: The tensor variable storing the element-wise squared error \
1014
                  difference of input and label.
1015 1016 1017 1018 1019 1020 1021 1022

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1023
    """
F
fengjiayi 已提交
1024
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1034 1035
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1036 1037 1038
    return square_out


Y
yi.wu 已提交
1039
@templatedoc()
Y
Yu Yang 已提交
1040 1041 1042 1043
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1044
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1045
    """
Y
yangyaming 已提交
1046
    This function computes and outputs the precision, recall and
1047
    F1-score of chunk detection.
Y
yi.wu 已提交
1048 1049

    Args:
1050 1051 1052 1053 1054 1055
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
    
Y
yi.wu 已提交
1056
    Returns:
Y
update  
yi.wu 已提交
1057 1058 1059
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
Y
Yu Yang 已提交
1060
    """
F
fengjiayi 已提交
1061
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1062 1063 1064 1065 1066

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1067 1068 1069
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1070 1071 1072 1073 1074 1075 1076 1077

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1078 1079 1080 1081
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1082 1083 1084
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1085 1086
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1087
        })
1088 1089
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1090 1091


1092
@templatedoc()
Y
Yu Yang 已提交
1093 1094 1095 1096 1097 1098 1099
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1100
                  act=None):
Y
Yu Yang 已提交
1101 1102 1103 1104
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
    
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1159
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1171 1172 1173
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1174 1175
           stride=1,
           padding=0,
1176
           dilation=1,
Y
Yu Yang 已提交
1177 1178 1179
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1180
           use_cudnn=True,
1181
           use_mkldnn=False,
1182 1183
           act=None,
           name=None):
Y
Yu Yang 已提交
1184
    """
C
chengduoZH 已提交
1185 1186 1187
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1188 1189 1190
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1191 1192
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1193 1194 1195
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1196

1197
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1198

C
chengduoZH 已提交
1199 1200
    .. math::

C
refine  
chengduoZH 已提交
1201
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1202

C
chengduoZH 已提交
1203
    In the above equation:
C
chengduoZH 已提交
1204

1205 1206 1207 1208 1209
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1210 1211
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1212 1213 1214

    Example:

1215 1216
        - Input:

W
weixing02 已提交
1217
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1218

W
weixing02 已提交
1219
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1220

1221
        - Output:
W
weixing02 已提交
1222
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1223

C
chengduoZH 已提交
1224
        Where
1225 1226

        .. math::
C
chengduoZH 已提交
1227

W
weixing02 已提交
1228 1229
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1230 1231

    Args:
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        input (Variable): The input image with [N, C, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1260 1261

    Returns:
G
guosheng 已提交
1262
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1263 1264
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1265
    Raises:
1266 1267
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1268

C
chengduoZH 已提交
1269 1270 1271
    Examples:
        .. code-block:: python

1272 1273 1274 1275
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1276 1277 1278 1279 1280
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1281 1282

    l_type = 'conv2d'
X
xzl 已提交
1283 1284
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1285
        l_type = 'depthwise_conv2d'
1286 1287 1288 1289

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1290 1291 1292 1293 1294 1295 1296
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1297 1298 1299
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1300
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1301

C
chengduoZH 已提交
1302 1303
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1321
        type=l_type,
Y
Yu Yang 已提交
1322 1323 1324 1325 1326
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1327 1328 1329
        attrs={
            'strides': stride,
            'paddings': padding,
1330
            'dilations': dilation,
C
chengduoZH 已提交
1331
            'groups': groups,
1332 1333
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1334
        })
Y
Yu Yang 已提交
1335 1336 1337 1338 1339 1340

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1341
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1342
    """
Y
yangyaming 已提交
1343 1344 1345
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1371 1372
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1373

L
Luo Tao 已提交
1374 1375
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1376
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1377 1378 1379 1380 1381 1382 1383 1384
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1385

Y
yangyaming 已提交
1386
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1387 1388 1389 1390 1391
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1392 1393
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1394
    """
F
fengjiayi 已提交
1395
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1407 1408 1409 1410 1411
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1412 1413 1414
    return pool_out


F
fengjiayi 已提交
1415
def sequence_first_step(input):
L
Luo Tao 已提交
1416
    """
L
Luo Tao 已提交
1417
    This function gets the first step of sequence.
L
Luo Tao 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1430

L
Luo Tao 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1440

Y
yangyaming 已提交
1441
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1442 1443 1444
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1445 1446 1447
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1448
def sequence_last_step(input):
L
Luo Tao 已提交
1449
    """
L
Luo Tao 已提交
1450
    This function gets the last step of sequence.
L
Luo Tao 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1463

L
Luo Tao 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1473

Y
yangyaming 已提交
1474
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1475 1476 1477
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1478 1479 1480
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1481
def pool2d(input,
C
chengduoZH 已提交
1482 1483
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1484 1485
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1486
           global_pooling=False,
C
chengduoZH 已提交
1487
           use_cudnn=True,
1488
           ceil_mode=False,
1489
           use_mkldnn=False,
C
caoying03 已提交
1490
           name=None):
Y
Yu Yang 已提交
1491 1492 1493
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
    
    Returns:
        Variable: output of pool2d layer.
Y
Yu Yang 已提交
1510 1511 1512 1513 1514
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1515

C
chengduoZH 已提交
1516 1517 1518 1519 1520
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1521 1522 1523 1524
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1525 1526
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1541
            "paddings": pool_padding,
1542
            "use_cudnn": use_cudnn,
1543 1544
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1557
               data_layout='NCHW',
Y
Yang Yang 已提交
1558
               in_place=False,
1559
               use_mkldnn=False,
1560 1561
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1562
               moving_variance_name=None,
W
wanghaoshuang 已提交
1563
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1564 1565 1566
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1609
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1610

1611 1612
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1613 1614 1615
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1616
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1617
        shape=param_shape,
1618 1619 1620 1621 1622 1623 1624
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1625
            trainable=False,
W
wanghaoshuang 已提交
1626
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1627
        shape=param_shape,
1628 1629
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1630 1631 1632 1633 1634 1635

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1636 1637
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1638

Y
Yang Yang 已提交
1639
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1657 1658 1659 1660 1661 1662
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1663 1664 1665 1666

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1679
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1700
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1701
            normalization.
1702
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1703
            normalization.
1704
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1705
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1706
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1707 1708 1709 1710 1711 1712
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
1713
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1739
    if shift:
G
guosheng 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1764
def beam_search_decode(ids, scores, name=None):
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    """
    ${beam_search_decode}

    Args:
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        name (str): The name of this layer. It is optional.
    
    Returns:
        tuple: a tuple of two output variable: sentence_ids, sentence_scores
    """
Y
Yu Yang 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1796 1797 1798
                     padding=0,
                     stride=1,
                     dilation=1,
1799
                     groups=None,
C
caoying03 已提交
1800
                     param_attr=None,
1801
                     bias_attr=None,
C
chengduoZH 已提交
1802
                     use_cudnn=True,
1803
                     act=None,
C
caoying03 已提交
1804
                     name=None):
Y
Yu Yang 已提交
1805
    """
1806 1807 1808 1809 1810 1811 1812 1813
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1814
    layer, please refer to the following explanation and references
Y
yi.wu 已提交
1815
    `here <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1828
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
Y
yi.wu 已提交
1829
      different.
Y
Yu Yang 已提交
1830

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1844

1845 1846 1847 1848
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1849 1850

    Args:
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
1884 1885

    Returns:
1886
        Variable: The tensor variable storing the convolution transpose result.
1887 1888

    Raises:
1889 1890
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
1891 1892 1893 1894

    Examples:
       .. code-block:: python

1895 1896 1897 1898
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1899 1900 1901 1902 1903 1904
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1905 1906 1907
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1908

C
chengduoZH 已提交
1909 1910 1911
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1912 1913 1914 1915 1916 1917 1918 1919
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1920 1921 1922 1923 1924

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1925
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1926 1927 1928
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1929

1930 1931
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
1932 1933 1934
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

1935
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
1936 1937 1938 1939
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
1940
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
1941 1942 1943 1944
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
1945
            'groups': groups,
C
chengduoZH 已提交
1946 1947
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1948

1949 1950
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
1951
    return out
Y
yangyaming 已提交
1952 1953


Y
yangyaming 已提交
1954
def sequence_expand(x, y, ref_level=-1, name=None):
1955
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
1956 1957 1958 1959
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
1960 1961 1962 1963 1964

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
1965 1966
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
1967 1968 1969 1970 1971 1972
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
1973
            ref_level: 0
1974

Y
yangyaming 已提交
1975 1976 1977
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
1978 1979 1980 1981
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
1982
                x.data = [[a], [b], [c]]
1983 1984 1985
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1986
                y.lod = [[0, 2, 2, 5]]
1987

Y
yangyaming 已提交
1988
            ref_level: -1
1989

Y
yangyaming 已提交
1990 1991 1992
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
1993 1994 1995
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1996 1997
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
1998
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
1999
                        will be named automatically.
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2010
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2011
    """
Y
yangyaming 已提交
2012
    helper = LayerHelper('sequence_expand', input=x, **locals())
2013 2014 2015
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2016 2017 2018 2019 2020
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2021
    return tmp
2022 2023


Q
Qiao Longfei 已提交
2024 2025 2026
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

    Args:
        pre_ids (Variable): ${pre_ids_comment}
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        beam_size (int): ${beam_size_comment}
        end_id (int): ${end_id_comment}
        level (int): ${level_comment}
    
    Returns:
        tuple: a tuple of beam_search output variables: selected_ids, selected_scores
Q
Qiao Longfei 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2067 2068 2069 2070
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2071
              param_attr=None,
C
caoying03 已提交
2072 2073
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2074 2075 2076 2077
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2078
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2079

2080
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2081

2082
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2083

2084
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2085 2086 2087

            h_t & = o_t tanh(c_t)

2088 2089 2090 2091 2092 2093
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2094 2095 2096

        .. math::

2097
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2098 2099 2100 2101 2102 2103 2104 2105

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2106
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2107 2108

    Args:
Y
yangyaming 已提交
2109 2110 2111 2112 2113 2114
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2115
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2116 2117
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2118 2119
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2120 2121
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2122 2123

    Returns:
Y
yangyaming 已提交
2124
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2125 2126

    Raises:
2127 2128 2129 2130
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2131 2132 2133 2134 2135 2136

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2137
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2138
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2139
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2156
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2157 2158 2159 2160
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2161 2162
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2163 2164 2165
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2166
    size = cell_t_prev.shape[1]
2167
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2168 2169
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2170
                param_attr=param_attr,
2171
                bias_attr=bias_attr)
Y
yangyaming 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2184
    return h, c
G
guosheng 已提交
2185 2186


C
caoying03 已提交
2187
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2188
    """
Y
yangyaming 已提交
2189
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2190 2191 2192

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2193
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2194 2195
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2196 2197
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2198
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2199
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2200
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2201 2202
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2203 2204 2205

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2206

G
guosheng 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2218 2219 2220 2221 2222 2223 2224 2225

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2226 2227 2228
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2229 2230
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2231 2232 2233 2234 2235
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2236
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2237 2238 2239 2240
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2241 2242


C
caoying03 已提交
2243
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2244
    """
Y
yangyaming 已提交
2245
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2246 2247 2248

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2249
        dim (list|int|None): The dimensions along which the mean is computed. If
Y
yangyaming 已提交
2250 2251 2252
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
W
whs 已提交
2253
            :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2254 2255
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2256
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2257 2258
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2259 2260 2261

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2262

G
guosheng 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2273 2274
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2275 2276 2277 2278 2279 2280 2281

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2282 2283 2284
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2285 2286
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2287 2288 2289 2290 2291
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2292
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2293 2294 2295 2296
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2297 2298


C
caoying03 已提交
2299
def reduce_max(input, dim=None, keep_dim=False, name=None):
2300
    """
Y
yangyaming 已提交
2301
    Computes the maximum of tensor elements over the given dimension.
2302 2303 2304

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2305
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2306 2307 2308
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2309
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2310 2311
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2312
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2313 2314
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2315 2316 2317

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2318

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2330 2331 2332 2333 2334 2335 2336

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2337 2338 2339
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2340 2341
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2342 2343 2344 2345 2346
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2347
            'dim': dim if dim != None else [0],
2348 2349 2350 2351 2352 2353
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2354
def reduce_min(input, dim=None, keep_dim=False, name=None):
2355
    """
Y
yangyaming 已提交
2356
    Computes the minimum of tensor elements over the given dimension.
2357 2358 2359

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2360
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2361 2362 2363
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2364
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2365 2366
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2367
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2368 2369
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2370 2371 2372

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2373

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2385 2386 2387 2388 2389 2390 2391

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2392 2393 2394
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2395 2396
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2397 2398 2399 2400 2401
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2402
            'dim': dim if dim != None else [0],
2403 2404 2405 2406
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2407 2408


2409 2410 2411 2412 2413 2414
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2415
        dim (list|int|None): The dimensions along which the product is performed. If
2416 2417
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2418 2419
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2420 2421 2422
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2423
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2424
            layer will be named automatically.
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2439
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2440
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2441 2442 2443 2444 2445 2446 2447

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2448 2449 2450
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2451 2452
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2453 2454 2455 2456 2457
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2458
            'dim': dim if dim != None else [0],
2459 2460 2461 2462 2463 2464
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2465
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2466
    """
C
caoying03 已提交
2467
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2468 2469 2470

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2471 2472 2473 2474 2475
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2476
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2477
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2478
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2479 2480
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
2493 2494
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2533 2534
    .. math::
    y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2535 2536 2537 2538 2539

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2540 2541 2542 2543 2544 2545 2546 2547
        x(Variable|list): The input tensor to l2_normalize layer.
        axis(int): The axis on which to apply normalization. If `axis < 0`,
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
        epsilon(float): The epsilon value is used to avoid division by zero,
            the defalut value is 1e-10.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
caoying03 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2559
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2560 2561
    """

F
fengjiayi 已提交
2562 2563
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2564 2565
    helper = LayerHelper("l2_normalize", **locals())

2566 2567
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
2568
    helper.append_op(
2569 2570 2571 2572
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
2573
        attrs={
2574 2575
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
2576 2577
        })
    return out
2578 2579


2580
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2581
    """
Y
ying 已提交
2582 2583 2584 2585
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2586

C
chengduoZH 已提交
2587
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2588
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2589

2590 2591 2592 2593 2594
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2595
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2596

C
chengduoZH 已提交
2597
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2598
      performs in the following way.
G
guosheng 已提交
2599

2600
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2601
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2602
        last two dimensions and a batched matrix multiply supporting broadcast
2603
        applies on the two tensors.
G
guosheng 已提交
2604

Y
ying 已提交
2605 2606
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2607
    removed after matrix multiplication.
G
guosheng 已提交
2608 2609 2610

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2611 2612 2613
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2614
        name(str|None): A name for this layer(optional). If set None, the layer
2615
            will be named automatically.
G
guosheng 已提交
2616 2617

    Returns:
2618
        Variable: The product Tensor variable.
G
guosheng 已提交
2619

G
guosheng 已提交
2620 2621 2622
    Examples:
        .. code-block:: python

2623
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2624 2625
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2626

2627 2628
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2629

2630 2631
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2632

2633 2634
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2635 2636 2637 2638

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2639 2640
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2641

Y
ying 已提交
2642
            # x: [M], y: [N]
2643
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2644
    """
Y
ying 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2657
            y_shape = y_shape + [1]
Y
ying 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2674
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2675
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2676
    helper.append_op(
2677 2678 2679 2680 2681 2682 2683
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2684 2685


2686
def topk(input, k, name=None):
Q
qingqing01 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.
2702 2703
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Q
qingqing01 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


W
wanghaoshuang 已提交
2735
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2736
                  name=None):
2737
    """
Y
ying 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2747

Y
ying 已提交
2748
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2749

Y
ying 已提交
2750 2751 2752 2753
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2754

Y
ying 已提交
2755 2756 2757
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2758

2759 2760 2761
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
Y
ying 已提交
2762 2763 2764 2765
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2766
        name (str): The name of this layer. It is optional.
2767

W
wanghaoshuang 已提交
2768
    Returns:
W
wanghaoshuang 已提交
2769
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2770 2771 2772 2773 2774

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2775 2776
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2777
            cost = fluid.layers.edit_distance(input=x,label=y)
2778
    """
2779
    helper = LayerHelper("edit_distance", **locals())
2780

2781
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2782
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2783 2784 2785 2786 2787 2788 2789
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2790
            attrs={"tokens": ignored_tokens})
2791 2792 2793 2794 2795
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
2796
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
2797
            attrs={"tokens": ignored_tokens})
2798 2799
        label = erased_label

2800 2801
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2802
    sequence_num = helper.create_tmp_variable(dtype="int64")
2803 2804 2805 2806
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2807 2808
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2809 2810
        attrs={"normalized": normalized})

2811
    return edit_distance_out, sequence_num
2812 2813 2814 2815 2816


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
2817

Y
ying 已提交
2818 2819 2820 2821
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2860
        name (str): The name of this layer. It is optional.
2861 2862

    Returns:
2863
        Variable: CTC greedy decode result. If all the sequences in result were
2864
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2865 2866 2867 2868 2869

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2870

2871
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2872
    """
2873
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
2874
    _, topk_indices = topk(input, k=1)
2875 2876 2877 2878 2879 2880

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2881
        outputs={"Output": [ctc_out]},
2882 2883
        attrs={"merge_repeated": True,
               "blank": blank})
2884
    return ctc_out
2885 2886


F
fengjiayi 已提交
2887
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2888
    """
2889 2890
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2891
    to compute Connectionist Temporal Classification (CTC) loss.
2892 2893
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2894 2895 2896
    input tensor.

    Args:
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
        input(Variable): (LodTensor, default: LoDTensor<float>),
            the unscaled probabilities of variable-length sequences,
            which is a 2-D Tensor with LoD information.
            It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
            sequences' length and num_classes is the true number of classes.
            (not including the blank label).
        label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
            of variable-length sequence, which is a 2-D Tensor with LoD
            information. It is of the shape [Lg, 1], where Lg is th sum of
            all labels' length.
        blank (int): default 0, the blank label index of Connectionist
            Temporal Classification (CTC) loss, which is in the
            half-opened interval [0, num_classes + 1).
        norm_by_times (bool): default false, whether to normalize
            the gradients by the number of time-step, which is also the
            sequence's length. There is no need to normalize the gradients
            if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2914 2915

    Returns:
2916 2917
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2918 2919 2920

    Examples:
        .. code-block:: python
2921 2922 2923 2924
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2925 2926 2927
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2928
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
2972 2973 2974
        input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
            with shape being [N, M] where M for dimension.
        new_dim (int): New dimension which the input LoDTensor is reshaped to.
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2994 2995


2996 2997 2998 2999
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3000 3001 3002 3003 3004 3005 3006
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
        sample_weight (int): ${sample_weight_comment}
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
    
    Returns:
        Variable: output of nce layer.
    """
Y
Yang Yu 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3066
    return cost / (num_neg_samples + 1)
3067 3068


Y
fix ci.  
ying 已提交
3069
def transpose(x, perm, name=None):
Y
ying 已提交
3070 3071 3072 3073 3074 3075 3076
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3077 3078 3079
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3080 3081 3082 3083 3084 3085 3086 3087

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3088
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3089 3090
    """

Y
fix ci.  
ying 已提交
3091
    if len(perm) != len(x.shape):
Y
ying 已提交
3092 3093 3094
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3095 3096 3097 3098 3099 3100
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3101 3102

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3103
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3104 3105
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3106
        inputs={'X': [x]},
Y
ying 已提交
3107 3108 3109
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3110 3111


3112
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3113
    """
3114 3115 3116 3117 3118 3119 3120
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3149 3150 3151
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3152 3153 3154 3155 3156
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3186 3187 3188
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3209 3210
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3211 3212

    """
W
wanghaoshuang 已提交
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3224
    helper = LayerHelper('im2sequence', **locals())
3225 3226
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3227
        type='im2sequence',
3228 3229 3230
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3231 3232 3233
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3234 3235
        })
    return out
3236 3237


3238 3239 3240 3241
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3242
    equation of row convolution is as follows:
3243 3244 3245 3246 3247 3248 3249

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3250
    * :math:`\\tau`: Future context size.
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3261 3262
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3288
    return helper.append_activation(out)
3289 3290


3291 3292 3293 3294
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3310 3311

    Args:
3312
        inputs (list): A list of variables to gather from. All variables have the
Y
yangyaming 已提交
3313
                same shape and the rank is at least 2.
3314
        index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3315
                with shape [M, 1] where M is the batch size.
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3329 3330 3331 3332 3333 3334

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3335 3336 3337 3338 3339 3340
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3341 3342 3343 3344 3345


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3346

3347 3348 3349 3350
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3351

3352 3353 3354
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3355

3356 3357 3358
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3359

3360
    The equation is as follows:
3361

3362
    1) Hard label (one-hot label, so every sample has exactly one class)
3363

3364 3365 3366 3367
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3368

3369 3370 3371
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3372

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3394 3395
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

Q
qingqing01 已提交
3414
    This operator computes the smooth L1 loss for X and Y.
3415
    The operator takes the first dimension of X and Y as batch size.
Q
qingqing01 已提交
3416
    For each instance, it computes the smooth L1 loss element by element first
3417
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3418

3419 3420
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3421
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3422
        y (Variable): A tensor with rank at least 2. The target value of smooth
Q
qingqing01 已提交
3423
            L1 loss op with same shape as x.
3424 3425 3426 3427 3428 3429
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
Q
qingqing01 已提交
3430
            the out smooth L1 loss will be multiplied by this tensor element
3431
            by element.
Q
qingqing01 已提交
3432
        sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
3433 3434
            with default value 1.0.
    Returns:
Q
qingqing01 已提交
3435
        Variable: A tensor with rank be 2. The output smooth L1 loss with
3436 3437 3438 3439 3440 3441
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3442 3443
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3444
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3445
            out = fluid.layers.smooth_l1(x=fc, y=label)
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3462 3463 3464 3465 3466 3467 3468 3469 3470


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3471
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3472 3473 3474 3475 3476 3477
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
C
caoying03 已提交
3478 3479
        .. code-block:: python

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3501 3502


Y
Yu Yang 已提交
3503
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3504
    """
Y
yi.wu 已提交
3505 3506 3507
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
3508 3509 3510 3511 3512 3513

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

3514 3515
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
3516 3517
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3518 3519
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3520 3521 3522 3523 3524
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3525
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3526 3527 3528
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3529 3530
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3531 3532 3533
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3534 3535


3536
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3537
    """
C
caoying03 已提交
3538 3539
    Gives a new shape to the input Tensor without changing its data.

3540 3541 3542 3543 3544
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3545

3546
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3547

3548 3549 3550 3551
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3552
    2. 0 means the actual dimension value is going to be copied from the
3553 3554 3555 3556
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3557 3558

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3559
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3560
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3561

3562
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3563 3564
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3565 3566
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
3567
    dimensions.
C
caoying03 已提交
3568

3569
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3570 3571 3572 3573
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
3574 3575

    Args:
3576
        x(variable): The input tensor.
C
caoying03 已提交
3577 3578
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
3579 3580 3581 3582 3583
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
3584 3585 3586 3587
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
3588
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
3589

3590 3591
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
3592 3593 3594

    Examples:
        .. code-block:: python
G
guosheng 已提交
3595

3596
            data = fluid.layers.data(
3597
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
3598
            reshaped = fluid.layers.reshape(
3599
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
3600 3601 3602 3603 3604
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
3620 3621 3622 3623
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
3624 3625 3626
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
3627 3628 3629 3630 3631
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
3632 3633


Y
yangyaming 已提交
3634
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
3769 3770
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
3798 3799 3800 3801


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
3802
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
3803
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
3804

G
guosheng 已提交
3805 3806 3807 3808
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
3831
                         The length of :attr:paddings must be
G
guosheng 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3842

G
guosheng 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
3857 3858 3859 3860 3861 3862 3863 3864 3865


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
3866 3867
    called label-smoothing regularization (LSR).

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
3891
                              be :math:`(1, class\_num)`.
3892 3893
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
3894
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
3922 3923


Y
yi.wu 已提交
3924
@templatedoc()
3925 3926
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
3927
    ${comment}
3928 3929

    Args:
Y
yi.wu 已提交
3930 3931
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
3932 3933 3934
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
3935 3936

    Returns:
Y
update  
yi.wu 已提交
3937
        Variable: ${out_comment}.
3938 3939

    Examples:
3940 3941
        .. code-block:: python

3942
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
3988 3989
        .. code-block:: python

W
whs 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4001 4002


4003 4004 4005 4006 4007
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4008
    """
4009
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4010

4011 4012 4013 4014 4015
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4016

4017
    Args:
4018
        input (Variable): The input tensor of image resize layer,
4019 4020
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4021
        out_shape(list|tuple|Variable|None): Output shape of image resize
4022 4023
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4024
        scale(float|None): The multiplier for the input height or width.
4025 4026 4027
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4028 4029
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4030 4031
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4032 4033 4034 4035

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4036

4037 4038 4039
    Examples:
        .. code-block:: python

4040
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4041
    """
4042 4043 4044 4045
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4046 4047
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4048 4049
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4050 4051 4052 4053

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4054 4055 4056
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4057
    if out_shape is not None:
B
baiyf 已提交
4058 4059 4060
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4061 4062 4063 4064 4065 4066
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4067 4068 4069 4070
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4071 4072
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4073
        type=resample_methods[resample],
4074
        inputs=inputs,
4075 4076 4077 4078
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4079 4080


Y
yuyang18 已提交
4081
@templatedoc(op_type="bilinear_interp")
4082 4083
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4084 4085 4086 4087 4088 4089
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4090

Y
yuyang18 已提交
4091 4092 4093 4094 4095 4096 4097 4098
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4116
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4117

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4131 4132 4133
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4134 4135 4136
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4137 4138 4139 4140 4141 4142 4143
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4144
        Out = X[Index]
W
whs 已提交
4145 4146 4147 4148 4149 4150 4151


    .. code-block:: text


                Given:

4152 4153
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}

    """
F
stash  
fengjiayi 已提交
4205 4206 4207
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4208 4209 4210
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4211
    if isinstance(seed, int):
F
fengjiayi 已提交
4212
        seed_value = seed
F
fengjiayi 已提交
4213 4214 4215 4216 4217 4218 4219 4220
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4221 4222
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4223
            })
F
stash  
fengjiayi 已提交
4224 4225
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4226
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4227 4228 4229 4230 4231 4232 4233 4234
    helper.append_op(
        type="random_crop",
        inputs={"X": input,
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out