nn.py 334.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
Y
Yu Yang 已提交
34 35

__all__ = [
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44 45
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
46
    'bpr_loss',
X
Xin Pan 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
64
    'sequence_unpad',
X
Xin Pan 已提交
65 66 67 68 69 70 71 72
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
73
    'sequence_slice',
X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
91
    'group_norm',
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
105
    'roi_align',
X
Xin Pan 已提交
106 107 108 109
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
110
    'resize_nearest',
X
Xin Pan 已提交
111 112 113 114 115 116
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
117
    'selu',
X
Xin Pan 已提交
118 119 120
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
121
    'margin_rank_loss',
X
Xin Pan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
165
    'space_to_depth',
W
whs 已提交
166
    'affine_grid',
S
sneaxiy 已提交
167
    'sequence_reverse',
168
    'affine_channel',
B
barrierye 已提交
169
    'similarity_focus',
M
minqiyang 已提交
170
    'hash',
D
dengkaipeng 已提交
171
    'grid_sampler',
G
gmcather 已提交
172 173
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
174
    'bilinear_tensor_product',
C
chengduo 已提交
175 176
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
177
    'lstm',
S
sneaxiy 已提交
178
    'py_func',
179
    'psroi_pool',
Y
Yu Yang 已提交
180 181
]

J
jerrywgz 已提交
182 183
kIgnoreIndex = -100

Y
Yu Yang 已提交
184 185 186 187 188 189 190

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
191
       is_test=False,
192
       name=None):
Y
Yu Yang 已提交
193
    """
194
    **Fully Connected Layer**
Y
Yu Yang 已提交
195

196 197 198 199 200 201 202 203
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
204
    to the output as well.
C
caoying03 已提交
205

C
caoying03 已提交
206
    This process can be formulated as follows:
207 208 209

    .. math::

210
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
211 212 213

    In the above equation:

C
caoying03 已提交
214 215 216 217
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
218
    * :math:`Act`: The activation function.
C
caoying03 已提交
219
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
220 221

    Args:
R
ranqiu 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
237 238
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
239
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
240
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
241
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
242

243
    Returns:
F
fengjiayi 已提交
244
        Variable: The transformation result.
245 246

    Raises:
C
caoying03 已提交
247
        ValueError: If rank of the input tensor is less than 2.
248 249 250 251

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
252
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
253
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
254
    """
C
caoying03 已提交
255

C
caoying03 已提交
256
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
257 258 259 260

    dtype = helper.input_dtype()

    mul_results = []
261 262
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
263 264 265
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
266

Y
Yu Yang 已提交
267
        w = helper.create_parameter(
268
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
269
        tmp = helper.create_variable_for_type_inference(dtype)
270
        helper.append_op(
271 272 273
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
274
            outputs={"Out": tmp},
M
mozga-intel 已提交
275 276
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
277 278 279 280
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
281
    else:
X
Xin Pan 已提交
282
        pre_bias = helper.create_variable_for_type_inference(dtype)
283
        helper.append_op(
284 285 286
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
287
            attrs={"use_mkldnn": False})
288 289 290 291
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
292 293


294 295 296
def embedding(input,
              size,
              is_sparse=False,
297
              is_distributed=False,
298 299 300
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
301
    """
302 303
    **Embedding Layer**

304
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
305 306
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
307 308 309

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
310 311

    Args:
312 313 314 315 316
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
317
        is_distributed(bool): Whether to run lookup table from remote parameter server.
318 319
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
320
            with zeros whenever lookup encounters it in :attr:`input`. If
321
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
322 323
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
324
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
325

326 327 328
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
329

330 331
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
332

C
chengduoZH 已提交
333
          dict_size = len(dataset.ids)
334
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
335
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
336 337 338
    """

    helper = LayerHelper('embedding', **locals())
339 340 341
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
342 343
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
344 345
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
346
    tmp = helper.create_variable_for_type_inference(dtype)
347 348
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
349 350 351 352 353
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
354 355 356
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
357
            'remote_prefetch': remote_prefetch,
358 359
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
360 361 362
    return tmp


W
wopeizl 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
379

W
wopeizl 已提交
380 381 382 383 384 385 386 387 388 389 390
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
391

W
wopeizl 已提交
392 393 394 395
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
396

W
wopeizl 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
483 484


P
phlrain 已提交
485 486 487 488 489 490
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
491
         dropout_prob=0.0,
P
phlrain 已提交
492 493 494 495 496
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
497
    """
P
phlrain 已提交
498
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
499 500 501 502 503

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
543 544
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
545 546 547 548 549 550
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
551
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
552

L
liuhongyu 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
578
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
579 580 581 582 583 584
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
585 586 587
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
647 648 649 650 651 652 653 654 655 656 657
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
658 659
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
660 661 662
    """
    **Dynamic LSTMP Layer**

663 664 665 666 667 668
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
669 670 671 672 673

    The formula is as follows:

    .. math::

674
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
675

676
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
677

678
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
679

680
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
681

682
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
683

684
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
685

686
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
687

Y
Yibing Liu 已提交
688 689 690 691 692 693
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
694
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
695
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
696
          bias vector).
Y
Yibing Liu 已提交
697 698 699
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
700
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
701
    * :math:`h`: The hidden state.
702
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
703 704
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
705
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
706
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
707
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
708 709
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
710 711 712 713

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
714

Y
Yibing Liu 已提交
715 716 717 718 719 720 721 722 723 724 725 726
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
727
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
728 729
                               hidden-hidden weight and projection weight.

730 731
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
732 733
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
734 735
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
736
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
737 738 739 740 741

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
742
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
743 744 745 746 747 748
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
749
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
750 751 752
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
753
                                - The shape is (1 x 7D).
C
chengduo 已提交
754 755 756 757 758

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
759 760 761 762 763 764 765 766 767
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
768
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
769 770
                              default "tanh".
        proj_activation(str): The activation for projection output.
771
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
772 773
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
774 775
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
776 777

    Returns:
778 779 780 781
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
782 783

    Examples:
784

Y
Yibing Liu 已提交
785 786
        .. code-block:: python

787 788 789 790
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
791
            hidden_dim, proj_dim = 512, 256
792
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
793
                                     act=None, bias_attr=None)
794 795 796
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
797 798 799 800
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
801
    """
802

C
chengduo 已提交
803
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
804
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
805
    size = size // 4
Y
Yibing Liu 已提交
806 807 808 809 810 811 812 813 814 815
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
816 817 818 819 820 821
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
850 851 852 853 854 855 856 857 858
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
859
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
860

861
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
862
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
863

G
guosheng 已提交
864 865 866 867 868 869 870 871 872
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
873

G
guosheng 已提交
874
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
875

G
guosheng 已提交
876
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
877 878
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
879 880 881 882
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
883
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
884 885

    Args:
886 887
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
888
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
889
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
890 891
            is the hidden size.
        size(int): The dimension of the gru cell.
892
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
893 894
            hidden-hidden weight matrix. Note:

895
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
896
              :math:`D` is the hidden size.
897
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
898
              The first part are weights of the update gate and reset gate with
899
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
900
              candidate hidden state with shape :math:`(D \\times D)`.
901 902 903 904 905

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
906
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
907
            the bias in the update gate, reset gate and candidate calculations.
908 909 910
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
911 912
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
913
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
914 915 916
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
917
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
918
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
919 920 921 922
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
923 924

    Returns:
G
guosheng 已提交
925
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
926
            and sequence length is the same with the input.
927

G
guosheng 已提交
928
    Examples:
929

G
guosheng 已提交
930 931
        .. code-block:: python

932 933 934 935
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
936
            hidden_dim = 512
937
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
938
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
939 940 941 942 943 944 945 946 947
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
948
    batch_size = input.shape[0]
G
guosheng 已提交
949
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
950
    if h_0:
G
guosheng 已提交
951
        assert h_0.shape == (
Y
Yancey 已提交
952 953 954
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
955

X
Xin Pan 已提交
956 957 958 959
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
978 979 980
def gru_unit(input,
             hidden,
             size,
981 982
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
983
             activation='tanh',
984
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
985
    """
986
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
987

988 989
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
990

991
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
992

993
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
994

995
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
996 997

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
998 999 1000
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1001 1002
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1003 1004
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1005 1006 1007
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1008 1009 1010

    Args:
        input (Variable): The fc transformed input value of current step.
1011
        hidden (Variable): The hidden value of gru unit from previous step.
1012
        size (integer): The input dimension value.
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1027
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1028
            the bias in the update gate, reset gate and candidate calculations.
1029 1030 1031
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1032 1033
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1034 1035 1036 1037
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1038

1039 1040 1041 1042 1043 1044
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1045

1046
             # assuming we have x_t_data and prev_hidden of size=10
1047
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1048 1049
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1062
    size = size // 3
Y
Yu Yang 已提交
1063 1064

    # create weight
1065 1066
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1067

X
Xin Pan 已提交
1068 1069 1070
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1071
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1072
    # create bias
1073
    if helper.bias_attr:
Y
Yu Yang 已提交
1074 1075 1076
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1077
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1078 1079 1080

    helper.append_op(
        type='gru_unit',
1081
        inputs=inputs,
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1088 1089
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1090 1091 1092 1093 1094
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1095
@templatedoc()
1096
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1097 1098 1099 1100 1101 1102 1103
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1104
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1105 1106 1107 1108
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1109 1110 1111
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1112 1113

    """
Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1120 1121 1122 1123 1124 1125 1126 1127
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1143 1144 1145 1146
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1147

W
wopeizl 已提交
1148 1149
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1150

W
wopeizl 已提交
1151
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1152

W
wopeizl 已提交
1153
        label(${label_type}): ${label_comment}
1154

W
wopeizl 已提交
1155 1156
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1157

W
wopeizl 已提交
1158 1159
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1160

W
wopeizl 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1171
                "Transition": transition,
W
wopeizl 已提交
1172 1173
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1174

W
wopeizl 已提交
1175
    return viterbi_path
Y
Yu Yang 已提交
1176 1177


Y
yi.wu 已提交
1178
@templatedoc()
F
fengjiayi 已提交
1179
def cos_sim(X, Y):
Y
Yu Yang 已提交
1180
    """
Y
yi.wu 已提交
1181 1182 1183
    ${comment}

    Args:
1184 1185
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1186

Y
yi.wu 已提交
1187
    Returns:
1188
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1189
    """
F
fengjiayi 已提交
1190
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1191 1192 1193
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1204 1205 1206 1207 1208
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1209
            dropout_implementation="downgrade_in_infer"):
1210 1211 1212 1213 1214
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1215
    training. The dropout operator randomly sets (according to the given dropout
1216 1217 1218 1219
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1220 1221
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1222 1223 1224 1225 1226 1227 1228
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1240
                                           dropout op can be removed from the program.
P
phlrain 已提交
1241
                                           the program will be efficient
1242

P
phlrain 已提交
1243

1244 1245

    Returns:
1246
        Variable: A tensor variable is the shape with `x`.
1247 1248

    Examples:
1249

1250 1251
        .. code-block:: python

1252 1253
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1254 1255
    """

F
fengjiayi 已提交
1256
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1257 1258 1259
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1260 1261 1262 1263

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1264 1265 1266 1267 1268
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1269 1270 1271 1272
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1273 1274
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1275
        })
1276 1277 1278
    return out


J
jerrywgz 已提交
1279
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1280
    """
Y
Yibing Liu 已提交
1281 1282
    **Cross Entropy Layer**

1283 1284 1285
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1286 1287

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1288
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1289

Y
Yibing Liu 已提交
1290
        .. math::
Y
yangyaming 已提交
1291

Y
Yibing Liu 已提交
1292 1293 1294
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1295 1296
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1297 1298 1299 1300 1301

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1302
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1303 1304 1305
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1306 1307
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1308
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1309

Y
Yibing Liu 已提交
1310
    Args:
Y
yangyaming 已提交
1311
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1312 1313 1314 1315
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1316
        label (Variable|list): the ground truth which is a 2-D tensor. When
1317 1318 1319 1320
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1321
        soft_label (bool): a flag indicating whether to
1322
                                           interpretate the given labels as soft
1323
                                           labels. Default: `False`.
M
minqiyang 已提交
1324 1325
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1326
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1327 1328 1329 1330 1331

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1332 1333 1334 1335 1336
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1337 1338 1339 1340 1341 1342

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1343
    """
F
fengjiayi 已提交
1344
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1345
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1346 1347 1348 1349 1350
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1351 1352
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1353 1354 1355
    return out


F
frankwhzhang 已提交
1356
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1357 1358 1359
    """
    Bayesian Personalized Ranking Loss Operator.

1360
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1361 1362 1363 1364 1365 1366
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1367 1368 1369 1370 1371 1372
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1373 1374
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1375 1376 1377
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1378 1379 1380
    Examples:
        .. code-block:: python

1381
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1382
    """
1383 1384 1385 1386 1387 1388

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1389
                'Label': [label]},
1390 1391 1392 1393
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1394
def square_error_cost(input, label):
Y
Yu Yang 已提交
1395
    """
1396 1397
    **Square error cost layer**

1398 1399
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1414 1415
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1416 1417

    Returns:
G
guosheng 已提交
1418
        Variable: The tensor variable storing the element-wise squared error \
1419
                  difference of input and label.
1420 1421 1422 1423 1424 1425 1426 1427

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1428
    """
F
fengjiayi 已提交
1429
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1430
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1431 1432 1433 1434 1435 1436
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1437
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1438
    helper.append_op(
F
fengjiayi 已提交
1439 1440
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1441 1442 1443
    return square_out


Y
yi.wu 已提交
1444
@templatedoc()
Y
Yu Yang 已提交
1445 1446 1447 1448
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1449
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1450
    """
Y
yi.wu 已提交
1451
    **Chunk Evaluator**
Y
yi.wu 已提交
1452

Y
yangyaming 已提交
1453
    This function computes and outputs the precision, recall and
1454
    F1-score of chunk detection.
Y
yi.wu 已提交
1455

Y
yi.wu 已提交
1456 1457 1458 1459 1460 1461 1462 1463
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1464

Y
yi.wu 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1490

Y
yi.wu 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1515
    Args:
1516 1517 1518 1519 1520
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1521

Y
yi.wu 已提交
1522
    Returns:
Y
update  
yi.wu 已提交
1523 1524 1525
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1526

Y
yi.wu 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1539
    """
F
fengjiayi 已提交
1540
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1541 1542

    # prepare output
X
Xin Pan 已提交
1543 1544 1545 1546 1547 1548 1549
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1550 1551 1552 1553 1554 1555 1556 1557

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1558 1559 1560 1561
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1562 1563 1564
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1565 1566
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1567
        })
1568 1569
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1570 1571


1572
@templatedoc()
Y
Yu Yang 已提交
1573 1574 1575 1576 1577 1578 1579
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1580 1581
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1582 1583 1584 1585
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1586 1587 1588 1589 1590 1591 1592

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1606

1607 1608
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1609 1610 1611 1612 1613 1614 1615
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1616
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1627
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1628 1629 1630 1631 1632 1633
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1634
def sequence_softmax(input, use_cudnn=False, name=None):
1635 1636 1637
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1638
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1655 1656 1657
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1670 1671
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1672
    softmax_out = helper.create_variable_for_type_inference(dtype)
1673 1674 1675 1676 1677 1678 1679 1680
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1681
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1682
    """
1683
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1684
    has the same shape as the input.
Q
qiaolongfei 已提交
1685

1686 1687 1688 1689 1690 1691
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1692
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1693 1694 1695 1696 1697 1698 1699

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1700
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1701 1702 1703 1704 1705 1706 1707 1708

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1709 1710 1711
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1724 1725
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1726
    softmax_out = helper.create_variable_for_type_inference(dtype)
1727 1728 1729 1730 1731 1732 1733 1734
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1735 1736 1737
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1738 1739
           stride=1,
           padding=0,
1740
           dilation=1,
Y
Yu Yang 已提交
1741 1742 1743
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1744
           use_cudnn=True,
1745 1746
           act=None,
           name=None):
Y
Yu Yang 已提交
1747
    """
C
chengduoZH 已提交
1748
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1749 1750
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1751
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1752 1753 1754 1755 1756 1757 1758
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1759 1760 1761
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1762

1763
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1764

C
chengduoZH 已提交
1765 1766
    .. math::

C
refine  
chengduoZH 已提交
1767
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1768

T
tensor-tang 已提交
1769
    Where:
C
chengduoZH 已提交
1770

1771 1772 1773 1774 1775
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1776
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1777 1778 1779

    Example:

1780 1781
        - Input:

W
weixing02 已提交
1782
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1783

W
weixing02 已提交
1784
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1785

1786
        - Output:
T
tensor-tang 已提交
1787

W
weixing02 已提交
1788
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1789

C
chengduoZH 已提交
1790
        Where
1791 1792

        .. math::
C
chengduoZH 已提交
1793

W
weixing02 已提交
1794 1795
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1796 1797

    Args:
1798
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1799
        num_filters(int): The number of filter. It is as same as the output
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1828 1829
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1830 1831
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1832
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1833
            will be named automatically. Default: None
C
chengduoZH 已提交
1834 1835

    Returns:
G
guosheng 已提交
1836
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1837 1838
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1839
    Raises:
1840 1841
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1842

C
chengduoZH 已提交
1843 1844 1845
    Examples:
        .. code-block:: python

1846 1847
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1848 1849 1850
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1851
    assert param_attr is not False, "param_attr should not be False here."
1852
    l_type = 'conv2d'
X
xzl 已提交
1853 1854
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1855
        l_type = 'depthwise_conv2d'
1856 1857 1858 1859

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1860 1861 1862 1863 1864
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1865
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1866

C
chengduoZH 已提交
1867 1868 1869
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1870
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1871

C
chengduoZH 已提交
1872 1873
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1874 1875

    input_shape = input.shape
M
minqiyang 已提交
1876
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1877 1878

    def _get_default_param_initializer():
C
chengduo 已提交
1879 1880
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1881 1882 1883 1884 1885 1886 1887 1888
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1889
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1905
    helper.append_op(
1906
        type=l_type,
Y
Yu Yang 已提交
1907 1908 1909 1910 1911
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1912 1913 1914
        attrs={
            'strides': stride,
            'paddings': padding,
1915
            'dilations': dilation,
C
chengduoZH 已提交
1916
            'groups': groups,
1917
            'use_cudnn': use_cudnn,
1918
            'use_mkldnn': False,
C
chengduoZH 已提交
1919
        })
Y
Yu Yang 已提交
1920 1921 1922 1923 1924 1925

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1943 1944 1945 1946 1947 1948
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1958 1959
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1960 1961 1962
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1963
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1989
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1990 1991
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1992
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1993 1994
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1995
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1996 1997
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1998
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1999 2000 2001 2002 2003 2004
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2015 2016
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2017 2018
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2019
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2020
            will be named automatically. Default: None.
C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2033 2034
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2035 2036 2037
    """

    l_type = 'conv3d'
C
chengduo 已提交
2038
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2049
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2063 2064 2065
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2066 2067 2068 2069 2070 2071 2072 2073
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2074
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2089
            'use_mkldnn': False
C
chengduoZH 已提交
2090 2091
        })

2092
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2093 2094 2095 2096

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2097
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2098
    """
Y
yangyaming 已提交
2099 2100 2101
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2113
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2114 2115 2116 2117 2118
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2119
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2120 2121 2122 2123 2124 2125 2126

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2127 2128
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2129

L
Luo Tao 已提交
2130 2131
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2132
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2133
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2134
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2135 2136 2137 2138 2139 2140 2141

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2142

Y
yangyaming 已提交
2143
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2144 2145 2146 2147 2148
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2149 2150
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2151
    """
F
fengjiayi 已提交
2152
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2153
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2154 2155
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2156 2157 2158 2159 2160 2161

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2162 2163
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2164

Y
yangyaming 已提交
2165 2166 2167 2168 2169
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2170 2171 2172
    return pool_out


C
add doc  
chengduoZH 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2192
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2193 2194 2195 2196 2197
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2198
def sequence_first_step(input):
L
Luo Tao 已提交
2199
    """
L
Luo Tao 已提交
2200
    This function gets the first step of sequence.
L
Luo Tao 已提交
2201 2202 2203 2204

    .. code-block:: text

       x is a 1-level LoDTensor:
2205
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2206 2207 2208 2209 2210
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2211
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2212
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2213

L
Luo Tao 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2223

Y
yangyaming 已提交
2224
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2225 2226 2227
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2228 2229 2230
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2231
def sequence_last_step(input):
L
Luo Tao 已提交
2232
    """
L
Luo Tao 已提交
2233
    This function gets the last step of sequence.
L
Luo Tao 已提交
2234 2235 2236 2237

    .. code-block:: text

       x is a 1-level LoDTensor:
2238
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2239 2240 2241 2242 2243
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2244
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2245
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2246

L
Luo Tao 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2256

Y
yangyaming 已提交
2257
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2258 2259 2260
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2261 2262 2263
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2264 2265 2266 2267
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2268
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2269 2270 2271 2272 2273
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2274

Y
Yibing Liu 已提交
2275 2276
	- Case:

2277
            Given the input Variable **input**:
2278

2279 2280 2281
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2282

2283
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2284

2285
            the output Variable will be
2286

2287 2288 2289
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2290 2291

    NOTE: The first dimension size of **input**, **offset** and **length**
2292
          should be equal. The **offset** should start from 0.
2293

Y
Yibing Liu 已提交
2294
    Args:
2295
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2296
                         sequences.
Y
Yibing Liu 已提交
2297 2298 2299 2300 2301 2302
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2303
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2314
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2315 2316 2317 2318
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2319
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2334
@templatedoc()
Y
Yu Yang 已提交
2335
def pool2d(input,
C
chengduoZH 已提交
2336 2337
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2338 2339
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2340
           global_pooling=False,
C
chengduoZH 已提交
2341
           use_cudnn=True,
2342
           ceil_mode=False,
2343 2344
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2345
    """
F
fengjiayi 已提交
2346
    ${comment}
2347 2348

    Args:
2349 2350 2351
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2352
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2353
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2354 2355
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2356
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2357 2358 2359 2360 2361 2362
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2363 2364 2365
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2366
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2367
                        layer will be named automatically.
2368
        exclusive (bool): Whether to exclude padding points in average pooling
2369
                          mode, default is true
F
fengjiayi 已提交
2370

2371
    Returns:
F
fengjiayi 已提交
2372
        Variable: The pooling result.
F
fengjiayi 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2386 2387 2388 2389
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2390
                            global_pooling=False)
Y
Yu Yang 已提交
2391 2392 2393 2394 2395
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2396

C
chengduoZH 已提交
2397 2398 2399 2400 2401
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2402 2403 2404 2405
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2406 2407
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2408

C
Add doc  
chengduoZH 已提交
2409
    l_type = 'pool2d'
2410 2411

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2412
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2413
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2414 2415

    helper.append_op(
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2427 2428
            "use_mkldnn": False,
            "exclusive": exclusive,
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2442 2443
           name=None,
           exclusive=True):
2444 2445
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2446
    pooling configurations mentioned in input parameters.
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2459
        exclusive (bool): Whether to exclude padding points in average pooling
2460
                          mode, default is true
2461

2462
    Returns:
2463
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2464 2465 2466 2467 2468
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2469

C
chengduoZH 已提交
2470 2471 2472 2473 2474
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2475 2476 2477
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2478

C
chengduoZH 已提交
2479 2480
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2481

2482 2483
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2484
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2485
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2486 2487

    helper.append_op(
2488
        type=l_type,
Y
Yu Yang 已提交
2489 2490 2491 2492 2493 2494 2495
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2496
            "paddings": pool_padding,
2497
            "use_cudnn": use_cudnn,
2498
            "ceil_mode": ceil_mode,
2499 2500
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2513
               data_layout='NCHW',
Y
Yang Yang 已提交
2514
               in_place=False,
2515 2516
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2517
               moving_variance_name=None,
2518
               do_model_average_for_mean_and_var=False,
2519 2520
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2521
    """
Q
qiaolongfei 已提交
2522 2523 2524 2525
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2526

Q
qiaolongfei 已提交
2527
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2528

Q
qiaolongfei 已提交
2529 2530
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2531 2532 2533
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2546

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2560
    Args:
Q
qiaolongfei 已提交
2561
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2562 2563 2564 2565
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2566 2567 2568 2569 2570 2571 2572 2573
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2574
        data_layout(string, default NCHW): NCHW|NHWC
2575
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2576 2577 2578 2579
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2580
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2581
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2582 2583 2584 2585 2586
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2587 2588

    Returns:
Q
qiaolongfei 已提交
2589
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2590 2591 2592 2593 2594 2595 2596

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2597
    """
C
chengduo 已提交
2598
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2619 2620 2621
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2622 2623

    bias = helper.create_parameter(
2624
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2625 2626 2627
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2628

2629 2630
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2631 2632 2633
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2634
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2635
        shape=param_shape,
2636 2637 2638 2639 2640 2641 2642
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2643
            trainable=False,
W
wanghaoshuang 已提交
2644
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2645
        shape=param_shape,
2646 2647
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2648 2649 2650 2651 2652 2653

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2654 2655 2656 2657
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2658

X
Xin Pan 已提交
2659 2660
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2678 2679 2680 2681
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2682
            "use_mkldnn": False,
2683 2684
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2685
        })
Y
Yu Yang 已提交
2686 2687 2688 2689

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2690
@templatedoc()
G
guosheng 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2701
    ${comment}
G
guosheng 已提交
2702 2703 2704

    The formula is as follows:

Y
yuyang18 已提交
2705
    ..  math::
G
guosheng 已提交
2706 2707 2708 2709 2710 2711 2712

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2713 2714 2715 2716 2717 2718 2719 2720
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2721

G
guosheng 已提交
2722 2723
    Args:
        input(Variable): The input tensor variable.
2724
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2725
            normalization. Default True.
2726
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2727 2728
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2729
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2730
            Default 1.
2731
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2732
            division by zero. Default 1e-05.
G
guosheng 已提交
2733
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2734 2735
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2736 2737
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2738
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2739 2740
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2741
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2742
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2743
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2744 2745 2746
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2747 2748

    Returns:
Y
yuyang18 已提交
2749
        ${y_comment}
G
guosheng 已提交
2750 2751 2752

    Examples:

Y
yuyang18 已提交
2753 2754 2755
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2771
    if shift:
G
guosheng 已提交
2772 2773 2774 2775 2776 2777
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2778 2779 2780 2781 2782
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2876 2877 2878 2879
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2880 2881 2882
                     padding=0,
                     stride=1,
                     dilation=1,
2883
                     groups=None,
C
caoying03 已提交
2884
                     param_attr=None,
2885
                     bias_attr=None,
C
chengduoZH 已提交
2886
                     use_cudnn=True,
2887
                     act=None,
C
caoying03 已提交
2888
                     name=None):
Y
Yu Yang 已提交
2889
    """
2890 2891 2892 2893 2894 2895 2896 2897
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2898 2899
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2900 2901 2902
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2903 2904 2905 2906 2907

    For each input :math:`X`, the equation is:

    .. math::

2908
        Out = \sigma (W \\ast X + b)
2909

2910
    Where:
2911 2912 2913

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2914 2915 2916 2917
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2918

2919 2920 2921 2922
    Example:

        - Input:

2923
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2924

2925
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2926 2927 2928

        - Output:

2929
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2930 2931

        Where
Y
Yu Yang 已提交
2932

2933 2934
        .. math::

2935 2936 2937 2938
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2939 2940

    Args:
2941 2942 2943 2944
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2945 2946 2947 2948
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2977
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2978 2979 2980
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2981
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2982
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2983 2984

    Returns:
2985
        Variable: The tensor variable storing the convolution transpose result.
2986 2987

    Raises:
2988 2989
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2990 2991 2992 2993

    Examples:
       .. code-block:: python

2994 2995
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2996
    """
C
chengduo 已提交
2997
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2998 2999 3000 3001 3002 3003 3004 3005
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3006 3007 3008
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3009 3010 3011
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3012

C
chengduoZH 已提交
3013 3014
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3015

Y
Yu Yang 已提交
3016 3017 3018 3019 3020
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3021

Y
Yu Yang 已提交
3022 3023
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3024

C
chengduoZH 已提交
3025
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3026
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3027
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3028
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3029
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3030 3031 3032
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3033

3034 3035 3036 3037 3038 3039 3040
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3041
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3042
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3043

Y
Yu Yang 已提交
3044 3045 3046
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3047
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3048
    helper.append_op(
3049
        type=op_type,
Y
Yu Yang 已提交
3050 3051
        inputs={'Input': [input],
                'Filter': [img_filter]},
3052
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3053
        attrs={
3054
            'output_size': output_size,
3055 3056 3057 3058 3059
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3060 3061
        })

3062 3063 3064
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3065 3066


3067
def conv3d_transpose(input,
Y
Yu Yang 已提交
3068 3069 3070
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3071 3072 3073
                     padding=0,
                     stride=1,
                     dilation=1,
3074
                     groups=None,
C
caoying03 已提交
3075
                     param_attr=None,
3076
                     bias_attr=None,
C
chengduoZH 已提交
3077
                     use_cudnn=True,
3078
                     act=None,
C
caoying03 已提交
3079
                     name=None):
Y
Yu Yang 已提交
3080
    """
3081
    **Convlution3D transpose layer**
3082

3083
    The convolution3D transpose layer calculates the output based on the input,
3084
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3085 3086 3087 3088 3089 3090
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3091 3092 3093
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3094 3095 3096 3097 3098

    For each input :math:`X`, the equation is:

    .. math::

3099
        Out = \sigma (W \\ast X + b)
3100 3101 3102

    In the above equation:

3103 3104
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3105 3106 3107 3108
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3109

3110 3111 3112 3113
    Example:

        - Input:

3114
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3115

3116
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3117 3118 3119

        - Output:

3120
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3121 3122

        Where
Y
Yu Yang 已提交
3123

3124 3125
        .. math::

3126 3127 3128
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3129 3130

    Args:
3131
        input(Variable): The input image with [N, C, D, H, W] format.
3132 3133 3134
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3135
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3136 3137
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3138
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3139 3140 3141
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3142 3143
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3144
        stride(int|tuple): The stride size. If stride is a tuple, it must
3145 3146
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3147
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3148 3149 3150
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3151 3152 3153 3154 3155
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3165 3166
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3167 3168
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3169 3170
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3171 3172

    Returns:
3173
        Variable: The tensor variable storing the convolution transpose result.
3174 3175

    Raises:
3176 3177
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3178 3179 3180 3181

    Examples:
       .. code-block:: python

3182 3183
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3184
    """
C
chengduo 已提交
3185
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3186 3187
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3188
    if not isinstance(input, Variable):
3189
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3190 3191
    input_channel = input.shape[1]

3192 3193 3194
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3195

C
chengduoZH 已提交
3196 3197 3198
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3199 3200 3201 3202 3203 3204
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3205 3206 3207
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3208

3209
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3210
                         padding[0] - 1) // dilation[0] + 1
3211
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3212
                         padding[1] - 1) // dilation[1] + 1
3213
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3214
                         padding[2] - 1) // dilation[2] + 1
3215
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3216
    else:
3217 3218
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3219

3220
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3221
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3222 3223 3224
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3225
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3226
    helper.append_op(
3227
        type=l_type,
Y
Yu Yang 已提交
3228 3229
        inputs={'Input': [input],
                'Filter': [img_filter]},
3230
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3231 3232 3233 3234
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3235
            'groups': groups,
C
chengduoZH 已提交
3236 3237
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3238

3239 3240
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3241
    return out
Y
yangyaming 已提交
3242 3243


Y
yangyaming 已提交
3244
def sequence_expand(x, y, ref_level=-1, name=None):
3245
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3246 3247 3248 3249
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3250 3251 3252 3253 3254

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3255
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3256
                x.data = [[a], [b], [c], [d]]
3257 3258 3259
                x.dims = [4, 1]

            y is a LoDTensor:
3260 3261
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3262

Y
yangyaming 已提交
3263
            ref_level: 0
3264

Y
yangyaming 已提交
3265
            then output is a 1-level LoDTensor:
3266
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3267
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3268 3269 3270 3271
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3272
                x.data = [[a], [b], [c]]
3273 3274 3275
                x.dims = [3, 1]

            y is a LoDTensor:
3276
                y.lod = [[2, 0, 3]]
3277

Y
yangyaming 已提交
3278
            ref_level: -1
3279

Y
yangyaming 已提交
3280 3281 3282
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3283 3284 3285
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3286 3287
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3288
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3289
                        will be named automatically.
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3300
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3301
    """
Y
yangyaming 已提交
3302
    helper = LayerHelper('sequence_expand', input=x, **locals())
3303
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3304
    tmp = helper.create_variable_for_type_inference(dtype)
3305
    helper.append_op(
Y
yangyaming 已提交
3306 3307 3308 3309 3310
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3311
    return tmp
3312 3313


C
chengduo 已提交
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3370
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3371 3372 3373 3374 3375 3376 3377 3378
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3379
@templatedoc()
3380
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3381 3382 3383 3384 3385
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3386 3387 3388
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3389
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3390 3391 3392 3393
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3394 3395 3396
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3397

F
fengjiayi 已提交
3398
    Returns:
M
minqiyang 已提交
3399
        Variable: The padded sequence batch and the original lengths before
3400
                  padding. All sequences has the same length.
M
minqiyang 已提交
3401

F
fengjiayi 已提交
3402 3403 3404 3405 3406 3407 3408
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3409
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3410
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3411 3412 3413 3414 3415
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3416 3417
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3418 3419 3420 3421

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3422 3423 3424 3425 3426 3427
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3428 3429
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3430
        attrs={'padded_length': maxlen})
3431
    return out, length
F
fengjiayi 已提交
3432 3433


3434
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3435
    """
3436
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3437

3438 3439
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3449 3450 3451
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3452
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3453 3454 3455 3456 3457 3458

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3459
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3460 3461 3462 3463 3464 3465

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3466 3467
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3482
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3494 3495 3496 3497 3498 3499 3500 3501 3502
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3503 3504
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3505 3506 3507

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3508 3509

    This layer does the search in beams for one time step. Specifically, it
3510 3511 3512 3513 3514 3515
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3516

3517 3518 3519 3520 3521 3522 3523 3524
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3525

3526
    Args:
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3552

3553
    Returns:
3554 3555
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3556 3557 3558 3559

    Examples:
        .. code-block:: python

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3577 3578 3579 3580
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3581 3582 3583
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3584 3585 3586 3587 3588

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3589
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3607 3608 3609 3610 3611 3612 3613
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3614

3615 3616 3617 3618 3619 3620 3621 3622 3623
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3624

3625 3626 3627 3628 3629 3630
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3631

3632 3633
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3634

3635 3636 3637 3638 3639 3640
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3641 3642
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3658 3659 3660 3661
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3662
              param_attr=None,
C
caoying03 已提交
3663 3664
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3665 3666 3667 3668
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3669
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3670

3671
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3672

3673
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3674

3675
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3676 3677 3678

            h_t & = o_t tanh(c_t)

3679 3680 3681 3682 3683 3684
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3685 3686 3687

        .. math::

3688
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3689 3690 3691 3692 3693 3694 3695 3696

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3697
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3698 3699

    Args:
Y
yangyaming 已提交
3700 3701 3702 3703 3704 3705
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3706
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3719 3720
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3721 3722

    Returns:
Y
yangyaming 已提交
3723
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3724 3725

    Raises:
3726 3727 3728 3729
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3730 3731 3732 3733 3734 3735

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3736
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3737
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3738
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3755
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3756 3757 3758 3759
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3760 3761
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3762 3763 3764
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3765
    size = cell_t_prev.shape[1]
3766
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3767 3768
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3769
                param_attr=param_attr,
3770
                bias_attr=bias_attr)
Y
yangyaming 已提交
3771
    dtype = x_t.dtype
X
Xin Pan 已提交
3772 3773
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3783
    return h, c
G
guosheng 已提交
3784 3785


C
caoying03 已提交
3786
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3787
    """
Y
yangyaming 已提交
3788
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3789 3790 3791

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3792
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3793 3794
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3795 3796
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3797
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3798
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3799
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3800 3801
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3802 3803 3804

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3805

G
guosheng 已提交
3806 3807 3808 3809 3810 3811
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3812
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3813 3814 3815 3816
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3817 3818 3819 3820

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3821
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3822 3823 3824
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3825 3826
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3827
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3828 3829
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3830 3831 3832 3833 3834
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3835
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3836 3837 3838 3839
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3840 3841


C
caoying03 已提交
3842
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3843
    """
Y
Yibing Liu 已提交
3844
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3845 3846 3847

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3848 3849 3850
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3851
            must be in the range :math:`[-rank(input), rank(input))`. If
3852
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3853
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3854 3855
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3856
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3857
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3858
                       will be named automatically.
G
guosheng 已提交
3859 3860

    Returns:
Y
Yibing Liu 已提交
3861
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3862

G
guosheng 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3873 3874
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3875 3876 3877 3878 3879 3880 3881

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3882 3883
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3884
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3885 3886
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3887 3888 3889 3890 3891
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3892
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3893 3894 3895 3896
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3897 3898


C
caoying03 已提交
3899
def reduce_max(input, dim=None, keep_dim=False, name=None):
3900
    """
Y
yangyaming 已提交
3901
    Computes the maximum of tensor elements over the given dimension.
3902 3903 3904

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3905
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3906 3907 3908
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3909
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3910 3911
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3912
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3913 3914
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3915 3916 3917

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3918

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3930 3931 3932 3933 3934 3935 3936

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3937 3938
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3939
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3940 3941
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3942 3943 3944 3945 3946
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3947
            'dim': dim if dim != None else [0],
3948 3949 3950 3951 3952 3953
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3954
def reduce_min(input, dim=None, keep_dim=False, name=None):
3955
    """
Y
yangyaming 已提交
3956
    Computes the minimum of tensor elements over the given dimension.
3957 3958 3959

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3960
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3961 3962 3963
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3964
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3965 3966
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3967
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3968 3969
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3970 3971 3972

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3973

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3985 3986 3987 3988 3989 3990 3991

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3992 3993
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3994
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3995 3996
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3997 3998 3999 4000 4001
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4002
            'dim': dim if dim != None else [0],
4003 4004 4005 4006
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4007 4008


4009 4010 4011 4012 4013 4014
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4015
        dim (list|int|None): The dimensions along which the product is performed. If
4016 4017
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4018 4019
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4020 4021 4022
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4023
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4024
            layer will be named automatically.
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4039
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4040
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4041 4042 4043 4044 4045 4046 4047

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4048 4049
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4050
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4051 4052
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4053 4054 4055 4056 4057
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4058
            'dim': dim if dim != None else [0],
4059 4060 4061 4062 4063 4064
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4065
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4066
    """
C
caoying03 已提交
4067
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4068 4069 4070

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4071 4072 4073 4074 4075
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4076
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4077
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4078
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4079 4080
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4081 4082

    Returns:
D
dzhwinter 已提交
4083
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4093 4094
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4110
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4133
    .. math::
4134 4135

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4136 4137 4138 4139 4140

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4141
        x(Variable|list): The input tensor to l2_normalize layer.
4142
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4143 4144
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4145
        epsilon(float): The epsilon value is used to avoid division by zero, \
4146
            the defalut value is 1e-10.
4147
        name(str|None): A name for this layer(optional). If set None, the layer \
4148
            will be named automatically.
C
caoying03 已提交
4149 4150

    Returns:
4151
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4152 4153

    Examples:
4154

C
caoying03 已提交
4155 4156
        .. code-block:: python

4157 4158 4159 4160
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4161 4162
    """

F
fengjiayi 已提交
4163 4164
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4165 4166
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4167 4168
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4169
    helper.append_op(
4170 4171 4172 4173
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4174
        attrs={
4175 4176
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4177 4178
        })
    return out
4179 4180


S
sneaxiy 已提交
4181
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4182
    """
Y
ying 已提交
4183 4184 4185 4186
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4187

C
chengduoZH 已提交
4188
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4189
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4190

4191 4192 4193 4194 4195
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4196
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4197

C
chengduoZH 已提交
4198
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4199
      performs in the following way.
G
guosheng 已提交
4200

4201
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4202
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4203
        last two dimensions and a batched matrix multiply supporting broadcast
4204
        applies on the two tensors.
G
guosheng 已提交
4205

Y
ying 已提交
4206 4207
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4208
    removed after matrix multiplication.
G
guosheng 已提交
4209 4210 4211

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4212 4213 4214
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4215
        alpha (float): The scale of output. Default 1.0.
4216
        name(str|None): A name for this layer(optional). If set None, the layer
4217
            will be named automatically.
G
guosheng 已提交
4218 4219

    Returns:
4220
        Variable: The product Tensor variable.
G
guosheng 已提交
4221

G
guosheng 已提交
4222 4223 4224
    Examples:
        .. code-block:: python

4225
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4226 4227
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4228

4229 4230
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4231

4232 4233
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4234

4235 4236
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4237 4238 4239 4240

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4241 4242
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4243

Y
ying 已提交
4244
            # x: [M], y: [N]
4245
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4246
    """
Y
ying 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4259
            y_shape = y_shape + [1]
Y
ying 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4276
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4277
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4278
    helper.append_op(
4279 4280 4281 4282
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4283 4284 4285
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4286
            'alpha': float(alpha),
S
sneaxiy 已提交
4287
        })
4288
    return out
4289 4290


4291
def topk(input, k, name=None):
Q
qingqing01 已提交
4292 4293 4294 4295
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4296
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4297 4298 4299 4300 4301 4302
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4324 4325 4326
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4327
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4328
                 of input.
4329
        name(str|None): A name for this layer(optional). If set None, the layer
4330
                       will be named automatically.
F
fengjiayi 已提交
4331
                       Default: None
Q
qingqing01 已提交
4332 4333

    Returns:
4334 4335 4336
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4337
        within the last dimension of input.
Q
qingqing01 已提交
4338

F
fengjiayi 已提交
4339 4340
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4341 4342 4343 4344 4345 4346 4347

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4348 4349
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4361
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4362
    """
Y
ying 已提交
4363 4364 4365 4366 4367 4368 4369 4370 4371
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4372

Y
ying 已提交
4373
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4374

4375
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4376 4377
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4378
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4379

4380
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4381 4382
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4383

4384 4385 4386
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4387
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4388
                          the length of reference string.
4389
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4390
                                     calculating edit distance.
4391
        name (str): The name of this layer. It is optional.
4392

W
wanghaoshuang 已提交
4393
    Returns:
W
wanghaoshuang 已提交
4394
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4395 4396 4397 4398

    Examples:
        .. code-block:: python

T
tink2123 已提交
4399 4400
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4401
            cost = fluid.layers.edit_distance(input=x,label=y)
4402
    """
4403
    helper = LayerHelper("edit_distance", **locals())
4404

4405
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4406
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4407 4408
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4409 4410 4411 4412 4413

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4414
            attrs={"tokens": ignored_tokens})
4415 4416 4417 4418 4419
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4420
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4421
            attrs={"tokens": ignored_tokens})
4422 4423
        label = erased_label

4424
    # edit distance op
X
Xin Pan 已提交
4425 4426
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4427 4428 4429 4430
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4431 4432
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4433 4434
        attrs={"normalized": normalized})

4435
    return edit_distance_out, sequence_num
4436 4437 4438 4439 4440


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4441

Y
ying 已提交
4442 4443 4444 4445
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4463
        input.lod = [[4, 4]]
W
whs 已提交
4464 4465
      
        Computation:
4466

W
whs 已提交
4467 4468 4469 4470 4471 4472
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4473 4474 4475 4476 4477

        output.data = [[2],
                       [1],
                       [3]]

4478
        output.lod = [[2, 1]]
4479

W
whs 已提交
4480

4481 4482
    Args:

Y
ying 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4492
        name (str): The name of this layer. It is optional.
4493 4494

    Returns:
W
whs 已提交
4495 4496 4497 4498
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4499 4500 4501 4502 4503

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4504

4505
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4506
    """
4507
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4508
    _, topk_indices = topk(input, k=1)
4509 4510

    # ctc align op
X
Xin Pan 已提交
4511
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4512 4513 4514
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4515
        outputs={"Output": [ctc_out]},
4516 4517
        attrs={"merge_repeated": True,
               "blank": blank})
4518
    return ctc_out
4519 4520


W
Wu Yi 已提交
4521
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4522
    """
4523 4524
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4525
    to compute Connectionist Temporal Classification (CTC) loss.
4526 4527
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4528 4529 4530
    input tensor.

    Args:
4531
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4532 4533 4534 4535
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4536
       label (Variable): The ground truth of variable-length sequence,
4537 4538 4539
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4540 4541
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4542 4543 4544
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4545
         follewed by a mean_op.
W
Wu Yi 已提交
4546
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4547 4548

    Returns:
4549 4550
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4551 4552

    Examples:
4553

W
wanghaoshuang 已提交
4554
        .. code-block:: python
4555

4556 4557 4558
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4559 4560

    """
F
fengjiayi 已提交
4561
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4562 4563
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4564 4565 4566 4567 4568 4569
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4570 4571 4572 4573 4574
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4575
    return loss_out
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4591 4592 4593
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4594 4595 4596 4597 4598
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4599

4600
            out.lod  = [[0, 1, 3]]
4601 4602 4603 4604

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4605 4606 4607 4608 4609 4610 4611
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4612 4613 4614

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4615 4616

    Returns:
4617

4618 4619 4620 4621 4622
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4623
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4624
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4625 4626
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4627
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4628 4629 4630 4631 4632 4633
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4634 4635


4636 4637 4638 4639
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4640 4641 4642 4643 4644 4645
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4646
        num_neg_samples=None,
4647 4648 4649
        name=None,
        sampler="uniform",
        custom_dist=None,
4650 4651
        seed=0,
        is_sparse=False):
4652 4653 4654 4655 4656 4657 4658
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4659 4660
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4661
            sample is 1.0.
C
chengduo 已提交
4662 4663 4664 4665 4666 4667 4668 4669 4670
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4671
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4672 4673
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4674 4675 4676
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4677
        custom_dist (float[]): A float[] with size=num_total_classes.
4678 4679 4680 4681
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4682
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4683

4684
    Returns:
Y
Yibing Liu 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4712 4713 4714 4715 4716 4717 4718 4719 4720

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4721

4722
    """
Y
Yang Yu 已提交
4723 4724 4725
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4726 4727

    dim = input.shape[1]
Y
Yang Yu 已提交
4728 4729 4730 4731 4732 4733
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4734
    inputs = {}
C
chengduo 已提交
4735 4736 4737 4738 4739 4740 4741
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4742 4743 4744
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4745

4746 4747 4748 4749
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4750 4751 4752 4753 4754 4755 4756

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4809 4810 4811 4812
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4813 4814 4815 4816 4817
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4818 4819
    attrs = {
        'num_total_classes': int(num_total_classes),
4820 4821
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4822 4823
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4824
    }
Y
Yang Yu 已提交
4825 4826 4827

    helper.append_op(
        type='nce',
C
chengduo 已提交
4828
        inputs=inputs,
Y
Yang Yu 已提交
4829 4830 4831 4832 4833 4834
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4835
    return cost / (num_neg_samples + 1)
4836 4837


C
chengduo 已提交
4838 4839
def hsigmoid(input,
             label,
4840
             num_classes,
C
chengduo 已提交
4841 4842
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4843
             name=None,
4844 4845 4846
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4847
             is_sparse=False):
W
weixing02 已提交
4848 4849
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4850
    process of language model. This operator organizes the classes into a
4851 4852
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4853 4854 4855 4856 4857 4858
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4859
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4860
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4861

4862 4863 4864 4865 4866 4867 4868 4869 4870
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4871
    Args:
M
minqiyang 已提交
4872
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4873 4874 4875 4876
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4877 4878 4879
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4891 4892 4893 4894 4895 4896 4897
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4898
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4899 4900
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4901 4902

    Returns:
J
JiabinYang 已提交
4903
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4904 4905 4906 4907 4908

    Examples:

        .. code-block:: python

G
guosheng 已提交
4909 4910 4911
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4912 4913 4914 4915
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4916 4917
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4918
    dim = input.shape[1]
4919
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4920 4921 4922
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4923 4924 4925 4926
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4927 4928
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4929 4930 4931
    else:
        pass

J
JiabinYang 已提交
4932 4933
    weights = None

4934
    if not is_custom:
J
JiabinYang 已提交
4935 4936 4937 4938 4939 4940 4941 4942
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4943
            shape=[num_classes, dim],
J
JiabinYang 已提交
4944 4945
            is_bias=False,
            dtype=input.dtype)
4946 4947 4948
    inputs = {
        "X": input,
        "W": weights,
4949 4950
        "PTable": path_table,
        "PathCode": path_code,
4951 4952
        "Label": label
    }
W
weixing02 已提交
4953
    if helper.bias_attr:
4954
        if not is_custom:
J
JiabinYang 已提交
4955 4956
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4957
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4958 4959 4960 4961 4962 4963
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4964
                shape=[num_classes, 1],
J
JiabinYang 已提交
4965 4966 4967
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4968 4969
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4970
        inputs=inputs,
W
weixing02 已提交
4971 4972
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4973 4974
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4975 4976 4977
    return out


Y
fix ci.  
ying 已提交
4978
def transpose(x, perm, name=None):
Y
ying 已提交
4979 4980 4981 4982 4983 4984 4985
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4986 4987 4988
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4989 4990 4991 4992 4993 4994 4995

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4996
            # use append_batch_size=False to avoid prepending extra
4997
            # batch size in shape
4998
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4999
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5000
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5001 5002
    """

Y
fix ci.  
ying 已提交
5003
    if len(perm) != len(x.shape):
Y
ying 已提交
5004 5005 5006
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5007 5008 5009 5010 5011 5012
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5013 5014

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5015 5016
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5017
    helper.append_op(
5018
        type='transpose2',
Y
fix ci.  
ying 已提交
5019
        inputs={'X': [x]},
5020 5021
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5022 5023
        attrs={'axis': perm})
    return out
5024 5025


5026 5027 5028 5029 5030 5031 5032
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5033
    """
5034 5035 5036 5037 5038 5039 5040
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5069 5070 5071 5072 5073 5074 5075 5076 5077
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5078 5079 5080
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5081 5082 5083 5084 5085
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5113 5114 5115
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5128
            output.dims = {8, 8}
5129

5130
            output.lod = [[4, 4]]
5131

T
Tink_Y 已提交
5132
    Examples:
5133 5134 5135

        .. code-block:: python

5136 5137
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5138 5139

    """
W
wanghaoshuang 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5150 5151 5152 5153 5154 5155 5156
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5157
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5158
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5159
    helper.append_op(
5160
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5161
    return out
5162 5163


Y
yuyang18 已提交
5164
@templatedoc()
5165
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5166 5167
    """
    ${comment}
5168 5169

    Args:
Y
yuyang18 已提交
5170
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5171 5172
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5173 5174 5175 5176 5177
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5178
        ${out_comment}.
5179 5180

    Examples:
Y
yuyang18 已提交
5181 5182 5183 5184
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5185 5186 5187 5188 5189 5190
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5191
    out = helper.create_variable_for_type_inference(dtype)
5192 5193 5194 5195 5196
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5197
    return helper.append_activation(out)
5198 5199


Y
yuyang18 已提交
5200
@templatedoc()
5201 5202
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5203 5204 5205 5206 5207 5208 5209
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5210 5211

    Args:
Y
yuyang18 已提交
5212 5213
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5214 5215

    Returns:
Y
yuyang18 已提交
5216
        ${out_comment}.
5217 5218
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5219 5220 5221 5222 5223

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5224
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5225 5226 5227 5228 5229 5230
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5231 5232


5233 5234 5235
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5236
                               ignore_index=kIgnoreIndex,
5237 5238
                               numeric_stable_mode=False,
                               return_softmax=False):
5239 5240
    """
    **Softmax With Cross Entropy Operator.**
5241

5242 5243 5244 5245
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5246

5247 5248 5249
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5250

5251 5252 5253
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5254

5255
    The equation is as follows:
5256

5257
    1) Hard label (one-hot label, so every sample has exactly one class)
5258

5259 5260 5261 5262
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5263

5264 5265 5266
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5267

5268 5269 5270 5271
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5272 5273 5274
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5275

S
sneaxiy 已提交
5276 5277 5278 5279 5280 5281 5282 5283
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5284 5285 5286 5287 5288 5289 5290 5291
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5292 5293
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5294
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5295 5296 5297
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5298 5299 5300
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5301
                                    stable algorithm. Default: False
5302
        return_softmax (bool): A flag indicating whether to return the softmax
5303
                               along with the cross entropy loss. Default: False
5304

5305
    Returns:
5306 5307 5308 5309
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5310
                              2-D tensor with shape [N x K].
5311 5312 5313 5314 5315 5316 5317

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5318 5319
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5320 5321
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5322 5323
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5324 5325 5326 5327 5328 5329
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5330 5331 5332 5333 5334
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5335 5336 5337 5338

    if return_softmax:
        return loss, softmax

5339 5340 5341 5342 5343
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5344 5345
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5346
    For each instance, it computes the smooth L1 loss element by element first
5347
    and then sums all the losses. So the shape of ouput Variable is
5348
    [batch_size, 1].
5349

5350 5351
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5352
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5353
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5354
            L1 loss op with same shape as :attr:`x`.
5355
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5356 5357
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5358
            by this tensor element by element.
5359
        outside_weight (Variable|None): A tensor with rank at least 2. This
5360 5361
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5362
            element by element.
5363
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5364 5365
           scalar with default value 1.0.

5366
    Returns:
5367
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5368 5369 5370 5371 5372

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5373 5374
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5375
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5376
            out = fluid.layers.smooth_l1(x=fc, y=label)
5377
    """
5378

5379
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5380 5381
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5394 5395 5396 5397


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5398
    This layer creates the one-hot representations for input indices.
5399 5400

    Args:
Y
Yibing Liu 已提交
5401 5402
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5403 5404

    Returns:
Y
Yibing Liu 已提交
5405
        Variable: The one-hot representations of input.
5406 5407

    Examples:
C
caoying03 已提交
5408
        .. code-block:: python
5409

Y
Yibing Liu 已提交
5410 5411
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5412 5413
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5414
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5415 5416 5417 5418 5419 5420
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5421 5422


Y
Yu Yang 已提交
5423
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5424
    """
Y
yi.wu 已提交
5425 5426 5427
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5428 5429 5430 5431 5432 5433

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5434 5435
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5436 5437 5438 5439 5440 5441

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5442 5443
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5444 5445
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5446 5447 5448 5449 5450
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5451
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5452
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5453 5454
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5455 5456
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5457 5458 5459
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5460 5461


5462
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5463
    """
C
caoying03 已提交
5464 5465
    Gives a new shape to the input Tensor without changing its data.

5466 5467 5468 5469 5470
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5471

5472
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5473

5474 5475 5476 5477
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5478
    2. 0 means the actual dimension value is going to be copied from the
5479 5480 5481 5482
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5483 5484

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5485
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5486
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5487

5488
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5489 5490
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5491 5492
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5493
    dimensions.
C
caoying03 已提交
5494

5495
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5496 5497 5498 5499
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5500 5501

    Args:
5502
        x(variable): The input tensor.
C
caoying03 已提交
5503 5504
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5505 5506 5507 5508 5509
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5510 5511
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5512 5513 5514 5515 5516 5517 5518
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5519
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5520

5521
    Returns:
G
guosheng 已提交
5522 5523 5524 5525
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5526

X
Xin Pan 已提交
5527 5528 5529
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5530 5531
    Examples:
        .. code-block:: python
G
guosheng 已提交
5532

5533
            data = fluid.layers.data(
5534
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5535
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5536
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5537 5538 5539
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5540
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5541 5542 5543 5544 5545
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5546

5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5562
    helper = LayerHelper("reshape2", **locals())
5563 5564
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5565
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5566
    helper.append_op(
5567
        type="reshape2",
X
Xin Pan 已提交
5568
        inputs=inputs,
D
dzhwinter 已提交
5569
        attrs={"shape": shape},
5570 5571
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5572

D
dzhwinter 已提交
5573
    return helper.append_activation(out)
5574

5575

5576
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5577
    """
M
minqiyang 已提交
5578 5579 5580
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5581
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5582

Y
Yibing Liu 已提交
5583 5584
    Examples:
    Case 1:
M
minqiyang 已提交
5585
      Given
Y
Yibing Liu 已提交
5586 5587 5588 5589 5590 5591 5592 5593
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5594
        and
Y
Yibing Liu 已提交
5595 5596 5597
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5598

Y
Yibing Liu 已提交
5599
    Args:
5600
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5601
        axes (list): List of integers, indicating the dimensions to be squeezed.
5602
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5603 5604 5605 5606 5607 5608 5609 5610

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5611
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5612 5613
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5614 5615
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5616
    helper.append_op(
5617
        type="squeeze2",
5618
        inputs={"X": input},
Y
Yibing Liu 已提交
5619
        attrs={"axes": axes},
5620 5621
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5622

5623 5624 5625
    return out


5626
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5627
    """
M
minqiyang 已提交
5628 5629 5630
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5631

M
minqiyang 已提交
5632 5633
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5634
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5635

Y
Yibing Liu 已提交
5636
    Args:
5637
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5638
        axes (list): List of integers, indicating the dimensions to be inserted.
5639
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5640 5641 5642 5643 5644 5645 5646 5647

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5648
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5649 5650
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5651 5652
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5653
    helper.append_op(
5654
        type="unsqueeze2",
5655
        inputs={"X": input},
Y
Yibing Liu 已提交
5656
        attrs={"axes": axes},
5657 5658
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5659

5660 5661
    return out

5662

Y
yangyaming 已提交
5663
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5664
    """
Y
Yibing Liu 已提交
5665
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5666 5667 5668 5669
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5670
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5671 5672 5673 5674 5675 5676

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5677
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5678 5679 5680
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5681
            target_lod: [4, 2]
Y
yangyaming 已提交
5682 5683

            then we get a 1-level LoDTensor:
5684
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5685 5686 5687 5688 5689 5690
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5691
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5692 5693 5694 5695
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5696
                y.data = [[2, 4]]
Y
yangyaming 已提交
5697 5698 5699
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5700
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5701 5702 5703 5704 5705 5706
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5707
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5708 5709 5710 5711
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5712
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5713 5714 5715 5716
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5717
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5718 5719 5720 5721 5722
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5723
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5724
                           from :attr:`y`.
Y
yangyaming 已提交
5725
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5726
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5727 5728

    Returns:
Y
Yibing Liu 已提交
5729
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5730 5731

    Raises:
Y
Yibing Liu 已提交
5732
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5742
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5768
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5797 5798
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5811 5812 5813
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5827 5828 5829 5830


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5831
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5832
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5833

G
guosheng 已提交
5834 5835 5836 5837
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5860
                         The length of :attr:paddings must be
G
guosheng 已提交
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5871

G
guosheng 已提交
5872 5873 5874 5875 5876 5877
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5878
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5879 5880 5881 5882 5883 5884 5885
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5886 5887


C
chengduo 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5919 5920
		And
            pad_value = -1,
C
chengduo 已提交
5921

T
Tink_Y 已提交
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5957
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5958 5959 5960 5961 5962 5963 5964 5965 5966
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5967 5968 5969 5970 5971 5972 5973
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5974 5975
    called label-smoothing regularization (LSR).

5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5999
                              be :math:`(1, class\_num)`.
6000 6001
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6002
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6022
    smooth_label = helper.create_variable_for_type_inference(dtype)
6023 6024 6025 6026 6027 6028 6029
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6030 6031


W
wopeizl 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6068 6069


J
jerrywgz 已提交
6070 6071 6072 6073 6074 6075
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6076 6077
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6094 6095 6096
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6097 6098 6099 6100 6101 6102
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6103
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6144 6145
        .. code-block:: python

W
whs 已提交
6146 6147 6148 6149
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6150
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6151 6152 6153 6154 6155 6156
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6157 6158


6159 6160 6161 6162
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6163 6164
                 resample='BILINEAR',
                 actual_shape=None):
6165
    """
Q
qiaolongfei 已提交
6166
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6167

6168
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6169 6170 6171
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6172

6173
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6174

6175
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6176

6177
    Args:
6178
        input (Variable): The input tensor of image resize layer,
6179 6180
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6181
        out_shape(list|tuple|Variable|None): Output shape of image resize
6182 6183
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6184
        scale(float|None): The multiplier for the input height or width.
6185 6186 6187
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6188 6189
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6190
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6191
                       currently.
6192
                       Default: 'BILINEAR'
6193 6194 6195
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6196
                                :attr:`out_shape` and :attr:`scale` specifying
6197 6198 6199 6200 6201 6202 6203
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6204 6205
                                constructing stage.
                                Default: None
6206 6207

    Returns:
Q
update  
qiaolongfei 已提交
6208 6209
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6210

6211 6212 6213
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6214
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6215 6216 6217 6218
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6219 6220 6221
    Examples:
        .. code-block:: python

6222
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6223
    """
6224 6225 6226 6227
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6228 6229
    if resample not in resample_methods:
        raise ValueError(
6230
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6231
        )
6232
    resample_type = resample_methods[resample]
6233
    if out_shape is None and scale is None:
6234
        raise ValueError("One of out_shape and scale must not be None.")
6235
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6236
    dtype = helper.input_dtype()
6237 6238 6239 6240

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6241 6242 6243
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6244
    if out_shape is not None:
6245 6246 6247 6248
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6249
            inputs['OutSize'] = out_shape
6250 6251 6252 6253 6254 6255 6256 6257
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6258 6259 6260 6261
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6262 6263 6264 6265 6266
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6267
    out = helper.create_variable_for_type_inference(dtype)
6268
    helper.append_op(
6269
        type='{}_interp'.format(resample_type),
6270
        inputs=inputs,
6271
        outputs={"Out": out},
6272 6273 6274
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6275
    return out
F
stash  
fengjiayi 已提交
6276 6277


6278
@templatedoc(op_type="bilinear_interp")
6279 6280 6281 6282 6283
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6284
    """
6285 6286
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6287 6288
    in priority order.

6289 6290 6291 6292
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6293 6294
    again in the other direction.

6295
    For details of bilinear interpolation, please refer to Wikipedia:
6296
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6297 6298 6299 6300 6301

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6302

Y
yuyang18 已提交
6303 6304 6305 6306 6307
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6308 6309 6310
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6311
                                :attr:`out_shape` and :attr:`scale` specifying
6312 6313 6314 6315 6316 6317 6318
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6319 6320
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6321 6322 6323

    Returns:
        ${out_comment}.
6324 6325 6326 6327 6328

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6329 6330
    """

6331
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6332 6333


6334
@templatedoc(op_type="nearest_interp")
6335 6336 6337 6338 6339
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6340
    """
6341
    Resize input by performing nearest neighbor interpolation in both the
6342 6343
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6344 6345
    out_shape and scale in priority order.

6346
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6347
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6348 6349 6350 6351 6352

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6353

Y
yuyang18 已提交
6354 6355 6356 6357 6358
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6359 6360 6361
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6362
                                :attr:`out_shape` and :attr:`scale` specifying
6363 6364 6365 6366 6367 6368 6369
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6370 6371
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6372 6373 6374

    Returns:
        ${out_comment}.
6375 6376 6377 6378 6379

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6380 6381
    """

6382
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6383 6384 6385 6386


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6387 6388 6389
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6390 6391 6392 6393 6394 6395 6396
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6397
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6398

6399
    Returns:
Q
update  
qiaolongfei 已提交
6400
        Variable: The output is a 4-D tensor of the shape
6401
        (num_batches, channls, out_h, out_w).
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6412 6413 6414
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6415 6416 6417
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6418 6419
def gather(input, index):
    """
Q
qiaolongfei 已提交
6420 6421
    **Gather Layer**

6422
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6423 6424 6425 6426
    of X indexed by `index` and concatenate them together.

    .. math::

6427
        Out = X[Index]
W
whs 已提交
6428 6429 6430 6431 6432 6433 6434


    .. code-block:: text


                Given:

6435 6436
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6447
        input (Variable): The source input with rank>=1.
W
whs 已提交
6448 6449 6450 6451 6452 6453
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6454

W
whs 已提交
6455 6456 6457 6458 6459 6460
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6461
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6462 6463 6464 6465 6466 6467 6468 6469
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6501
    out = helper.create_variable_for_type_inference(dtype)
6502 6503 6504 6505 6506 6507 6508 6509 6510
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6561
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6584

6585 6586 6587
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6588
    """
F
stash  
fengjiayi 已提交
6589
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6590
    dtype = x.dtype
X
Xin Pan 已提交
6591
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6592
    if seed is None:
6593
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6594
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6595
    if isinstance(seed, int):
F
fengjiayi 已提交
6596 6597 6598 6599 6600
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6601 6602 6603 6604
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6605
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6606 6607
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6608 6609
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6610
    return out
W
whs 已提交
6611 6612


6613
def log(x, name=None):
W
wanghaoshuang 已提交
6614 6615 6616 6617 6618
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6619
        Out = \\ln(x)
W
wanghaoshuang 已提交
6620 6621

    Args:
6622
        x (Variable): Input tensor.
6623 6624
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6625 6626 6627 6628 6629 6630 6631 6632

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6633
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6634 6635
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6636
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6637
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6638
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6639 6640 6641
    return out


6642
def relu(x, name=None):
W
wanghaoshuang 已提交
6643 6644
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6645
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6646 6647 6648 6649
    the tensor elementwise.

    .. math::

6650
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6651 6652

    Args:
6653
        x (Variable): The input tensor.
6654 6655
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6656 6657 6658 6659 6660 6661 6662 6663

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6664
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6665 6666
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6667
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6668
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6669 6670
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6671
    return out
6672 6673


C
chengduo 已提交
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6715 6716 6717
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6718 6719 6720 6721
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6722
    .. math::
6723 6724

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6725

6726
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6727 6728 6729 6730 6731
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6732
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6733
                           Its shape should be the same as input.
6734
        num_classes (int): The possible number of labels.
W
whs 已提交
6735 6736 6737 6738

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6739
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6740 6741 6742 6743

    Examples:

        .. code-block:: python
6744

W
whs 已提交
6745 6746 6747 6748
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6749 6750 6751
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6752 6753
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6754 6755
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6756
        outputs={
W
whs 已提交
6757 6758 6759
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6760 6761 6762
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6831
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6832 6833 6834 6835 6836

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6837
            isinstance(shape, Variable)):
6838 6839 6840 6841 6842
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6843
    out = helper.create_variable_for_type_inference(x.dtype)
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6861 6862


W
whs 已提交
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6880

W
whs 已提交
6881
              out_shape = [2, 3, 5, 5]
6882

W
whs 已提交
6883
          Step 1:
6884

W
whs 已提交
6885 6886 6887
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6888

W
whs 已提交
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6959
            isinstance(out_shape, Variable)):
W
whs 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6981 6982 6983 6984 6985 6986 6987 6988
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6989

6990 6991
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6992

6993 6994 6995 6996
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6997

6998 6999 7000 7001 7002
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7003 7004 7005

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7041
    out = helper.create_variable_for_type_inference("float32")
7042 7043 7044 7045 7046 7047 7048 7049

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7050 7051


M
minqiyang 已提交
7052 7053
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7054
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7055
    which compares left score and right score passed in.
M
minqiyang 已提交
7056
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7057 7058 7059 7060 7061 7062

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7063
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7064 7065
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7066
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7067 7068 7069
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7070
       Variable: The ranking loss.
M
minqiyang 已提交
7071
    Raises:
M
minqiyang 已提交
7072
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7073 7074 7075 7076 7077 7078 7079
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7080
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7081 7082 7083 7084 7085 7086
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7087 7088
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7112
        .. code-block:: text
W
whs 已提交
7113

T
Tink_Y 已提交
7114
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7115

T
Tink_Y 已提交
7116 7117
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7118

T
Tink_Y 已提交
7119
	      Case 0:
M
minqiyang 已提交
7120

T
Tink_Y 已提交
7121 7122 7123
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7124

T
Tink_Y 已提交
7125 7126 7127
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7128

T
Tink_Y 已提交
7129
	      Case 1:
M
minqiyang 已提交
7130

T
Tink_Y 已提交
7131 7132
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7133

T
Tink_Y 已提交
7134 7135 7136
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7137

T
Tink_Y 已提交
7138
	      Case 2:
M
minqiyang 已提交
7139

T
Tink_Y 已提交
7140 7141
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7142

T
Tink_Y 已提交
7143 7144 7145
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7146 7147


W
whs 已提交
7148 7149
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7150
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7174
    out = helper.create_variable_for_type_inference(dtype)
7175 7176 7177 7178 7179 7180 7181 7182 7183
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7184
    helper.append_op(
7185
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7186 7187 7188 7189

    return out


7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7202 7203 7204 7205 7206

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7207 7208
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7209 7210
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7211
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7232 7233 7234 7235 7236

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7237 7238
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7239 7240
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7241
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7262 7263 7264 7265 7266

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7267 7268
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7269 7270
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7271
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7293 7294 7295 7296 7297

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7298
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7299
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7300 7301
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7302
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7325 7326 7327 7328 7329

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7330 7331
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7332 7333
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7334
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7356 7357 7358 7359 7360

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7361 7362
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7363 7364
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7365
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7366 7367 7368 7369 7370 7371 7372 7373
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7374 7375 7376 7377
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7378
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7379 7380 7381

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7382
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7383
          weight (alpha).
J
jerrywgz 已提交
7384
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7385 7386 7387
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7388
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7389
          will be named automatically.
J
jerrywgz 已提交
7390 7391 7392 7393 7394 7395 7396 7397

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7398
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7412
        attr=helper.param_attr,
J
jerrywgz 已提交
7413 7414 7415 7416
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7417
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7418 7419 7420 7421 7422 7423 7424 7425 7426
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7427 7428 7429 7430 7431 7432 7433 7434 7435 7436
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7437
    Returns:
7438
        output(${out_type}): ${out_comment}
7439 7440 7441 7442 7443 7444 7445

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7446 7447
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7448
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7467
    Returns:
7468
        output(${out_type}): ${out_comment}
7469 7470 7471 7472 7473 7474 7475

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7476 7477
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7478
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7496
    Returns:
7497
        output(${out_type}): ${out_comment}
7498 7499 7500 7501 7502 7503 7504

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7505 7506
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7507
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7508 7509 7510 7511 7512 7513 7514 7515
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7529

7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7540 7541
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7557
        ValueError: If axis is not in range [0, rank(x)].
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7574 7575
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7576
    helper.append_op(
7577
        type='flatten2',
7578
        inputs={"X": x},
7579 7580
        outputs={'Out': out,
                 'XShape': x_shape},
7581 7582
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7583 7584


C
chenweihang 已提交
7585
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7586
    """
C
chenweihang 已提交
7587
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7588
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7589 7590
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7591

C
chenweihang 已提交
7592 7593 7594 7595
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7596
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7597 7598 7599 7600 7601 7602
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7603
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7604 7605 7606
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7607 7608 7609
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7621 7622
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7623 7624 7625 7626 7627 7628
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7629
    return out
7630

7631

S
sneaxiy 已提交
7632 7633 7634 7635 7636 7637 7638 7639 7640
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7641

S
sneaxiy 已提交
7642
    .. math::
7643

S
sneaxiy 已提交
7644 7645 7646
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7647
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7648 7649 7650 7651
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7652 7653 7654
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7655 7656
    Returns:
        Variable: The output sequence mask.
7657

S
sneaxiy 已提交
7658 7659
    """

Q
qingqing01 已提交
7660
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7661
    if name is None:
X
Xin Pan 已提交
7662
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7663
    else:
X
Xin Pan 已提交
7664
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7665

Q
qingqing01 已提交
7666 7667 7668
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7669 7670
        outputs={'Y': out},
        attrs={
7671
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7672 7673 7674
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7675 7676


X
Xin Pan 已提交
7677
def stack(x, axis=0):
S
sneaxiy 已提交
7678 7679 7680 7681
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7682 7683 7684 7685 7686 7687 7688

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7689
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7690
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7691 7692

    Args:
7693
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7694
        axis (int|None): The axis along which all inputs are stacked.
7695

S
sneaxiy 已提交
7696 7697
    Returns:
        Variable: The stacked variable.
7698

S
sneaxiy 已提交
7699 7700
    """

X
Xin Pan 已提交
7701 7702 7703 7704 7705 7706
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7707
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7708
    helper.append_op(
S
sneaxiy 已提交
7709 7710
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7711

X
Xin Pan 已提交
7712
    return out
D
dzhwinter 已提交
7713 7714 7715 7716 7717 7718 7719


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7720

D
dzhwinter 已提交
7721 7722 7723
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7724
    raised.
D
dzhwinter 已提交
7725 7726

    Args:
M
minqiyang 已提交
7727
        x (Variable): Input variable.
D
dzhwinter 已提交
7728 7729
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7730

D
dzhwinter 已提交
7731 7732
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7733

D
dzhwinter 已提交
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7745
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7746 7747 7748 7749 7750 7751 7752 7753

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7766

W
whs 已提交
7767 7768 7769 7770
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7771

W
whs 已提交
7772
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7773

W
whs 已提交
7774
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7775

W
whs 已提交
7776 7777 7778 7779
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7780

W
whs 已提交
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7797
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7798 7799 7800 7801 7802 7803
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7804 7805


G
fix  
gongweibao 已提交
7806 7807 7808
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7809
@templatedoc()
G
fix  
gongweibao 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7819
    ${comment}
G
fix  
gongweibao 已提交
7820 7821

    Args:
G
gongweibao 已提交
7822 7823 7824
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7825
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7826 7827 7828
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7829 7830
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7831
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7832

7833 7834 7835 7836 7837
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7838 7839 7840
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7841
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7858 7859


G
gongweibao 已提交
7860
@templatedoc()
X
Xin Pan 已提交
7861
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7862
    """
G
gongweibao 已提交
7863
    ${comment}
G
fix  
gongweibao 已提交
7864 7865

    Args:
G
gongweibao 已提交
7866 7867 7868 7869
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7870 7871 7872
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7873
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7874

7875 7876 7877 7878
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7879 7880 7881
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7882
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7893
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7894 7895 7896 7897 7898
        })

    return out


G
gongweibao 已提交
7899
@templatedoc()
G
fix  
gongweibao 已提交
7900
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7901
    """
G
gongweibao 已提交
7902
    ${comment}
G
fix  
gongweibao 已提交
7903 7904

    Args:
G
gongweibao 已提交
7905 7906 7907 7908
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7909
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7910 7911

    Returns:
G
gongweibao 已提交
7912
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7913

7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7924 7925 7926
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7927
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7939
@templatedoc()
G
fix  
gongweibao 已提交
7940 7941 7942 7943 7944 7945 7946 7947 7948
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7949
    ${comment}
G
fix  
gongweibao 已提交
7950 7951

    Args:
G
gongweibao 已提交
7952 7953
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7954
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7955 7956 7957 7958
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7959
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7960 7961

    Returns:
G
gongweibao 已提交
7962
        out (Variable): ${out_comment}
7963 7964 7965 7966 7967 7968 7969 7970

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7971 7972 7973
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7974
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7993
@templatedoc()
X
Xin Pan 已提交
7994
def sum(x):
G
fix  
gongweibao 已提交
7995
    """
G
gongweibao 已提交
7996
    ${comment}
G
fix  
gongweibao 已提交
7997 7998

    Args:
G
gongweibao 已提交
7999
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8000 8001

    Returns:
G
gongweibao 已提交
8002
        out (Variable): ${out_comment}
8003 8004 8005 8006 8007 8008

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8009 8010 8011
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8012 8013
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8014 8015 8016 8017
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8018
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8019 8020 8021 8022

    return out


G
gongweibao 已提交
8023
@templatedoc()
G
fix  
gongweibao 已提交
8024 8025
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8026
    ${comment}
G
fix  
gongweibao 已提交
8027 8028

    Args:
G
gongweibao 已提交
8029 8030 8031 8032
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8033 8034

    Returns:
G
gongweibao 已提交
8035
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8036

8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8048 8049 8050
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8051 8052
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8064
@templatedoc()
G
fix  
gongweibao 已提交
8065 8066
def shape(input):
    """
G
gongweibao 已提交
8067
    ${comment}
G
fix  
gongweibao 已提交
8068 8069

    Args:
G
gongweibao 已提交
8070
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8071 8072

    Returns:
G
gongweibao 已提交
8073
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8074

8075 8076 8077 8078 8079 8080
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8081 8082 8083
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8084 8085
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8086
    helper.append_op(
G
fix  
gongweibao 已提交
8087
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8088 8089

    return out
G
merge  
gongweibao 已提交
8090 8091


S
sneaxiy 已提交
8092 8093 8094 8095 8096 8097 8098 8099
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8100 8101
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8102
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8103 8104 8105
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8106

S
sneaxiy 已提交
8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8118
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8119 8120 8121 8122 8123 8124 8125 8126
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8127
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8128
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8129 8130 8131 8132 8133 8134

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8135
    if name is None:
X
Xin Pan 已提交
8136
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8137 8138 8139
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8150
    return helper.append_activation(out)
S
sneaxiy 已提交
8151 8152


X
Xin Pan 已提交
8153
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8154 8155 8156
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8157
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8158 8159 8160
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8161
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8162 8163 8164
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8165
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8166 8167 8168
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8169
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8170 8171 8172
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8173
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8174 8175 8176
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8177
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8189 8190
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8191
        ])
M
minqiyang 已提交
8192 8193


8194
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8195 8196
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8197 8198
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8199 8200 8201

    if out is None:
        if name is None:
X
Xin Pan 已提交
8202
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8218
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8230 8231 8232 8233 8234 8235 8236 8237 8238

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8239 8240 8241 8242 8243 8244 8245
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8246
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8258 8259 8260 8261 8262 8263 8264 8265 8266

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8267 8268 8269 8270 8271 8272 8273
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8274
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8286 8287 8288 8289 8290 8291 8292 8293 8294

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8295 8296 8297 8298 8299 8300 8301
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8302
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8313 8314 8315 8316 8317 8318 8319

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8320 8321 8322 8323
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8339 8340 8341 8342 8343 8344 8345

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8346 8347 8348 8349 8350
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8351 8352 8353 8354
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8378 8379 8380 8381 8382 8383 8384

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8385 8386 8387 8388 8389
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8390 8391 8392 8393
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8394 8395 8396 8397 8398 8399 8400 8401

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8420
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8421 8422 8423 8424 8425 8426 8427 8428 8429 8430
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8473
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8474 8475 8476 8477 8478 8479 8480 8481 8482
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8483 8484
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8485 8486 8487 8488 8489 8490
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8491 8492 8493 8494
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8495 8496 8497 8498 8499 8500
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8501
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8502 8503 8504 8505 8506 8507 8508 8509 8510
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8511
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8512 8513 8514 8515 8516 8517 8518 8519
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8520
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8541
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8552 8553


J
JiabinYang 已提交
8554
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8555
    """
J
JiabinYang 已提交
8556
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8557 8558 8559

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8560
    The attr blocksize indicates the input block size.
8561 8562

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8563
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8564 8565

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8566
    (but keeping all data)
J
JiabinYang 已提交
8567

J
JiabinYang 已提交
8568
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8569
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8570 8571 8572 8573 8574
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8575
    Args:
J
JiabinYang 已提交
8576
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8577
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8578 8579

    Returns:
J
JiabinYang 已提交
8580
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8581 8582

    Raises:
J
JiabinYang 已提交
8583
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8584 8585 8586 8587 8588 8589

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8590
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8591
                x=data, blocksize=2)
J
JiabinYang 已提交
8592 8593
    """

J
JiabinYang 已提交
8594
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8595

J
JiabinYang 已提交
8596 8597
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8598 8599

    if name is None:
J
JiabinYang 已提交
8600 8601
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8602 8603 8604 8605 8606
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8607
        type="space_to_depth",
J
JiabinYang 已提交
8608
        inputs={"X": x},
J
JiabinYang 已提交
8609
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8610
        outputs={"Out": out})
J
JiabinYang 已提交
8611 8612
    return out

J
JiabinYang 已提交
8613

S
sneaxiy 已提交
8614 8615
@templatedoc()
def sequence_reverse(x, name=None):
8616
    """
S
sneaxiy 已提交
8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8628
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8629 8630 8631 8632 8633 8634 8635 8636 8637 8638
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8639 8640


8641 8642 8643 8644 8645 8646
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8647

8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8667
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8680 8681


B
barrierye 已提交
8682
def similarity_focus(input, axis, indexes, name=None):
8683
    """
B
barrierye 已提交
8684
    SimilarityFocus Operator
B
barrierye 已提交
8685 8686

    Generate a similarity focus mask with the same shape of input using the following method:
8687 8688 8689
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8690
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8691 8692 8693 8694 8695 8696 8697
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8698
       each index.
B
barrierye 已提交
8699 8700 8701 8702
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8752
    Args:
8753
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8754
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8755
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8756
            1, 2 or 3.
B
barrierye 已提交
8757
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8758 8759

    Returns:
8760
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8761
            as the input.
8762

B
barrierye 已提交
8763 8764 8765
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8766 8767
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8780 8781 8782 8783 8784
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8785 8786 8787 8788 8789 8790 8791
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8792 8793


M
minqiyang 已提交
8794 8795
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8796 8797
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8798 8799
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8838
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8839
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8840 8841 8842 8843 8844 8845 8846 8847 8848

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8849 8850
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8851 8852
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8853 8854 8855 8856 8857 8858 8859
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8860 8861


D
dengkaipeng 已提交
8862
@templatedoc()
8863 8864
def grid_sampler(x, grid, name=None):
    """
8865
    This operation samples input X by using bilinear interpolation based on
8866
    flow field grid, which is usually gennerated by affine_grid. The grid of
8867 8868 8869 8870
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8871
    interpolation value of 4 nearest corner points.
8872 8873 8874 8875 8876 8877 8878 8879

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8880
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8910 8911

    Args:
8912 8913 8914
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8915 8916

    Returns:
8917
        out(Variable): Output of shape [N, C, H, W] data samples input X
8918 8919 8920 8921 8922 8923 8924 8925 8926
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8927 8928 8929 8930 8931 8932 8933 8934 8935
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8936
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8937 8938
    ipts = {'X': x, 'Grid': grid}

8939
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8940 8941 8942
    return out


G
gmcather 已提交
8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9047
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9048

Q
Qiao Longfei 已提交
9049
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9050 9051 9052
    For example:

    .. math::
9053
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9054

Q
Qiao Longfei 已提交
9055
    In this formula:
9056 9057
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9058
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9059
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9060 9061 9062
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9063 9064
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9065 9066 9067
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9068
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9069
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9070
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9071 9072 9073 9074
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9075
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9076 9077 9078 9079

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9080
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9081 9082
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9083
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9084 9085 9086 9087

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9088
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
S
sneaxiy 已提交
9129 9130


S
sneaxiy 已提交
9131
class PyFuncRegistry(object):
S
sneaxiy 已提交
9132 9133 9134
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9135
        if func is None or not callable(func):
S
sneaxiy 已提交
9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146
            raise TypeError('func must be a Python function')

        self._func = func
        # find named args using reflection 
        self._named_args = inspect.getargspec(self._func)[0]
        self._id = core.append_python_callable_object_and_return_id(self)
        '''
        Why record self here?

        1. For debug usage. Users can call 
           :code:`py_func.registered_func(idx)` method 
S
sneaxiy 已提交
9147
           to find the registered function corresponding
S
sneaxiy 已提交
9148 9149 9150 9151 9152 9153 9154 9155
           to :code:`idx`. 

        2. For increasing reference count of self. 
           It seems that to release Python object 
           whose reference count is 1 would cause
           segmentation fault error in C++ side. 
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9156
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
        kwargs = dict()
        idx = 0
        for arg in self._named_args:
            kwargs[arg] = args[idx]
            idx += 1

S
sneaxiy 已提交
9177 9178 9179
        func_ret = self._func(*args[idx:], **kwargs)
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9180 9181

        ret = []
S
sneaxiy 已提交
9182 9183 9184
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9185 9186
                continue

S
sneaxiy 已提交
9187 9188
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9189

S
sneaxiy 已提交
9190 9191 9192
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9193

S
sneaxiy 已提交
9194
        return tuple(ret)
S
sneaxiy 已提交
9195 9196


S
sneaxiy 已提交
9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
    
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
    :code:`out` and :code:`x` would be infered automatically.

    The orders of inputs of :code:`backward_func` would be: forward input
    :code:`x`, forward output :code:`out` and backward input gradient of
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
            should create :code:`out` beforehand. 
        backward_func (callable|None): backward Python function.
                                       None means no backward. Default None. 
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
            Variables that are not needed in :code:`backward_func` inputs. 
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
            Only useful when :code:`backward_func` is not None. Default None. 

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
    """
S
sneaxiy 已提交
9235
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9236 9237 9238
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9239
        x = [x]
S
sneaxiy 已提交
9240 9241
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9242

S
sneaxiy 已提交
9243 9244 9245
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9246
        out_list = [out]
S
sneaxiy 已提交
9247
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9248
        out_list = out
S
sneaxiy 已提交
9249 9250 9251
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9252

S
sneaxiy 已提交
9253 9254
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9255
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9256 9257

    for each_out in out_list:
S
sneaxiy 已提交
9258 9259
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9260 9261
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9262

S
sneaxiy 已提交
9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9278 9279 9280 9281

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9282 9283
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9284 9285 9286
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9287
        })
S
sneaxiy 已提交
9288
    return out
S
sneaxiy 已提交
9289 9290 9291


# For debug usage
S
sneaxiy 已提交
9292 9293 9294 9295
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out