nn.py 123.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
Yu Yang 已提交
25 26

__all__ = [
Y
ying 已提交
27 28 29
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
30
    'dynamic_lstmp',
G
guosheng 已提交
31
    'dynamic_gru',
Y
ying 已提交
32 33 34 35 36 37 38 39 40 41
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
42 43
    'sequence_softmax',
    'softmax',
Y
ying 已提交
44 45 46 47 48 49 50 51 52 53
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
54
    'reduce_prod',
Y
ying 已提交
55 56 57 58
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
59 60
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
61 62 63 64
    'l2_normalize',
    'matmul',
    'warpctc',
    'sequence_reshape',
65
    'transpose',
66
    'im2sequence',
67
    'nce',
Q
Qiao Longfei 已提交
68
    'beam_search',
69
    'row_conv',
70
    'multiplex',
G
guosheng 已提交
71
    'layer_norm',
72 73
    'softmax_with_cross_entropy',
    'smooth_l1',
74
    'one_hot',
Y
Yu Yang 已提交
75
    'autoincreased_step_counter',
Y
yangyaming 已提交
76
    'lod_reset',
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84 85
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
86
       name=None):
Y
Yu Yang 已提交
87
    """
88
    **Fully Connected Layer**
Y
Yu Yang 已提交
89

C
caoying03 已提交
90
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
91 92 93 94 95 96
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
97
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
98

C
caoying03 已提交
99
    This process can be formulated as follows:
100 101 102

    .. math::

103
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
104 105 106

    In the above equation:

C
caoying03 已提交
107 108 109 110
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
111
    * :math:`Act`: The activation function.
C
caoying03 已提交
112
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
113 114

    Args:
R
ranqiu 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
133

134
    Returns:
R
ranqiu 已提交
135
        A tensor variable storing the transformation result.
136 137

    Raises:
C
caoying03 已提交
138
        ValueError: If rank of the input tensor is less than 2.
139 140 141 142

    Examples:
        .. code-block:: python

C
caoying03 已提交
143
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
144
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
145
    """
C
caoying03 已提交
146

C
caoying03 已提交
147
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155 156

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
157

Y
Yu Yang 已提交
158 159 160 161 162
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
Q
Qiao Longfei 已提交
163 164
            inputs={"X": input_var,
                    "Y": w},
Y
Yu Yang 已提交
165
            outputs={"Out": tmp},
C
caoying03 已提交
166 167
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
168 169 170 171 172 173 174 175 176 177
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
178
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
Y
Yu Yang 已提交
179 180 181 182
    # add activation
    return helper.append_activation(pre_activation)


183 184 185 186 187 188
def embedding(input,
              size,
              is_sparse=False,
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
189
    """
190 191
    **Embedding Layer**

192
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
193 194
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
195 196 197

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
198 199

    Args:
200 201 202 203 204 205 206
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
207 208
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
209 210
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
211
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
212

213 214 215
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
216

217 218
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
219

C
chengduoZH 已提交
220
          dict_size = len(dataset.ids)
221
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
222
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
223 224 225 226 227 228
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
229 230
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
231 232 233 234 235
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
236 237
        attrs={'is_sparse': is_sparse,
               'padding_idx': padding_idx})
Y
Yu Yang 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
251 252
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
253 254 255 256 257 258
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
259
    .. math::
Y
Yibing Liu 已提交
260

261
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
262

263
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
264

265
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
266

267 268 269
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
270

Y
Yibing Liu 已提交
271
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
272

273
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
274
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
275 276 277
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
278
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
279 280
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
281 282
    all of which have the same size as the cell output activation vector :math:`h`.

283 284 285 286
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
287 288 289
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
290 291 292
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
293 294 295
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
296 297

    Args:
298 299 300 301
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
302 303
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
304
        param_attr(ParamAttr|None): The parameter attribute for the learnable
305
                               hidden-hidden weights.
Y
Yibing Liu 已提交
306 307 308

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
309 310 311
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
312 313 314
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
315

316
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
317
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
318
                                - The shape is (1 x 4D).
319
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
320 321
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
322
                                - The shape is (1 x 7D).
323
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
324 325
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
326 327
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
328
                              "identity"], default "sigmoid".
329
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
330 331 332 333 334
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
335 336
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
337 338

    Returns:
Y
Yibing Liu 已提交
339 340
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
341

Y
Yibing Liu 已提交
342
    Examples:
Y
Yibing Liu 已提交
343 344
        .. code-block:: python

Y
Yibing Liu 已提交
345 346
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
347
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
348 349
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
350
    """
351

Y
Yu Yang 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
388 389 390 391 392 393 394 395 396 397 398
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
399 400
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
401 402 403
    """
    **Dynamic LSTMP Layer**

404 405 406 407 408 409
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
410 411 412 413 414

    The formula is as follows:

    .. math::

415
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
416

417
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
418

419
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
420

421
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
422

423
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
424

425
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
426

427
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
428

Y
Yibing Liu 已提交
429 430 431 432 433 434
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
435
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
436
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
437
          bias vector).
Y
Yibing Liu 已提交
438 439 440
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
441
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
442
    * :math:`h`: The hidden state.
443
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
444 445
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
446
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
447
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
448
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
449 450
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
451 452 453 454

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
455

Y
Yibing Liu 已提交
456 457 458 459 460 461 462 463 464 465 466 467
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
468
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
469 470
                               hidden-hidden weight and projection weight.

471 472
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
473 474
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
475 476
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
477 478
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
479 480 481 482 483 484
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
485
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
486 487 488
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
489
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        proj_activation(str): The activation for projection output.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
505 506
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
507 508

    Returns:
509 510
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
511 512 513 514 515
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
516
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
517 518
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
519 520 521
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
522 523 524 525
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
526
    """
527

Y
Yibing Liu 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
574 575 576 577 578 579 580 581 582 583 584
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

585
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
586
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
587

G
guosheng 已提交
588 589 590 591 592 593 594 595 596
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
597

G
guosheng 已提交
598
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
599

G
guosheng 已提交
600
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
601 602
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
603 604 605 606
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
607
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
608 609

    Args:
610 611
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
612
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
613
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
614 615
            is the hidden size.
        size(int): The dimension of the gru cell.
616
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
617 618
            hidden-hidden weight matrix. Note:

619
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
620
              :math:`D` is the hidden size.
621
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
622
              The first part are weights of the update gate and reset gate with
623
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
624
              candidate hidden state with shape :math:`(D \\times D)`.
625
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
626
            hidden-hidden bias.
627
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
628 629 630
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
631
        activation(str): The activation for candidate hidden state.
G
guosheng 已提交
632 633 634
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".

    Returns:
G
guosheng 已提交
635 636
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
637

G
guosheng 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
            size, size), 'The shape of h0 should be(%d, %d)' % (size, size)
        inputs['h0'] = h_0

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
681 682 683 684 685 686
def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
687
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
688
    """
689
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
690

691 692
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
693

694
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
695

696
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
697

698
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
699 700

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
701 702 703
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
704 705
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

706 707
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
708 709 710
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
711 712 713 714 715 716 717

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
718 719 720 721
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
722

723 724 725 726 727 728
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
729

730
             # assuming we have x_t_data and prev_hidden of size=10
731
             x_t = fluid.layers.fc(input=x_t_data, size=30)
732 733
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
754

Y
Yu Yang 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


782
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


808
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
822
def cos_sim(X, Y):
Y
Yu Yang 已提交
823 824 825 826
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
F
fengjiayi 已提交
827
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


F
fengjiayi 已提交
841
def dropout(x, dropout_prob, is_test=False, seed=None):
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
       x(variable): The input tensor.
       dropout_prob(float): Probability of setting units to zero.
       is_test(bool): A flag indicating whether it is in test phrase or not.
       seed(int): A Python integer used to create random seeds. If this
                  parameter is set to None, a random seed is used.
                  NOTE: If an integer seed is given, always the same output
                  units will be dropped. DO NOT use a fixed seed in training.

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
870
    helper = LayerHelper('dropout', **locals())
871 872 873 874 875 876 877
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
878 879 880 881 882 883
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
884 885 886
    return out


F
fengjiayi 已提交
887
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
888
    """
Y
Yibing Liu 已提交
889 890
    **Cross Entropy Layer**

891 892 893
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
894 895

    1) One-hot cross-entropy:
F
fengjiayi 已提交
896
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
897

Y
Yibing Liu 已提交
898
        .. math::
Y
yangyaming 已提交
899

Y
Yibing Liu 已提交
900 901 902
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
903 904
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
905 906 907 908 909

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
910
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
911 912 913
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
914 915
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
916
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
917

Y
Yibing Liu 已提交
918
    Args:
Y
yangyaming 已提交
919
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
920 921 922 923
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
924
        label (Variable|list): the ground truth which is a 2-D tensor. When
925 926 927 928
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
929
        soft_label (bool): a flag indicating whether to
930 931
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
932 933 934 935 936

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
937 938 939 940 941
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
942 943 944 945 946 947

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
948
    """
F
fengjiayi 已提交
949
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
950 951 952 953 954 955
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
956
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
957 958 959
    return out


F
fengjiayi 已提交
960
def square_error_cost(input, label):
Y
Yu Yang 已提交
961
    """
962 963
    **Square error cost layer**

964 965
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
966

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
G
guosheng 已提交
984
        Variable: The tensor variable storing the element-wise squared error \
985
                  difference of input and label.
986 987 988 989 990 991 992 993

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
994
    """
F
fengjiayi 已提交
995
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
996 997 998 999 1000 1001 1002 1003 1004
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1005 1006
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1007 1008 1009 1010 1011 1012 1013
    return square_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1014
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1015
    """
Y
yangyaming 已提交
1016
    This function computes and outputs the precision, recall and
1017
    F1-score of chunk detection.
Y
Yu Yang 已提交
1018
    """
F
fengjiayi 已提交
1019
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1020 1021 1022 1023 1024

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1025 1026 1027
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1028 1029 1030 1031 1032 1033 1034 1035

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1036 1037 1038 1039
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1040 1041 1042
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1043 1044
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1045
        })
1046 1047
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1057
                  act=None):
Y
Yu Yang 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1115 1116 1117
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1118 1119
           stride=1,
           padding=0,
Y
Yu Yang 已提交
1120 1121 1122
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1123
           use_cudnn=True,
1124
           use_mkldnn=False,
C
chengduoZH 已提交
1125
           act=None):
Y
Yu Yang 已提交
1126
    """
C
chengduoZH 已提交
1127 1128 1129
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1130 1131 1132
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1133 1134
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1135 1136 1137
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1138

1139
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1140

C
chengduoZH 已提交
1141 1142
    .. math::

C
refine  
chengduoZH 已提交
1143
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1144

C
chengduoZH 已提交
1145
    In the above equation:
C
chengduoZH 已提交
1146

1147 1148 1149 1150 1151
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1152 1153
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1154 1155 1156

    Example:

1157 1158 1159
        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
1160

1161
          Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
1162

1163 1164
        - Output:
          Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
refine  
chengduoZH 已提交
1165

C
chengduoZH 已提交
1166
        Where
1167 1168

        .. math::
C
chengduoZH 已提交
1169

C
chengduoZH 已提交
1170 1171
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1172 1173

    Args:
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of filter. It is as same as the output
           image channel.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       groups(int): The groups number of the Conv2d Layer. According to grouped
           convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
           the first half of the filters is only connected to the first half
           of the input channels, while the second half of the filters is only
           connected to the second half of the input channels. Default: groups=1
       param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
       bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       act(str): Activation type. Default: None
C
chengduoZH 已提交
1196 1197

    Returns:
G
guosheng 已提交
1198
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1199 1200
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1201
    Raises:
1202 1203
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1204

C
chengduoZH 已提交
1205 1206 1207
    Examples:
        .. code-block:: python

1208 1209 1210 1211
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1212 1213 1214 1215 1216
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1217 1218

    l_type = 'conv2d'
X
xzl 已提交
1219 1220
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1221
        l_type = 'depthwise_conv2d'
1222 1223 1224 1225

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1226 1227 1228 1229 1230 1231 1232
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1233 1234 1235
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
C
chengduoZH 已提交
1236

C
chengduoZH 已提交
1237 1238
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1256
        type=l_type,
Y
Yu Yang 已提交
1257 1258 1259 1260 1261
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1262 1263 1264 1265
        attrs={
            'strides': stride,
            'paddings': padding,
            'groups': groups,
1266 1267
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1268
        })
Y
Yu Yang 已提交
1269 1270 1271 1272 1273 1274

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1275
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1276
    """
Y
yangyaming 已提交
1277 1278 1279
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
1305

L
Luo Tao 已提交
1306 1307
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1308
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1309 1310 1311 1312 1313 1314 1315 1316
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1317

Y
yangyaming 已提交
1318
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1319 1320 1321 1322 1323
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
1324
    """
F
fengjiayi 已提交
1325
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1337 1338 1339 1340 1341
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1342 1343 1344
    return pool_out


F
fengjiayi 已提交
1345
def sequence_first_step(input):
L
Luo Tao 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1360

L
Luo Tao 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1370

Y
yangyaming 已提交
1371
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1372 1373 1374
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1375 1376 1377
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1378
def sequence_last_step(input):
L
Luo Tao 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1393

L
Luo Tao 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1403

Y
yangyaming 已提交
1404
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1405 1406 1407
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1408 1409 1410
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1411
def pool2d(input,
C
chengduoZH 已提交
1412 1413
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1414 1415
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1416
           global_pooling=False,
C
chengduoZH 已提交
1417
           use_cudnn=True,
1418
           ceil_mode=False,
1419
           use_mkldnn=False,
C
caoying03 已提交
1420
           name=None):
Y
Yu Yang 已提交
1421 1422 1423 1424 1425 1426 1427 1428
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1429

C
chengduoZH 已提交
1430 1431 1432 1433 1434
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1435 1436 1437 1438
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1439 1440
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1455
            "paddings": pool_padding,
1456
            "use_cudnn": use_cudnn,
1457 1458
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1471
               data_layout='NCHW',
1472 1473 1474
               name=None,
               moving_mean_name=None,
               moving_variance_name=None):
Y
Yu Yang 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1501
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1502

1503 1504 1505
    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name, initializer=Constant(0.0), trainable=False),
Q
QI JUN 已提交
1506
        shape=param_shape,
1507 1508 1509 1510 1511 1512 1513 1514
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False),
Q
QI JUN 已提交
1515
        shape=param_shape,
1516 1517
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1518 1519 1520 1521 1522 1523

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1524 1525
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1564
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1585
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1586
            normalization.
1587
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1588
            normalization.
1589
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1590
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1591
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1623
    if shift:
G
guosheng 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1648
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1669 1670 1671
                     padding=0,
                     stride=1,
                     dilation=1,
C
caoying03 已提交
1672
                     param_attr=None,
C
chengduoZH 已提交
1673
                     use_cudnn=True,
C
caoying03 已提交
1674
                     name=None):
Y
Yu Yang 已提交
1675
    """
1676 1677 1678 1679 1680 1681 1682 1683
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1684 1685
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1698 1699
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1714

1715 1716 1717 1718
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1719 1720

    Args:
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of the filter. It is as same as the output
           image channel.
       output_size(int|tuple|None): The output image size. If output size is a
           tuple, it must contain two integers, (image_H, image_W). This
           parameter only works when filter_size is None.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square. None if use output size to
           calculate filter_size.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       dilation(int|tuple): The dilation size. If dilation is a tuple, it must
           contain two integers, (dilation_H, dilation_W). Otherwise, the
           dilation_H = dilation_W = dilation. Default: dilation = 1.
1740 1741
       param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                              Default: None
1742 1743 1744 1745
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       name(str|None): A name for this layer(optional). If set None, the layer
           will be named automatically.
Y
Yu Yang 已提交
1746 1747

    Returns:
1748 1749 1750
       Variable: The tensor variable storing the convolution transpose result.

    Raises:
1751 1752
       ValueError: If the shapes of input, filter_size, stride, padding and
                   groups mismatch.
1753 1754 1755 1756

    Examples:
       .. code-block:: python

1757 1758 1759 1760
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1761 1762 1763 1764 1765 1766
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1767 1768 1769
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1770

C
chengduoZH 已提交
1771 1772 1773
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1774 1775 1776 1777 1778 1779 1780 1781
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1782 1783 1784 1785 1786

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1787
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1788 1789 1790
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
C
chengduoZH 已提交
1802 1803 1804 1805 1806 1807
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1808 1809

    return out
Y
yangyaming 已提交
1810 1811


C
caoying03 已提交
1812
def sequence_expand(x, y, name=None):
1813 1814
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1815
    explain how sequence_expand works:
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1844
                y.lod = [[0, 2, 3, 6]]
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
C
caoying03 已提交
1856 1857
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1868
            out = layers.sequence_expand(x=x, y=y)
1869
    """
Y
yangyaming 已提交
1870
    helper = LayerHelper('sequence_expand', input=x, **locals())
1871 1872 1873
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1874 1875
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1876
    return tmp
1877 1878


Q
Qiao Longfei 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
1911 1912 1913 1914
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1915
              param_attr=None,
C
caoying03 已提交
1916 1917
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1918 1919 1920 1921
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1922
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1923

1924
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1925

1926
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1927

1928
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1929 1930 1931

            h_t & = o_t tanh(c_t)

1932 1933 1934 1935 1936 1937
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1938 1939 1940

        .. math::

1941
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1942 1943 1944 1945 1946 1947 1948 1949

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1950
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1951 1952

    Args:
Y
yangyaming 已提交
1953 1954 1955 1956 1957 1958
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1959
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1960 1961
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1962 1963
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
1964 1965
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
1966 1967

    Returns:
Y
yangyaming 已提交
1968
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1969 1970

    Raises:
1971 1972 1973 1974
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1975 1976 1977 1978 1979 1980

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1981
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1982
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1983
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2000
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2001 2002 2003 2004
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2005 2006
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2007 2008 2009
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2010
    size = cell_t_prev.shape[1]
2011
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2012 2013
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2014
                param_attr=param_attr,
2015
                bias_attr=bias_attr)
Y
yangyaming 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2028
    return h, c
G
guosheng 已提交
2029 2030


C
caoying03 已提交
2031
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2032
    """
Y
yangyaming 已提交
2033
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2034 2035 2036

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2037 2038 2039 2040
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
2041
            the dimension to reduce is :math:`rank + dim`.
2042
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2043
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2044
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2045 2046
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2047 2048 2049

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2050

G
guosheng 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2075 2076


C
caoying03 已提交
2077
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2078
    """
Y
yangyaming 已提交
2079
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2080 2081 2082

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2083 2084 2085 2086
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
2087
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2088 2089
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2090
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2091 2092
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2093 2094 2095

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2096

G
guosheng 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2121 2122


C
caoying03 已提交
2123
def reduce_max(input, dim=None, keep_dim=False, name=None):
2124
    """
Y
yangyaming 已提交
2125
    Computes the maximum of tensor elements over the given dimension.
2126 2127 2128

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2129 2130 2131 2132
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2133
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2134 2135
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2136
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2137 2138
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2139 2140 2141

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2169
def reduce_min(input, dim=None, keep_dim=False, name=None):
2170
    """
Y
yangyaming 已提交
2171
    Computes the minimum of tensor elements over the given dimension.
2172 2173 2174

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2175 2176 2177 2178
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2179
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2180 2181
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2182
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2183 2184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2185 2186 2187

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2188

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2213 2214


2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (int|None): The dimension along which the product is performed. If
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
            the dimension to reduce is :math:`rank + dim`.
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2229
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2230
            layer will be named automatically.
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2245
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2246
                                     keep_dim=True)  # [[0.027], [0.0084]]
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2262
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2263
    """
C
caoying03 已提交
2264
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2265 2266 2267

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2268 2269 2270 2271 2272
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2273
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2274
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2275
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2276 2277
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2353
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2354 2355
    """

F
fengjiayi 已提交
2356 2357
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
            "dim": 1 if axis is None else axis,
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
2384
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
2402 2403


2404
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2405
    """
Y
ying 已提交
2406 2407 2408 2409
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2410

C
chengduoZH 已提交
2411
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2412
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2413

2414 2415 2416 2417 2418
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2419
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2420

C
chengduoZH 已提交
2421
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2422
      performs in the following way.
G
guosheng 已提交
2423

2424
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2425
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2426
        last two dimensions and a batched matrix multiply supporting broadcast
2427
        applies on the two tensors.
G
guosheng 已提交
2428

Y
ying 已提交
2429 2430
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2431
    removed after matrix multiplication.
G
guosheng 已提交
2432 2433 2434

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2435 2436 2437
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2438
        name(str|None): A name for this layer(optional). If set None, the layer
2439
            will be named automatically.
G
guosheng 已提交
2440 2441

    Returns:
2442
        Variable: The product Tensor variable.
G
guosheng 已提交
2443

G
guosheng 已提交
2444 2445 2446
    Examples:
        .. code-block:: python

2447
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2448 2449
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2450

2451 2452
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2453

2454 2455
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2456

2457 2458
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2459 2460 2461 2462

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2463 2464
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2465

Y
ying 已提交
2466
            # x: [M], y: [N]
2467
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2468
    """
Y
ying 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2481
            y_shape = y_shape + [1]
Y
ying 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2498
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2499
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2500
    helper.append_op(
2501 2502 2503 2504 2505 2506 2507
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2508 2509


W
wanghaoshuang 已提交
2510
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2511
                  name=None):
2512
    """
Y
ying 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2522

Y
ying 已提交
2523
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2524

Y
ying 已提交
2525 2526 2527 2528
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2529

Y
ying 已提交
2530 2531 2532
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2533

2534 2535 2536 2537 2538
    Args:

        input(Variable): The indices for hypothesis strings.

        label(Variable): The indices for reference strings.
W
wanghaoshuang 已提交
2539

Y
ying 已提交
2540 2541
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
2542

Y
ying 已提交
2543 2544
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2545

W
wanghaoshuang 已提交
2546
    Returns:
W
wanghaoshuang 已提交
2547
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2548 2549 2550 2551 2552

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2553 2554
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2555
            cost = fluid.layers.edit_distance(input=x,label=y)
2556
    """
2557
    helper = LayerHelper("edit_distance", **locals())
2558

2559
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2560
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2561 2562 2563 2564 2565 2566 2567
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2568
            attrs={"tokens": ignored_tokens})
2569 2570 2571 2572 2573 2574
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erase_label]},
W
wanghaoshuang 已提交
2575
            attrs={"tokens": ignored_tokens})
2576 2577
        label = erased_label

2578 2579
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2580
    sequence_num = helper.create_tmp_variable(dtype="int64")
2581 2582 2583 2584
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2585 2586
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2587 2588
        attrs={"normalized": normalized})

2589
    return edit_distance_out, sequence_num
2590 2591 2592 2593 2594


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2595 2596 2597 2598
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2628 2629 2630 2631 2632 2633
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
2634

Y
ying 已提交
2635 2636 2637
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2638 2639

    Returns:
2640
        Variable: CTC greedy decode result. If all the sequences in result were
2641
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2642 2643 2644 2645 2646

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2647

2648
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2649
    """
2650
    helper = LayerHelper("ctc_greedy_decoder", **locals())
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
    # top 1 op
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": 1})

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2666
        outputs={"Output": [ctc_out]},
2667 2668
        attrs={"merge_repeated": True,
               "blank": blank})
2669
    return ctc_out
2670 2671


F
fengjiayi 已提交
2672
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2673
    """
2674 2675
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2676
    to compute Connectionist Temporal Classification (CTC) loss.
2677 2678
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
2692
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
2693 2694
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
2695
       norm_by_times: (bool, default: false), whether to normalize
W
wanghaoshuang 已提交
2696
       the gradients by the number of time-step, which is also the
2697 2698
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2699 2700

    Returns:
2701 2702
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2703 2704 2705

    Examples:
        .. code-block:: python
2706 2707 2708 2709
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2710 2711 2712
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2713
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
       input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
                with shape being [N, M] where M for dimension.
       new_dim (int): New dimension which the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2779 2780


2781
@autodoc()
Y
Yang Yu 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
2833
    return cost / (num_neg_samples + 1)
2834 2835


Y
fix ci.  
ying 已提交
2836
def transpose(x, perm, name=None):
Y
ying 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
       input (Variable): (Tensor), A Tensor.
       perm (list): A permutation of the dimensions of `input`.

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
2856
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
2857 2858
    """

Y
fix ci.  
ying 已提交
2859
    if len(perm) != len(x.shape):
Y
ying 已提交
2860 2861 2862
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
2863 2864 2865 2866 2867 2868
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
2869 2870

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
2871
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
2872 2873
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
2874
        inputs={'X': [x]},
Y
ying 已提交
2875 2876 2877
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
2878 2879


2880
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
2881
    """
2882 2883 2884 2885 2886 2887 2888
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

2917 2918 2919
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
2920 2921 2922 2923 2924
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
2954 2955 2956
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

2977 2978
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
2979 2980

    """
W
wanghaoshuang 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

2992
    helper = LayerHelper('im2sequence', **locals())
2993 2994
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
2995
        type='im2sequence',
2996 2997 2998
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
2999 3000 3001
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3002 3003
        })
    return out
3004 3005


3006 3007 3008 3009
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3010
    equation of row convolution is as follows:
3011 3012 3013 3014 3015 3016 3017

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3018
    * :math:`\\tau`: Future context size.
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3029 3030
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3056
    return helper.append_activation(out)
3057 3058


3059 3060 3061 3062
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3078 3079

    Args:
Y
yangyaming 已提交
3080 3081
       inputs (list): A list of variables to gather from. All variables have the
                same shape and the rank is at least 2.
3082
       index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3083
                with shape [M, 1] where M is the batch size.
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3097 3098 3099 3100 3101 3102

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3103 3104 3105 3106 3107 3108
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3109 3110 3111 3112 3113


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3114

3115 3116 3117 3118
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3119

3120 3121 3122
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3123

3124 3125 3126
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3127

3128
    The equation is as follows:
3129

3130
    1) Hard label (one-hot label, so every sample has exactly one class)
3131

3132 3133 3134 3135
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3136

3137 3138 3139
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3140

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.softmax_with_cross_entropy(logits=fc, label=label)
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

    This operator computes the smooth l1 loss for X and Y.
    The operator takes the first dimension of X and Y as batch size.
    For each instance, it computes the smooth l1 loss element by element first
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
            l1 loss op with shape [batch_size, dim1, ..., dimN].
        y (Variable): A tensor with rank at least 2. The target value of smooth
            l1 loss op with same shape as x.
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the out smooth l1 loss will be multiplied by this tensor element
            by element.
        sigma (float|None): Hyper parameter of smooth l1 loss op. A float scalar
            with default value 1.0.
    Returns:
        Variable: A tensor with rank be 2. The output smooth l1 loss with
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[100], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3211
            out = fluid.layers.smooth_l1(x=fc, y=label)
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3228 3229 3230 3231 3232 3233 3234 3235 3236


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3237
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3265 3266


Y
Yu Yang 已提交
3267
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3268
    """
Y
Yu Yang 已提交
3269
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3270
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3271 3272 3273 3274 3275 3276

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

Y
Yu Yang 已提交
3277 3278 3279
    Returns(Variable): The global run counter.
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3280 3281
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3282 3283 3284 3285 3286
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3287
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3288 3289 3290
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3291 3292
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3293 3294 3295
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3296 3297


Y
yangyaming 已提交
3298
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out