nn.py 326.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
62
    'sequence_unpad',
X
Xin Pan 已提交
63 64 65 66 67 68 69 70
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
71
    'sequence_slice',
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
89
    'group_norm',
X
Xin Pan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
103
    'roi_align',
X
Xin Pan 已提交
104 105 106 107
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
108
    'resize_nearest',
X
Xin Pan 已提交
109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
115
    'selu',
X
Xin Pan 已提交
116 117 118
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
119
    'margin_rank_loss',
X
Xin Pan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
163
    'space_to_depth',
W
whs 已提交
164
    'affine_grid',
S
sneaxiy 已提交
165
    'sequence_reverse',
166
    'affine_channel',
B
barrierye 已提交
167
    'similarity_focus',
M
minqiyang 已提交
168
    'hash',
D
dengkaipeng 已提交
169
    'grid_sampler',
G
gmcather 已提交
170 171
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
172
    'bilinear_tensor_product',
C
chengduo 已提交
173 174
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
175
    'lstm',
Y
Yu Yang 已提交
176 177
]

J
jerrywgz 已提交
178 179
kIgnoreIndex = -100

Y
Yu Yang 已提交
180 181 182 183 184 185 186

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
187
       is_test=False,
188
       name=None):
Y
Yu Yang 已提交
189
    """
190
    **Fully Connected Layer**
Y
Yu Yang 已提交
191

192 193 194 195 196 197 198 199
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
200
    to the output as well.
C
caoying03 已提交
201

C
caoying03 已提交
202
    This process can be formulated as follows:
203 204 205

    .. math::

206
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
207 208 209

    In the above equation:

C
caoying03 已提交
210 211 212 213
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
214
    * :math:`Act`: The activation function.
C
caoying03 已提交
215
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
216 217

    Args:
R
ranqiu 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
233 234
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
235
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
236
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
237
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
238

239
    Returns:
F
fengjiayi 已提交
240
        Variable: The transformation result.
241 242

    Raises:
C
caoying03 已提交
243
        ValueError: If rank of the input tensor is less than 2.
244 245 246 247

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
248
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
249
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
250
    """
C
caoying03 已提交
251

C
caoying03 已提交
252
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
253 254 255 256

    dtype = helper.input_dtype()

    mul_results = []
257 258
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
259 260 261
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
262

Y
Yu Yang 已提交
263
        w = helper.create_parameter(
264
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
265
        tmp = helper.create_variable_for_type_inference(dtype)
266
        helper.append_op(
267 268 269
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
270
            outputs={"Out": tmp},
M
mozga-intel 已提交
271 272
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
273 274 275 276
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
277
    else:
X
Xin Pan 已提交
278
        pre_bias = helper.create_variable_for_type_inference(dtype)
279
        helper.append_op(
280 281 282
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
283
            attrs={"use_mkldnn": False})
284 285 286 287
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
288 289


290 291 292
def embedding(input,
              size,
              is_sparse=False,
293
              is_distributed=False,
294 295 296
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
297
    """
298 299
    **Embedding Layer**

300
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
301 302
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
303 304 305

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
306 307

    Args:
308 309 310 311 312
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
313
        is_distributed(bool): Whether to run lookup table from remote parameter server.
314 315
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
316
            with zeros whenever lookup encounters it in :attr:`input`. If
317
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
318 319
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
320
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
321

322 323 324
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
325

326 327
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
328

C
chengduoZH 已提交
329
          dict_size = len(dataset.ids)
330
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
331
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
332 333 334
    """

    helper = LayerHelper('embedding', **locals())
335 336 337
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
338 339
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
340 341
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
342
    tmp = helper.create_variable_for_type_inference(dtype)
343 344
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
345 346 347 348 349
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
350 351 352
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
353
            'remote_prefetch': remote_prefetch,
354 355
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
356 357 358
    return tmp


W
wopeizl 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
375

W
wopeizl 已提交
376 377 378 379 380 381 382 383 384 385 386
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
387

W
wopeizl 已提交
388 389 390 391
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
392

W
wopeizl 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
479 480


P
phlrain 已提交
481 482 483 484 485 486
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
487
         dropout_prob=0.0,
P
phlrain 已提交
488 489 490 491 492
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
493
    """
P
phlrain 已提交
494
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
495 496 497 498 499

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
539 540
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
541 542 543 544 545 546
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
547
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
548

L
liuhongyu 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
574
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
575 576 577 578 579 580
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
581 582 583
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
643 644 645 646 647 648 649 650 651 652 653
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
654 655
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
656 657 658
    """
    **Dynamic LSTMP Layer**

659 660 661 662 663 664
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
665 666 667 668 669

    The formula is as follows:

    .. math::

670
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
671

672
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
673

674
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
675

676
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
677

678
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
679

680
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
681

682
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
683

Y
Yibing Liu 已提交
684 685 686 687 688 689
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
690
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
691
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
692
          bias vector).
Y
Yibing Liu 已提交
693 694 695
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
696
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
697
    * :math:`h`: The hidden state.
698
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
699 700
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
701
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
702
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
703
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
704 705
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
706 707 708 709

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
710

Y
Yibing Liu 已提交
711 712 713 714 715 716 717 718 719 720 721 722
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
723
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
724 725
                               hidden-hidden weight and projection weight.

726 727
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
728 729
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
730 731
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
732
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
733 734 735 736 737

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
738
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
739 740 741 742 743 744
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
745
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
746 747 748
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
749
                                - The shape is (1 x 7D).
C
chengduo 已提交
750 751 752 753 754

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
755 756 757 758 759 760 761 762 763
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
764
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
765 766
                              default "tanh".
        proj_activation(str): The activation for projection output.
767
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
768 769
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
770 771
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
772 773

    Returns:
774 775 776 777
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
778 779

    Examples:
780

Y
Yibing Liu 已提交
781 782
        .. code-block:: python

783 784 785 786
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
787
            hidden_dim, proj_dim = 512, 256
788
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
789
                                     act=None, bias_attr=None)
790 791 792
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
793 794 795 796
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
797
    """
798

C
chengduo 已提交
799
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
800
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
801
    size = size // 4
Y
Yibing Liu 已提交
802 803 804 805 806 807 808 809 810 811
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
812 813 814 815 816 817
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
846 847 848 849 850 851 852 853 854
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
855
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
856

857
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
858
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
859

G
guosheng 已提交
860 861 862 863 864 865 866 867 868
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
869

G
guosheng 已提交
870
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
871

G
guosheng 已提交
872
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
873 874
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
875 876 877 878
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
879
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
880 881

    Args:
882 883
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
884
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
885
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
886 887
            is the hidden size.
        size(int): The dimension of the gru cell.
888
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
889 890
            hidden-hidden weight matrix. Note:

891
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
892
              :math:`D` is the hidden size.
893
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
894
              The first part are weights of the update gate and reset gate with
895
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
896
              candidate hidden state with shape :math:`(D \\times D)`.
897 898 899 900 901

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
902
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
903
            the bias in the update gate, reset gate and candidate calculations.
904 905 906
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
907 908
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
909
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
910 911 912
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
913
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
914
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
915 916 917 918
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
919 920

    Returns:
G
guosheng 已提交
921
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
922
            and sequence length is the same with the input.
923

G
guosheng 已提交
924
    Examples:
925

G
guosheng 已提交
926 927
        .. code-block:: python

928 929 930 931
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
932
            hidden_dim = 512
933
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
934
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
935 936 937 938 939 940 941 942 943
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
944
    batch_size = input.shape[0]
G
guosheng 已提交
945
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
946
    if h_0:
G
guosheng 已提交
947
        assert h_0.shape == (
Y
Yancey 已提交
948 949 950
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
951

X
Xin Pan 已提交
952 953 954 955
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
974 975 976
def gru_unit(input,
             hidden,
             size,
977 978
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
979
             activation='tanh',
980
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
981
    """
982
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
983

984 985
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
986

987
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
988

989
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
990

991
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
992 993

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
994 995 996
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
997 998
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

999 1000
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1001 1002 1003
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1004 1005 1006

    Args:
        input (Variable): The fc transformed input value of current step.
1007
        hidden (Variable): The hidden value of gru unit from previous step.
1008
        size (integer): The input dimension value.
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1023
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1024
            the bias in the update gate, reset gate and candidate calculations.
1025 1026 1027
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1028 1029
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1030 1031 1032 1033
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1034

1035 1036 1037 1038 1039 1040
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1041

1042
             # assuming we have x_t_data and prev_hidden of size=10
1043
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1044 1045
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1058
    size = size // 3
Y
Yu Yang 已提交
1059 1060

    # create weight
1061 1062
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1063

X
Xin Pan 已提交
1064 1065 1066
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1067
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1068
    # create bias
1069
    if helper.bias_attr:
Y
Yu Yang 已提交
1070 1071 1072
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1073
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1074 1075 1076

    helper.append_op(
        type='gru_unit',
1077
        inputs=inputs,
Y
Yu Yang 已提交
1078 1079 1080 1081 1082 1083
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1084 1085
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1086 1087 1088 1089 1090
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1091
@templatedoc()
1092
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1093 1094 1095 1096 1097 1098 1099
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1100
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1101 1102 1103 1104
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1105 1106 1107
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1108 1109

    """
Y
Yu Yang 已提交
1110 1111 1112 1113 1114 1115
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1116 1117 1118 1119 1120 1121 1122 1123
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1139 1140 1141 1142
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1143

W
wopeizl 已提交
1144 1145
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1146

W
wopeizl 已提交
1147
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1148

W
wopeizl 已提交
1149
        label(${label_type}): ${label_comment}
1150

W
wopeizl 已提交
1151 1152
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1153

W
wopeizl 已提交
1154 1155
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1156

W
wopeizl 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1167
                "Transition": transition,
W
wopeizl 已提交
1168 1169
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1170

W
wopeizl 已提交
1171
    return viterbi_path
Y
Yu Yang 已提交
1172 1173


Y
yi.wu 已提交
1174
@templatedoc()
F
fengjiayi 已提交
1175
def cos_sim(X, Y):
Y
Yu Yang 已提交
1176
    """
Y
yi.wu 已提交
1177 1178 1179
    ${comment}

    Args:
1180 1181
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1182

Y
yi.wu 已提交
1183
    Returns:
1184
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1185
    """
F
fengjiayi 已提交
1186
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1187 1188 1189
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1200 1201 1202 1203 1204
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1205
            dropout_implementation="downgrade_in_infer"):
1206 1207 1208 1209 1210
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1211
    training. The dropout operator randomly sets (according to the given dropout
1212 1213 1214 1215
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1216 1217
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1218 1219 1220 1221 1222 1223 1224
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1236
                                           dropout op can be removed from the program.
P
phlrain 已提交
1237
                                           the program will be efficient
1238

P
phlrain 已提交
1239

1240 1241

    Returns:
1242
        Variable: A tensor variable is the shape with `x`.
1243 1244

    Examples:
1245

1246 1247
        .. code-block:: python

1248 1249
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1250 1251
    """

F
fengjiayi 已提交
1252
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1253 1254 1255
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1256 1257 1258 1259

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1260 1261 1262 1263 1264
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1265 1266 1267 1268
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1269 1270
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1271
        })
1272 1273 1274
    return out


J
jerrywgz 已提交
1275
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1276
    """
Y
Yibing Liu 已提交
1277 1278
    **Cross Entropy Layer**

1279 1280 1281
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1282 1283

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1284
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1285

Y
Yibing Liu 已提交
1286
        .. math::
Y
yangyaming 已提交
1287

Y
Yibing Liu 已提交
1288 1289 1290
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1291 1292
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1293 1294 1295 1296 1297

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1298
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1299 1300 1301
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1302 1303
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1304
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1305

Y
Yibing Liu 已提交
1306
    Args:
Y
yangyaming 已提交
1307
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1308 1309 1310 1311
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1312
        label (Variable|list): the ground truth which is a 2-D tensor. When
1313 1314 1315 1316
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1317
        soft_label (bool): a flag indicating whether to
1318
                                           interpretate the given labels as soft
1319
                                           labels. Default: `False`.
M
minqiyang 已提交
1320 1321
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1322
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1323 1324 1325 1326 1327

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1328 1329 1330 1331 1332
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1333 1334 1335 1336 1337 1338

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1339
    """
F
fengjiayi 已提交
1340
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1341
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1342 1343 1344 1345 1346
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1347 1348
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1349 1350 1351
    return out


1352
def bpr_loss(input, label_pos):
F
frankwhzhang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    """
    Bayesian Personalized Ranking Loss Operator.

    This operator belongs to pairwise ranking loss. LabelPos is the desired item.
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

    Examples:
        .. code-block:: python

          cost = fluid.layers.bpr_loss(input=predict, label_pos=label)
    """
1368 1369 1370 1371 1372 1373

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1374
                'LabelPos': [label_pos]},
1375 1376 1377 1378
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1379
def square_error_cost(input, label):
Y
Yu Yang 已提交
1380
    """
1381 1382
    **Square error cost layer**

1383 1384
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1399 1400
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1401 1402

    Returns:
G
guosheng 已提交
1403
        Variable: The tensor variable storing the element-wise squared error \
1404
                  difference of input and label.
1405 1406 1407 1408 1409 1410 1411 1412

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1413
    """
F
fengjiayi 已提交
1414
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1415
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1416 1417 1418 1419 1420 1421
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1422
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1423
    helper.append_op(
F
fengjiayi 已提交
1424 1425
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1426 1427 1428
    return square_out


Y
yi.wu 已提交
1429
@templatedoc()
Y
Yu Yang 已提交
1430 1431 1432 1433
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1434
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1435
    """
Y
yi.wu 已提交
1436
    **Chunk Evaluator**
Y
yi.wu 已提交
1437

Y
yangyaming 已提交
1438
    This function computes and outputs the precision, recall and
1439
    F1-score of chunk detection.
Y
yi.wu 已提交
1440

Y
yi.wu 已提交
1441 1442 1443 1444 1445 1446 1447 1448
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1449

Y
yi.wu 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1475

Y
yi.wu 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1500
    Args:
1501 1502 1503 1504 1505
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1506

Y
yi.wu 已提交
1507
    Returns:
Y
update  
yi.wu 已提交
1508 1509 1510
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1511

Y
yi.wu 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1524
    """
F
fengjiayi 已提交
1525
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1526 1527

    # prepare output
X
Xin Pan 已提交
1528 1529 1530 1531 1532 1533 1534
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1535 1536 1537 1538 1539 1540 1541 1542

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1543 1544 1545 1546
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1547 1548 1549
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1550 1551
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1552
        })
1553 1554
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1555 1556


1557
@templatedoc()
Y
Yu Yang 已提交
1558 1559 1560 1561 1562 1563 1564
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1565 1566
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1567 1568 1569 1570
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1571 1572 1573 1574 1575 1576 1577

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1591

1592 1593
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1594 1595 1596 1597 1598 1599 1600
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1601
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1612
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1613 1614 1615 1616 1617 1618
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1619
def sequence_softmax(input, use_cudnn=False, name=None):
1620 1621 1622
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1623
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1640 1641 1642
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1655 1656
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1657
    softmax_out = helper.create_variable_for_type_inference(dtype)
1658 1659 1660 1661 1662 1663 1664 1665
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1666
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1667
    """
1668
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1669
    has the same shape as the input.
Q
qiaolongfei 已提交
1670

1671 1672 1673 1674 1675 1676
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1677
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1678 1679 1680 1681 1682 1683 1684

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1685
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1686 1687 1688 1689 1690 1691 1692 1693

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1694 1695 1696
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1709 1710
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1711
    softmax_out = helper.create_variable_for_type_inference(dtype)
1712 1713 1714 1715 1716 1717 1718 1719
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1720 1721 1722
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1723 1724
           stride=1,
           padding=0,
1725
           dilation=1,
Y
Yu Yang 已提交
1726 1727 1728
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1729
           use_cudnn=True,
1730 1731
           act=None,
           name=None):
Y
Yu Yang 已提交
1732
    """
C
chengduoZH 已提交
1733
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1734 1735
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1736
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1737 1738 1739 1740 1741 1742 1743
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1744 1745 1746
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1747

1748
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1749

C
chengduoZH 已提交
1750 1751
    .. math::

C
refine  
chengduoZH 已提交
1752
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1753

T
tensor-tang 已提交
1754
    Where:
C
chengduoZH 已提交
1755

1756 1757 1758 1759 1760
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1761
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1762 1763 1764

    Example:

1765 1766
        - Input:

W
weixing02 已提交
1767
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1768

W
weixing02 已提交
1769
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1770

1771
        - Output:
T
tensor-tang 已提交
1772

W
weixing02 已提交
1773
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1774

C
chengduoZH 已提交
1775
        Where
1776 1777

        .. math::
C
chengduoZH 已提交
1778

W
weixing02 已提交
1779 1780
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1781 1782

    Args:
1783
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1784
        num_filters(int): The number of filter. It is as same as the output
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1813 1814
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1815 1816
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1817
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1818
            will be named automatically. Default: None
C
chengduoZH 已提交
1819 1820

    Returns:
G
guosheng 已提交
1821
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1822 1823
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1824
    Raises:
1825 1826
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1827

C
chengduoZH 已提交
1828 1829 1830
    Examples:
        .. code-block:: python

1831 1832
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1833 1834 1835
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1836
    assert param_attr is not False, "param_attr should not be False here."
1837
    l_type = 'conv2d'
X
xzl 已提交
1838 1839
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1840
        l_type = 'depthwise_conv2d'
1841 1842 1843 1844

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1845 1846 1847 1848 1849
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1850
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1851

C
chengduoZH 已提交
1852 1853 1854
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1855
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1856

C
chengduoZH 已提交
1857 1858
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1859 1860

    input_shape = input.shape
M
minqiyang 已提交
1861
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1862 1863

    def _get_default_param_initializer():
C
chengduo 已提交
1864 1865
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1866 1867 1868 1869 1870 1871 1872 1873
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1874
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1890
    helper.append_op(
1891
        type=l_type,
Y
Yu Yang 已提交
1892 1893 1894 1895 1896
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1897 1898 1899
        attrs={
            'strides': stride,
            'paddings': padding,
1900
            'dilations': dilation,
C
chengduoZH 已提交
1901
            'groups': groups,
1902
            'use_cudnn': use_cudnn,
1903
            'use_mkldnn': False,
C
chengduoZH 已提交
1904
        })
Y
Yu Yang 已提交
1905 1906 1907 1908 1909 1910

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1928 1929 1930 1931 1932 1933
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1943 1944
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1945 1946 1947
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1948
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1974
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1975 1976
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1977
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1978 1979
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1980
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1981 1982
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1983
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1984 1985 1986 1987 1988 1989
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2000 2001
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2002 2003
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2004
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2005
            will be named automatically. Default: None.
C
chengduoZH 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2018 2019
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2020 2021 2022
    """

    l_type = 'conv3d'
C
chengduo 已提交
2023
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2034
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2048 2049 2050
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2051 2052 2053 2054 2055 2056 2057 2058
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2059
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2074
            'use_mkldnn': False
C
chengduoZH 已提交
2075 2076
        })

2077
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2078 2079 2080 2081

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2082
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2083
    """
Y
yangyaming 已提交
2084 2085 2086
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2098
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2099 2100 2101 2102 2103
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2104
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2105 2106 2107 2108 2109 2110 2111

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2112 2113
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2114

L
Luo Tao 已提交
2115 2116
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2117
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2118
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2119
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2120 2121 2122 2123 2124 2125 2126

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2127

Y
yangyaming 已提交
2128
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2129 2130 2131 2132 2133
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2134 2135
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2136
    """
F
fengjiayi 已提交
2137
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2138
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2139 2140
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2141 2142 2143 2144 2145 2146

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2147 2148
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2149

Y
yangyaming 已提交
2150 2151 2152 2153 2154
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2155 2156 2157
    return pool_out


C
add doc  
chengduoZH 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2177
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2178 2179 2180 2181 2182
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2183
def sequence_first_step(input):
L
Luo Tao 已提交
2184
    """
L
Luo Tao 已提交
2185
    This function gets the first step of sequence.
L
Luo Tao 已提交
2186 2187 2188 2189

    .. code-block:: text

       x is a 1-level LoDTensor:
2190
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2191 2192 2193 2194 2195
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2196
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2197
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2198

L
Luo Tao 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2208

Y
yangyaming 已提交
2209
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2210 2211 2212
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2213 2214 2215
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2216
def sequence_last_step(input):
L
Luo Tao 已提交
2217
    """
L
Luo Tao 已提交
2218
    This function gets the last step of sequence.
L
Luo Tao 已提交
2219 2220 2221 2222

    .. code-block:: text

       x is a 1-level LoDTensor:
2223
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2224 2225 2226 2227 2228
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2229
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2230
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2231

L
Luo Tao 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2241

Y
yangyaming 已提交
2242
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2243 2244 2245
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2246 2247 2248
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2249 2250 2251 2252
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2253
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2254 2255 2256 2257 2258
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2259

Y
Yibing Liu 已提交
2260 2261
	- Case:

2262
            Given the input Variable **input**:
2263

2264 2265 2266
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2267

2268
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2269

2270
            the output Variable will be
2271

2272 2273 2274
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2275 2276

    NOTE: The first dimension size of **input**, **offset** and **length**
2277
          should be equal. The **offset** should start from 0.
2278

Y
Yibing Liu 已提交
2279
    Args:
2280
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2281
                         sequences.
Y
Yibing Liu 已提交
2282 2283 2284 2285 2286 2287
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2288
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2299
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2300 2301 2302 2303
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2304
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2319
@templatedoc()
Y
Yu Yang 已提交
2320
def pool2d(input,
C
chengduoZH 已提交
2321 2322
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2323 2324
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2325
           global_pooling=False,
C
chengduoZH 已提交
2326
           use_cudnn=True,
2327
           ceil_mode=False,
2328 2329
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2330
    """
F
fengjiayi 已提交
2331
    ${comment}
2332 2333

    Args:
2334 2335 2336
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2337
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2338
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2339 2340
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2341
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2342 2343 2344 2345 2346 2347
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2348 2349 2350
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2351
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2352
                        layer will be named automatically.
2353
        exclusive (bool): Whether to exclude padding points in average pooling
2354
                          mode, default is true
F
fengjiayi 已提交
2355

2356
    Returns:
F
fengjiayi 已提交
2357
        Variable: The pooling result.
F
fengjiayi 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2371 2372 2373 2374
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2375
                            global_pooling=False)
Y
Yu Yang 已提交
2376 2377 2378 2379 2380
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2381

C
chengduoZH 已提交
2382 2383 2384 2385 2386
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2387 2388 2389 2390
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2391 2392
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2393

C
Add doc  
chengduoZH 已提交
2394
    l_type = 'pool2d'
2395 2396

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2397
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2398
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2399 2400

    helper.append_op(
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2412 2413
            "use_mkldnn": False,
            "exclusive": exclusive,
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2427 2428
           name=None,
           exclusive=True):
2429 2430
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2431
    pooling configurations mentioned in input parameters.
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2444
        exclusive (bool): Whether to exclude padding points in average pooling
2445
                          mode, default is true
2446

2447
    Returns:
2448
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2449 2450 2451 2452 2453
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2454

C
chengduoZH 已提交
2455 2456 2457 2458 2459
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2460 2461 2462
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2463

C
chengduoZH 已提交
2464 2465
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2466

2467 2468
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2469
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2470
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2471 2472

    helper.append_op(
2473
        type=l_type,
Y
Yu Yang 已提交
2474 2475 2476 2477 2478 2479 2480
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2481
            "paddings": pool_padding,
2482
            "use_cudnn": use_cudnn,
2483
            "ceil_mode": ceil_mode,
2484 2485
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2498
               data_layout='NCHW',
Y
Yang Yang 已提交
2499
               in_place=False,
2500 2501
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2502
               moving_variance_name=None,
2503
               do_model_average_for_mean_and_var=False,
2504 2505
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2506
    """
Q
qiaolongfei 已提交
2507 2508 2509 2510
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2511

Q
qiaolongfei 已提交
2512
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2513

Q
qiaolongfei 已提交
2514 2515
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2516 2517 2518
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2545
    Args:
Q
qiaolongfei 已提交
2546
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2547 2548 2549 2550
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2551 2552 2553 2554 2555 2556 2557 2558
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2559
        data_layout(string, default NCHW): NCHW|NHWC
2560
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2561 2562 2563 2564
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2565
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2566
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2567 2568 2569 2570 2571
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2572 2573

    Returns:
Q
qiaolongfei 已提交
2574
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2575 2576 2577 2578 2579 2580 2581

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2582
    """
C
chengduo 已提交
2583
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2604 2605 2606
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2607 2608

    bias = helper.create_parameter(
2609
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2610 2611 2612
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2613

2614 2615
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2616 2617 2618
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2619
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2620
        shape=param_shape,
2621 2622 2623 2624 2625 2626 2627
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2628
            trainable=False,
W
wanghaoshuang 已提交
2629
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2630
        shape=param_shape,
2631 2632
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2633 2634 2635 2636 2637 2638

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2639 2640 2641 2642
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2643

X
Xin Pan 已提交
2644 2645
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2663 2664 2665 2666
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2667
            "use_mkldnn": False,
2668 2669
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2670
        })
Y
Yu Yang 已提交
2671 2672 2673 2674

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2675
@templatedoc()
G
guosheng 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2686
    ${comment}
G
guosheng 已提交
2687 2688 2689

    The formula is as follows:

Y
yuyang18 已提交
2690
    ..  math::
G
guosheng 已提交
2691 2692 2693 2694 2695 2696 2697

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2698 2699 2700 2701 2702 2703 2704 2705
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2706

G
guosheng 已提交
2707 2708
    Args:
        input(Variable): The input tensor variable.
2709
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2710
            normalization. Default True.
2711
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2712 2713
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2714
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2715
            Default 1.
2716
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2717
            division by zero. Default 1e-05.
G
guosheng 已提交
2718
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2719 2720
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2721 2722
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2723
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2724 2725
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2726
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2727
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2728
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2729 2730 2731
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2732 2733

    Returns:
Y
yuyang18 已提交
2734
        ${y_comment}
G
guosheng 已提交
2735 2736 2737

    Examples:

Y
yuyang18 已提交
2738 2739 2740
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2756
    if shift:
G
guosheng 已提交
2757 2758 2759 2760 2761 2762
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2763 2764 2765 2766 2767
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2861 2862 2863 2864
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2865 2866 2867
                     padding=0,
                     stride=1,
                     dilation=1,
2868
                     groups=None,
C
caoying03 已提交
2869
                     param_attr=None,
2870
                     bias_attr=None,
C
chengduoZH 已提交
2871
                     use_cudnn=True,
2872
                     act=None,
C
caoying03 已提交
2873
                     name=None):
Y
Yu Yang 已提交
2874
    """
2875 2876 2877 2878 2879 2880 2881 2882
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2883 2884
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2885 2886 2887
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2888 2889 2890 2891 2892

    For each input :math:`X`, the equation is:

    .. math::

2893
        Out = \sigma (W \\ast X + b)
2894

2895
    Where:
2896 2897 2898

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2899 2900 2901 2902
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2903

2904 2905 2906 2907
    Example:

        - Input:

2908
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2909

2910
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2911 2912 2913

        - Output:

2914
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2915 2916

        Where
Y
Yu Yang 已提交
2917

2918 2919
        .. math::

2920 2921 2922 2923
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2924 2925

    Args:
2926 2927 2928 2929
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2930 2931 2932 2933
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2962
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2963 2964 2965
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2966
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2967
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2968 2969

    Returns:
2970
        Variable: The tensor variable storing the convolution transpose result.
2971 2972

    Raises:
2973 2974
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2975 2976 2977 2978

    Examples:
       .. code-block:: python

2979 2980
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2981
    """
C
chengduo 已提交
2982
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2983 2984 2985 2986 2987 2988 2989 2990
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2991 2992 2993
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2994 2995 2996
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2997

C
chengduoZH 已提交
2998 2999
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3000

Y
Yu Yang 已提交
3001 3002 3003 3004 3005
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3006

Y
Yu Yang 已提交
3007 3008
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3009

C
chengduoZH 已提交
3010
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3011
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3012
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3013
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3014
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3015 3016 3017
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3018

3019 3020 3021 3022 3023 3024 3025
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3026
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3027
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3028

Y
Yu Yang 已提交
3029 3030 3031
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3032
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3033
    helper.append_op(
3034
        type=op_type,
Y
Yu Yang 已提交
3035 3036
        inputs={'Input': [input],
                'Filter': [img_filter]},
3037
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3038
        attrs={
3039
            'output_size': output_size,
3040 3041 3042 3043 3044
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3045 3046
        })

3047 3048 3049
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3050 3051


3052
def conv3d_transpose(input,
Y
Yu Yang 已提交
3053 3054 3055
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3056 3057 3058
                     padding=0,
                     stride=1,
                     dilation=1,
3059
                     groups=None,
C
caoying03 已提交
3060
                     param_attr=None,
3061
                     bias_attr=None,
C
chengduoZH 已提交
3062
                     use_cudnn=True,
3063
                     act=None,
C
caoying03 已提交
3064
                     name=None):
Y
Yu Yang 已提交
3065
    """
3066
    **Convlution3D transpose layer**
3067

3068
    The convolution3D transpose layer calculates the output based on the input,
3069
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3070 3071 3072 3073 3074 3075
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3076 3077 3078
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3079 3080 3081 3082 3083

    For each input :math:`X`, the equation is:

    .. math::

3084
        Out = \sigma (W \\ast X + b)
3085 3086 3087

    In the above equation:

3088 3089
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3090 3091 3092 3093
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3094

3095 3096 3097 3098
    Example:

        - Input:

3099
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3100

3101
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3102 3103 3104

        - Output:

3105
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3106 3107

        Where
Y
Yu Yang 已提交
3108

3109 3110
        .. math::

3111 3112 3113
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3114 3115

    Args:
3116
        input(Variable): The input image with [N, C, D, H, W] format.
3117 3118 3119
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3120
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3121 3122
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3123
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3124 3125 3126
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3127 3128
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3129
        stride(int|tuple): The stride size. If stride is a tuple, it must
3130 3131
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3132
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3133 3134 3135
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3136 3137 3138 3139 3140
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3150 3151
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3152 3153
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3154 3155
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3156 3157

    Returns:
3158
        Variable: The tensor variable storing the convolution transpose result.
3159 3160

    Raises:
3161 3162
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3163 3164 3165 3166

    Examples:
       .. code-block:: python

3167 3168
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3169
    """
C
chengduo 已提交
3170
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3171 3172
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3173
    if not isinstance(input, Variable):
3174
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3175 3176
    input_channel = input.shape[1]

3177 3178 3179
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3180

C
chengduoZH 已提交
3181 3182 3183
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3184 3185 3186 3187 3188 3189
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3190 3191 3192
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3193

3194
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3195
                         padding[0] - 1) // dilation[0] + 1
3196
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3197
                         padding[1] - 1) // dilation[1] + 1
3198
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3199
                         padding[2] - 1) // dilation[2] + 1
3200
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3201
    else:
3202 3203
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3204

3205
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3206
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3207 3208 3209
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3210
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3211
    helper.append_op(
3212
        type=l_type,
Y
Yu Yang 已提交
3213 3214
        inputs={'Input': [input],
                'Filter': [img_filter]},
3215
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3216 3217 3218 3219
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3220
            'groups': groups,
C
chengduoZH 已提交
3221 3222
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3223

3224 3225
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3226
    return out
Y
yangyaming 已提交
3227 3228


Y
yangyaming 已提交
3229
def sequence_expand(x, y, ref_level=-1, name=None):
3230
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3231 3232 3233 3234
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3235 3236 3237 3238 3239

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3240
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3241
                x.data = [[a], [b], [c], [d]]
3242 3243 3244
                x.dims = [4, 1]

            y is a LoDTensor:
3245 3246
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3247

Y
yangyaming 已提交
3248
            ref_level: 0
3249

Y
yangyaming 已提交
3250
            then output is a 1-level LoDTensor:
3251
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3252
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3253 3254 3255 3256
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3257
                x.data = [[a], [b], [c]]
3258 3259 3260
                x.dims = [3, 1]

            y is a LoDTensor:
3261
                y.lod = [[2, 0, 3]]
3262

Y
yangyaming 已提交
3263
            ref_level: -1
3264

Y
yangyaming 已提交
3265 3266 3267
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3268 3269 3270
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3271 3272
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3273
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3274
                        will be named automatically.
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3285
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3286
    """
Y
yangyaming 已提交
3287
    helper = LayerHelper('sequence_expand', input=x, **locals())
3288
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3289
    tmp = helper.create_variable_for_type_inference(dtype)
3290
    helper.append_op(
Y
yangyaming 已提交
3291 3292 3293 3294 3295
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3296
    return tmp
3297 3298


C
chengduo 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3355
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3356 3357 3358 3359 3360 3361 3362 3363
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3364
@templatedoc()
3365
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3366 3367 3368 3369 3370
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3371 3372 3373
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3374
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3375 3376 3377 3378
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3379 3380 3381
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3382

F
fengjiayi 已提交
3383
    Returns:
M
minqiyang 已提交
3384
        Variable: The padded sequence batch and the original lengths before
3385
                  padding. All sequences has the same length.
M
minqiyang 已提交
3386

F
fengjiayi 已提交
3387 3388 3389 3390 3391 3392 3393
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3394
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3395
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3396 3397 3398 3399 3400
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3401 3402
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3403 3404 3405 3406

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3407 3408 3409 3410 3411 3412
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3413 3414
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3415
        attrs={'padded_length': maxlen})
3416
    return out, length
F
fengjiayi 已提交
3417 3418


3419
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3420
    """
3421
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3422

3423 3424
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3434 3435 3436
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3437
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3438 3439 3440 3441 3442 3443

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3444
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3445 3446 3447 3448 3449 3450

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3451 3452
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3467
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3479 3480 3481 3482 3483 3484 3485 3486 3487
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3488 3489
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3490 3491 3492

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3493 3494

    This layer does the search in beams for one time step. Specifically, it
3495 3496 3497 3498 3499 3500
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3501

3502 3503 3504 3505 3506 3507 3508 3509
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3510

3511
    Args:
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3537

3538
    Returns:
3539 3540
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3541 3542 3543 3544

    Examples:
        .. code-block:: python

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3562 3563 3564 3565
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3566 3567 3568
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3569 3570 3571 3572 3573

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3574
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3592 3593 3594 3595 3596 3597 3598
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3599

3600 3601 3602 3603 3604 3605 3606 3607 3608
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3609

3610 3611 3612 3613 3614 3615
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3616

3617 3618
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3619

3620 3621 3622 3623 3624 3625
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3626 3627
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3643 3644 3645 3646
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3647
              param_attr=None,
C
caoying03 已提交
3648 3649
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3650 3651 3652 3653
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3654
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3655

3656
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3657

3658
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3659

3660
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3661 3662 3663

            h_t & = o_t tanh(c_t)

3664 3665 3666 3667 3668 3669
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3670 3671 3672

        .. math::

3673
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3674 3675 3676 3677 3678 3679 3680 3681

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3682
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3683 3684

    Args:
Y
yangyaming 已提交
3685 3686 3687 3688 3689 3690
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3691
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3704 3705
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3706 3707

    Returns:
Y
yangyaming 已提交
3708
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3709 3710

    Raises:
3711 3712 3713 3714
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3715 3716 3717 3718 3719 3720

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3721
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3722
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3723
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3740
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3741 3742 3743 3744
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3745 3746
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3747 3748 3749
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3750
    size = cell_t_prev.shape[1]
3751
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3752 3753
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3754
                param_attr=param_attr,
3755
                bias_attr=bias_attr)
Y
yangyaming 已提交
3756
    dtype = x_t.dtype
X
Xin Pan 已提交
3757 3758
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3768
    return h, c
G
guosheng 已提交
3769 3770


C
caoying03 已提交
3771
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3772
    """
Y
yangyaming 已提交
3773
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3774 3775 3776

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3777
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3778 3779
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3780 3781
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3782
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3783
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3784
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3785 3786
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3787 3788 3789

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3790

G
guosheng 已提交
3791 3792 3793 3794 3795 3796
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3797
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3798 3799 3800 3801
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3802 3803 3804 3805

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3806
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3807 3808 3809
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3810 3811
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3812
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3813 3814
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3815 3816 3817 3818 3819
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3820
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3821 3822 3823 3824
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3825 3826


C
caoying03 已提交
3827
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3828
    """
Y
Yibing Liu 已提交
3829
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3830 3831 3832

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3833 3834 3835
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3836
            must be in the range :math:`[-rank(input), rank(input))`. If
3837
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3838
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3839 3840
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3841
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3842
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3843
                       will be named automatically.
G
guosheng 已提交
3844 3845

    Returns:
Y
Yibing Liu 已提交
3846
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3847

G
guosheng 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3858 3859
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3860 3861 3862 3863 3864 3865 3866

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3867 3868
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3869
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3870 3871
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3872 3873 3874 3875 3876
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3877
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3878 3879 3880 3881
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3882 3883


C
caoying03 已提交
3884
def reduce_max(input, dim=None, keep_dim=False, name=None):
3885
    """
Y
yangyaming 已提交
3886
    Computes the maximum of tensor elements over the given dimension.
3887 3888 3889

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3890
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3891 3892 3893
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3894
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3895 3896
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3897
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3898 3899
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3900 3901 3902

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3903

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3915 3916 3917 3918 3919 3920 3921

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3922 3923
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3924
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3925 3926
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3927 3928 3929 3930 3931
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3932
            'dim': dim if dim != None else [0],
3933 3934 3935 3936 3937 3938
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3939
def reduce_min(input, dim=None, keep_dim=False, name=None):
3940
    """
Y
yangyaming 已提交
3941
    Computes the minimum of tensor elements over the given dimension.
3942 3943 3944

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3945
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3946 3947 3948
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3949
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3950 3951
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3952
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3953 3954
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3955 3956 3957

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3958

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3970 3971 3972 3973 3974 3975 3976

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3977 3978
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3979
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3980 3981
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3982 3983 3984 3985 3986
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3987
            'dim': dim if dim != None else [0],
3988 3989 3990 3991
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3992 3993


3994 3995 3996 3997 3998 3999
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4000
        dim (list|int|None): The dimensions along which the product is performed. If
4001 4002
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4003 4004
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4005 4006 4007
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4008
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4009
            layer will be named automatically.
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4024
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4025
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4026 4027 4028 4029 4030 4031 4032

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4033 4034
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4035
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4036 4037
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4038 4039 4040 4041 4042
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4043
            'dim': dim if dim != None else [0],
4044 4045 4046 4047 4048 4049
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4050
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4051
    """
C
caoying03 已提交
4052
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4053 4054 4055

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4056 4057 4058 4059 4060
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4061
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4062
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4063
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4064 4065
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4066 4067

    Returns:
D
dzhwinter 已提交
4068
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4078 4079
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4095
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4109 4110 4111 4112 4113 4114 4115 4116 4117


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4118
    .. math::
4119 4120

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4121 4122 4123 4124 4125

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4126
        x(Variable|list): The input tensor to l2_normalize layer.
4127
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4128 4129
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4130
        epsilon(float): The epsilon value is used to avoid division by zero, \
4131
            the defalut value is 1e-10.
4132
        name(str|None): A name for this layer(optional). If set None, the layer \
4133
            will be named automatically.
C
caoying03 已提交
4134 4135

    Returns:
4136
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4137 4138

    Examples:
4139

C
caoying03 已提交
4140 4141
        .. code-block:: python

4142 4143 4144 4145
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4146 4147
    """

F
fengjiayi 已提交
4148 4149
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4150 4151
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4152 4153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4154
    helper.append_op(
4155 4156 4157 4158
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4159
        attrs={
4160 4161
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4162 4163
        })
    return out
4164 4165


S
sneaxiy 已提交
4166
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4167
    """
Y
ying 已提交
4168 4169 4170 4171
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4172

C
chengduoZH 已提交
4173
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4174
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4175

4176 4177 4178 4179 4180
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4181
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4182

C
chengduoZH 已提交
4183
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4184
      performs in the following way.
G
guosheng 已提交
4185

4186
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4187
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4188
        last two dimensions and a batched matrix multiply supporting broadcast
4189
        applies on the two tensors.
G
guosheng 已提交
4190

Y
ying 已提交
4191 4192
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4193
    removed after matrix multiplication.
G
guosheng 已提交
4194 4195 4196

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4197 4198 4199
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4200
        alpha (float): The scale of output. Default 1.0.
4201
        name(str|None): A name for this layer(optional). If set None, the layer
4202
            will be named automatically.
G
guosheng 已提交
4203 4204

    Returns:
4205
        Variable: The product Tensor variable.
G
guosheng 已提交
4206

G
guosheng 已提交
4207 4208 4209
    Examples:
        .. code-block:: python

4210
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4211 4212
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4213

4214 4215
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4216

4217 4218
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4219

4220 4221
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4222 4223 4224 4225

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4226 4227
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4228

Y
ying 已提交
4229
            # x: [M], y: [N]
4230
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4231
    """
Y
ying 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4244
            y_shape = y_shape + [1]
Y
ying 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4261
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4263
    helper.append_op(
4264 4265 4266 4267
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4268 4269 4270
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4271
            'alpha': float(alpha),
S
sneaxiy 已提交
4272
        })
4273
    return out
4274 4275


4276
def topk(input, k, name=None):
Q
qingqing01 已提交
4277 4278 4279 4280
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4281
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4282 4283 4284 4285 4286 4287
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4309 4310 4311
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4312
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4313
                 of input.
4314
        name(str|None): A name for this layer(optional). If set None, the layer
4315
                       will be named automatically.
F
fengjiayi 已提交
4316
                       Default: None
Q
qingqing01 已提交
4317 4318

    Returns:
4319 4320 4321
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4322
        within the last dimension of input.
Q
qingqing01 已提交
4323

F
fengjiayi 已提交
4324 4325
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4326 4327 4328 4329 4330 4331 4332

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4333 4334
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4346
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4347
    """
Y
ying 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4357

Y
ying 已提交
4358
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4359

4360
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4361 4362
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4363
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4364

4365
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4366 4367
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4368

4369 4370 4371
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4372
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4373
                          the length of reference string.
4374
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4375
                                     calculating edit distance.
4376
        name (str): The name of this layer. It is optional.
4377

W
wanghaoshuang 已提交
4378
    Returns:
W
wanghaoshuang 已提交
4379
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4380 4381 4382 4383

    Examples:
        .. code-block:: python

T
tink2123 已提交
4384 4385
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4386
            cost = fluid.layers.edit_distance(input=x,label=y)
4387
    """
4388
    helper = LayerHelper("edit_distance", **locals())
4389

4390
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4391
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4392 4393
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4394 4395 4396 4397 4398

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4399
            attrs={"tokens": ignored_tokens})
4400 4401 4402 4403 4404
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4405
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4406
            attrs={"tokens": ignored_tokens})
4407 4408
        label = erased_label

4409
    # edit distance op
X
Xin Pan 已提交
4410 4411
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4412 4413 4414 4415
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4416 4417
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4418 4419
        attrs={"normalized": normalized})

4420
    return edit_distance_out, sequence_num
4421 4422 4423 4424 4425


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4426

Y
ying 已提交
4427 4428 4429 4430
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4448
        input.lod = [[4, 4]]
W
whs 已提交
4449 4450
      
        Computation:
4451

W
whs 已提交
4452 4453 4454 4455 4456 4457
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4458 4459 4460 4461 4462

        output.data = [[2],
                       [1],
                       [3]]

4463
        output.lod = [[2, 1]]
4464

W
whs 已提交
4465

4466 4467
    Args:

Y
ying 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4477
        name (str): The name of this layer. It is optional.
4478 4479

    Returns:
W
whs 已提交
4480 4481 4482 4483
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4484 4485 4486 4487 4488

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4489

4490
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4491
    """
4492
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4493
    _, topk_indices = topk(input, k=1)
4494 4495

    # ctc align op
X
Xin Pan 已提交
4496
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4497 4498 4499
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4500
        outputs={"Output": [ctc_out]},
4501 4502
        attrs={"merge_repeated": True,
               "blank": blank})
4503
    return ctc_out
4504 4505


W
Wu Yi 已提交
4506
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4507
    """
4508 4509
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4510
    to compute Connectionist Temporal Classification (CTC) loss.
4511 4512
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4513 4514 4515
    input tensor.

    Args:
4516
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4517 4518 4519 4520
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4521
       label (Variable): The ground truth of variable-length sequence,
4522 4523 4524
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4525 4526
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4527 4528 4529
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4530
         follewed by a mean_op.
W
Wu Yi 已提交
4531
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4532 4533

    Returns:
4534 4535
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4536 4537

    Examples:
4538

W
wanghaoshuang 已提交
4539
        .. code-block:: python
4540

4541 4542 4543
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4544 4545

    """
F
fengjiayi 已提交
4546
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4547 4548
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4549 4550 4551 4552 4553 4554
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4555 4556 4557 4558 4559
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4560
    return loss_out
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4576 4577 4578
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4579 4580 4581 4582 4583
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4584

4585
            out.lod  = [[0, 1, 3]]
4586 4587 4588 4589

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4590 4591 4592 4593 4594 4595 4596
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4597 4598 4599

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4600 4601

    Returns:
4602

4603 4604 4605 4606 4607
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4608
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4609
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4610 4611
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4612
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4613 4614 4615 4616 4617 4618
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4619 4620


4621 4622 4623 4624
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4625 4626 4627 4628 4629 4630
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4631
        num_neg_samples=None,
4632 4633 4634
        name=None,
        sampler="uniform",
        custom_dist=None,
4635 4636
        seed=0,
        is_sparse=False):
4637 4638 4639 4640 4641 4642 4643
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4644 4645
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4646
            sample is 1.0.
C
chengduo 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4656
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4657 4658
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4659 4660 4661
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4662
        custom_dist (float[]): A float[] with size=num_total_classes.
4663 4664 4665 4666
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4667
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4668

4669
    Returns:
Y
Yibing Liu 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4697 4698 4699 4700 4701 4702 4703 4704 4705

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4706

4707
    """
Y
Yang Yu 已提交
4708 4709 4710
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4711 4712

    dim = input.shape[1]
Y
Yang Yu 已提交
4713 4714 4715 4716 4717 4718
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4719
    inputs = {}
C
chengduo 已提交
4720 4721 4722 4723 4724 4725 4726
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4727 4728 4729
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4730

4731 4732 4733 4734
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4735 4736 4737 4738 4739 4740 4741

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4794 4795 4796 4797
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4798 4799 4800 4801 4802
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4803 4804
    attrs = {
        'num_total_classes': int(num_total_classes),
4805 4806
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4807 4808
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4809
    }
Y
Yang Yu 已提交
4810 4811 4812

    helper.append_op(
        type='nce',
C
chengduo 已提交
4813
        inputs=inputs,
Y
Yang Yu 已提交
4814 4815 4816 4817 4818 4819
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4820
    return cost / (num_neg_samples + 1)
4821 4822


C
chengduo 已提交
4823 4824
def hsigmoid(input,
             label,
4825
             num_classes,
C
chengduo 已提交
4826 4827
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4828
             name=None,
4829 4830 4831
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4832
             is_sparse=False):
W
weixing02 已提交
4833 4834
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4835
    process of language model. This operator organizes the classes into a
4836 4837
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4838 4839 4840 4841 4842 4843
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4844
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4845
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4846

4847 4848 4849 4850 4851 4852 4853 4854 4855
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4856
    Args:
M
minqiyang 已提交
4857
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4858 4859 4860 4861
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4862 4863 4864
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4876 4877 4878 4879 4880 4881 4882
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4883
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4884 4885
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4886 4887

    Returns:
J
JiabinYang 已提交
4888
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4889 4890 4891 4892 4893

    Examples:

        .. code-block:: python

G
guosheng 已提交
4894 4895 4896
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4897 4898 4899 4900
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4901 4902
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4903
    dim = input.shape[1]
4904
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4905 4906 4907
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4908 4909 4910 4911
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4912 4913
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4914 4915 4916
    else:
        pass

J
JiabinYang 已提交
4917 4918
    weights = None

4919
    if not is_custom:
J
JiabinYang 已提交
4920 4921 4922 4923 4924 4925 4926 4927
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4928
            shape=[num_classes, dim],
J
JiabinYang 已提交
4929 4930
            is_bias=False,
            dtype=input.dtype)
4931 4932 4933
    inputs = {
        "X": input,
        "W": weights,
4934 4935
        "PTable": path_table,
        "PathCode": path_code,
4936 4937
        "Label": label
    }
W
weixing02 已提交
4938
    if helper.bias_attr:
4939
        if not is_custom:
J
JiabinYang 已提交
4940 4941
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4942
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4943 4944 4945 4946 4947 4948
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4949
                shape=[num_classes, 1],
J
JiabinYang 已提交
4950 4951 4952
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4953 4954
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4955
        inputs=inputs,
W
weixing02 已提交
4956 4957
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4958 4959
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4960 4961 4962
    return out


Y
fix ci.  
ying 已提交
4963
def transpose(x, perm, name=None):
Y
ying 已提交
4964 4965 4966 4967 4968 4969 4970
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4971 4972 4973
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4974 4975 4976 4977 4978 4979 4980

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4981
            # use append_batch_size=False to avoid prepending extra
4982
            # batch size in shape
4983
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4984
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4985
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4986 4987
    """

Y
fix ci.  
ying 已提交
4988
    if len(perm) != len(x.shape):
Y
ying 已提交
4989 4990 4991
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4992 4993 4994 4995 4996 4997
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4998 4999

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5000 5001
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5002
    helper.append_op(
5003
        type='transpose2',
Y
fix ci.  
ying 已提交
5004
        inputs={'X': [x]},
5005 5006
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5007 5008
        attrs={'axis': perm})
    return out
5009 5010


5011 5012 5013 5014 5015 5016 5017
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5018
    """
5019 5020 5021 5022 5023 5024 5025
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5054 5055 5056 5057 5058 5059 5060 5061 5062
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5063 5064 5065
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5066 5067 5068 5069 5070
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5098 5099 5100
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5113
            output.dims = {8, 8}
5114

5115
            output.lod = [[4, 4]]
5116

T
Tink_Y 已提交
5117
    Examples:
5118 5119 5120

        .. code-block:: python

5121 5122
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5123 5124

    """
W
wanghaoshuang 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5135 5136 5137 5138 5139 5140 5141
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5142
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5143
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5144
    helper.append_op(
5145
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5146
    return out
5147 5148


Y
yuyang18 已提交
5149
@templatedoc()
5150
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5151 5152
    """
    ${comment}
5153 5154

    Args:
Y
yuyang18 已提交
5155
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5156 5157
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5158 5159 5160 5161 5162
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5163
        ${out_comment}.
5164 5165

    Examples:
Y
yuyang18 已提交
5166 5167 5168 5169
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5170 5171 5172 5173 5174 5175
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5176
    out = helper.create_variable_for_type_inference(dtype)
5177 5178 5179 5180 5181
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5182
    return helper.append_activation(out)
5183 5184


Y
yuyang18 已提交
5185
@templatedoc()
5186 5187
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5188 5189 5190 5191 5192 5193 5194
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5195 5196

    Args:
Y
yuyang18 已提交
5197 5198
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5199 5200

    Returns:
Y
yuyang18 已提交
5201
        ${out_comment}.
5202 5203
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5204 5205 5206 5207 5208

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5209
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5210 5211 5212 5213 5214 5215
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5216 5217


5218 5219 5220
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5221
                               ignore_index=kIgnoreIndex,
5222 5223
                               numeric_stable_mode=False,
                               return_softmax=False):
5224 5225
    """
    **Softmax With Cross Entropy Operator.**
5226

5227 5228 5229 5230
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5231

5232 5233 5234
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5235

5236 5237 5238
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5239

5240
    The equation is as follows:
5241

5242
    1) Hard label (one-hot label, so every sample has exactly one class)
5243

5244 5245 5246 5247
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5248

5249 5250 5251
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5252

5253 5254 5255 5256
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5257 5258 5259
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5260

S
sneaxiy 已提交
5261 5262 5263 5264 5265 5266 5267 5268
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5269 5270 5271 5272 5273 5274 5275 5276
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5277 5278
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5279
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5280 5281 5282
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5283 5284 5285
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5286
                                    stable algorithm. Default: False
5287
        return_softmax (bool): A flag indicating whether to return the softmax
5288
                               along with the cross entropy loss. Default: False
5289

5290
    Returns:
5291 5292 5293 5294
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5295
                              2-D tensor with shape [N x K].
5296 5297 5298 5299 5300 5301 5302

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5303 5304
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5305 5306
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5307 5308
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5309 5310 5311 5312 5313 5314
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5315 5316 5317 5318 5319
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5320 5321 5322 5323

    if return_softmax:
        return loss, softmax

5324 5325 5326 5327 5328
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5329 5330
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5331
    For each instance, it computes the smooth L1 loss element by element first
5332
    and then sums all the losses. So the shape of ouput Variable is
5333
    [batch_size, 1].
5334

5335 5336
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5337
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5338
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5339
            L1 loss op with same shape as :attr:`x`.
5340
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5341 5342
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5343
            by this tensor element by element.
5344
        outside_weight (Variable|None): A tensor with rank at least 2. This
5345 5346
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5347
            element by element.
5348
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5349 5350
           scalar with default value 1.0.

5351
    Returns:
5352
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5353 5354 5355 5356 5357

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5358 5359
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5360
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5361
            out = fluid.layers.smooth_l1(x=fc, y=label)
5362
    """
5363

5364
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5365 5366
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5379 5380 5381 5382


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5383
    This layer creates the one-hot representations for input indices.
5384 5385

    Args:
Y
Yibing Liu 已提交
5386 5387
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5388 5389

    Returns:
Y
Yibing Liu 已提交
5390
        Variable: The one-hot representations of input.
5391 5392

    Examples:
C
caoying03 已提交
5393
        .. code-block:: python
5394

Y
Yibing Liu 已提交
5395 5396
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5397 5398
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5399
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5400 5401 5402 5403 5404 5405
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5406 5407


Y
Yu Yang 已提交
5408
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5409
    """
Y
yi.wu 已提交
5410 5411 5412
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5413 5414 5415 5416 5417 5418

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5419 5420
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5421 5422 5423 5424 5425 5426

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5427 5428
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5429 5430
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5431 5432 5433 5434 5435
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5436
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5437
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5438 5439
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5440 5441
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5442 5443 5444
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5445 5446


5447
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5448
    """
C
caoying03 已提交
5449 5450
    Gives a new shape to the input Tensor without changing its data.

5451 5452 5453 5454 5455
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5456

5457
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5458

5459 5460 5461 5462
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5463
    2. 0 means the actual dimension value is going to be copied from the
5464 5465 5466 5467
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5468 5469

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5470
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5471
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5472

5473
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5474 5475
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5476 5477
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5478
    dimensions.
C
caoying03 已提交
5479

5480
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5481 5482 5483 5484
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5485 5486

    Args:
5487
        x(variable): The input tensor.
C
caoying03 已提交
5488 5489
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5490 5491 5492 5493 5494
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5495 5496
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5497 5498 5499 5500 5501 5502 5503
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5504
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5505

5506
    Returns:
G
guosheng 已提交
5507 5508 5509 5510
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5511

X
Xin Pan 已提交
5512 5513 5514
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5515 5516
    Examples:
        .. code-block:: python
G
guosheng 已提交
5517

5518
            data = fluid.layers.data(
5519
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5520
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5521
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5522 5523 5524
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5525
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5526 5527 5528 5529 5530
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5531

5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5547
    helper = LayerHelper("reshape2", **locals())
5548 5549
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5550
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5551
    helper.append_op(
5552
        type="reshape2",
X
Xin Pan 已提交
5553
        inputs=inputs,
D
dzhwinter 已提交
5554
        attrs={"shape": shape},
5555 5556
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5557

D
dzhwinter 已提交
5558
    return helper.append_activation(out)
5559

5560

5561
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5562
    """
M
minqiyang 已提交
5563 5564 5565
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5566
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5567

Y
Yibing Liu 已提交
5568 5569
    Examples:
    Case 1:
M
minqiyang 已提交
5570
      Given
Y
Yibing Liu 已提交
5571 5572 5573 5574 5575 5576 5577 5578
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5579
        and
Y
Yibing Liu 已提交
5580 5581 5582
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5583

Y
Yibing Liu 已提交
5584
    Args:
5585
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5586
        axes (list): List of integers, indicating the dimensions to be squeezed.
5587
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5588 5589 5590 5591 5592 5593 5594 5595

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5596
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5597 5598
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5599 5600
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5601
    helper.append_op(
5602
        type="squeeze2",
5603
        inputs={"X": input},
Y
Yibing Liu 已提交
5604
        attrs={"axes": axes},
5605 5606
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5607

5608 5609 5610
    return out


5611
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5612
    """
M
minqiyang 已提交
5613 5614 5615
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5616

M
minqiyang 已提交
5617 5618
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5619
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5620

Y
Yibing Liu 已提交
5621
    Args:
5622
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5623
        axes (list): List of integers, indicating the dimensions to be inserted.
5624
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5625 5626 5627 5628 5629 5630 5631 5632

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5633
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5634 5635
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5636 5637
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5638
    helper.append_op(
5639
        type="unsqueeze2",
5640
        inputs={"X": input},
Y
Yibing Liu 已提交
5641
        attrs={"axes": axes},
5642 5643
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5644

5645 5646
    return out

5647

Y
yangyaming 已提交
5648
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5649
    """
Y
Yibing Liu 已提交
5650
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5651 5652 5653 5654
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5655
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5656 5657 5658 5659 5660 5661

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5662
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5663 5664 5665
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5666
            target_lod: [4, 2]
Y
yangyaming 已提交
5667 5668

            then we get a 1-level LoDTensor:
5669
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5670 5671 5672 5673 5674 5675
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5676
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5677 5678 5679 5680
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5681
                y.data = [[2, 4]]
Y
yangyaming 已提交
5682 5683 5684
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5685
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5686 5687 5688 5689 5690 5691
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5692
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5693 5694 5695 5696
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5697
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5698 5699 5700 5701
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5702
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5703 5704 5705 5706 5707
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5708
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5709
                           from :attr:`y`.
Y
yangyaming 已提交
5710
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5711
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5712 5713

    Returns:
Y
Yibing Liu 已提交
5714
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5715 5716

    Raises:
Y
Yibing Liu 已提交
5717
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5718 5719 5720 5721 5722 5723 5724 5725 5726

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5727
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5753
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5782 5783
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5796 5797 5798
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5812 5813 5814 5815


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5816
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5817
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5818

G
guosheng 已提交
5819 5820 5821 5822
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5845
                         The length of :attr:paddings must be
G
guosheng 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5856

G
guosheng 已提交
5857 5858 5859 5860 5861 5862
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5863
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5864 5865 5866 5867 5868 5869 5870
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5871 5872


C
chengduo 已提交
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5904 5905
		And
            pad_value = -1,
C
chengduo 已提交
5906

T
Tink_Y 已提交
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5942
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5943 5944 5945 5946 5947 5948 5949 5950 5951
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5952 5953 5954 5955 5956 5957 5958
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5959 5960
    called label-smoothing regularization (LSR).

5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5984
                              be :math:`(1, class\_num)`.
5985 5986
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5987
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6007
    smooth_label = helper.create_variable_for_type_inference(dtype)
6008 6009 6010 6011 6012 6013 6014
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6015 6016


W
wopeizl 已提交
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6053 6054


J
jerrywgz 已提交
6055 6056 6057 6058 6059 6060
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6061 6062
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6079 6080 6081
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6082 6083 6084 6085 6086 6087
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6088
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6129 6130
        .. code-block:: python

W
whs 已提交
6131 6132 6133 6134
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6135
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6136 6137 6138 6139 6140 6141
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6142 6143


6144 6145 6146 6147
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6148 6149
                 resample='BILINEAR',
                 actual_shape=None):
6150
    """
Q
qiaolongfei 已提交
6151
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6152

6153
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6154 6155 6156
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6157

6158
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6159

6160
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6161

6162
    Args:
6163
        input (Variable): The input tensor of image resize layer,
6164 6165
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6166
        out_shape(list|tuple|Variable|None): Output shape of image resize
6167 6168
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6169
        scale(float|None): The multiplier for the input height or width.
6170 6171 6172
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6173 6174
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6175
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6176
                       currently.
6177
                       Default: 'BILINEAR'
6178 6179 6180
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6181
                                :attr:`out_shape` and :attr:`scale` specifying
6182 6183 6184 6185 6186 6187 6188
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6189 6190
                                constructing stage.
                                Default: None
6191 6192

    Returns:
Q
update  
qiaolongfei 已提交
6193 6194
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6195

6196 6197 6198
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6199
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6200 6201 6202 6203
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6204 6205 6206
    Examples:
        .. code-block:: python

6207
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6208
    """
6209 6210 6211 6212
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6213 6214
    if resample not in resample_methods:
        raise ValueError(
6215
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6216
        )
6217
    resample_type = resample_methods[resample]
6218
    if out_shape is None and scale is None:
6219
        raise ValueError("One of out_shape and scale must not be None.")
6220
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6221
    dtype = helper.input_dtype()
6222 6223 6224 6225

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6226 6227 6228
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6229
    if out_shape is not None:
6230 6231 6232 6233
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6234
            inputs['OutSize'] = out_shape
6235 6236 6237 6238 6239 6240 6241 6242
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6243 6244 6245 6246
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6247 6248 6249 6250 6251
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6252
    out = helper.create_variable_for_type_inference(dtype)
6253
    helper.append_op(
6254
        type='{}_interp'.format(resample_type),
6255
        inputs=inputs,
6256
        outputs={"Out": out},
6257 6258 6259
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6260
    return out
F
stash  
fengjiayi 已提交
6261 6262


6263
@templatedoc(op_type="bilinear_interp")
6264 6265 6266 6267 6268
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6269
    """
6270 6271
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6272 6273
    in priority order.

6274 6275 6276 6277
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6278 6279
    again in the other direction.

6280
    For details of bilinear interpolation, please refer to Wikipedia:
6281
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6282 6283 6284 6285 6286

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6287

Y
yuyang18 已提交
6288 6289 6290 6291 6292
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6293 6294 6295
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6296
                                :attr:`out_shape` and :attr:`scale` specifying
6297 6298 6299 6300 6301 6302 6303
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6304 6305
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6306 6307 6308

    Returns:
        ${out_comment}.
6309 6310 6311 6312 6313

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6314 6315
    """

6316
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6317 6318


6319
@templatedoc(op_type="nearest_interp")
6320 6321 6322 6323 6324
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6325
    """
6326
    Resize input by performing nearest neighbor interpolation in both the
6327 6328
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6329 6330
    out_shape and scale in priority order.

6331
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6332
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6333 6334 6335 6336 6337

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6338

Y
yuyang18 已提交
6339 6340 6341 6342 6343
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6344 6345 6346
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6347
                                :attr:`out_shape` and :attr:`scale` specifying
6348 6349 6350 6351 6352 6353 6354
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6355 6356
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6357 6358 6359

    Returns:
        ${out_comment}.
6360 6361 6362 6363 6364

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6365 6366
    """

6367
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6368 6369 6370 6371


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6372 6373 6374
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6375 6376 6377 6378 6379 6380 6381
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6382
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6383

6384
    Returns:
Q
update  
qiaolongfei 已提交
6385
        Variable: The output is a 4-D tensor of the shape
6386
        (num_batches, channls, out_h, out_w).
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6397 6398 6399
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6400 6401 6402
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6403 6404
def gather(input, index):
    """
Q
qiaolongfei 已提交
6405 6406
    **Gather Layer**

6407
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6408 6409 6410 6411
    of X indexed by `index` and concatenate them together.

    .. math::

6412
        Out = X[Index]
W
whs 已提交
6413 6414 6415 6416 6417 6418 6419


    .. code-block:: text


                Given:

6420 6421
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6432
        input (Variable): The source input with rank>=1.
W
whs 已提交
6433 6434 6435 6436 6437 6438
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6439

W
whs 已提交
6440 6441 6442 6443 6444 6445
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6446
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6447 6448 6449 6450 6451 6452 6453 6454
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6486
    out = helper.create_variable_for_type_inference(dtype)
6487 6488 6489 6490 6491 6492 6493 6494 6495
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6546
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6547 6548 6549 6550 6551 6552 6553 6554 6555
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6569

6570 6571 6572
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6573
    """
F
stash  
fengjiayi 已提交
6574
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6575
    dtype = x.dtype
X
Xin Pan 已提交
6576
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6577
    if seed is None:
6578
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6579
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6580
    if isinstance(seed, int):
F
fengjiayi 已提交
6581 6582 6583 6584 6585
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6586 6587 6588 6589
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6590
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6591 6592
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6593 6594
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6595
    return out
W
whs 已提交
6596 6597


6598
def log(x, name=None):
W
wanghaoshuang 已提交
6599 6600 6601 6602 6603
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6604
        Out = \\ln(x)
W
wanghaoshuang 已提交
6605 6606

    Args:
6607
        x (Variable): Input tensor.
6608 6609
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6610 6611 6612 6613 6614 6615 6616 6617

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6618
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6619 6620
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6621
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6622
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6623
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6624 6625 6626
    return out


6627
def relu(x, name=None):
W
wanghaoshuang 已提交
6628 6629
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6630
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6631 6632 6633 6634
    the tensor elementwise.

    .. math::

6635
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6636 6637

    Args:
6638
        x (Variable): The input tensor.
6639 6640
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6641 6642 6643 6644 6645 6646 6647 6648

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6649
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6650 6651
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6652
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6653
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6654 6655
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6656
    return out
6657 6658


C
chengduo 已提交
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6700 6701 6702
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6703 6704 6705 6706
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6707
    .. math::
6708 6709

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6710

6711
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6712 6713 6714 6715 6716
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6717
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6718
                           Its shape should be the same as input.
6719
        num_classes (int): The possible number of labels.
W
whs 已提交
6720 6721 6722 6723

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6724
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6725 6726 6727 6728

    Examples:

        .. code-block:: python
6729

W
whs 已提交
6730 6731 6732 6733
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6734 6735 6736
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6737 6738
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6739 6740
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6741
        outputs={
W
whs 已提交
6742 6743 6744
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6745 6746 6747
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6816
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6817 6818 6819 6820 6821

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6822
            isinstance(shape, Variable)):
6823 6824 6825 6826 6827
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6828
    out = helper.create_variable_for_type_inference(x.dtype)
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6846 6847


W
whs 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6865

W
whs 已提交
6866
              out_shape = [2, 3, 5, 5]
6867

W
whs 已提交
6868
          Step 1:
6869

W
whs 已提交
6870 6871 6872
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6873

W
whs 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6944
            isinstance(out_shape, Variable)):
W
whs 已提交
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6966 6967 6968 6969 6970 6971 6972 6973
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6974

6975 6976
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6977

6978 6979 6980 6981
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6982

6983 6984 6985 6986 6987
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6988 6989 6990

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7026
    out = helper.create_variable_for_type_inference("float32")
7027 7028 7029 7030 7031 7032 7033 7034

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7035 7036


M
minqiyang 已提交
7037 7038
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7039
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7040
    which compares left score and right score passed in.
M
minqiyang 已提交
7041
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7042 7043 7044 7045 7046 7047

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7048
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7049 7050
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7051
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7052 7053 7054
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7055
       Variable: The ranking loss.
M
minqiyang 已提交
7056
    Raises:
M
minqiyang 已提交
7057
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7058 7059 7060 7061 7062 7063 7064
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7065
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7066 7067 7068 7069 7070 7071
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7072 7073
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7097
        .. code-block:: text
W
whs 已提交
7098

T
Tink_Y 已提交
7099
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7100

T
Tink_Y 已提交
7101 7102
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7103

T
Tink_Y 已提交
7104
	      Case 0:
M
minqiyang 已提交
7105

T
Tink_Y 已提交
7106 7107 7108
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7109

T
Tink_Y 已提交
7110 7111 7112
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7113

T
Tink_Y 已提交
7114
	      Case 1:
M
minqiyang 已提交
7115

T
Tink_Y 已提交
7116 7117
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7118

T
Tink_Y 已提交
7119 7120 7121
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7122

T
Tink_Y 已提交
7123
	      Case 2:
M
minqiyang 已提交
7124

T
Tink_Y 已提交
7125 7126
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7127

T
Tink_Y 已提交
7128 7129 7130
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7131 7132


W
whs 已提交
7133 7134
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7135
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7159
    out = helper.create_variable_for_type_inference(dtype)
7160 7161 7162 7163 7164 7165 7166 7167 7168
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7169
    helper.append_op(
7170
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7171 7172 7173 7174

    return out


7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7187 7188 7189 7190 7191

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7192 7193
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7194 7195
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7196
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7217 7218 7219 7220 7221

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7222 7223
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7224 7225
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7226
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7247 7248 7249 7250 7251

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7252 7253
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7254 7255
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7278 7279 7280 7281 7282

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7283
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7284
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7285 7286
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7287
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7310 7311 7312 7313 7314

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7315 7316
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7317 7318
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7319
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7341 7342 7343 7344 7345

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7346 7347
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7348 7349
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7350
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7351 7352 7353 7354 7355 7356 7357 7358
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7359 7360 7361 7362
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7363
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7364 7365 7366

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7367
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7368
          weight (alpha).
J
jerrywgz 已提交
7369
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7370 7371 7372
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7373
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7374
          will be named automatically.
J
jerrywgz 已提交
7375 7376 7377 7378 7379 7380 7381 7382

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7383
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7397
        attr=helper.param_attr,
J
jerrywgz 已提交
7398 7399 7400 7401
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7402
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7403 7404 7405 7406 7407 7408 7409 7410 7411
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7422
    Returns:
7423
        output(${out_type}): ${out_comment}
7424 7425 7426 7427 7428 7429 7430

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7431 7432
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7433
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7452
    Returns:
7453
        output(${out_type}): ${out_comment}
7454 7455 7456 7457 7458 7459 7460

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7461 7462
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7463
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7481
    Returns:
7482
        output(${out_type}): ${out_comment}
7483 7484 7485 7486 7487 7488 7489

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7490 7491
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7492
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7493 7494 7495 7496 7497 7498 7499 7500
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7514

7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7525 7526
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7542
        ValueError: If axis is not in range [0, rank(x)].
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7559 7560
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7561
    helper.append_op(
7562
        type='flatten2',
7563
        inputs={"X": x},
7564 7565
        outputs={'Out': out,
                 'XShape': x_shape},
7566 7567
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7568 7569


C
chenweihang 已提交
7570
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7571
    """
C
chenweihang 已提交
7572
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7573
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7574 7575
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7576

C
chenweihang 已提交
7577 7578 7579 7580
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7581
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7582 7583 7584 7585 7586 7587
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7588
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7589 7590 7591
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7592 7593 7594
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7606 7607
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7608 7609 7610 7611 7612 7613
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7614
    return out
7615

7616

S
sneaxiy 已提交
7617 7618 7619 7620 7621 7622 7623 7624 7625
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7626

S
sneaxiy 已提交
7627
    .. math::
7628

S
sneaxiy 已提交
7629 7630 7631
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7632
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7633 7634 7635 7636
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7637 7638 7639
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7640 7641
    Returns:
        Variable: The output sequence mask.
7642

S
sneaxiy 已提交
7643 7644
    """

Q
qingqing01 已提交
7645
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7646
    if name is None:
X
Xin Pan 已提交
7647
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7648
    else:
X
Xin Pan 已提交
7649
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7650

Q
qingqing01 已提交
7651 7652 7653
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7654 7655
        outputs={'Y': out},
        attrs={
7656
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7657 7658 7659
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7660 7661


X
Xin Pan 已提交
7662
def stack(x, axis=0):
S
sneaxiy 已提交
7663 7664 7665 7666
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7667 7668 7669 7670 7671 7672 7673

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7674
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7675
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7676 7677

    Args:
7678
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7679
        axis (int|None): The axis along which all inputs are stacked.
7680

S
sneaxiy 已提交
7681 7682
    Returns:
        Variable: The stacked variable.
7683

S
sneaxiy 已提交
7684 7685
    """

X
Xin Pan 已提交
7686 7687 7688 7689 7690 7691
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7692
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7693
    helper.append_op(
S
sneaxiy 已提交
7694 7695
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7696

X
Xin Pan 已提交
7697
    return out
D
dzhwinter 已提交
7698 7699 7700 7701 7702 7703 7704


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7705

D
dzhwinter 已提交
7706 7707 7708
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7709
    raised.
D
dzhwinter 已提交
7710 7711

    Args:
M
minqiyang 已提交
7712
        x (Variable): Input variable.
D
dzhwinter 已提交
7713 7714
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7715

D
dzhwinter 已提交
7716 7717
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7718

D
dzhwinter 已提交
7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7730
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7731 7732 7733 7734 7735 7736 7737 7738

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7751

W
whs 已提交
7752 7753 7754 7755
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7756

W
whs 已提交
7757
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7758

W
whs 已提交
7759
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7760

W
whs 已提交
7761 7762 7763 7764
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7765

W
whs 已提交
7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7782
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7783 7784 7785 7786 7787 7788
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7789 7790


G
fix  
gongweibao 已提交
7791 7792 7793
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7794
@templatedoc()
G
fix  
gongweibao 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7804
    ${comment}
G
fix  
gongweibao 已提交
7805 7806

    Args:
G
gongweibao 已提交
7807 7808 7809
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7810
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7811 7812 7813
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7814 7815
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7816
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7817

7818 7819 7820 7821 7822
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7823 7824 7825
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7826
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7843 7844


G
gongweibao 已提交
7845
@templatedoc()
X
Xin Pan 已提交
7846
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7847
    """
G
gongweibao 已提交
7848
    ${comment}
G
fix  
gongweibao 已提交
7849 7850

    Args:
G
gongweibao 已提交
7851 7852 7853 7854
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7855 7856 7857
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7858
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7859

7860 7861 7862 7863
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7864 7865 7866
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7867
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7878
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7879 7880 7881 7882 7883
        })

    return out


G
gongweibao 已提交
7884
@templatedoc()
G
fix  
gongweibao 已提交
7885
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7886
    """
G
gongweibao 已提交
7887
    ${comment}
G
fix  
gongweibao 已提交
7888 7889

    Args:
G
gongweibao 已提交
7890 7891 7892 7893
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7894
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7895 7896

    Returns:
G
gongweibao 已提交
7897
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7898

7899 7900 7901 7902 7903 7904 7905 7906 7907 7908
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7909 7910 7911
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7912
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7924
@templatedoc()
G
fix  
gongweibao 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7934
    ${comment}
G
fix  
gongweibao 已提交
7935 7936

    Args:
G
gongweibao 已提交
7937 7938
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7939
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7940 7941 7942 7943
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7944
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7945 7946

    Returns:
G
gongweibao 已提交
7947
        out (Variable): ${out_comment}
7948 7949 7950 7951 7952 7953 7954 7955

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7956 7957 7958
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7959
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7978
@templatedoc()
X
Xin Pan 已提交
7979
def sum(x):
G
fix  
gongweibao 已提交
7980
    """
G
gongweibao 已提交
7981
    ${comment}
G
fix  
gongweibao 已提交
7982 7983

    Args:
G
gongweibao 已提交
7984
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7985 7986

    Returns:
G
gongweibao 已提交
7987
        out (Variable): ${out_comment}
7988 7989 7990 7991 7992 7993

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7994 7995 7996
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7997 7998
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7999 8000 8001 8002
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8003
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8004 8005 8006 8007

    return out


G
gongweibao 已提交
8008
@templatedoc()
G
fix  
gongweibao 已提交
8009 8010
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8011
    ${comment}
G
fix  
gongweibao 已提交
8012 8013

    Args:
G
gongweibao 已提交
8014 8015 8016 8017
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8018 8019

    Returns:
G
gongweibao 已提交
8020
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8021

8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8033 8034 8035
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8036 8037
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8049
@templatedoc()
G
fix  
gongweibao 已提交
8050 8051
def shape(input):
    """
G
gongweibao 已提交
8052
    ${comment}
G
fix  
gongweibao 已提交
8053 8054

    Args:
G
gongweibao 已提交
8055
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8056 8057

    Returns:
G
gongweibao 已提交
8058
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8059

8060 8061 8062 8063 8064 8065
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8066 8067 8068
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8069 8070
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8071
    helper.append_op(
G
fix  
gongweibao 已提交
8072
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8073 8074

    return out
G
merge  
gongweibao 已提交
8075 8076


S
sneaxiy 已提交
8077 8078 8079 8080 8081 8082 8083 8084
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8085 8086
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8087
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8088 8089 8090
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8091

S
sneaxiy 已提交
8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8103
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8104 8105 8106 8107 8108 8109 8110 8111
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8112
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8113
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8114 8115 8116 8117 8118 8119

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8120
    if name is None:
X
Xin Pan 已提交
8121
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8122 8123 8124
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8135
    return helper.append_activation(out)
S
sneaxiy 已提交
8136 8137


X
Xin Pan 已提交
8138
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8139 8140 8141
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8142
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8143 8144 8145
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8146
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8147 8148 8149
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8150
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8151 8152 8153
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8154
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8155 8156 8157
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8158
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8159 8160 8161
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8162
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8174 8175
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8176
        ])
M
minqiyang 已提交
8177 8178


8179
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8180 8181
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8182 8183
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8184 8185 8186

    if out is None:
        if name is None:
X
Xin Pan 已提交
8187
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8203
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8215 8216 8217 8218 8219 8220 8221 8222 8223

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8224 8225 8226 8227 8228 8229 8230
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8231
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8243 8244 8245 8246 8247 8248 8249 8250 8251

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8252 8253 8254 8255 8256 8257 8258
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8259
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8271 8272 8273 8274 8275 8276 8277 8278 8279

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8280 8281 8282 8283 8284 8285 8286
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8287
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8298 8299 8300 8301 8302 8303 8304

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8305 8306 8307 8308
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8324 8325 8326 8327 8328 8329 8330

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8331 8332 8333 8334 8335
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8336 8337 8338 8339
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8363 8364 8365 8366 8367 8368 8369

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8370 8371 8372 8373 8374
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8375 8376 8377 8378
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8379 8380 8381 8382 8383 8384 8385 8386

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8405
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8458
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8459 8460 8461 8462 8463 8464 8465 8466 8467
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8468 8469
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8470 8471 8472 8473 8474 8475
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8476 8477 8478 8479
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8480 8481 8482 8483 8484 8485
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8486
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8487 8488 8489 8490 8491 8492 8493 8494 8495
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8496
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8497 8498 8499 8500 8501 8502 8503 8504
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8505
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8526
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8537 8538


J
JiabinYang 已提交
8539
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8540
    """
J
JiabinYang 已提交
8541
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8542 8543 8544

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8545
    The attr blocksize indicates the input block size.
8546 8547

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8548
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8549 8550

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8551
    (but keeping all data)
J
JiabinYang 已提交
8552

J
JiabinYang 已提交
8553
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8554
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8555 8556 8557 8558 8559
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8560
    Args:
J
JiabinYang 已提交
8561
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8562
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8563 8564

    Returns:
J
JiabinYang 已提交
8565
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8566 8567

    Raises:
J
JiabinYang 已提交
8568
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8569 8570 8571 8572 8573 8574

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8575
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8576
                x=data, blocksize=2)
J
JiabinYang 已提交
8577 8578
    """

J
JiabinYang 已提交
8579
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8580

J
JiabinYang 已提交
8581 8582
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8583 8584

    if name is None:
J
JiabinYang 已提交
8585 8586
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8587 8588 8589 8590 8591
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8592
        type="space_to_depth",
J
JiabinYang 已提交
8593
        inputs={"X": x},
J
JiabinYang 已提交
8594
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8595
        outputs={"Out": out})
J
JiabinYang 已提交
8596 8597
    return out

J
JiabinYang 已提交
8598

S
sneaxiy 已提交
8599 8600
@templatedoc()
def sequence_reverse(x, name=None):
8601
    """
S
sneaxiy 已提交
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8613
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8624 8625


8626 8627 8628 8629 8630 8631
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8632

8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8652
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8665 8666


B
barrierye 已提交
8667
def similarity_focus(input, axis, indexes, name=None):
8668
    """
B
barrierye 已提交
8669
    SimilarityFocus Operator
B
barrierye 已提交
8670 8671

    Generate a similarity focus mask with the same shape of input using the following method:
8672 8673 8674
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8675
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8676 8677 8678 8679 8680 8681 8682
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8683
       each index.
B
barrierye 已提交
8684 8685 8686 8687
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8737
    Args:
8738
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8739
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8740
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8741
            1, 2 or 3.
B
barrierye 已提交
8742
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8743 8744

    Returns:
8745
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8746
            as the input.
8747

B
barrierye 已提交
8748 8749 8750
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8751 8752
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8765 8766 8767 8768 8769
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8770 8771 8772 8773 8774 8775 8776
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8777 8778


M
minqiyang 已提交
8779 8780
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8781 8782
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8783 8784
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8823
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8824
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8825 8826 8827 8828 8829 8830 8831 8832 8833

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8834 8835
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8836 8837
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8838 8839 8840 8841 8842 8843 8844
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8845 8846


D
dengkaipeng 已提交
8847
@templatedoc()
8848 8849
def grid_sampler(x, grid, name=None):
    """
8850
    This operation samples input X by using bilinear interpolation based on
8851
    flow field grid, which is usually gennerated by affine_grid. The grid of
8852 8853 8854 8855
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8856
    interpolation value of 4 nearest corner points.
8857 8858 8859 8860 8861 8862 8863 8864

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8865
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8895 8896

    Args:
8897 8898 8899
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8900 8901

    Returns:
8902
        out(Variable): Output of shape [N, C, H, W] data samples input X
8903 8904 8905 8906 8907 8908 8909 8910 8911
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8912 8913 8914 8915 8916 8917 8918 8919 8920
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8921
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8922 8923
    ipts = {'X': x, 'Grid': grid}

8924
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8925 8926 8927
    return out


G
gmcather 已提交
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9022 9023 9024 9025 9026 9027 9028 9029 9030 9031


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9032
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9033

Q
Qiao Longfei 已提交
9034
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9035 9036 9037
    For example:

    .. math::
9038
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9039

Q
Qiao Longfei 已提交
9040
    In this formula:
9041 9042
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9043
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9044
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9045 9046 9047
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9048 9049
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9050 9051 9052
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9053
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9054
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9055
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9056 9057 9058 9059
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9060
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9061 9062 9063 9064

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9065
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9066 9067
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9068
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9069 9070 9071 9072

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9073
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out