nn.py 404.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
27
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
76 77
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
78 79
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
80
    'sequence_slice',
X
Xin Pan 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
93
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
94 95 96 97 98
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
99
    'group_norm',
D
dengkaipeng 已提交
100
    'spectral_norm',
X
Xin Pan 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
114
    'roi_align',
X
Xin Pan 已提交
115 116 117 118
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
119
    'resize_nearest',
X
Xin Pan 已提交
120 121 122 123 124 125
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
126
    'selu',
X
Xin Pan 已提交
127 128 129
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
130
    'margin_rank_loss',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
164
    'rank',
X
Xin Pan 已提交
165 166 167 168 169 170 171 172 173 174
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
175
    'space_to_depth',
W
whs 已提交
176
    'affine_grid',
S
sneaxiy 已提交
177
    'sequence_reverse',
178
    'affine_channel',
B
barrierye 已提交
179
    'similarity_focus',
M
minqiyang 已提交
180
    'hash',
D
dengkaipeng 已提交
181
    'grid_sampler',
G
gmcather 已提交
182 183
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
184
    'bilinear_tensor_product',
C
chengduo 已提交
185 186
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
187
    'lstm',
S
shippingwang 已提交
188
    'shuffle_channel',
189
    'temporal_shift',
S
sneaxiy 已提交
190
    'py_func',
191
    'psroi_pool',
H
heqiaozhi 已提交
192
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
193
    'huber_loss',
D
dengkaipeng 已提交
194
    'kldiv_loss',
Z
zhaozhehao 已提交
195
    'tree_conv',
C
ceci3 已提交
196
    'npair_loss',
R
ruri 已提交
197
    'pixel_shuffle',
198
    'fsp_matrix',
H
heqiaozhi 已提交
199
    'continuous_value_model',
Y
Yu Yang 已提交
200 201
]

J
jerrywgz 已提交
202 203
kIgnoreIndex = -100

Y
Yu Yang 已提交
204 205 206 207 208 209 210

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
211
       is_test=False,
212
       name=None):
Y
Yu Yang 已提交
213
    """
214
    **Fully Connected Layer**
Y
Yu Yang 已提交
215

216
    This function creates a fully connected layer in the network. It can take
217
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
218
    Args in detail). It creates a variable called weights for each input tensor,
219 220 221 222
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
223
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
224 225
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
226

227
    When the input is single tensor:
C
caoying03 已提交
228

229 230 231 232 233
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
234 235 236

    .. math::

237
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
238 239 240

    In the above equation:

241 242 243
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
244
    * :math:`b`: The bias parameter created by this layer (if needed).
245
    * :math:`Act`: The activation function.
C
caoying03 已提交
246
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
266
    Args:
R
ranqiu 已提交
267 268 269 270 271 272 273 274 275 276
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
277
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
278 279 280 281
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
282 283
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
284
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
285
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
286
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
287

288
    Returns:
F
fengjiayi 已提交
289
        Variable: The transformation result.
290 291

    Raises:
C
caoying03 已提交
292
        ValueError: If rank of the input tensor is less than 2.
293 294 295 296

    Examples:
        .. code-block:: python

297
          # when input is single tensor
F
fengjiayi 已提交
298
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
299
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
300 301 302 303 304

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
305
    """
C
caoying03 已提交
306
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
307 308 309 310

    dtype = helper.input_dtype()

    mul_results = []
311 312
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
313 314 315
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
316

Y
Yu Yang 已提交
317
        w = helper.create_parameter(
318
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
319
        tmp = helper.create_variable_for_type_inference(dtype)
320
        helper.append_op(
321 322 323
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
324
            outputs={"Out": tmp},
M
mozga-intel 已提交
325 326
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
327 328 329 330
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
331
    else:
X
Xin Pan 已提交
332
        pre_bias = helper.create_variable_for_type_inference(dtype)
333
        helper.append_op(
334 335 336
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
337
            attrs={"use_mkldnn": False})
338 339 340 341
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
342 343


344 345 346
def embedding(input,
              size,
              is_sparse=False,
347
              is_distributed=False,
348 349 350
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
351
    """
352 353
    **Embedding Layer**

354
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
355 356
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
357 358 359

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
360 361

    Args:
362 363 364 365 366
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
367
        is_distributed(bool): Whether to run lookup table from remote parameter server.
368 369
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
370
            with zeros whenever lookup encounters it in :attr:`input`. If
371
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
372 373
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
374
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
375

376 377 378
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
379

380 381
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
382

C
chengduoZH 已提交
383
          dict_size = len(dataset.ids)
384
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
385
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
386 387 388
    """

    helper = LayerHelper('embedding', **locals())
389
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
390 391
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
392 393
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
394
    tmp = helper.create_variable_for_type_inference(dtype)
395 396
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
397 398 399 400 401
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
402 403 404
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
405
            'remote_prefetch': remote_prefetch,
406 407
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
408 409 410
    return tmp


W
wopeizl 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
427

W
wopeizl 已提交
428 429 430 431 432 433 434 435 436 437 438
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
439

W
wopeizl 已提交
440 441 442 443
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
488
    assert in_dygraph_mode(
489
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
533 534


P
phlrain 已提交
535 536 537 538 539 540
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
541
         dropout_prob=0.0,
P
phlrain 已提交
542 543 544 545 546
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
547
    """
P
phlrain 已提交
548
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
549 550

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
551
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
552 553
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
554
    .. math::
M
minqiyang 已提交
555 556 557 558 559 560 561

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
562
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
563 564 565 566

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
567 568

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
569 570 571 572 573 574
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
575 576 577
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
578
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
579

M
minqiyang 已提交
580
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
581 582 583 584 585
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
586
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
587 588 589 590 591
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
592
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
593 594
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
595 596
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
597 598 599 600 601 602
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
603
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
604

L
liuhongyu 已提交
605 606

    Returns:
M
minqiyang 已提交
607 608
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
609
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
610

H
haowang101779990 已提交
611 612 613 614
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
615
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
616 617
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
618
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
634
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
635 636 637 638 639 640
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
641 642 643
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
703 704 705 706 707 708 709 710 711 712
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
713
                  proj_activation='tanh',
714
                  dtype='float32',
X
xuezhong 已提交
715 716 717 718 719
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
720 721 722
    """
    **Dynamic LSTMP Layer**

723 724 725 726 727 728
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
729 730 731 732 733

    The formula is as follows:

    .. math::

734
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
735

736
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
737

738
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
739

740
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
741

742
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
743

744
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
745

746
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
747

Y
Yibing Liu 已提交
748 749 750 751 752 753
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
754
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
755
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
756
          bias vector).
Y
Yibing Liu 已提交
757 758 759
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
760
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
761
    * :math:`h`: The hidden state.
762
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
763 764
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
765
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
766
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
767
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
768 769
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
770 771 772 773

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
774

Y
Yibing Liu 已提交
775 776 777 778 779 780 781 782 783 784 785 786
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
787
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
788 789
                               hidden-hidden weight and projection weight.

790 791
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
792 793
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
794 795
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
796
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
797 798 799 800 801

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
802
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
803 804 805 806 807 808
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
809
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
810 811 812
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
813
                                - The shape is (1 x 7D).
C
chengduo 已提交
814 815 816 817 818

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
819 820 821 822 823 824 825 826 827
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
828
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
829 830
                              default "tanh".
        proj_activation(str): The activation for projection output.
831
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
832
                              default "tanh".
Y
Yibing Liu 已提交
833
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
834 835
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
836 837 838 839 840 841 842 843 844 845 846
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
847 848

    Returns:
849 850 851 852
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
853 854

    Examples:
855

Y
Yibing Liu 已提交
856 857
        .. code-block:: python

858 859 860 861
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
862
            hidden_dim, proj_dim = 512, 256
863
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
864
                                     act=None, bias_attr=None)
865 866 867
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
868 869 870 871
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
872
    """
873

L
lujun 已提交
874
    assert in_dygraph_mode(
875 876
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
877
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
878
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
879
    size = size // 4
Y
Yibing Liu 已提交
880 881 882 883 884 885 886 887 888 889
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
890 891 892 893 894 895
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
911

X
xuezhong 已提交
912 913 914 915 916
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
917 918
    helper.append_op(
        type='lstmp',
919
        inputs=inputs,
Y
Yibing Liu 已提交
920 921 922 923 924 925 926 927 928
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
929 930
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
931 932 933 934 935 936 937 938 939
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
940 941 942 943 944 945 946
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
947 948
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
949
    """
950
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
951

952 953 954
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
955

G
guosheng 已提交
956 957 958 959 960 961 962 963 964
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
965

G
guosheng 已提交
966
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
967

Q
Qiao Longfei 已提交
968 969 970

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
971 972 973 974 975 976 977 978 979 980 981 982
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
983
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
984 985
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
986 987 988 989
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
990
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
991 992

    Args:
993 994
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
995
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
996
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
997 998
            is the hidden size.
        size(int): The dimension of the gru cell.
999
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1000 1001
            hidden-hidden weight matrix. Note:

1002
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1003
              :math:`D` is the hidden size.
1004
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1005
              The first part are weights of the update gate and reset gate with
1006
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1007
              candidate hidden state with shape :math:`(D \\times D)`.
1008 1009 1010 1011 1012

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1013
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1014
            the bias in the update gate, reset gate and candidate calculations.
1015 1016 1017
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1018 1019
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1020
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1021 1022 1023
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1024
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1025
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1026 1027 1028 1029
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1030 1031

    Returns:
G
guosheng 已提交
1032
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1033
            and sequence length is the same with the input.
1034

G
guosheng 已提交
1035
    Examples:
1036

G
guosheng 已提交
1037 1038
        .. code-block:: python

1039 1040 1041 1042
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1043
            hidden_dim = 512
1044
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1045
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1046 1047
    """

L
lujun 已提交
1048
    assert in_dygraph_mode(
1049 1050
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1051 1052 1053 1054 1055 1056 1057
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1058
    batch_size = input.shape[0]
G
guosheng 已提交
1059
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1060
    if h_0:
G
guosheng 已提交
1061
        assert h_0.shape == (
Y
Yancey 已提交
1062 1063 1064
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1065

X
Xin Pan 已提交
1066 1067 1068 1069
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1083 1084
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1085 1086 1087 1088
        })
    return hidden


Y
Yu Yang 已提交
1089 1090 1091
def gru_unit(input,
             hidden,
             size,
1092 1093
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1094
             activation='tanh',
Q
Qiao Longfei 已提交
1095 1096
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1097
    """
1098 1099 1100
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1101
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1102
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1103

1104 1105
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1106

1107
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1108

1109
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1126 1127

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1128 1129 1130
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1131 1132
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1133 1134
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1135 1136 1137
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1138 1139 1140

    Args:
        input (Variable): The fc transformed input value of current step.
1141
        hidden (Variable): The hidden value of gru unit from previous step.
1142
        size (integer): The input dimension value.
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1157
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1158
            the bias in the update gate, reset gate and candidate calculations.
1159 1160 1161
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1162 1163
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1164 1165 1166 1167
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1168

1169 1170 1171 1172 1173 1174
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1175

1176
             # assuming we have x_t_data and prev_hidden of size=10
1177
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1178 1179
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1192
    size = size // 3
Y
Yu Yang 已提交
1193 1194

    # create weight
1195 1196
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1197

X
Xin Pan 已提交
1198 1199 1200
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1201
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1202
    # create bias
1203
    if helper.bias_attr:
Y
Yu Yang 已提交
1204 1205 1206
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1207
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1208 1209 1210

    helper.append_op(
        type='gru_unit',
1211
        inputs=inputs,
Y
Yu Yang 已提交
1212 1213 1214 1215 1216 1217
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1218 1219
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1220 1221 1222 1223 1224
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1225
@templatedoc()
1226
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1227 1228 1229 1230 1231 1232 1233
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1234
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1235 1236 1237 1238
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1239 1240 1241
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1242 1243

    """
Y
Yu Yang 已提交
1244 1245 1246 1247 1248 1249
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1250 1251 1252 1253 1254 1255 1256 1257
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1273 1274 1275 1276
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1277

W
wopeizl 已提交
1278 1279
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1280

W
wopeizl 已提交
1281
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1282

W
wopeizl 已提交
1283
        label(${label_type}): ${label_comment}
1284

W
wopeizl 已提交
1285 1286
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1287

W
wopeizl 已提交
1288 1289
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1290

Y
Yibing Liu 已提交
1291 1292 1293 1294 1295 1296 1297
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1298 1299 1300 1301 1302 1303 1304 1305
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1306
                "Transition": transition,
W
wopeizl 已提交
1307 1308
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1309

W
wopeizl 已提交
1310
    return viterbi_path
Y
Yu Yang 已提交
1311 1312


Y
yi.wu 已提交
1313
@templatedoc()
F
fengjiayi 已提交
1314
def cos_sim(X, Y):
Y
Yu Yang 已提交
1315
    """
Y
yi.wu 已提交
1316 1317 1318
    ${comment}

    Args:
1319 1320
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1321

Y
yi.wu 已提交
1322
    Returns:
1323
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1324
    """
F
fengjiayi 已提交
1325
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1326 1327 1328
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1339 1340 1341 1342 1343
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1344
            dropout_implementation="downgrade_in_infer"):
1345 1346 1347 1348 1349
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1350
    training. The dropout operator randomly sets (according to the given dropout
1351 1352 1353
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1354 1355
    dropout op can be removed from the program to make the program more efficient.

1356
    Args:
1357 1358
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1359 1360 1361 1362 1363 1364 1365
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1366 1367
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1368
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1369 1370

                                           - train: out = input * mask
C
ceci3 已提交
1371
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1372 1373 1374

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1375
                                        2. upscale_in_train, upscale the outcome at training time
1376

H
haowang101779990 已提交
1377 1378
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1379

H
haowang101779990 已提交
1380 1381
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1382

M
minqiyang 已提交
1383

1384
    Returns:
1385
        Variable: A tensor variable is the shape with `x`.
1386 1387

    Examples:
1388

1389 1390
        .. code-block:: python

1391 1392
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1393 1394
    """

F
fengjiayi 已提交
1395
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1396 1397
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1398
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1399 1400 1401 1402

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1403 1404 1405 1406 1407
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1408 1409 1410 1411
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1412 1413
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1414
        })
1415 1416 1417
    return out


J
jerrywgz 已提交
1418
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1419
    """
Y
Yibing Liu 已提交
1420 1421
    **Cross Entropy Layer**

1422 1423 1424
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1425 1426

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1427
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1428

Y
Yibing Liu 已提交
1429
        .. math::
Y
yangyaming 已提交
1430

Y
Yibing Liu 已提交
1431 1432 1433
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1434 1435
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1436 1437 1438 1439 1440

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1441
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1442 1443 1444
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1445 1446
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1447
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1448

Y
Yibing Liu 已提交
1449
    Args:
Y
yangyaming 已提交
1450
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1451 1452 1453 1454
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1455
        label (Variable|list): the ground truth which is a 2-D tensor. When
1456 1457 1458 1459
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1460
        soft_label (bool): a flag indicating whether to
1461
                                           interpretate the given labels as soft
1462
                                           labels. Default: `False`.
M
minqiyang 已提交
1463 1464
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1465
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1466 1467 1468 1469 1470

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1471 1472 1473
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1474

H
haowang101779990 已提交
1475 1476
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1477

H
haowang101779990 已提交
1478 1479
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1480 1481 1482 1483 1484 1485

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1486
    """
S
sneaxiy 已提交
1487 1488
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1489
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1490
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1491 1492 1493 1494 1495
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1496 1497
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1498 1499 1500
    return out


S
sneaxiy 已提交
1501 1502 1503 1504
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1505
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1506 1507 1508 1509 1510
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1511
                 'MatchX': [match_x],
S
sneaxiy 已提交
1512 1513 1514 1515 1516
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1517
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1518 1519 1520
    """
    Bayesian Personalized Ranking Loss Operator.

1521
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1522 1523 1524 1525 1526 1527
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1528 1529 1530 1531 1532 1533
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1534 1535
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1536 1537 1538
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1539 1540 1541
    Examples:
        .. code-block:: python

1542
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1543
    """
1544 1545 1546 1547 1548 1549

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1550
                'Label': [label]},
1551 1552 1553 1554
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1555
def square_error_cost(input, label):
Y
Yu Yang 已提交
1556
    """
1557 1558
    **Square error cost layer**

1559 1560
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1575 1576
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1577 1578

    Returns:
G
guosheng 已提交
1579
        Variable: The tensor variable storing the element-wise squared error \
1580
                  difference of input and label.
1581 1582 1583 1584

    Examples:
        .. code-block:: python

R
ruri 已提交
1585 1586 1587
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1588

Y
Yu Yang 已提交
1589
    """
F
fengjiayi 已提交
1590
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1591
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1592 1593 1594 1595 1596 1597
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1598
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1599
    helper.append_op(
F
fengjiayi 已提交
1600 1601
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1602 1603 1604
    return square_out


Y
yi.wu 已提交
1605
@templatedoc()
Y
Yu Yang 已提交
1606 1607 1608 1609
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1610
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1611
    """
Y
yi.wu 已提交
1612
    **Chunk Evaluator**
Y
yi.wu 已提交
1613

Y
yangyaming 已提交
1614
    This function computes and outputs the precision, recall and
1615
    F1-score of chunk detection.
Y
yi.wu 已提交
1616

M
minqiyang 已提交
1617
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1618
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1619 1620 1621 1622 1623 1624

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1625

Y
yi.wu 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1651

Y
yi.wu 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1676
    Args:
1677 1678 1679 1680 1681
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1682

Y
yi.wu 已提交
1683
    Returns:
Y
update  
yi.wu 已提交
1684 1685 1686
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1687

Y
yi.wu 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1700
    """
F
fengjiayi 已提交
1701
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1702 1703

    # prepare output
X
Xin Pan 已提交
1704 1705 1706 1707 1708 1709 1710
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1711 1712 1713 1714 1715 1716 1717 1718

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1719 1720 1721 1722
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1723 1724 1725
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1726 1727
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1728
        })
1729 1730
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1731 1732


1733
@templatedoc()
Y
Yu Yang 已提交
1734 1735 1736 1737 1738 1739 1740
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1741 1742
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1743 1744 1745 1746
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1747 1748 1749 1750 1751 1752 1753

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1767

1768 1769
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1770 1771
    """

L
lujun 已提交
1772
    assert not in_dygraph_mode(), (
1773
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1774 1775 1776 1777 1778
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1779
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1790
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1791 1792 1793 1794 1795 1796
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1797
def sequence_softmax(input, use_cudnn=False, name=None):
1798 1799 1800
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1801
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1818 1819 1820
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1833
    assert not in_dygraph_mode(), (
1834
        "sequence layer is not supported in dygraph mode yet.")
1835 1836
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1837
    softmax_out = helper.create_variable_for_type_inference(dtype)
1838 1839 1840 1841 1842 1843 1844 1845
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1846
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1847
    """
1848
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1849
    has the same shape as the input.
Q
qiaolongfei 已提交
1850

D
dengkaipeng 已提交
1851
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1852
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1853
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1854 1855 1856
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1857
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1858
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1859 1860 1861 1862 1863 1864 1865

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1866
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1867 1868 1869 1870 1871 1872 1873 1874

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1875 1876
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1877 1878
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1879 1880 1881
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1891
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1892
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1893 1894
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1895 1896

    """
1897 1898
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1899
    softmax_out = helper.create_variable_for_type_inference(dtype)
1900 1901 1902 1903
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1904 1905
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1906 1907 1908
    return softmax_out


Y
Yu Yang 已提交
1909 1910 1911
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1912 1913
           stride=1,
           padding=0,
1914
           dilation=1,
Y
Yu Yang 已提交
1915 1916 1917
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1918
           use_cudnn=True,
1919 1920
           act=None,
           name=None):
Y
Yu Yang 已提交
1921
    """
C
chengduoZH 已提交
1922
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1923 1924
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1925
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1926 1927 1928 1929 1930 1931 1932
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1933 1934 1935
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1936

1937
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1938

C
chengduoZH 已提交
1939 1940
    .. math::

C
refine  
chengduoZH 已提交
1941
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1942

T
tensor-tang 已提交
1943
    Where:
C
chengduoZH 已提交
1944

1945 1946 1947 1948 1949
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1950
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1951 1952 1953

    Example:

1954 1955
        - Input:

W
weixing02 已提交
1956
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1957

W
weixing02 已提交
1958
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1959

1960
        - Output:
T
tensor-tang 已提交
1961

W
weixing02 已提交
1962
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1963

C
chengduoZH 已提交
1964
        Where
1965 1966

        .. math::
C
chengduoZH 已提交
1967

W
weixing02 已提交
1968 1969
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1970 1971

    Args:
1972
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1973
        num_filters(int): The number of filter. It is as same as the output
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1991 1992 1993 1994 1995
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1996
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1997 1998 1999 2000 2001
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2002 2003
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2004 2005
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2006
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2007
            will be named automatically. Default: None
C
chengduoZH 已提交
2008 2009

    Returns:
G
guosheng 已提交
2010
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2011 2012
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2013
    Raises:
2014 2015
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2016

C
chengduoZH 已提交
2017 2018 2019
    Examples:
        .. code-block:: python

2020 2021
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2022 2023 2024
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2025
    assert param_attr is not False, "param_attr should not be False here."
2026
    l_type = 'conv2d'
X
xzl 已提交
2027 2028
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2029
        l_type = 'depthwise_conv2d'
2030 2031 2032 2033

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2034 2035 2036 2037 2038
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2039
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2040

C
chengduoZH 已提交
2041 2042 2043
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2044
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2045

C
chengduoZH 已提交
2046 2047
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2048 2049

    input_shape = input.shape
M
minqiyang 已提交
2050
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2051 2052

    def _get_default_param_initializer():
C
chengduo 已提交
2053 2054
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2055 2056 2057 2058 2059 2060 2061 2062
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2063
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2079
    helper.append_op(
2080
        type=l_type,
Y
Yu Yang 已提交
2081 2082 2083 2084 2085
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2086 2087 2088
        attrs={
            'strides': stride,
            'paddings': padding,
2089
            'dilations': dilation,
C
chengduoZH 已提交
2090
            'groups': groups,
2091
            'use_cudnn': use_cudnn,
2092
            'use_mkldnn': False,
2093
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2094
        })
Y
Yu Yang 已提交
2095 2096 2097 2098 2099 2100

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2118 2119 2120 2121 2122 2123
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2133 2134
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2135 2136 2137
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2138
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2164
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2165 2166
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2167
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2168 2169
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2170
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2171 2172
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2173
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2174 2175 2176 2177 2178 2179
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2190 2191
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2192 2193
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2194
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2195
            will be named automatically. Default: None.
C
chengduoZH 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2208 2209
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2210 2211 2212
    """

    l_type = 'conv3d'
C
chengduo 已提交
2213
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2224
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2238 2239 2240
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2241 2242 2243 2244 2245 2246 2247 2248
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2249
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2264
            'use_mkldnn': False
C
chengduoZH 已提交
2265 2266
        })

2267
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2268 2269 2270 2271

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2272
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2273
    """
Y
yangyaming 已提交
2274 2275 2276
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2288
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2289 2290 2291 2292 2293
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2294
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2295 2296 2297 2298 2299 2300 2301

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2302 2303
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2304

L
Luo Tao 已提交
2305 2306
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2307
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2308
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2309
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2310 2311 2312 2313 2314 2315 2316

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2317

Y
yangyaming 已提交
2318
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2319 2320 2321 2322 2323
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2324 2325
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2326
    """
L
lujun 已提交
2327
    assert not in_dygraph_mode(), (
2328
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2329
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2330
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2331 2332
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2333 2334 2335 2336 2337 2338

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2339 2340
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2341

Y
yangyaming 已提交
2342 2343 2344 2345 2346
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2347 2348 2349
    return pool_out


C
add doc  
chengduoZH 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2368
    assert not in_dygraph_mode(), (
2369
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2370
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2371
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2372 2373 2374 2375 2376
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2377
def sequence_first_step(input):
L
Luo Tao 已提交
2378
    """
L
Luo Tao 已提交
2379
    This function gets the first step of sequence.
L
Luo Tao 已提交
2380 2381 2382 2383

    .. code-block:: text

       x is a 1-level LoDTensor:
2384
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2385 2386 2387 2388 2389
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2390
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2391
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2392

L
Luo Tao 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2402

Y
yangyaming 已提交
2403
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2404 2405 2406
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2407 2408 2409
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2410
def sequence_last_step(input):
L
Luo Tao 已提交
2411
    """
L
Luo Tao 已提交
2412
    This function gets the last step of sequence.
L
Luo Tao 已提交
2413 2414 2415 2416

    .. code-block:: text

       x is a 1-level LoDTensor:
2417
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2418 2419 2420 2421 2422
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2423
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2424
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2425

L
Luo Tao 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2435

Y
yangyaming 已提交
2436
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2437 2438 2439
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2440 2441 2442
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2443 2444 2445 2446
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2447
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2448 2449 2450 2451 2452
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2453

H
haowang101779990 已提交
2454
              - Case:
Y
Yibing Liu 已提交
2455

2456
            Given the input Variable **input**:
2457

2458 2459 2460
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2461

2462
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2463

2464
            the output Variable will be
2465

2466 2467 2468
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2469

M
minqiyang 已提交
2470
    Note:
H
haowang101779990 已提交
2471
          The first dimension size of **input**, **offset** and **length**
2472
          should be equal. The **offset** should start from 0.
2473

Y
Yibing Liu 已提交
2474
    Args:
2475
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2476
                         sequences.
Y
Yibing Liu 已提交
2477 2478 2479 2480 2481 2482
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2483
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2494
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2495 2496
                                                   length=length)
    """
L
lujun 已提交
2497
    assert not in_dygraph_mode(), (
2498
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2499 2500
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2501
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2516
@templatedoc()
Y
Yu Yang 已提交
2517
def pool2d(input,
C
chengduoZH 已提交
2518 2519
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2520 2521
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2522
           global_pooling=False,
C
chengduoZH 已提交
2523
           use_cudnn=True,
2524
           ceil_mode=False,
2525 2526
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2527
    """
F
fengjiayi 已提交
2528
    ${comment}
2529 2530

    Args:
2531 2532 2533
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2534
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2535
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2536 2537
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2538
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2539 2540 2541 2542 2543 2544
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2545 2546 2547
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2548
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2549
                        layer will be named automatically.
2550
        exclusive (bool): Whether to exclude padding points in average pooling
2551
                          mode, default is true
F
fengjiayi 已提交
2552

2553
    Returns:
F
fengjiayi 已提交
2554
        Variable: The pooling result.
F
fengjiayi 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2567
          pool2d = fluid.layers.pool2d(
2568 2569 2570 2571
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2572
                            global_pooling=False)
Y
Yu Yang 已提交
2573 2574 2575 2576 2577
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2578

C
chengduoZH 已提交
2579 2580 2581 2582 2583
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2584 2585 2586 2587
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2588 2589
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2590

C
Add doc  
chengduoZH 已提交
2591
    l_type = 'pool2d'
2592 2593

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2594
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2595
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2596 2597

    helper.append_op(
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2609 2610
            "use_mkldnn": False,
            "exclusive": exclusive,
2611 2612 2613 2614 2615
        })

    return pool_out


D
dengkaipeng 已提交
2616
@templatedoc()
2617 2618 2619 2620 2621 2622 2623 2624
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2625 2626
           name=None,
           exclusive=True):
2627
    """
2628
    ${comment}
2629 2630

    Args:
D
dengkaipeng 已提交
2631 2632 2633 2634 2635
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2636 2637 2638 2639 2640
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2641 2642 2643 2644 2645 2646 2647
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2648
        exclusive (bool): Whether to exclude padding points in average pooling
2649
                          mode, default is true
2650

2651
    Returns:
2652
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2666 2667 2668 2669 2670
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2671

C
chengduoZH 已提交
2672 2673 2674 2675 2676
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2677 2678 2679
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2680

C
chengduoZH 已提交
2681 2682
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2683

2684 2685
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2686
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2687
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2688 2689

    helper.append_op(
2690
        type=l_type,
Y
Yu Yang 已提交
2691 2692 2693 2694 2695 2696 2697
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2698
            "paddings": pool_padding,
2699
            "use_cudnn": use_cudnn,
2700
            "ceil_mode": ceil_mode,
2701 2702
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2703 2704 2705 2706 2707
        })

    return pool_out


2708 2709 2710 2711 2712 2713 2714
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2715 2716 2717 2718 2719 2720 2721
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2736 2737 2738 2739 2740 2741 2742 2743 2744

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2745 2746
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2761
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2762
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2763
          # of input data into m * n grids averagely and performs poolings in each
2764 2765
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2766
          #
2767 2768 2769 2770 2771 2772 2773 2774
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2775 2776
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2777
          pool_out = fluid.layers.adaptive_pool2d(
2778 2779
                            input=data,
                            pool_size=[3, 3],
2780
                            pool_type='avg')
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2791
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2817
    return (pool_out, mask) if require_index else pool_out
2818 2819 2820 2821 2822 2823 2824 2825 2826


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2827 2828 2829 2830 2831 2832 2833
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2834

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2852 2853 2854

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2855 2856 2857
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2858
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2859
            it must contain three integers, (Depth, Height, Width).
2860
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2861 2862
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2877 2878
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2879
          # of input data into l * m * n grids averagely and performs poolings in each
2880 2881
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2882
          #
2883 2884 2885 2886 2887 2888 2889 2890 2891
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2892
          #                 output[:, :, i, j, k] =
2893 2894
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2895 2896
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2897
          pool_out, mask = fluid.layers.adaptive_pool3d(
2898
                            input=data,
D
dengkaipeng 已提交
2899
                            pool_size=[3, 3, 3],
2900
                            pool_type='avg')
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2911
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2937
    return (pool_out, mask) if require_index else pool_out
2938 2939


Y
Yu Yang 已提交
2940 2941 2942 2943 2944 2945 2946
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2947
               data_layout='NCHW',
Y
Yang Yang 已提交
2948
               in_place=False,
2949 2950
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2951
               moving_variance_name=None,
2952
               do_model_average_for_mean_and_var=False,
2953 2954
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2955
    """
Q
qiaolongfei 已提交
2956 2957 2958 2959
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2960

Q
qiaolongfei 已提交
2961
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2962

Q
qiaolongfei 已提交
2963 2964
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2965 2966 2967
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2994
    Args:
Q
qingqing01 已提交
2995
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2996
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3006 3007 3008 3009 3010 3011 3012 3013
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3014
        data_layout(string, default NCHW): NCHW|NHWC
3015
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3016 3017 3018 3019
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3020
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3021
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3022 3023 3024 3025 3026
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3027 3028

    Returns:
Q
qiaolongfei 已提交
3029
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3030 3031 3032 3033 3034 3035 3036

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3037
    """
C
chengduo 已提交
3038
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3039 3040 3041
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3042 3043 3044 3045
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3064
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3065

3066 3067
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3068 3069 3070
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3071
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3072
        shape=param_shape,
W
Wu Yi 已提交
3073
        dtype=dtype)
3074 3075 3076 3077 3078 3079
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3080
            trainable=False,
W
wanghaoshuang 已提交
3081
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3082
        shape=param_shape,
W
Wu Yi 已提交
3083
        dtype=dtype)
3084
    variance.stop_gradient = True
Y
Yu Yang 已提交
3085 3086 3087 3088 3089 3090

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3091 3092 3093 3094
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3095

X
Xin Pan 已提交
3096 3097
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3115 3116 3117 3118
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3119
            "data_layout": data_layout,
X
Xin Pan 已提交
3120
            "use_mkldnn": False,
3121 3122
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3123
        })
Y
Yu Yang 已提交
3124 3125 3126 3127

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3247
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3248 3249 3250 3251

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3252
@templatedoc()
G
guosheng 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3263
    ${comment}
G
guosheng 已提交
3264 3265 3266

    The formula is as follows:

Y
yuyang18 已提交
3267
    ..  math::
G
guosheng 已提交
3268 3269 3270 3271 3272 3273 3274

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3275 3276 3277 3278 3279 3280 3281 3282
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3283

G
guosheng 已提交
3284 3285
    Args:
        input(Variable): The input tensor variable.
3286
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3287
            normalization. Default True.
3288
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3289 3290
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3291
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3292
            Default 1.
3293
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3294
            division by zero. Default 1e-05.
G
guosheng 已提交
3295
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3296 3297
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3298 3299
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3300
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3301 3302
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3303
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3304
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3305
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3306 3307 3308
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3309 3310

    Returns:
Y
yuyang18 已提交
3311
        ${y_comment}
G
guosheng 已提交
3312 3313 3314

    Examples:

Y
yuyang18 已提交
3315 3316 3317
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3318
    """
L
lujun 已提交
3319
    assert in_dygraph_mode(
L
lujun 已提交
3320
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3335
    if shift:
G
guosheng 已提交
3336 3337 3338 3339 3340 3341
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3342 3343 3344 3345 3346
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3374
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3422 3423
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3441
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3442 3443 3444
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3445
    This layer calculates the spectral normalization value of weight parameters of
3446
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3447
    Parameters. Calculations are showed as follows.
3448

D
dengkaipeng 已提交
3449 3450 3451
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3452
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3465
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3466 3467 3468 3469

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3470

D
dengkaipeng 已提交
3471
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3472 3473
                

D
dengkaipeng 已提交
3474 3475 3476 3477
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3478 3479 3480
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3481 3482 3483
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3484
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3485 3486 3487 3488 3489 3490 3491 3492

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3493
    dtype = weight.dtype
D
dengkaipeng 已提交
3494 3495 3496

    # create intput and parameters
    inputs = {'Weight': weight}
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3515 3516

    # create output
3517
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3518 3519

    helper.append_op(
3520
        type="spectral_norm",
D
Dun 已提交
3521
        inputs=inputs,
3522 3523 3524 3525 3526 3527
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3528

3529
    return out
D
Dun 已提交
3530 3531


Y
Yu Yang 已提交
3532 3533 3534 3535
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3536 3537 3538
                     padding=0,
                     stride=1,
                     dilation=1,
3539
                     groups=None,
C
caoying03 已提交
3540
                     param_attr=None,
3541
                     bias_attr=None,
C
chengduoZH 已提交
3542
                     use_cudnn=True,
3543
                     act=None,
C
caoying03 已提交
3544
                     name=None):
Y
Yu Yang 已提交
3545
    """
3546 3547 3548 3549 3550 3551 3552 3553
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3554 3555
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3556 3557 3558
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3559 3560 3561 3562 3563

    For each input :math:`X`, the equation is:

    .. math::

3564
        Out = \sigma (W \\ast X + b)
3565

3566
    Where:
3567 3568 3569

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3570 3571 3572 3573
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3574

3575 3576 3577 3578
    Example:

        - Input:

3579
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3580

3581
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3582 3583 3584

        - Output:

3585
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3586 3587

        Where
Y
Yu Yang 已提交
3588

3589 3590
        .. math::

3591 3592
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3593 3594
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3595 3596

    Args:
3597 3598 3599 3600
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3601 3602 3603 3604
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3633
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3634 3635 3636
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3637
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3638
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3639 3640

    Returns:
3641
        Variable: The tensor variable storing the convolution transpose result.
3642 3643

    Raises:
3644 3645
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3646 3647 3648 3649

    Examples:
       .. code-block:: python

3650 3651
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3652
    """
C
chengduo 已提交
3653
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3654 3655 3656 3657 3658 3659 3660 3661
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3662 3663 3664
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3665 3666 3667
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3668

C
chengduoZH 已提交
3669 3670
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3671

Y
Yu Yang 已提交
3672 3673 3674 3675 3676
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3677

Y
Yu Yang 已提交
3678 3679
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3680

C
chengduoZH 已提交
3681
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3682
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3683
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3684
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3685
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3686 3687 3688
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3689

3690 3691 3692 3693 3694 3695 3696
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3697
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3698
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3699

Y
Yu Yang 已提交
3700 3701 3702
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3703
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3704
    helper.append_op(
3705
        type=op_type,
Y
Yu Yang 已提交
3706 3707
        inputs={'Input': [input],
                'Filter': [img_filter]},
3708
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3709
        attrs={
3710
            'output_size': output_size,
3711 3712 3713 3714 3715
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3716 3717
        })

3718 3719 3720
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3721 3722


3723
def conv3d_transpose(input,
Y
Yu Yang 已提交
3724 3725 3726
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3727 3728 3729
                     padding=0,
                     stride=1,
                     dilation=1,
3730
                     groups=None,
C
caoying03 已提交
3731
                     param_attr=None,
3732
                     bias_attr=None,
C
chengduoZH 已提交
3733
                     use_cudnn=True,
3734
                     act=None,
C
caoying03 已提交
3735
                     name=None):
Y
Yu Yang 已提交
3736
    """
3737
    **Convlution3D transpose layer**
3738

3739
    The convolution3D transpose layer calculates the output based on the input,
3740
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3741 3742 3743 3744 3745 3746
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3747 3748 3749
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3750 3751 3752 3753 3754

    For each input :math:`X`, the equation is:

    .. math::

3755
        Out = \sigma (W \\ast X + b)
3756 3757 3758

    In the above equation:

3759 3760
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3761 3762 3763 3764
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3765

3766 3767 3768 3769
    Example:

        - Input:

3770
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3771

3772
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3773 3774 3775

        - Output:

3776
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3777 3778

        Where
Y
Yu Yang 已提交
3779

3780 3781
        .. math::

3782 3783 3784
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3785 3786

    Args:
3787
        input(Variable): The input image with [N, C, D, H, W] format.
3788 3789 3790
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3791
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3792 3793
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3794
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3795 3796 3797
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3798 3799
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3800
        stride(int|tuple): The stride size. If stride is a tuple, it must
3801 3802
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3803
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3804 3805 3806
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3807 3808 3809 3810 3811
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3821 3822
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3823 3824
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3825 3826
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3827 3828

    Returns:
3829
        Variable: The tensor variable storing the convolution transpose result.
3830 3831

    Raises:
3832 3833
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3834 3835 3836 3837

    Examples:
       .. code-block:: python

3838 3839
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3840
    """
C
chengduo 已提交
3841
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3842 3843
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3844
    if not isinstance(input, Variable):
3845
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3846 3847
    input_channel = input.shape[1]

3848 3849 3850
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3851

C
chengduoZH 已提交
3852 3853 3854
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3855 3856 3857 3858 3859 3860
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3861 3862 3863
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3864

3865
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3866
                         padding[0] - 1) // dilation[0] + 1
3867
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3868
                         padding[1] - 1) // dilation[1] + 1
3869
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3870
                         padding[2] - 1) // dilation[2] + 1
3871
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3872
    else:
3873 3874
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3875

3876
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3877
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3878 3879 3880
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3881
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3882
    helper.append_op(
3883
        type=l_type,
Y
Yu Yang 已提交
3884 3885
        inputs={'Input': [input],
                'Filter': [img_filter]},
3886
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3887 3888 3889 3890
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3891
            'groups': groups,
C
chengduoZH 已提交
3892 3893
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3894

3895 3896
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3897
    return out
Y
yangyaming 已提交
3898 3899


Y
yangyaming 已提交
3900
def sequence_expand(x, y, ref_level=-1, name=None):
3901
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3902 3903 3904 3905
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3906 3907 3908 3909 3910

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3911
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3912
                x.data = [[a], [b], [c], [d]]
3913 3914 3915
                x.dims = [4, 1]

            y is a LoDTensor:
3916 3917
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3918

Y
yangyaming 已提交
3919
            ref_level: 0
3920

Y
yangyaming 已提交
3921
            then output is a 1-level LoDTensor:
3922
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3923
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3924 3925 3926 3927
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3928
                x.data = [[a], [b], [c]]
3929 3930 3931
                x.dims = [3, 1]

            y is a LoDTensor:
3932
                y.lod = [[2, 0, 3]]
3933

Y
yangyaming 已提交
3934
            ref_level: -1
3935

Y
yangyaming 已提交
3936 3937 3938
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3939 3940 3941
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3942 3943
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3944
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3945
                        will be named automatically.
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3956
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3957
    """
L
lujun 已提交
3958
    assert not in_dygraph_mode(), (
3959
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3960
    helper = LayerHelper('sequence_expand', input=x, **locals())
3961
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3962
    tmp = helper.create_variable_for_type_inference(dtype)
3963
    helper.append_op(
Y
yangyaming 已提交
3964 3965 3966 3967 3968
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3969
    return tmp
3970 3971


C
chengduo 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4026
    assert not in_dygraph_mode(), (
4027
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4028 4029
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4030
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4031 4032 4033 4034 4035 4036 4037 4038
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4039
@templatedoc()
4040
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4041 4042 4043 4044 4045
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4046 4047 4048
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4049
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4050 4051 4052 4053
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4054 4055 4056
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4057

F
fengjiayi 已提交
4058
    Returns:
M
minqiyang 已提交
4059
        Variable: The padded sequence batch and the original lengths before
4060
                  padding. All sequences has the same length.
M
minqiyang 已提交
4061

F
fengjiayi 已提交
4062 4063 4064 4065 4066 4067 4068
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4069
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4070
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4071 4072 4073
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4074
    assert not in_dygraph_mode(), (
4075
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4076 4077
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4078 4079
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4080 4081 4082 4083

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4084 4085 4086 4087 4088 4089
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4090 4091
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4092
        attrs={'padded_length': maxlen})
4093
    return out, length
F
fengjiayi 已提交
4094 4095


4096
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4097
    """
4098
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4099

4100 4101
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4111 4112 4113
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4114
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4115 4116 4117 4118 4119 4120

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4121
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4122 4123 4124 4125 4126 4127

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4128 4129
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4142
    assert not in_dygraph_mode(), (
4143
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4144 4145
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4146
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4158 4159 4160 4161 4162 4163 4164
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4165
                is_accumulated=True,
4166 4167
                name=None,
                return_parent_idx=False):
4168
    """
4169 4170
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4171 4172 4173

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4174 4175

    This layer does the search in beams for one time step. Specifically, it
4176 4177 4178
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4190 4191 4192 4193

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4194

4195
    Args:
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4219 4220
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4221 4222
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4223 4224 4225 4226
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4227

4228
    Returns:
4229 4230 4231 4232
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4233 4234 4235 4236

    Examples:
        .. code-block:: python

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4254
    helper = LayerHelper('beam_search', **locals())
4255 4256 4257 4258 4259 4260
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4261

X
Xin Pan 已提交
4262 4263 4264
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4265 4266 4267 4268 4269
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4270 4271 4272

    helper.append_op(
        type='beam_search',
4273
        inputs=inputs,
Q
Qiao Longfei 已提交
4274 4275 4276
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4277
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4278 4279 4280 4281 4282 4283
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4284
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4285
        })
4286 4287 4288 4289
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4290 4291


4292 4293 4294 4295 4296 4297 4298
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4299

4300 4301 4302 4303 4304 4305 4306 4307 4308
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4309

4310 4311 4312 4313 4314 4315
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4316

4317 4318
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4319

4320 4321 4322 4323 4324 4325
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4326 4327
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4343 4344 4345 4346
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4347
              param_attr=None,
C
caoying03 已提交
4348 4349
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4350 4351 4352 4353
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4354
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4355

4356
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4357

4358
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4359

4360
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4361 4362 4363

            h_t & = o_t tanh(c_t)

4364 4365 4366 4367 4368 4369
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4370 4371 4372

        .. math::

4373
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4374 4375 4376 4377 4378 4379 4380 4381

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4382
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4383 4384

    Args:
Y
yangyaming 已提交
4385 4386 4387 4388 4389 4390
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4391
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4404 4405
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4406 4407

    Returns:
Y
yangyaming 已提交
4408
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4409 4410

    Raises:
4411 4412 4413 4414
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4415 4416 4417 4418 4419 4420

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4421
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4422
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4423
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4440
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4441 4442 4443 4444
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4445 4446
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4447 4448 4449
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4450
    size = cell_t_prev.shape[1]
4451
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4452 4453
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4454
                param_attr=param_attr,
4455
                bias_attr=bias_attr)
Y
yangyaming 已提交
4456
    dtype = x_t.dtype
X
Xin Pan 已提交
4457 4458
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4468
    return h, c
G
guosheng 已提交
4469 4470


C
caoying03 已提交
4471
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4472
    """
Y
yangyaming 已提交
4473
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4474 4475 4476

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4477
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4478 4479
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4480 4481
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4482
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4483
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4484
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4485 4486
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4487 4488 4489

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4490

G
guosheng 已提交
4491 4492 4493 4494 4495 4496
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4497
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4498 4499 4500 4501
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4502 4503 4504 4505

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4506
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4507 4508 4509
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4510 4511
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4512
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4513 4514
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4515 4516 4517 4518 4519
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4520
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4521 4522 4523 4524
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4525 4526


C
caoying03 已提交
4527
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4528
    """
Y
Yibing Liu 已提交
4529
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4530 4531 4532

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4533 4534 4535
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4536
            must be in the range :math:`[-rank(input), rank(input))`. If
4537
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4538
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4539 4540
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4541
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4542
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4543
                       will be named automatically.
G
guosheng 已提交
4544 4545

    Returns:
Y
Yibing Liu 已提交
4546
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4547

G
guosheng 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4558 4559
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4560 4561 4562 4563 4564 4565 4566

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4567 4568
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4569
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4570 4571
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4572 4573 4574 4575 4576
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4577
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4578 4579 4580 4581
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4582 4583


C
caoying03 已提交
4584
def reduce_max(input, dim=None, keep_dim=False, name=None):
4585
    """
Y
yangyaming 已提交
4586
    Computes the maximum of tensor elements over the given dimension.
4587 4588 4589

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4590
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4591 4592 4593
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4594
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4595 4596
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4597
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4598 4599
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4600 4601 4602

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4603

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4615 4616 4617 4618 4619 4620 4621

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4622 4623
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4624
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4625 4626
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4627 4628 4629 4630 4631
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4632
            'dim': dim if dim != None else [0],
4633 4634 4635 4636 4637 4638
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4639
def reduce_min(input, dim=None, keep_dim=False, name=None):
4640
    """
Y
yangyaming 已提交
4641
    Computes the minimum of tensor elements over the given dimension.
4642 4643 4644

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4645
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4646 4647 4648
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4649
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4650 4651
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4652
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4653 4654
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4655 4656 4657

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4658

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4670 4671 4672 4673 4674 4675 4676

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4677 4678
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4679
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4680 4681
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4682 4683 4684 4685 4686
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4687
            'dim': dim if dim != None else [0],
4688 4689 4690 4691
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4692 4693


4694 4695 4696 4697 4698 4699
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4700
        dim (list|int|None): The dimensions along which the product is performed. If
4701 4702
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4703 4704
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4705 4706 4707
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4708
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4709
            layer will be named automatically.
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4724
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4725
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4726 4727 4728 4729 4730 4731 4732

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4733 4734
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4735
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4736 4737
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4738 4739 4740 4741 4742
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4743
            'dim': dim if dim != None else [0],
4744 4745 4746 4747 4748 4749
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4750 4751
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4752
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4772
        
Z
zhoukunsheng 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4802
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4822

Z
zhoukunsheng 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4845 4846 4847 4848 4849
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4850
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4851
    """
C
caoying03 已提交
4852
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4853 4854 4855

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4856 4857 4858 4859 4860
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4861
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4862
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4863
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4864 4865
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4866 4867

    Returns:
D
dzhwinter 已提交
4868
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4878 4879
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4891
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4892 4893 4894
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4895
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4918
    .. math::
4919 4920

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4921 4922 4923 4924 4925

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4926
        x(Variable|list): The input tensor to l2_normalize layer.
4927
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4928 4929
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4930
        epsilon(float): The epsilon value is used to avoid division by zero, \
4931
            the defalut value is 1e-12.
4932
        name(str|None): A name for this layer(optional). If set None, the layer \
4933
            will be named automatically.
C
caoying03 已提交
4934 4935

    Returns:
4936
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4937 4938

    Examples:
4939

C
caoying03 已提交
4940 4941
        .. code-block:: python

4942 4943 4944 4945
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4946 4947
    """

F
fengjiayi 已提交
4948 4949
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4950 4951
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4952 4953
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4954
    helper.append_op(
4955 4956 4957 4958
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4959
        attrs={
4960 4961
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4962 4963
        })
    return out
4964 4965


S
sneaxiy 已提交
4966
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4967
    """
Y
ying 已提交
4968 4969 4970 4971
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4972

C
chengduoZH 已提交
4973
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4974
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4975

4976 4977 4978 4979 4980
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4981
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4982

C
chengduoZH 已提交
4983
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4984
      performs in the following way.
G
guosheng 已提交
4985

4986
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4987
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4988
        last two dimensions and a batched matrix multiply supporting broadcast
4989
        applies on the two tensors.
G
guosheng 已提交
4990

Y
ying 已提交
4991 4992
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4993
    removed after matrix multiplication.
G
guosheng 已提交
4994 4995 4996

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4997 4998 4999
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5000
        alpha (float): The scale of output. Default 1.0.
5001
        name(str|None): A name for this layer(optional). If set None, the layer
5002
            will be named automatically.
G
guosheng 已提交
5003 5004

    Returns:
5005
        Variable: The product Tensor variable.
G
guosheng 已提交
5006

G
guosheng 已提交
5007 5008 5009
    Examples:
        .. code-block:: python

5010
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5011 5012
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5013

5014 5015
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5016

5017 5018
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5019

5020 5021
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5022 5023 5024 5025

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5026 5027
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5028

Y
ying 已提交
5029
            # x: [M], y: [N]
5030
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5031
    """
Y
ying 已提交
5032 5033 5034 5035 5036 5037 5038

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5039
            y_shape = y_shape + [1]
Y
ying 已提交
5040 5041 5042 5043 5044 5045 5046

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5047 5048
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5049

C
chengduo 已提交
5050
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5051
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5052 5053 5054
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5055
                if dim_x != y_shape[i]:
C
chengduo 已提交
5056 5057
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5058 5059 5060

    __check_input(x, y)

5061
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5062
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5063
    helper.append_op(
5064 5065 5066 5067
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5068 5069 5070
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5071
            'alpha': float(alpha),
S
sneaxiy 已提交
5072
        })
5073
    return out
5074 5075


5076
def topk(input, k, name=None):
Q
qingqing01 已提交
5077 5078 5079 5080
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5081
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5082 5083 5084 5085 5086 5087
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5109 5110 5111
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5112
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5113
                 of input.
5114
        name(str|None): A name for this layer(optional). If set None, the layer
5115
                       will be named automatically.
F
fengjiayi 已提交
5116
                       Default: None
Q
qingqing01 已提交
5117 5118

    Returns:
5119 5120 5121
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5122
        within the last dimension of input.
Q
qingqing01 已提交
5123

F
fengjiayi 已提交
5124 5125
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5126 5127 5128 5129 5130 5131 5132

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5133 5134
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5135 5136 5137 5138 5139 5140
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5141 5142
    helper.append_op(
        type="top_k",
W
whs 已提交
5143
        inputs=inputs,
Q
qingqing01 已提交
5144 5145
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5146
        attrs=attrs)
Q
qingqing01 已提交
5147 5148 5149 5150 5151
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5152
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5153
    """
Y
ying 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5163

Y
ying 已提交
5164
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5165

5166
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5167 5168
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5169
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5170

5171
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5172 5173
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5174

5175 5176 5177
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5178
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5179
                          the length of reference string.
5180
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5181
                                     calculating edit distance.
5182
        name (str): The name of this layer. It is optional.
5183

W
wanghaoshuang 已提交
5184
    Returns:
W
wanghaoshuang 已提交
5185
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5186 5187 5188 5189

    Examples:
        .. code-block:: python

T
tink2123 已提交
5190 5191
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5192
            cost = fluid.layers.edit_distance(input=x,label=y)
5193
    """
5194
    helper = LayerHelper("edit_distance", **locals())
5195

5196
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5197
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5198 5199
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5200 5201 5202 5203 5204

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5205
            attrs={"tokens": ignored_tokens})
5206 5207 5208 5209 5210
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5211
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5212
            attrs={"tokens": ignored_tokens})
5213 5214
        label = erased_label

5215
    # edit distance op
X
Xin Pan 已提交
5216 5217
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5218 5219 5220 5221
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5222 5223
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5224 5225
        attrs={"normalized": normalized})

5226
    return edit_distance_out, sequence_num
5227 5228 5229 5230 5231


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5232

Y
ying 已提交
5233 5234 5235 5236
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5254
        input.lod = [[4, 4]]
M
minqiyang 已提交
5255

W
whs 已提交
5256
        Computation:
5257

W
whs 已提交
5258 5259 5260 5261 5262 5263
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5264 5265 5266 5267 5268

        output.data = [[2],
                       [1],
                       [3]]

5269
        output.lod = [[2, 1]]
5270

W
whs 已提交
5271

5272 5273
    Args:

Y
ying 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5283
        name (str): The name of this layer. It is optional.
5284 5285

    Returns:
H
haowang101779990 已提交
5286 5287 5288
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5289
                  LoD [[]] and dims [1, 1].
5290 5291 5292 5293 5294

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5295

5296
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5297
    """
5298
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5299
    _, topk_indices = topk(input, k=1)
5300 5301

    # ctc align op
X
Xin Pan 已提交
5302
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5303 5304 5305
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5306
        outputs={"Output": [ctc_out]},
5307 5308
        attrs={"merge_repeated": True,
               "blank": blank})
5309
    return ctc_out
5310 5311


W
Wu Yi 已提交
5312
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5313
    """
5314 5315
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5316
    to compute Connectionist Temporal Classification (CTC) loss.
5317 5318
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5319 5320 5321
    input tensor.

    Args:
5322
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5323 5324 5325 5326
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5327
       label (Variable): The ground truth of variable-length sequence,
5328 5329 5330
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5331 5332
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5333 5334 5335
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5336
         follewed by a mean_op.
W
Wu Yi 已提交
5337
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5338 5339

    Returns:
5340 5341
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5342 5343

    Examples:
5344

W
wanghaoshuang 已提交
5345
        .. code-block:: python
5346

5347 5348 5349
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5350 5351

    """
F
fengjiayi 已提交
5352
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5353 5354
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5355 5356 5357 5358 5359 5360
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5361 5362 5363 5364 5365
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5366
    return loss_out
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5382 5383 5384
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5385 5386 5387 5388 5389
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5390

5391
            out.lod  = [[0, 1, 3]]
5392 5393 5394 5395

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5396 5397 5398 5399 5400 5401 5402
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5403 5404 5405

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5406 5407

    Returns:
5408

5409 5410 5411 5412 5413
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5414
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5415
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5416
    """
L
lujun 已提交
5417
    assert not in_dygraph_mode(), (
5418
        "sequence layer is not supported in dygraph mode yet.")
5419
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5420
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5421 5422 5423 5424 5425 5426
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5427 5428


5429 5430 5431 5432
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5433 5434 5435 5436 5437 5438
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5439
        num_neg_samples=None,
5440 5441 5442
        name=None,
        sampler="uniform",
        custom_dist=None,
5443 5444
        seed=0,
        is_sparse=False):
5445 5446 5447 5448 5449 5450 5451
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5452 5453
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5454
            sample is 1.0.
C
chengduo 已提交
5455 5456 5457 5458 5459 5460 5461 5462 5463
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5464
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5465 5466
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5467 5468 5469
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5470
        custom_dist (float[]): A float[] with size=num_total_classes.
5471 5472 5473 5474
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5475
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5476

5477
    Returns:
Y
Yibing Liu 已提交
5478 5479 5480 5481 5482 5483
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5484
	    import numpy as np
Y
Yibing Liu 已提交
5485

Y
Yibing Liu 已提交
5486 5487 5488 5489 5490 5491 5492 5493
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5494

Y
Yibing Liu 已提交
5495 5496 5497 5498
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5499

Y
Yibing Liu 已提交
5500 5501 5502
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5503

Y
Yibing Liu 已提交
5504 5505 5506 5507
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5508

Y
Yibing Liu 已提交
5509 5510 5511 5512 5513 5514 5515 5516
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5517
    """
Y
Yang Yu 已提交
5518 5519 5520
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5521 5522

    dim = input.shape[1]
Y
Yang Yu 已提交
5523 5524 5525 5526 5527 5528
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5529
    inputs = {}
C
chengduo 已提交
5530 5531 5532 5533 5534 5535 5536
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5537 5538 5539
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5540

5541 5542 5543 5544
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5545 5546 5547 5548 5549 5550 5551

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5552 5553
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5554
        custom_dist_len = num_total_classes
5555 5556 5557 5558 5559 5560
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5561
            if normal_prob - 1.0 > 0:
5562
                bigs.append((i, normal_prob))
5563
            elif 1.0 - normal_prob > 0:
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5579
            if big_left - 1.0 > 0:
5580
                bigs.append((big_idx, big_left))
5581
            elif 1.0 - big_left > 0:
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5611 5612 5613 5614
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5615 5616 5617 5618 5619
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5620 5621 5622 5623
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5624

Y
Yang Yu 已提交
5625 5626
    attrs = {
        'num_total_classes': int(num_total_classes),
5627 5628
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5629
        'sampler': sampler,
5630 5631
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5632
    }
Y
Yang Yu 已提交
5633 5634 5635

    helper.append_op(
        type='nce',
C
chengduo 已提交
5636
        inputs=inputs,
Y
Yang Yu 已提交
5637 5638 5639 5640 5641 5642
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5643
    return cost / (num_neg_samples + 1)
5644 5645


C
chengduo 已提交
5646 5647
def hsigmoid(input,
             label,
5648
             num_classes,
C
chengduo 已提交
5649 5650
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5651
             name=None,
5652 5653 5654
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5655
             is_sparse=False):
W
weixing02 已提交
5656 5657
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5658
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5659
    complete binary tree, or you can use is_custom to pass your own tree to
5660
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5661 5662 5663 5664 5665 5666
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5667
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5668
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5669

5670 5671
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5672 5673 5674 5675
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5676
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5677
       related to the same batch of inputs.
5678

W
weixing02 已提交
5679
    Args:
M
minqiyang 已提交
5680
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5681 5682 5683 5684
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5685 5686
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5687
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5699
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5700
            it should be in leaf -> root order
M
minqiyang 已提交
5701 5702 5703
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5704
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5705
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5706
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5707
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5708
             of W and input will be sparse.
W
weixing02 已提交
5709 5710

    Returns:
J
JiabinYang 已提交
5711
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5712 5713 5714 5715 5716

    Examples:

        .. code-block:: python

G
guosheng 已提交
5717 5718 5719
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5720 5721 5722 5723
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5724 5725
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5726
    dim = input.shape[1]
5727
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5728 5729 5730
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5731 5732 5733 5734 5735 5736 5737 5738 5739
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5740
    if (is_custom) and (path_code is None):
5741
        raise ValueError("path_code should not be None with custom tree")
5742
    elif (is_custom) and (path_table is None):
5743
        raise ValueError("path_table should not be None with custom tree")
5744
    elif (is_custom) and (num_classes is None):
5745
        raise ValueError("num_classes should not be None with custom tree")
5746 5747 5748
    else:
        pass

J
JiabinYang 已提交
5749
    weights = None
5750 5751 5752 5753
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5754
    if not is_custom:
J
JiabinYang 已提交
5755 5756 5757 5758 5759 5760 5761 5762
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5763
            shape=[num_classes, dim],
J
JiabinYang 已提交
5764 5765
            is_bias=False,
            dtype=input.dtype)
5766 5767 5768
    inputs = {
        "X": input,
        "W": weights,
5769
        "PathTable": path_table,
5770
        "PathCode": path_code,
5771 5772
        "Label": label
    }
W
weixing02 已提交
5773
    if helper.bias_attr:
5774
        if not is_custom:
J
JiabinYang 已提交
5775 5776
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5777
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5778 5779 5780 5781 5782 5783
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5784
                shape=[num_classes, 1],
J
JiabinYang 已提交
5785 5786 5787
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5788 5789
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5790
        inputs=inputs,
W
weixing02 已提交
5791
        outputs={"Out": out,
5792 5793 5794 5795 5796 5797 5798
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5799 5800 5801
    return out


Y
fix ci.  
ying 已提交
5802
def transpose(x, perm, name=None):
Y
ying 已提交
5803 5804 5805 5806 5807 5808 5809
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5810 5811 5812
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5813 5814 5815 5816 5817 5818 5819

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5820
            # use append_batch_size=False to avoid prepending extra
5821
            # batch size in shape
5822
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5823
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5824
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5825 5826
    """

Y
fix ci.  
ying 已提交
5827
    if len(perm) != len(x.shape):
Y
ying 已提交
5828 5829 5830
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5831 5832 5833 5834 5835 5836
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5837 5838

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5839 5840
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5841
    helper.append_op(
5842
        type='transpose2',
Y
fix ci.  
ying 已提交
5843
        inputs={'X': [x]},
5844 5845
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5846 5847
        attrs={'axis': perm})
    return out
5848 5849


5850 5851 5852 5853 5854 5855 5856
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5857
    """
5858 5859 5860 5861 5862 5863 5864
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5893 5894 5895 5896 5897 5898 5899 5900 5901
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5902 5903 5904
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5905 5906 5907 5908 5909
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5937 5938 5939
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5952
            output.dims = {8, 8}
5953

5954
            output.lod = [[4, 4]]
5955

T
Tink_Y 已提交
5956
    Examples:
5957 5958 5959

        .. code-block:: python

5960 5961
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5962 5963

    """
L
lujun 已提交
5964
    assert not in_dygraph_mode(), (
5965
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5976 5977 5978 5979 5980 5981 5982
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5983
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5984
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5985
    helper.append_op(
5986
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5987
    return out
5988 5989


Y
yuyang18 已提交
5990
@templatedoc()
5991
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5992 5993
    """
    ${comment}
5994 5995

    Args:
Y
yuyang18 已提交
5996
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5997 5998
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5999 6000 6001 6002 6003
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6004
        ${out_comment}.
6005 6006

    Examples:
Y
yuyang18 已提交
6007 6008 6009 6010
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6011 6012 6013 6014 6015 6016
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6017
    out = helper.create_variable_for_type_inference(dtype)
6018 6019 6020 6021 6022
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6023
    return helper.append_activation(out)
6024 6025


Y
yuyang18 已提交
6026
@templatedoc()
6027 6028
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6029 6030
    ${comment}

L
lujun 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6074 6075

    Args:
Y
yuyang18 已提交
6076 6077
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6078 6079

    Returns:
Y
yuyang18 已提交
6080
        ${out_comment}.
6081 6082
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6083 6084 6085 6086 6087

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6088
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6089 6090 6091 6092 6093 6094
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6095 6096


6097 6098 6099
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6100
                               ignore_index=kIgnoreIndex,
6101
                               numeric_stable_mode=True,
6102 6103
                               return_softmax=False,
                               axis=-1):
6104 6105
    """
    **Softmax With Cross Entropy Operator.**
6106

6107
    Cross entropy loss with softmax is used as the output layer extensively. This
6108 6109 6110
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6111

6112 6113 6114
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6115

6116 6117 6118 6119
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6120

6121
    The equation is as follows:
6122

6123
    1) Hard label (one-hot label, so every sample has exactly one class)
6124

6125 6126 6127 6128
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6129

6130 6131 6132
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6133

6134 6135 6136 6137
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6138 6139
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6140 6141

    .. math::
6142

H
haowang101779990 已提交
6143
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6144

H
haowang101779990 已提交
6145
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6146

H
haowang101779990 已提交
6147
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6148 6149 6150

    and then cross entropy loss is calculated by softmax and label.

6151
    Args:
6152 6153 6154 6155 6156 6157
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6158
        soft_label (bool): A flag to indicate whether to interpretate the given
6159
            labels as soft labels. Default False.
M
minqiyang 已提交
6160 6161
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6162 6163
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6164 6165
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6166 6167 6168 6169
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6170
                                    Note that the speed may be slower when use
6171
                                    stable algorithm. Default: True
6172
        return_softmax (bool): A flag indicating whether to return the softmax
6173
                               along with the cross entropy loss. Default: False
6174 6175 6176
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6177

6178
    Returns:
H
haowang101779990 已提交
6179 6180
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6181 6182 6183 6184
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6185 6186 6187 6188 6189 6190 6191

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6192 6193
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6194 6195
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6196 6197
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6198 6199 6200 6201 6202 6203
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6204 6205 6206
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6207 6208
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6209
        })
6210 6211 6212 6213

    if return_softmax:
        return loss, softmax

6214 6215 6216
    return loss


6217 6218 6219
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6220
                                       num_true=1,
6221
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6222 6223 6224
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6225
                                       seed=0):
X
xuezhong 已提交
6226 6227 6228 6229 6230
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6231
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6232 6233 6234 6235 6236 6237 6238 6239
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6240
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6241 6242 6243 6244 6245 6246 6247 6248
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6249
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6261
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6262 6263 6264 6265 6266
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6267
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6268
            logits.
X
xuezhong 已提交
6269 6270 6271 6272 6273
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6274 6275 6276
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6297 6298
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6299 6300
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6301 6302 6303 6304 6305

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6306
            'Labels': label,
X
xuezhong 已提交
6307 6308
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6309 6310 6311 6312
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6313
            'SampledLabels': sampled_label,
6314 6315 6316
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6317 6318
        },
        attrs={
X
xuezhong 已提交
6319
            'use_customized_samples': use_customized_samples,
6320
            'uniq': True,
X
xuezhong 已提交
6321 6322 6323 6324
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6325 6326
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6327 6328 6329 6330 6331 6332
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6333 6334
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6335
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6336
                'Label': sampled_softlabel},
X
xuezhong 已提交
6337 6338 6339
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6340
            'soft_label': True,
X
xuezhong 已提交
6341 6342 6343
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6344
    return loss / num_true
X
xuezhong 已提交
6345 6346


6347 6348
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6349 6350
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6351
    For each instance, it computes the smooth L1 loss element by element first
6352
    and then sums all the losses. So the shape of ouput Variable is
6353
    [batch_size, 1].
6354

6355 6356
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6357
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6358
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6359
            L1 loss op with same shape as :attr:`x`.
6360
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6361 6362
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6363
            by this tensor element by element.
6364
        outside_weight (Variable|None): A tensor with rank at least 2. This
6365 6366
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6367
            element by element.
6368
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6369 6370
           scalar with default value 1.0.

6371
    Returns:
6372
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6373 6374 6375 6376 6377

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6378 6379
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6380
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6381
            out = fluid.layers.smooth_l1(x=fc, y=label)
6382
    """
6383

6384
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6385 6386
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6397
        attrs={'sigma': sigma if sigma is not None else 1.0})
6398
    return loss
6399 6400 6401 6402


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6403
    This layer creates the one-hot representations for input indices.
6404 6405

    Args:
Y
Yibing Liu 已提交
6406 6407
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6408 6409

    Returns:
Y
Yibing Liu 已提交
6410
        Variable: The one-hot representations of input.
6411 6412

    Examples:
C
caoying03 已提交
6413
        .. code-block:: python
6414

Y
Yibing Liu 已提交
6415 6416
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6417 6418
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6419
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6420 6421 6422 6423
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6424 6425
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6426
    return one_hot_out
Y
Yu Yang 已提交
6427 6428


Y
Yu Yang 已提交
6429
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6430
    """
Y
yi.wu 已提交
6431 6432 6433
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6434 6435 6436 6437 6438 6439

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6440 6441
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6442 6443 6444 6445 6446

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6447
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6448 6449
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6450 6451
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6452 6453 6454 6455 6456
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6457
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6458
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6459 6460
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6461
            outputs={'Out': [counter]},
M
minqiyang 已提交
6462 6463
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6464 6465 6466
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6467 6468


6469
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6470
    """
C
caoying03 已提交
6471 6472
    Gives a new shape to the input Tensor without changing its data.

6473 6474 6475 6476 6477
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6478

6479
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6480

6481 6482 6483 6484
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6485
    2. 0 means the actual dimension value is going to be copied from the
6486 6487 6488 6489
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6490 6491

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6492
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6493
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6494

6495
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6496 6497
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6498 6499
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6500
    dimensions.
C
caoying03 已提交
6501

6502
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6503 6504 6505 6506
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6507 6508

    Args:
6509
        x(variable): The input tensor.
C
caoying03 已提交
6510 6511
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6512 6513 6514 6515 6516
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6517 6518
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6519 6520 6521
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6522
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6523
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6524

6525
    Returns:
G
guosheng 已提交
6526 6527 6528 6529
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6530

X
Xin Pan 已提交
6531 6532 6533
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6534 6535
    Examples:
        .. code-block:: python
G
guosheng 已提交
6536

6537
            data = fluid.layers.data(
6538
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6539
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6540
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6541 6542 6543
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6544
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6545 6546 6547 6548 6549
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6550

6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6566
    helper = LayerHelper("reshape2", **locals())
6567 6568
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6569
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6570
    helper.append_op(
6571
        type="reshape2",
X
Xin Pan 已提交
6572
        inputs=inputs,
D
dzhwinter 已提交
6573
        attrs={"shape": shape},
6574 6575
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6576

D
dzhwinter 已提交
6577
    return helper.append_activation(out)
6578

6579

6580
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6581
    """
M
minqiyang 已提交
6582 6583 6584
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6585
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6586

H
haowang101779990 已提交
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6608

Y
Yibing Liu 已提交
6609
    Args:
6610
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6611
        axes (list): List of integers, indicating the dimensions to be squeezed.
6612
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6613 6614 6615 6616 6617 6618 6619 6620

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6621
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6622
    """
L
lujun 已提交
6623
    assert not in_dygraph_mode(), (
L
lujun 已提交
6624
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6625
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6626 6627
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6628
    helper.append_op(
6629
        type="squeeze2",
6630
        inputs={"X": input},
Y
Yibing Liu 已提交
6631
        attrs={"axes": axes},
6632 6633
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6634

6635 6636 6637
    return out


6638
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6639
    """
M
minqiyang 已提交
6640 6641 6642
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6643

M
minqiyang 已提交
6644
    For example:
H
haowang101779990 已提交
6645 6646 6647

    .. code-block:: text

M
minqiyang 已提交
6648
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6649
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6650

Y
Yibing Liu 已提交
6651
    Args:
6652
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6653
        axes (list): List of integers, indicating the dimensions to be inserted.
6654
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6655 6656 6657 6658 6659 6660 6661 6662

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6663
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6664 6665
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6666 6667
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6668
    helper.append_op(
6669
        type="unsqueeze2",
6670
        inputs={"X": input},
Y
Yibing Liu 已提交
6671
        attrs={"axes": axes},
6672 6673
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6674

6675 6676
    return out

6677

Y
yangyaming 已提交
6678
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6679
    """
Y
Yibing Liu 已提交
6680
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6681 6682 6683 6684
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6685
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6686 6687 6688 6689 6690 6691

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6692
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6693 6694 6695
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6696
            target_lod: [4, 2]
Y
yangyaming 已提交
6697 6698

            then we get a 1-level LoDTensor:
6699
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6700 6701 6702 6703 6704 6705
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6706
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6707 6708 6709 6710
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6711
                y.data = [[2, 4]]
Y
yangyaming 已提交
6712 6713 6714
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6715
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6716 6717 6718 6719 6720 6721
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6722
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6723 6724 6725 6726
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6727
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6728 6729 6730 6731
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6732
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6733 6734 6735 6736 6737
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6738
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6739
                           from :attr:`y`.
Y
yangyaming 已提交
6740
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6741
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6742 6743

    Returns:
Y
Yibing Liu 已提交
6744
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6745 6746

    Raises:
Y
Yibing Liu 已提交
6747
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6748 6749 6750 6751 6752 6753 6754 6755 6756

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6757
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6783
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6812 6813
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6826 6827 6828
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6842 6843 6844 6845


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6846
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6847
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6848

G
guosheng 已提交
6849 6850 6851 6852
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6875
                         The length of :attr:paddings must be
G
guosheng 已提交
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6886

G
guosheng 已提交
6887 6888 6889 6890 6891 6892
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6893
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6894 6895 6896 6897 6898 6899 6900
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6901 6902


C
chengduo 已提交
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6934 6935
		And
            pad_value = -1,
C
chengduo 已提交
6936

T
Tink_Y 已提交
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6972
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6982 6983 6984 6985 6986 6987 6988
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6989 6990
    called label-smoothing regularization (LSR).

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7014
                              be :math:`(1, class\_num)`.
7015 7016
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7017
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7037
    smooth_label = helper.create_variable_for_type_inference(dtype)
7038 7039 7040 7041 7042 7043 7044
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7045 7046


W
wopeizl 已提交
7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7083 7084


J
jerrywgz 已提交
7085 7086 7087 7088 7089 7090
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7091 7092
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7109 7110 7111 7112
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7113 7114 7115
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7116 7117 7118 7119 7120 7121
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7122
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7163 7164
        .. code-block:: python

W
whs 已提交
7165 7166 7167 7168
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7169
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7170 7171 7172 7173 7174 7175
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7176 7177


7178 7179 7180 7181
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7182
                 resample='BILINEAR',
7183 7184
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7185
                 align_mode=1):
7186
    """
Q
qiaolongfei 已提交
7187
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7188

7189
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7190 7191 7192
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7193

7194
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7195

7196
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7197

7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7208
    Align_corners and align_mode are optinal parameters,the calculation method 
7209 7210 7211 7212
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7213
    .. code-block:: text
7214

T
Tink_Y 已提交
7215
        For scale:
7216
          
T
Tink_Y 已提交
7217
            if align_corners = True && out_size > 1 :
7218

T
Tink_Y 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7230

T
Tink_Y 已提交
7231 7232
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7233

T
Tink_Y 已提交
7234 7235
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7236

T
Tink_Y 已提交
7237 7238
          else:
              align_corners = True
7239

T
Tink_Y 已提交
7240 7241
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7242

T
Tink_Y 已提交
7243 7244
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7245

T
Tink_Y 已提交
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7256

T
Tink_Y 已提交
7257 7258 7259 7260
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7261

T
Tink_Y 已提交
7262 7263
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7264 7265 7266 7267 7268 7269 7270 7271 7272

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7273
    Args:
7274
        input (Variable): The input tensor of image resize layer,
7275 7276
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7277
        out_shape(list|tuple|Variable|None): Output shape of image resize
7278 7279
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7280
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7281
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7282
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7283
             Default: None.
7284 7285
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7286
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7287
                       currently.
7288
                       Default: 'BILINEAR'
7289 7290 7291
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7292
                                :attr:`out_shape` and :attr:`scale` specifying
7293 7294 7295 7296 7297 7298 7299
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7300 7301
                                constructing stage.
                                Default: None
7302 7303 7304 7305
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7306
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7307 7308
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7309 7310

    Returns:
Q
update  
qiaolongfei 已提交
7311 7312
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7313

7314 7315 7316
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7317
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7318 7319 7320
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7321
        ValueError: scale should be greater than zero.
7322 7323
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7324

7325 7326 7327
    Examples:
        .. code-block:: python

R
ruri 已提交
7328
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7329
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7330
    """
7331 7332 7333 7334
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7335 7336
    if resample not in resample_methods:
        raise ValueError(
7337
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7338
        )
7339
    resample_type = resample_methods[resample]
7340 7341 7342 7343 7344 7345

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7346
    if out_shape is None and scale is None:
7347
        raise ValueError("One of out_shape and scale must not be None.")
7348
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7349
    dtype = helper.input_dtype()
7350 7351 7352 7353

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7354
    inputs = {"X": input}
D
dengkaipeng 已提交
7355
    attrs = {
D
dengkaipeng 已提交
7356 7357
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7358 7359 7360 7361 7362
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7363
    if out_shape is not None:
7364 7365 7366 7367
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7368
            inputs['OutSize'] = out_shape
7369 7370
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7371 7372
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7373 7374 7375 7376 7377 7378 7379
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7380
    else:
D
dengkaipeng 已提交
7381 7382
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7383
        attrs['scale'] = float(scale)
7384

7385 7386 7387 7388 7389
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7390
    out = helper.create_variable_for_type_inference(dtype)
7391
    helper.append_op(
7392
        type='{}_interp'.format(resample_type),
7393
        inputs=inputs,
7394
        outputs={"Out": out},
D
dengkaipeng 已提交
7395
        attrs=attrs)
7396
    return out
F
stash  
fengjiayi 已提交
7397 7398


7399
@templatedoc(op_type="bilinear_interp")
7400 7401 7402 7403
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7404 7405
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7406
                    align_mode=1):
7407
    """
7408 7409
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7410 7411
    in priority order.

7412 7413 7414 7415
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7416 7417
    again in the other direction.

7418
    For details of bilinear interpolation, please refer to Wikipedia:
7419
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7420

T
tink2123 已提交
7421
    Align_corners and align_mode are optinal parameters,the calculation 
7422 7423 7424 7425
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7426
    .. code-block:: text
7427

T
Tink_Y 已提交
7428
        For scale:
7429
          
T
Tink_Y 已提交
7430
            if align_corners = True && out_size > 1 :
7431

T
Tink_Y 已提交
7432 7433 7434 7435 7436
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7437

T
Tink_Y 已提交
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7448 7449


T
Tink_Y 已提交
7450
          else:
T
tink2123 已提交
7451

T
Tink_Y 已提交
7452 7453
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7454

T
Tink_Y 已提交
7455 7456
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7457 7458 7459



Y
yuyang18 已提交
7460 7461 7462
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7463 7464 7465
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7466

Y
yuyang18 已提交
7467
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7468
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7469
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7470
             Default: None.
Y
yuyang18 已提交
7471 7472

        name(str|None): The output variable name.
7473 7474 7475
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7476
                                :attr:`out_shape` and :attr:`scale` specifying
7477 7478 7479 7480 7481 7482 7483
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7484 7485
                                constructing stage.
                                Default: None
7486 7487
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7488 7489 7490

    Returns:
        ${out_comment}.
7491 7492 7493 7494

    Examples:
        .. code-block:: python

R
ruri 已提交
7495
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7496
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7497 7498
    """

7499 7500
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7501 7502


7503
@templatedoc(op_type="nearest_interp")
7504 7505 7506 7507
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7508 7509
                   actual_shape=None,
                   align_corners=True):
7510
    """
7511
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7512 7513
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7514 7515
    out_shape and scale in priority order.

7516 7517
    Example:

T
Tink_Y 已提交
7518 7519 7520 7521 7522
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7523

T
Tink_Y 已提交
7524 7525 7526 7527 7528 7529 7530 7531
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7532
          
T
Tink_Y 已提交
7533 7534
          if:
              align_corners = False
7535

T
Tink_Y 已提交
7536 7537
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7538

T
Tink_Y 已提交
7539 7540
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7541

T
Tink_Y 已提交
7542 7543
          else:
              align_corners = True
7544

T
Tink_Y 已提交
7545 7546
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7547

T
Tink_Y 已提交
7548 7549
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7550 7551


7552
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7553
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7554 7555 7556 7557

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7558 7559 7560
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7561

Y
yuyang18 已提交
7562
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7563
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7564
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7565
             Default: None.
Y
yuyang18 已提交
7566 7567

        name(str|None): The output variable name.
7568 7569 7570
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7571
                                :attr:`out_shape` and :attr:`scale` specifying
7572 7573 7574 7575 7576 7577 7578
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7579 7580
                                constructing stage.
                                Default: None
7581
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7582 7583 7584

    Returns:
        ${out_comment}.
7585 7586 7587 7588

    Examples:
        .. code-block:: python

R
ruri 已提交
7589
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7590
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7591 7592
    """

7593 7594
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7595 7596 7597 7598


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7599 7600 7601
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7602 7603 7604 7605 7606 7607 7608
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7609
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7610

7611
    Returns:
Q
update  
qiaolongfei 已提交
7612
        Variable: The output is a 4-D tensor of the shape
7613
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7614 7615 7616 7617 7618 7619

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7630 7631 7632
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7633 7634 7635
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7636 7637
def gather(input, index):
    """
Q
qiaolongfei 已提交
7638 7639
    **Gather Layer**

7640
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7641 7642 7643 7644
    of X indexed by `index` and concatenate them together.

    .. math::

7645
        Out = X[Index]
W
whs 已提交
7646 7647 7648 7649 7650 7651 7652


    .. code-block:: text


                Given:

7653 7654
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7665
        input (Variable): The source input with rank>=1.
W
whs 已提交
7666 7667 7668 7669 7670 7671
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7672

W
whs 已提交
7673 7674
        .. code-block:: python

Y
Yibing Liu 已提交
7675 7676
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7677 7678 7679 7680
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7681
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7682 7683 7684 7685 7686 7687 7688 7689
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7721
    out = helper.create_variable_for_type_inference(dtype)
7722 7723 7724 7725 7726 7727 7728 7729 7730
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7731 7732 7733 7734 7735 7736 7737 7738 7739
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7740

Q
Qingsheng Li 已提交
7741
    Given the following input:
H
haowang101779990 已提交
7742

Q
Qingsheng Li 已提交
7743
    .. code-block:: text
H
haowang101779990 已提交
7744

Q
Qingsheng Li 已提交
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7757

Q
Qingsheng Li 已提交
7758
    .. code-block:: text
H
haowang101779990 已提交
7759

Q
Qingsheng Li 已提交
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7775
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7776 7777 7778 7779 7780 7781 7782 7783

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7784
    assert not in_dygraph_mode(), (
7785
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7786 7787
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7788
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7789 7790 7791 7792 7793 7794 7795 7796 7797
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7811

7812 7813 7814
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7815
    """
F
stash  
fengjiayi 已提交
7816
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7817
    dtype = x.dtype
X
Xin Pan 已提交
7818
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7819
    if seed is None:
7820
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7821
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7822
    if isinstance(seed, int):
F
fengjiayi 已提交
7823 7824 7825 7826 7827
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7828 7829 7830 7831
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7832
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7833 7834
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7835 7836
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7837
    return out
W
whs 已提交
7838 7839


7840
def log(x, name=None):
W
wanghaoshuang 已提交
7841 7842 7843 7844 7845
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7846
        Out = \\ln(x)
W
wanghaoshuang 已提交
7847 7848

    Args:
7849
        x (Variable): Input tensor.
7850 7851
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7852 7853 7854 7855 7856 7857 7858 7859

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7860
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7861 7862
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7863
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7864
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7865
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7866 7867 7868
    return out


7869
def relu(x, name=None):
W
wanghaoshuang 已提交
7870 7871
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7872
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7873 7874 7875 7876
    the tensor elementwise.

    .. math::

7877
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7878 7879

    Args:
7880
        x (Variable): The input tensor.
7881 7882
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7883 7884 7885 7886 7887 7888 7889 7890

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7891
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7892
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7893 7894
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7895
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7896
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7897 7898
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7899
    return out
7900 7901


C
chengduo 已提交
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7943 7944 7945
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7946 7947 7948 7949
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7950
    .. math::
7951

H
haowang101779990 已提交
7952
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7953

7954
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7955 7956 7957 7958 7959
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7960
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7961
                           Its shape should be the same as input.
7962
        num_classes (int): The possible number of labels.
W
whs 已提交
7963 7964

    Returns:
M
minqiyang 已提交
7965 7966
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7967
                     Three variables:
M
minqiyang 已提交
7968

H
haowang101779990 已提交
7969 7970 7971
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7972 7973 7974 7975

    Examples:

        .. code-block:: python
7976

W
whs 已提交
7977 7978 7979 7980
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7981 7982 7983
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7984 7985
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7986 7987
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7988
        outputs={
W
whs 已提交
7989 7990 7991
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7992 7993 7994
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8063
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8064 8065 8066 8067 8068

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8069
            isinstance(shape, Variable)):
8070 8071 8072 8073 8074
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8075
    out = helper.create_variable_for_type_inference(x.dtype)
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8093 8094


W
whs 已提交
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8112

W
whs 已提交
8113
              out_shape = [2, 3, 5, 5]
8114

W
whs 已提交
8115
          Step 1:
8116

W
whs 已提交
8117 8118 8119
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8120

W
whs 已提交
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8166
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8167
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8180

W
whs 已提交
8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8192
            isinstance(out_shape, Variable)):
W
whs 已提交
8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8214 8215
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8216

8217 8218
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8219
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8220 8221 8222
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8223

8224 8225
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8226

H
haowang101779990 已提交
8227 8228
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8229 8230
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8231

H
haowang101779990 已提交
8232 8233 8234 8235 8236 8237 8238 8239
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8240 8241 8242

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8277
    out = helper.create_variable_for_type_inference("float32")
8278 8279 8280 8281 8282 8283 8284 8285

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8286 8287


M
minqiyang 已提交
8288 8289
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8290
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8291
    which compares left score and right score passed in.
M
minqiyang 已提交
8292
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8293 8294 8295

    .. math::

H
haowang101779990 已提交
8296
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8297 8298

    Args:
M
minqiyang 已提交
8299
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8300 8301
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8302
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8303 8304
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8305

M
minqiyang 已提交
8306
    Returns:
M
minqiyang 已提交
8307
       Variable: The ranking loss.
H
haowang101779990 已提交
8308

M
minqiyang 已提交
8309
    Raises:
M
minqiyang 已提交
8310
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8311

M
minqiyang 已提交
8312
    Examples:
H
haowang101779990 已提交
8313

M
minqiyang 已提交
8314
        .. code-block:: python
H
haowang101779990 已提交
8315

Y
Yibing Liu 已提交
8316 8317 8318
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8319 8320
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8321
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8322 8323 8324 8325 8326 8327
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8328 8329
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8353
        .. code-block:: text
W
whs 已提交
8354

T
Tink_Y 已提交
8355
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8356

T
Tink_Y 已提交
8357 8358
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8359

T
Tink_Y 已提交
8360
	      Case 0:
M
minqiyang 已提交
8361

T
Tink_Y 已提交
8362 8363 8364
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8365

T
Tink_Y 已提交
8366 8367 8368
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8369

T
Tink_Y 已提交
8370
	      Case 1:
M
minqiyang 已提交
8371

T
Tink_Y 已提交
8372 8373
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8374

T
Tink_Y 已提交
8375 8376 8377
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8378

T
Tink_Y 已提交
8379
	      Case 2:
M
minqiyang 已提交
8380

T
Tink_Y 已提交
8381 8382
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8383

T
Tink_Y 已提交
8384 8385 8386
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8387 8388


W
whs 已提交
8389 8390
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8391
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8415
    out = helper.create_variable_for_type_inference(dtype)
8416 8417 8418 8419 8420 8421 8422 8423 8424
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8425
    helper.append_op(
8426
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8427 8428 8429 8430

    return out


8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8443 8444 8445 8446 8447

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8448 8449
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8450 8451
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8452
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8473 8474 8475 8476 8477

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8478 8479
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8480 8481
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8482
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8503 8504 8505 8506 8507

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8508 8509
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8510 8511
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8512
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8534 8535 8536 8537 8538

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8539
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8540
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8541 8542
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8543
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8566 8567 8568 8569 8570

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8571 8572
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8573 8574
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8575
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8597 8598 8599 8600 8601

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8602 8603
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8604 8605
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8606
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8607 8608 8609 8610 8611 8612 8613 8614
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8615 8616 8617 8618
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8619 8620
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8621 8622 8623

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8624
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8625
          weight (alpha).
J
jerrywgz 已提交
8626
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8627 8628 8629
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8630
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8631
          will be named automatically.
J
jerrywgz 已提交
8632 8633 8634 8635 8636 8637 8638 8639

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8640
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8654
        attr=helper.param_attr,
J
jerrywgz 已提交
8655 8656 8657 8658
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8659
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8660 8661 8662 8663 8664 8665 8666 8667 8668
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8679
    Returns:
8680
        output(${out_type}): ${out_comment}
8681 8682 8683

    Examples:

8684
    .. code-block:: python
8685

H
haowang101779990 已提交
8686 8687
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8688 8689
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8690
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8709
    Returns:
8710
        output(${out_type}): ${out_comment}
8711 8712 8713 8714 8715

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8716 8717
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8718 8719
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8720
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8738
    Returns:
8739
        output(${out_type}): ${out_comment}
8740 8741 8742 8743 8744

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8745 8746
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8747 8748
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8749
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8750 8751 8752 8753 8754 8755 8756 8757
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8758 8759 8760 8761
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8762

H
haowang101779990 已提交
8763
    For Example:
M
minqiyang 已提交
8764

H
haowang101779990 已提交
8765
    .. code-block:: text
8766

H
haowang101779990 已提交
8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8788 8789 8790

    Args:
        x (Variable): A tensor of rank >= axis.
8791 8792
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8793 8794 8795 8796 8797 8798 8799 8800
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8801 8802 8803
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8804 8805 8806 8807
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8808
        ValueError: If axis is not in range [0, rank(x)].
8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8825 8826
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8827
    helper.append_op(
8828
        type='flatten2',
8829
        inputs={"X": x},
8830 8831
        outputs={'Out': out,
                 'XShape': x_shape},
8832 8833
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8834 8835


C
chenweihang 已提交
8836
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8837
    """
C
chenweihang 已提交
8838
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8839
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8840 8841
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8842

H
haowang101779990 已提交
8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8860 8861

    Args:
C
chenweihang 已提交
8862 8863 8864
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8865 8866 8867 8868 8869 8870 8871 8872 8873 8874

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8875
    assert not in_dygraph_mode(), (
8876
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8877
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8878 8879
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8880 8881 8882 8883 8884 8885
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8886
    return out
8887

8888

S
sneaxiy 已提交
8889 8890 8891 8892 8893 8894 8895 8896 8897
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8898

S
sneaxiy 已提交
8899
    .. math::
8900

S
sneaxiy 已提交
8901 8902 8903
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8904
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8905 8906 8907 8908
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8909 8910 8911
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8912 8913
    Returns:
        Variable: The output sequence mask.
8914

S
sneaxiy 已提交
8915
    """
L
lujun 已提交
8916
    assert not in_dygraph_mode(), (
8917
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8918

Q
qingqing01 已提交
8919
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8920
    if name is None:
X
Xin Pan 已提交
8921
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8922
    else:
X
Xin Pan 已提交
8923
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8924

Q
qingqing01 已提交
8925 8926 8927
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8928 8929
        outputs={'Y': out},
        attrs={
8930
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8931 8932 8933
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8934 8935


X
Xin Pan 已提交
8936
def stack(x, axis=0):
S
sneaxiy 已提交
8937 8938 8939 8940
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8941 8942 8943 8944 8945 8946 8947

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8948
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8949
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8950

C
chengduozh 已提交
8951 8952
    For Example:

C
chengduozh 已提交
8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8991
    Args:
8992
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8993
        axis (int|None): The axis along which all inputs are stacked.
8994

S
sneaxiy 已提交
8995 8996
    Returns:
        Variable: The stacked variable.
8997

S
sneaxiy 已提交
8998 8999
    """

X
Xin Pan 已提交
9000 9001 9002 9003 9004 9005
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9006
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9007
    helper.append_op(
S
sneaxiy 已提交
9008 9009
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9010

X
Xin Pan 已提交
9011
    return out
D
dzhwinter 已提交
9012 9013 9014 9015 9016 9017 9018


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9019

D
dzhwinter 已提交
9020 9021 9022
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9023
    raised.
D
dzhwinter 已提交
9024 9025

    Args:
M
minqiyang 已提交
9026
        x (Variable): Input variable.
D
dzhwinter 已提交
9027 9028
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9029

D
dzhwinter 已提交
9030 9031
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9032

D
dzhwinter 已提交
9033 9034 9035 9036 9037 9038 9039 9040 9041 9042
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9043
    for _ in range(num):
X
Xin Pan 已提交
9044
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9045 9046 9047 9048 9049 9050 9051 9052

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9065

W
whs 已提交
9066 9067 9068 9069
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9070

W
whs 已提交
9071
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9072

W
whs 已提交
9073
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9074

W
whs 已提交
9075 9076 9077 9078
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9079

W
whs 已提交
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9096
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9097 9098 9099 9100 9101 9102
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9103 9104


G
fix  
gongweibao 已提交
9105 9106 9107
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9108
@templatedoc()
G
fix  
gongweibao 已提交
9109 9110 9111 9112 9113 9114 9115 9116 9117
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9118
    ${comment}
G
fix  
gongweibao 已提交
9119 9120

    Args:
G
gongweibao 已提交
9121 9122 9123
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9124
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9125 9126 9127
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9128 9129
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9130
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9131

9132 9133 9134 9135 9136
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9137 9138 9139
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9140
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9157 9158


G
gongweibao 已提交
9159
@templatedoc()
X
Xin Pan 已提交
9160
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9161
    """
G
gongweibao 已提交
9162
    ${comment}
G
fix  
gongweibao 已提交
9163 9164

    Args:
G
gongweibao 已提交
9165 9166 9167 9168
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9169 9170 9171
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9172
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9173

9174 9175 9176 9177
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9178 9179 9180
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9181
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9182 9183 9184 9185 9186 9187 9188 9189 9190 9191
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9192
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9193 9194 9195 9196 9197
        })

    return out


G
gongweibao 已提交
9198
@templatedoc()
G
fix  
gongweibao 已提交
9199
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9200
    """
G
gongweibao 已提交
9201
    ${comment}
G
fix  
gongweibao 已提交
9202 9203

    Args:
G
gongweibao 已提交
9204 9205 9206 9207
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9208
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9209 9210

    Returns:
G
gongweibao 已提交
9211
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9212

9213 9214 9215
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9216
            x = fluid.layers.data(
9217 9218 9219 9220 9221
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9222
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9223 9224 9225
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9226
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9238
@templatedoc()
G
fix  
gongweibao 已提交
9239 9240 9241 9242 9243 9244 9245 9246 9247
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9248
    ${comment}
G
fix  
gongweibao 已提交
9249 9250

    Args:
G
gongweibao 已提交
9251 9252
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9253
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9254 9255 9256 9257
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9258
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9259 9260

    Returns:
G
gongweibao 已提交
9261
        out (Variable): ${out_comment}
9262 9263 9264 9265

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9266
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9267

Y
Yibing Liu 已提交
9268
            out = fluid.layers.gaussian_random_batch_size_like(
9269
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9270 9271 9272
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9273
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9292
@templatedoc()
X
Xin Pan 已提交
9293
def sum(x):
G
fix  
gongweibao 已提交
9294
    """
G
gongweibao 已提交
9295
    ${comment}
G
fix  
gongweibao 已提交
9296 9297

    Args:
G
gongweibao 已提交
9298
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9299 9300

    Returns:
G
gongweibao 已提交
9301
        out (Variable): ${out_comment}
9302 9303 9304 9305 9306 9307

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9308 9309 9310
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9311 9312
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9313 9314 9315 9316
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9317
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9318 9319 9320 9321

    return out


G
gongweibao 已提交
9322
@templatedoc()
G
fix  
gongweibao 已提交
9323 9324
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9325
    ${comment}
G
fix  
gongweibao 已提交
9326 9327

    Args:
G
gongweibao 已提交
9328 9329 9330 9331
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9332 9333

    Returns:
G
gongweibao 已提交
9334
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9335

9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9347 9348 9349
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9350 9351
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9365 9366
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9367
    Get the shape of the input.
G
fix  
gongweibao 已提交
9368 9369

    Args:
C
chengduozh 已提交
9370
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9371 9372

    Returns:
C
fix doc  
chengduozh 已提交
9373
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9374

9375 9376 9377 9378 9379 9380
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9381 9382 9383
    """

    helper = LayerHelper('shape', **locals())
9384
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9385
    helper.append_op(
G
fix  
gongweibao 已提交
9386
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9387 9388

    return out
G
merge  
gongweibao 已提交
9389 9390


Z
zhoukunsheng 已提交
9391 9392 9393 9394
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9395
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9417 9418 9419 9420
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9421
    if in_dygraph_mode():
X
Xin Pan 已提交
9422 9423 9424
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9425 9426 9427 9428
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9429 9430
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9431
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9432 9433 9434
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9435

S
sneaxiy 已提交
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9447
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9448 9449 9450 9451 9452 9453 9454 9455
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9456
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9457
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9458 9459 9460 9461 9462 9463

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9464
    if name is None:
X
Xin Pan 已提交
9465
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9466 9467 9468
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9469 9470 9471 9472 9473 9474 9475 9476 9477 9478

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9479
    return helper.append_activation(out)
S
sneaxiy 已提交
9480 9481


X
Xin Pan 已提交
9482
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9483 9484 9485
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9486
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9487 9488 9489
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9490
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9491 9492 9493
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9494
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9495 9496 9497
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9498
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9499 9500 9501
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9502
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9503 9504 9505
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9506
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9507 9508 9509
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9510 9511 9512 9513 9514 9515 9516 9517
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9518
for func in [
9519 9520 9521 9522 9523 9524 9525 9526 9527
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9528 9529 9530 9531 9532
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9533 9534
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9535
        ])
M
minqiyang 已提交
9536 9537


9538
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9539 9540
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9541 9542
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9543 9544 9545

    if out is None:
        if name is None:
X
Xin Pan 已提交
9546
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9562
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9574 9575 9576 9577 9578 9579 9580 9581 9582

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9583 9584 9585 9586 9587 9588 9589
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9590
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9602 9603 9604 9605 9606 9607 9608 9609 9610

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9611 9612 9613 9614 9615 9616 9617
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9618
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9630 9631 9632 9633 9634 9635 9636 9637 9638

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9639 9640 9641 9642 9643 9644 9645
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9646
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9647 9648 9649 9650 9651 9652 9653 9654 9655 9656
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9657 9658 9659 9660 9661 9662 9663

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9664 9665 9666 9667
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9683 9684 9685 9686 9687 9688 9689

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9690 9691 9692 9693 9694
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9695 9696 9697 9698
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9722 9723 9724 9725 9726 9727 9728

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9729 9730 9731 9732 9733
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9734 9735 9736 9737
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9738 9739 9740 9741 9742 9743 9744 9745

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9764
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9765 9766 9767 9768 9769 9770 9771 9772 9773 9774
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9817
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9818 9819 9820 9821 9822 9823 9824 9825 9826
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9827 9828
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9829 9830 9831 9832 9833 9834
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9835 9836 9837
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9838 9839
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9840 9841 9842 9843 9844 9845
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9846
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9847
        name(basestring|None): Name of the output.
9848 9849
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9850 9851 9852

    Returns:
        out(${out_type}): ${out_comment}
9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9867 9868 9869 9870 9871
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9872
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9873 9874 9875 9876 9877 9878 9879 9880
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9881 9882
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9899 9900 9901 9902 9903 9904 9905 9906 9907

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
9908 9909 9910 9911
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9912
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9913 9914 9915 9916 9917 9918 9919 9920 9921 9922
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9923 9924


J
JiabinYang 已提交
9925
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9926
    """
J
JiabinYang 已提交
9927
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9928 9929 9930

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9931
    The attr blocksize indicates the input block size.
9932 9933

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9934
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9935 9936

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9937
    (but keeping all data)
J
JiabinYang 已提交
9938

J
JiabinYang 已提交
9939
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9940
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9941 9942 9943 9944 9945
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9946
    Args:
J
JiabinYang 已提交
9947
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9948
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9949 9950

    Returns:
J
JiabinYang 已提交
9951
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9952 9953

    Raises:
J
JiabinYang 已提交
9954
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9955 9956 9957 9958 9959

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9960
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9961
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9962
                x=data, blocksize=2)
9963 9964 9965 9966 9967 9968

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9969 9970
    """

J
JiabinYang 已提交
9971
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9972

J
JiabinYang 已提交
9973 9974
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9975 9976

    if name is None:
J
JiabinYang 已提交
9977 9978
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9979 9980 9981 9982 9983
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9984
        type="space_to_depth",
J
JiabinYang 已提交
9985
        inputs={"X": x},
J
JiabinYang 已提交
9986
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9987
        outputs={"Out": out})
J
JiabinYang 已提交
9988 9989
    return out

J
JiabinYang 已提交
9990

S
sneaxiy 已提交
9991 9992
@templatedoc()
def sequence_reverse(x, name=None):
9993
    """
S
sneaxiy 已提交
9994 9995 9996 9997 9998 9999 10000 10001 10002
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10003
    assert not in_dygraph_mode(), (
10004
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10005 10006
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10007
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10018 10019


10020 10021 10022 10023 10024 10025
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10026 10027 10028 10029 10030
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10031

10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10044
        act (str, default None): Activation to be applied to the output of this layer.
10045 10046 10047 10048 10049 10050 10051

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10052
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10064
    return helper.append_activation(out)
10065 10066


B
barrierye 已提交
10067
def similarity_focus(input, axis, indexes, name=None):
10068
    """
B
barrierye 已提交
10069
    SimilarityFocus Operator
B
barrierye 已提交
10070 10071

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10072

10073 10074 10075
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10076
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10077 10078 10079 10080 10081 10082 10083
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10084
       each index.
B
barrierye 已提交
10085 10086 10087 10088
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10138
    Args:
10139
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10140
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10141
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10142
            1, 2 or 3.
B
barrierye 已提交
10143
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10144 10145

    Returns:
H
haowang101779990 已提交
10146 10147
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10148

B
barrierye 已提交
10149 10150
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10151

B
barrierye 已提交
10152
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10153 10154
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10167 10168 10169 10170 10171
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10172 10173 10174 10175 10176 10177 10178
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10179 10180


M
minqiyang 已提交
10181 10182
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10183 10184
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10185 10186
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10225
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10226
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10227 10228 10229 10230 10231 10232

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10233

10234
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10235
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10236 10237
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10238 10239
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10240 10241 10242 10243 10244 10245 10246
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10247 10248


D
dengkaipeng 已提交
10249
@templatedoc()
10250 10251
def grid_sampler(x, grid, name=None):
    """
10252
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10253
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10254 10255 10256 10257
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10258
    interpolation value of 4 nearest corner points.
10259

H
haowang101779990 已提交
10260
    .. code-block:: text
10261

H
haowang101779990 已提交
10262 10263
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10264

H
haowang101779990 已提交
10265 10266
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10267

H
haowang101779990 已提交
10268 10269 10270
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10271

H
haowang101779990 已提交
10272 10273 10274 10275 10276 10277 10278 10279 10280
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10281

H
haowang101779990 已提交
10282 10283 10284 10285
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10286

H
haowang101779990 已提交
10287 10288 10289 10290
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10291

H
haowang101779990 已提交
10292 10293 10294 10295
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10296

H
haowang101779990 已提交
10297 10298
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10299 10300

    Args:
10301 10302 10303
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10304 10305

    Returns:
H
haowang101779990 已提交
10306
        Variable: Output of shape [N, C, H, W] data samples input X
10307 10308
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10309 10310 10311 10312 10313 10314 10315 10316
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10317

D
dengkaipeng 已提交
10318 10319 10320 10321 10322 10323 10324 10325 10326
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10327
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10328 10329
    ipts = {'X': x, 'Grid': grid}

10330
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10331 10332 10333
    return out


G
gmcather 已提交
10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10361 10362
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10401
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10402 10403 10404 10405 10406 10407 10408
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10409

H
heqiaozhi 已提交
10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10424 10425 10426 10427
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10428
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10429 10430
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10431
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10432 10433

    .. math::
H
haowang101779990 已提交
10434 10435 10436
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10437 10438

    Where:
H
haowang101779990 已提交
10439 10440
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10455

G
gmcather 已提交
10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10472 10473 10474 10475 10476 10477 10478 10479 10480 10481


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10482
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10483

Q
Qiao Longfei 已提交
10484
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10485 10486 10487
    For example:

    .. math::
H
haowang101779990 已提交
10488
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10489

Q
Qiao Longfei 已提交
10490
    In this formula:
10491 10492
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10493
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10494
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10495 10496 10497
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10498 10499
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10500 10501 10502
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10503
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10504
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10505
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10506 10507 10508 10509
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10510
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10511 10512 10513 10514

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10515 10516 10517
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10518 10519
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10520
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10521 10522 10523 10524

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10525
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10566 10567


S
shippingwang 已提交
10568
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10569 10570
    """
    **Shuffle Channel Operator**
10571

S
shippingwang 已提交
10572 10573 10574 10575 10576 10577
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10578
    
S
shippingwang 已提交
10579
    .. code-block:: text
10580

S
shippingwang 已提交
10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10609
    Args: 
S
shippingwang 已提交
10610 10611
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10612 10613

    Returns:
S
shippingwang 已提交
10614 10615
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10616 10617

    Raises:
S
shippingwang 已提交
10618
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10619 10620 10621

    Examples:
        .. code-block:: python
10622 10623

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10624
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10625 10626 10627
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10628
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10629 10630 10631 10632 10633 10634 10635 10636 10637

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10638
    return out
S
Add  
shippingwang 已提交
10639 10640


10641
@templatedoc()
D
dengkaipeng 已提交
10642
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10643 10644 10645 10646 10647 10648 10649 10650
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10651
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10652
        name (str, default None): The name of this layer.
10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10665
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10678 10679
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10680 10681 10682
    return out


S
sneaxiy 已提交
10683
class PyFuncRegistry(object):
S
sneaxiy 已提交
10684 10685 10686
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10687
        if func is None or not callable(func):
S
sneaxiy 已提交
10688 10689 10690
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10691
        # find named args using reflection
S
sneaxiy 已提交
10692 10693 10694 10695 10696 10697 10698
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10699 10700 10701
        '''
        Why record self here?

M
minqiyang 已提交
10702 10703
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10704
           to find the registered function corresponding
M
minqiyang 已提交
10705
           to :code:`idx`.
S
sneaxiy 已提交
10706

M
minqiyang 已提交
10707 10708
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10709
           whose reference count is 1 would cause
M
minqiyang 已提交
10710
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10711 10712
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10713
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10728 10729 10730 10731 10732 10733 10734 10735 10736
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10737

S
sneaxiy 已提交
10738 10739
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10740 10741

        ret = []
S
sneaxiy 已提交
10742 10743 10744
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10745 10746
                continue

S
sneaxiy 已提交
10747 10748
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10749

S
sneaxiy 已提交
10750 10751 10752
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10753

S
sneaxiy 已提交
10754
        return tuple(ret)
S
sneaxiy 已提交
10755 10756


S
sneaxiy 已提交
10757 10758 10759 10760
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10761

S
sneaxiy 已提交
10762 10763 10764 10765 10766 10767 10768 10769
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10770
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10771

S
sneaxiy 已提交
10772 10773
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10774 10775 10776 10777
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10778
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10779
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10780 10781
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10782 10783 10784 10785 10786
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10787
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10788
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10789
                                       None means no backward. Default None.
S
sneaxiy 已提交
10790
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10791
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10792 10793
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10794
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10795 10796 10797

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10798 10799

    Examples:
M
minqiyang 已提交
10800

S
sneaxiy 已提交
10801 10802 10803 10804 10805
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10806
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10807 10808
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10809
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10810 10811 10812
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10813
        >>>
S
sneaxiy 已提交
10814 10815 10816 10817 10818
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10819
        >>>     print(x)
S
sneaxiy 已提交
10820 10821 10822 10823 10824 10825
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10826
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10827 10828
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10829 10830
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10831 10832 10833 10834 10835 10836 10837 10838
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10839
    """
S
sneaxiy 已提交
10840
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10841 10842 10843
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10844
        x = [x]
S
sneaxiy 已提交
10845 10846
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10847

S
sneaxiy 已提交
10848 10849 10850
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10851
        out_list = [out]
S
sneaxiy 已提交
10852
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10853
        out_list = out
S
sneaxiy 已提交
10854 10855 10856
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10857

S
sneaxiy 已提交
10858 10859
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10860
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10861 10862

    for each_out in out_list:
S
sneaxiy 已提交
10863 10864
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10865 10866
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10867

S
sneaxiy 已提交
10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10883 10884 10885 10886

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10887 10888
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10889 10890 10891
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10892
        })
S
sneaxiy 已提交
10893
    return out
S
sneaxiy 已提交
10894 10895 10896


# For debug usage
S
sneaxiy 已提交
10897 10898 10899 10900
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10953

M
minqiyang 已提交
10954

M
minqiyang 已提交
10955
def huber_loss(input, label, delta):
10956
    """
M
minqiyang 已提交
10957 10958 10959
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10960 10961 10962 10963

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10964
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10965 10966 10967 10968

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10969
        huber\_loss = 0.5 * (label - input) * (label - input)
10970 10971 10972 10973 10974 10975 10976


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10977
        delta (float): The parameter of huber loss, which controls
10978 10979 10980
                       the range of outliers

    Returns:
M
minqiyang 已提交
10981
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10982 10983 10984 10985 10986

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10987
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10988
    """
M
minqiyang 已提交
10989
    helper = LayerHelper('huber_loss', **locals())
10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11001 11002


D
dengkaipeng 已提交
11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11065 11066 11067
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11068
          # edges must be directional
T
Tao Luo 已提交
11069 11070 11071 11072
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11073
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11074 11075
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11076
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11077
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11101 11102


C
ceci3 已提交
11103
from .ops import square
C
ceci3 已提交
11104
from .control_flow import equal
C
ceci3 已提交
11105 11106


C
ceci3 已提交
11107 11108 11109
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11110

C
ceci3 已提交
11111
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11112 11113

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11114
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11115 11116 11117 11118 11119
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11120 11121
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11122 11123 11124 11125 11126 11127 11128

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11129 11130 11131 11132 11133 11134 11135 11136
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11137 11138 11139 11140 11141 11142 11143
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11144
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11145 11146
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11147 11148
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11149 11150 11151 11152
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11153 11154 11155
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11156 11157 11158
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11159 11160


R
ruri 已提交
11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11190
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11191 11192 11193 11194 11195 11196 11197 11198 11199

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11200
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11261 11262 11263 11264


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11265

H
heqiaozhi 已提交
11266
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11267

H
fix doc  
heqiaozhi 已提交
11268
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11269 11270 11271
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11272
    
H
fix doc  
heqiaozhi 已提交
11273
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11274

H
heqiaozhi 已提交
11275
    Args:
H
fix doc  
heqiaozhi 已提交
11276 11277

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11278 11279
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11280 11281
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11282

H
heqiaozhi 已提交
11283
    Returns:
H
fix doc  
heqiaozhi 已提交
11284 11285 11286

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11287
    Examples:
H
fix doc  
heqiaozhi 已提交
11288

H
heqiaozhi 已提交
11289
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11290

H
heqiaozhi 已提交
11291 11292 11293 11294 11295 11296 11297 11298 11299 11300
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11301

H
heqiaozhi 已提交
11302 11303 11304 11305 11306 11307 11308 11309 11310
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11311
    return out