nn.py 236.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
G
fix  
gongweibao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d',
    'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose',
    'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit',
    'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
    'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
    'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
    'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze',
    'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool',
    'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear',
    'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu',
G
gongweibao 已提交
48 49 50
    'log', 'crop', 'rank_loss', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid',
    'swish', 'prelu', 'flatten', 'sequence_mask', 'stack', 'pad2d', 'unstack',
    'sequence_enumerate', 'expand', 'sequence_concat',
G
fix  
gongweibao 已提交
51 52
    'uniform_random_batch_size_like', 'gaussian_random', 'sampling_id',
    'gaussian_random_batch_size_like', 'sum', 'slice', 'shape'
Y
Yu Yang 已提交
53 54 55 56 57 58 59 60
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
61
       use_mkldnn=False,
Y
Yu Yang 已提交
62
       act=None,
J
Jacek Czaja 已提交
63
       is_test=False,
64
       name=None):
Y
Yu Yang 已提交
65
    """
66
    **Fully Connected Layer**
Y
Yu Yang 已提交
67

68 69 70 71 72 73 74 75
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
76
    to the output as well.
C
caoying03 已提交
77

C
caoying03 已提交
78
    This process can be formulated as follows:
79 80 81

    .. math::

82
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
83 84 85

    In the above equation:

C
caoying03 已提交
86 87 88 89
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
90
    * :math:`Act`: The activation function.
C
caoying03 已提交
91
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
92 93

    Args:
R
ranqiu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
109 110
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
111
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
112
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
113 114
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
115
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
116

117
    Returns:
F
fengjiayi 已提交
118
        Variable: The transformation result.
119 120

    Raises:
C
caoying03 已提交
121
        ValueError: If rank of the input tensor is less than 2.
122 123 124 125

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
126
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
127
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
128
    """
C
caoying03 已提交
129

C
caoying03 已提交
130
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
131 132 133 134

    dtype = helper.input_dtype()

    mul_results = []
135 136
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
137 138 139
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
140

Y
Yu Yang 已提交
141
        w = helper.create_parameter(
142 143
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
144
        helper.append_op(
145 146 147
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
148
            outputs={"Out": tmp},
M
mozga-intel 已提交
149 150
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
151 152 153 154
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
155
    else:
156 157
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
158 159 160 161
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
162 163 164 165
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
166 167


168 169 170
def embedding(input,
              size,
              is_sparse=False,
171
              is_distributed=False,
172 173 174
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
175
    """
176 177
    **Embedding Layer**

178
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
179 180
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
181 182 183

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
184 185

    Args:
186 187 188 189 190
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
191
        is_distributed(bool): Whether to run lookup table from remote parameter server.
192 193
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
194
            with zeros whenever lookup encounters it in :attr:`input`. If
195
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
196 197
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
198
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
199

200 201 202
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
203

204 205
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
206

C
chengduoZH 已提交
207
          dict_size = len(dataset.ids)
208
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
209
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
210 211 212 213 214 215
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
216 217
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
218 219 220 221 222
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
223 224 225 226 227
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
228 229 230
    return tmp


Y
yi.wu 已提交
231
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
232 233
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
234 235
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
236 237 238 239 240 241 242
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
243 244
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
245
    """
Y
yi.wu 已提交
246
    ${comment}
Y
Yibing Liu 已提交
247 248

    Args:
Y
yi.wu 已提交
249 250
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
251 252 253 254 255 256 257
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

258
        param_attr(ParamAttr|None): The parameter attribute for the learnable
259
                               hidden-hidden weights.
Y
Yibing Liu 已提交
260 261 262

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
263 264
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
265
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
266 267 268
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
269

270
                              1. `use_peepholes = False`
Y
yi.wu 已提交
271 272
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
273
                              2. `use_peepholes = True`
Y
yi.wu 已提交
274
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
275
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
276
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
277 278 279 280 281 282 283 284
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
285 286

    Returns:
Y
Yibing Liu 已提交
287 288
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
289

Y
Yibing Liu 已提交
290
    Examples:
Y
Yibing Liu 已提交
291 292
        .. code-block:: python

Y
Yibing Liu 已提交
293 294
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
295
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
296 297
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
298
    """
299

Y
Yu Yang 已提交
300
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
301
    size = size // 4
Y
Yu Yang 已提交
302 303 304 305 306 307 308 309 310 311 312 313
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
314 315 316 317 318 319 320 321 322 323
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
324 325 326

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
327
        inputs=inputs,
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
344 345 346 347 348 349 350 351 352 353 354
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
355 356
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
357 358 359
    """
    **Dynamic LSTMP Layer**

360 361 362 363 364 365
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
366 367 368 369 370

    The formula is as follows:

    .. math::

371
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
372

373
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
374

375
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
376

377
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
378

379
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
380

381
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
382

383
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
384

Y
Yibing Liu 已提交
385 386 387 388 389 390
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
391
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
392
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
393
          bias vector).
Y
Yibing Liu 已提交
394 395 396
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
397
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
398
    * :math:`h`: The hidden state.
399
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
400 401
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
402
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
403
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
404
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
405 406
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
407 408 409 410

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
411

Y
Yibing Liu 已提交
412 413 414 415 416 417 418 419 420 421 422 423
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
424
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
425 426
                               hidden-hidden weight and projection weight.

427 428
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
429 430
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
431 432
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
433 434
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
435 436 437 438 439 440
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
441
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
442 443 444
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
445
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
446 447 448 449 450 451 452 453 454
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
455
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
456 457
                              default "tanh".
        proj_activation(str): The activation for projection output.
458
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
459 460
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
461 462
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
463 464

    Returns:
465 466 467 468
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
469 470

    Examples:
471

Y
Yibing Liu 已提交
472 473
        .. code-block:: python

474 475 476 477
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
478
            hidden_dim, proj_dim = 512, 256
479
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
480
                                     act=None, bias_attr=None)
481 482 483
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
484 485 486 487
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
488
    """
489

Y
Yibing Liu 已提交
490
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
491
    size = size // 4
Y
Yibing Liu 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
536 537 538 539 540 541 542 543 544
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
545
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
546

547
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
548
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
549

G
guosheng 已提交
550 551 552 553 554 555 556 557 558
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
559

G
guosheng 已提交
560
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
561

G
guosheng 已提交
562
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
563 564
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
565 566 567 568
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
569
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
570 571

    Args:
572 573
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
574
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
575
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
576 577
            is the hidden size.
        size(int): The dimension of the gru cell.
578
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
579 580
            hidden-hidden weight matrix. Note:

581
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
582
              :math:`D` is the hidden size.
583
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
584
              The first part are weights of the update gate and reset gate with
585
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
586
              candidate hidden state with shape :math:`(D \\times D)`.
587
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
588
            hidden-hidden bias.
589
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
590 591 592
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
593
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
594
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
595 596 597 598
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
599 600

    Returns:
G
guosheng 已提交
601
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
602
            and sequence length is the same with the input.
603

G
guosheng 已提交
604
    Examples:
605

G
guosheng 已提交
606 607
        .. code-block:: python

608 609 610 611
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
612
            hidden_dim = 512
613
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
614 615 616 617 618 619 620 621 622 623
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
624
    batch_size = input.shape[0]
G
guosheng 已提交
625 626 627
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
628 629 630
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
654 655 656
def gru_unit(input,
             hidden,
             size,
657 658
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
659
             activation='tanh',
660
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
661
    """
662
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
663

664 665
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
666

667
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
668

669
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
670

671
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
672 673

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
674 675 676
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
677 678
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

679 680
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
681 682 683
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
684 685 686 687 688

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
689 690
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
691 692 693 694
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
695

696 697 698 699 700 701
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
702

703
             # assuming we have x_t_data and prev_hidden of size=10
704
             x_t = fluid.layers.fc(input=x_t_data, size=30)
705 706
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
707 708 709 710 711 712 713 714 715 716 717 718

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
719
    size = size // 3
Y
Yu Yang 已提交
720 721

    # create weight
722 723
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
724

725 726 727 728
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
729
    # create bias
730
    if helper.bias_attr:
Y
Yu Yang 已提交
731 732 733
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
734
        inputs['Bias'] = bias
Y
Yu Yang 已提交
735 736 737

    helper.append_op(
        type='gru_unit',
738
        inputs=inputs,
Y
Yu Yang 已提交
739 740 741 742 743 744
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
745 746
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
747 748 749 750 751
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
752
@templatedoc()
753
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
754 755 756 757 758 759 760
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
761
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
762 763 764 765
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
766 767 768
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
769 770

    """
Y
Yu Yang 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
796
@templatedoc()
797
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
798 799 800 801 802
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
803

Y
yuyang18 已提交
804
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
805

Y
yuyang18 已提交
806 807 808
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
809
        Variable: ${viterbi_path_comment}
810

Y
yi.wu 已提交
811 812 813 814 815
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
816
    """
Y
Yu Yang 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
830
@templatedoc()
F
fengjiayi 已提交
831
def cos_sim(X, Y):
Y
Yu Yang 已提交
832
    """
Y
yi.wu 已提交
833 834 835
    ${comment}

    Args:
836 837
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
838

Y
yi.wu 已提交
839
    Returns:
840
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
841
    """
F
fengjiayi 已提交
842
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


856
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
857 858 859 860 861
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
862
    training. The dropout operator randomly sets (according to the given dropout
863 864 865 866
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
867 868
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
869 870 871 872 873 874 875
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
876 877

    Returns:
878
        Variable: A tensor variable is the shape with `x`.
879 880

    Examples:
881

882 883
        .. code-block:: python

884 885
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
886 887
    """

F
fengjiayi 已提交
888
    helper = LayerHelper('dropout', **locals())
889 890
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
891 892 893 894

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

895 896 897 898 899
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
900 901 902 903 904 905
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
906 907 908
    return out


909
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
910
    """
Y
Yibing Liu 已提交
911 912
    **Cross Entropy Layer**

913 914 915
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
916 917

    1) One-hot cross-entropy:
F
fengjiayi 已提交
918
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
919

Y
Yibing Liu 已提交
920
        .. math::
Y
yangyaming 已提交
921

Y
Yibing Liu 已提交
922 923 924
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
925 926
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
927 928 929 930 931

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
932
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
933 934 935
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
936 937
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
938
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
939

Y
Yibing Liu 已提交
940
    Args:
Y
yangyaming 已提交
941
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
942 943 944 945
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
946
        label (Variable|list): the ground truth which is a 2-D tensor. When
947 948 949 950
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
951
        soft_label (bool): a flag indicating whether to
952
                                           interpretate the given labels as soft
953 954 955 956
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
957 958 959 960 961

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
962 963 964 965 966
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
967 968 969 970 971 972

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
973
    """
F
fengjiayi 已提交
974
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
975 976 977 978 979 980
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
981 982
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
983 984 985
    return out


F
fengjiayi 已提交
986
def square_error_cost(input, label):
Y
Yu Yang 已提交
987
    """
988 989
    **Square error cost layer**

990 991
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1006 1007
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1008 1009

    Returns:
G
guosheng 已提交
1010
        Variable: The tensor variable storing the element-wise squared error \
1011
                  difference of input and label.
1012 1013 1014 1015 1016 1017 1018 1019

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1020
    """
F
fengjiayi 已提交
1021
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1031 1032
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1033 1034 1035
    return square_out


Y
yi.wu 已提交
1036
@templatedoc()
Y
Yu Yang 已提交
1037 1038 1039 1040
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1041
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1042
    """
Y
yi.wu 已提交
1043
    **Chunk Evaluator**
Y
yi.wu 已提交
1044

Y
yangyaming 已提交
1045
    This function computes and outputs the precision, recall and
1046
    F1-score of chunk detection.
Y
yi.wu 已提交
1047

Y
yi.wu 已提交
1048 1049 1050 1051 1052 1053 1054 1055
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1056

Y
yi.wu 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1082

Y
yi.wu 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1107
    Args:
1108 1109 1110 1111 1112
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1113

Y
yi.wu 已提交
1114
    Returns:
Y
update  
yi.wu 已提交
1115 1116 1117
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1118

Y
yi.wu 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1131
    """
F
fengjiayi 已提交
1132
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1133 1134 1135 1136 1137

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1138 1139 1140
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1141 1142 1143 1144 1145 1146 1147 1148

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1149 1150 1151 1152
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1153 1154 1155
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1156 1157
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1158
        })
1159 1160
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1161 1162


1163
@templatedoc()
Y
Yu Yang 已提交
1164 1165 1166 1167 1168 1169 1170
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1171
                  act=None):
Y
Yu Yang 已提交
1172 1173 1174 1175
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1186

1187 1188
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1207
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1208 1209 1210 1211 1212 1213
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1214
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1215 1216 1217
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1218
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1237
        library is installed. Default: False
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1261
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1262
    """
1263
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1264
    has the same shape as the input.
Q
qiaolongfei 已提交
1265

1266 1267 1268 1269 1270 1271
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1272
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1273 1274 1275 1276 1277 1278 1279

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1280
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1315 1316 1317
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1318 1319
           stride=1,
           padding=0,
1320
           dilation=1,
Y
Yu Yang 已提交
1321 1322 1323
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1324
           use_cudnn=True,
1325
           use_mkldnn=False,
1326 1327
           act=None,
           name=None):
Y
Yu Yang 已提交
1328
    """
C
chengduoZH 已提交
1329
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1330 1331
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1332
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1333 1334 1335 1336 1337 1338 1339
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1340 1341 1342
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1343

1344
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1345

C
chengduoZH 已提交
1346 1347
    .. math::

C
refine  
chengduoZH 已提交
1348
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1349

T
tensor-tang 已提交
1350
    Where:
C
chengduoZH 已提交
1351

1352 1353 1354 1355 1356
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1357
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1358 1359 1360

    Example:

1361 1362
        - Input:

W
weixing02 已提交
1363
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1364

W
weixing02 已提交
1365
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1366

1367
        - Output:
T
tensor-tang 已提交
1368

W
weixing02 已提交
1369
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1370

C
chengduoZH 已提交
1371
        Where
1372 1373

        .. math::
C
chengduoZH 已提交
1374

W
weixing02 已提交
1375 1376
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1377 1378

    Args:
1379
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1380
        num_filters(int): The number of filter. It is as same as the output
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1403 1404
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1405 1406 1407
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1408 1409

    Returns:
G
guosheng 已提交
1410
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1411 1412
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1413
    Raises:
1414 1415
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1416

C
chengduoZH 已提交
1417 1418 1419
    Examples:
        .. code-block:: python

1420 1421
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1422 1423 1424
    """

    num_channels = input.shape[1]
1425 1426

    l_type = 'conv2d'
X
xzl 已提交
1427 1428
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1429
        l_type = 'depthwise_conv2d'
1430 1431 1432 1433

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1434 1435 1436 1437 1438
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1439
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1440

C
chengduoZH 已提交
1441 1442 1443
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1444
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1445

C
chengduoZH 已提交
1446 1447
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1448 1449

    input_shape = input.shape
M
minqiyang 已提交
1450
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1465
        type=l_type,
Y
Yu Yang 已提交
1466 1467 1468 1469 1470
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1471 1472 1473
        attrs={
            'strides': stride,
            'paddings': padding,
1474
            'dilations': dilation,
C
chengduoZH 已提交
1475
            'groups': groups,
1476 1477
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1478
        })
Y
Yu Yang 已提交
1479 1480 1481 1482 1483 1484

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1503 1504 1505 1506 1507 1508
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1518 1519
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1520 1521 1522
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1523
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1549
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1550 1551
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1552
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1553 1554
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1555
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1556 1557
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1558
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1585 1586
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1601
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1642
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1643 1644 1645 1646

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1647
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1648
    """
Y
yangyaming 已提交
1649 1650 1651
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1663
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1664 1665 1666 1667 1668
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1669
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1670 1671 1672 1673 1674 1675 1676

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1677 1678
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1679

L
Luo Tao 已提交
1680 1681
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1682
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1683 1684 1685 1686 1687 1688 1689 1690
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1691

Y
yangyaming 已提交
1692
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1693 1694 1695 1696 1697
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1698 1699
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1700
    """
F
fengjiayi 已提交
1701
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1713 1714 1715 1716 1717
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1718 1719 1720
    return pool_out


C
add doc  
chengduoZH 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1746
def sequence_first_step(input):
L
Luo Tao 已提交
1747
    """
L
Luo Tao 已提交
1748
    This function gets the first step of sequence.
L
Luo Tao 已提交
1749 1750 1751 1752

    .. code-block:: text

       x is a 1-level LoDTensor:
1753
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1754 1755 1756 1757 1758
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1759
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1760
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1761

L
Luo Tao 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1771

Y
yangyaming 已提交
1772
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1773 1774 1775
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1776 1777 1778
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1779
def sequence_last_step(input):
L
Luo Tao 已提交
1780
    """
L
Luo Tao 已提交
1781
    This function gets the last step of sequence.
L
Luo Tao 已提交
1782 1783 1784 1785

    .. code-block:: text

       x is a 1-level LoDTensor:
1786
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1787 1788 1789 1790 1791
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1792
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1793
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1794

L
Luo Tao 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1804

Y
yangyaming 已提交
1805
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1806 1807 1808
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1809 1810 1811
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1812
@templatedoc()
Y
Yu Yang 已提交
1813
def pool2d(input,
C
chengduoZH 已提交
1814 1815
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1816 1817
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1818
           global_pooling=False,
C
chengduoZH 已提交
1819
           use_cudnn=True,
1820
           ceil_mode=False,
1821
           use_mkldnn=False,
C
caoying03 已提交
1822
           name=None):
Y
Yu Yang 已提交
1823
    """
F
fengjiayi 已提交
1824
    ${comment}
1825 1826

    Args:
1827 1828 1829
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1830
                          feature, and W is the width of the feature.
1831
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1832
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1833
        pool_type: ${pooling_type_comment}
1834 1835
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1836 1837 1838 1839
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1840
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1841 1842
                        layer will be named automatically.

1843
    Returns:
F
fengjiayi 已提交
1844
        Variable: The pooling result.
F
fengjiayi 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1858 1859 1860 1861
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1862
                            global_pooling=False)
Y
Yu Yang 已提交
1863 1864 1865 1866 1867
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1868

C
chengduoZH 已提交
1869 1870 1871 1872 1873
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1874 1875 1876 1877
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1878 1879
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1880

C
Add doc  
chengduoZH 已提交
1881
    l_type = 'pool2d'
1882 1883

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1884 1885 1886 1887
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1917
    pooling configurations mentioned in input parameters.
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1931

1932
    Returns:
1933
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1934 1935 1936 1937 1938
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1939

C
chengduoZH 已提交
1940 1941 1942 1943 1944
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1945 1946 1947
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1948

C
chengduoZH 已提交
1949 1950
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1951

1952 1953
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1954 1955 1956 1957
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1958
        type=l_type,
Y
Yu Yang 已提交
1959 1960 1961 1962 1963 1964 1965
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1966
            "paddings": pool_padding,
1967
            "use_cudnn": use_cudnn,
1968 1969
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1982
               data_layout='NCHW',
Y
Yang Yang 已提交
1983
               in_place=False,
1984
               use_mkldnn=False,
1985 1986
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1987
               moving_variance_name=None,
1988 1989
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
1990
    """
Q
qiaolongfei 已提交
1991 1992 1993 1994
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1995

Q
qiaolongfei 已提交
1996
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1997

Q
qiaolongfei 已提交
1998 1999
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2000 2001 2002
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2015 2016

    Args:
Q
qiaolongfei 已提交
2017
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2018 2019 2020 2021
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2022 2023 2024
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2025
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2026 2027 2028 2029 2030
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2031
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2032
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2033 2034

    Returns:
Q
qiaolongfei 已提交
2035
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2036 2037 2038 2039 2040 2041 2042

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2066
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2067

2068 2069
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2070 2071 2072
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2073
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2074
        shape=param_shape,
2075 2076 2077 2078 2079 2080 2081
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2082
            trainable=False,
W
wanghaoshuang 已提交
2083
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2084
        shape=param_shape,
2085 2086
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2087 2088 2089 2090 2091 2092

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2093 2094
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2095

2096
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2114 2115 2116 2117
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2118 2119
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2120
        })
Y
Yu Yang 已提交
2121 2122 2123 2124

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2125
@templatedoc()
G
guosheng 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2136
    ${comment}
G
guosheng 已提交
2137 2138 2139

    The formula is as follows:

Y
yuyang18 已提交
2140
    ..  math::
G
guosheng 已提交
2141 2142 2143 2144 2145 2146 2147

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2148 2149 2150 2151 2152 2153 2154 2155
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2156

G
guosheng 已提交
2157 2158
    Args:
        input(Variable): The input tensor variable.
2159
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2160
            normalization.
2161
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2162
            normalization.
2163
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2164
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2165
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2166 2167 2168 2169 2170 2171
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2172
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2173 2174

    Returns:
Y
yuyang18 已提交
2175
        ${y_comment}
G
guosheng 已提交
2176 2177 2178

    Examples:

Y
yuyang18 已提交
2179 2180 2181
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2197
    if shift:
G
guosheng 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2222 2223 2224 2225
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2226 2227 2228
                     padding=0,
                     stride=1,
                     dilation=1,
2229
                     groups=None,
C
caoying03 已提交
2230
                     param_attr=None,
2231
                     bias_attr=None,
C
chengduoZH 已提交
2232
                     use_cudnn=True,
2233
                     act=None,
C
caoying03 已提交
2234
                     name=None):
Y
Yu Yang 已提交
2235
    """
2236 2237 2238 2239 2240 2241 2242 2243
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2244 2245
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2246 2247 2248
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2249 2250 2251 2252 2253

    For each input :math:`X`, the equation is:

    .. math::

2254
        Out = \sigma (W \\ast X + b)
2255

2256
    Where:
2257 2258 2259

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2260 2261 2262 2263
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2264

2265 2266 2267 2268
    Example:

        - Input:

2269
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2270

2271
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2272 2273 2274

        - Output:

2275
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2276 2277

        Where
Y
Yu Yang 已提交
2278

2279 2280
        .. math::

2281 2282 2283 2284
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2285 2286

    Args:
2287 2288 2289 2290
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2291 2292 2293 2294
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2322 2323

    Returns:
2324
        Variable: The tensor variable storing the convolution transpose result.
2325 2326

    Raises:
2327 2328
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2329 2330 2331 2332

    Examples:
       .. code-block:: python

2333 2334
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2335
    """
2336 2337 2338 2339 2340 2341 2342 2343 2344

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2345 2346 2347
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2348 2349 2350
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2351

C
chengduoZH 已提交
2352 2353
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2354

Y
Yu Yang 已提交
2355 2356 2357 2358 2359
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2360

Y
Yu Yang 已提交
2361 2362
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2363

C
chengduoZH 已提交
2364
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2365
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2366
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2367
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2368
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2369 2370 2371
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2372 2373 2374 2375 2376 2377 2378
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2379
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2380
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2381 2382 2383
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2384
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2385
    helper.append_op(
2386
        type=op_type,
Y
Yu Yang 已提交
2387 2388
        inputs={'Input': [input],
                'Filter': [img_filter]},
2389
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2390
        attrs={
2391
            'output_size': output_size,
2392 2393 2394 2395 2396
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2397 2398
        })

2399 2400 2401
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2402 2403


2404
def conv3d_transpose(input,
Y
Yu Yang 已提交
2405 2406 2407
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2408 2409 2410
                     padding=0,
                     stride=1,
                     dilation=1,
2411
                     groups=None,
C
caoying03 已提交
2412
                     param_attr=None,
2413
                     bias_attr=None,
C
chengduoZH 已提交
2414
                     use_cudnn=True,
2415
                     act=None,
C
caoying03 已提交
2416
                     name=None):
Y
Yu Yang 已提交
2417
    """
2418
    **Convlution3D transpose layer**
2419

2420
    The convolution3D transpose layer calculates the output based on the input,
2421
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2422 2423 2424 2425 2426 2427
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2428 2429 2430
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2431 2432 2433 2434 2435

    For each input :math:`X`, the equation is:

    .. math::

2436
        Out = \sigma (W \\ast X + b)
2437 2438 2439

    In the above equation:

2440 2441
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2442 2443 2444 2445
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2446

2447 2448 2449 2450
    Example:

        - Input:

2451
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2452

2453
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2454 2455 2456

        - Output:

2457
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2458 2459

        Where
Y
Yu Yang 已提交
2460

2461 2462
        .. math::

2463 2464 2465
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2466 2467

    Args:
2468
        input(Variable): The input image with [N, C, D, H, W] format.
2469 2470 2471
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2472
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2473 2474
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2475
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2476 2477 2478
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2479 2480
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2481
        stride(int|tuple): The stride size. If stride is a tuple, it must
2482 2483
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2484
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2485 2486 2487
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2488 2489 2490 2491 2492
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2493 2494 2495
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2496 2497 2498 2499 2500
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2501 2502

    Returns:
2503
        Variable: The tensor variable storing the convolution transpose result.
2504 2505

    Raises:
2506 2507
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2508 2509 2510 2511

    Examples:
       .. code-block:: python

2512 2513
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2514
    """
2515 2516
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2517
    if not isinstance(input, Variable):
2518
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2519 2520
    input_channel = input.shape[1]

2521 2522 2523
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2524

C
chengduoZH 已提交
2525 2526 2527
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2528 2529 2530 2531 2532 2533
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2534 2535 2536
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2537

2538
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2539
                         padding[0] - 1) // dilation[0] + 1
2540
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2541
                         padding[1] - 1) // dilation[1] + 1
2542
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2543
                         padding[2] - 1) // dilation[2] + 1
2544
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2545
    else:
2546 2547
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2548

2549
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2550
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2551 2552 2553
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2554
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2555
    helper.append_op(
2556
        type=l_type,
Y
Yu Yang 已提交
2557 2558
        inputs={'Input': [input],
                'Filter': [img_filter]},
2559
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2560 2561 2562 2563
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2564
            'groups': groups,
C
chengduoZH 已提交
2565 2566
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2567

2568 2569
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2570
    return out
Y
yangyaming 已提交
2571 2572


Y
yangyaming 已提交
2573
def sequence_expand(x, y, ref_level=-1, name=None):
2574
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2575 2576 2577 2578
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2579 2580 2581 2582 2583

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2584
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2585
                x.data = [[a], [b], [c], [d]]
2586 2587 2588
                x.dims = [4, 1]

            y is a LoDTensor:
2589 2590
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2591

Y
yangyaming 已提交
2592
            ref_level: 0
2593

Y
yangyaming 已提交
2594
            then output is a 1-level LoDTensor:
2595
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2596
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2597 2598 2599 2600
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2601
                x.data = [[a], [b], [c]]
2602 2603 2604
                x.dims = [3, 1]

            y is a LoDTensor:
2605
                y.lod = [[2, 0, 3]]
2606

Y
yangyaming 已提交
2607
            ref_level: -1
2608

Y
yangyaming 已提交
2609 2610 2611
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2612 2613 2614
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2615 2616
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2617
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2618
                        will be named automatically.
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2629
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2630
    """
Y
yangyaming 已提交
2631
    helper = LayerHelper('sequence_expand', input=x, **locals())
2632 2633 2634
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2635 2636 2637 2638 2639
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2640
    return tmp
2641 2642


C
chengduo 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2726 2727
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2743 2744 2745 2746 2747
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2748 2749 2750 2751 2752 2753
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2754 2755
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2756
        attrs={'padded_length': maxlen})
2757
    return out, length
F
fengjiayi 已提交
2758 2759


2760 2761 2762 2763 2764 2765 2766 2767 2768
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2769 2770
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2771 2772 2773

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2774 2775

    This layer does the search in beams for one time step. Specifically, it
2776 2777 2778 2779 2780 2781
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2782

2783 2784 2785 2786 2787 2788 2789 2790
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2791

2792
    Args:
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2818

2819
    Returns:
2820 2821
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2822 2823 2824 2825

    Examples:
        .. code-block:: python

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2854
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2872 2873 2874 2875 2876 2877 2878
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2889

2890 2891 2892 2893 2894 2895
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2896

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2922 2923 2924 2925
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2926
              param_attr=None,
C
caoying03 已提交
2927 2928
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2929 2930 2931 2932
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2933
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2934

2935
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2936

2937
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2938

2939
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2940 2941 2942

            h_t & = o_t tanh(c_t)

2943 2944 2945 2946 2947 2948
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2949 2950 2951

        .. math::

2952
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2953 2954 2955 2956 2957 2958 2959 2960

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2961
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2962 2963

    Args:
Y
yangyaming 已提交
2964 2965 2966 2967 2968 2969
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2970
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2971 2972
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2973 2974
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2975 2976
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2977 2978

    Returns:
Y
yangyaming 已提交
2979
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2980 2981

    Raises:
2982 2983 2984 2985
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2986 2987 2988 2989 2990 2991

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2992
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2993
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2994
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3011
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3012 3013 3014 3015
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3016 3017
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3018 3019 3020
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3021
    size = cell_t_prev.shape[1]
3022
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3023 3024
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3025
                param_attr=param_attr,
3026
                bias_attr=bias_attr)
Y
yangyaming 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3039
    return h, c
G
guosheng 已提交
3040 3041


C
caoying03 已提交
3042
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3043
    """
Y
yangyaming 已提交
3044
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3045 3046 3047

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3048
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3049 3050
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3051 3052
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3053
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3054
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3055
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3056 3057
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3058 3059 3060

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3061

G
guosheng 已提交
3062 3063 3064 3065 3066 3067
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3068
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3069 3070 3071 3072
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3073 3074 3075 3076

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3077
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3078 3079 3080
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3081 3082 3083
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3084 3085
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3086 3087 3088 3089 3090
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3091
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3092 3093 3094 3095
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3096 3097


C
caoying03 已提交
3098
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3099
    """
Y
Yibing Liu 已提交
3100
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3101 3102 3103

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3104 3105 3106
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3107
            must be in the range :math:`[-rank(input), rank(input))`. If
3108
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3109
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3110 3111
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3112
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3113
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3114
                       will be named automatically.
G
guosheng 已提交
3115 3116

    Returns:
Y
Yibing Liu 已提交
3117
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3118

G
guosheng 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3129 3130
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3131 3132 3133 3134 3135 3136 3137

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3138 3139 3140
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3141 3142
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3143 3144 3145 3146 3147
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3148
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3149 3150 3151 3152
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3153 3154


C
caoying03 已提交
3155
def reduce_max(input, dim=None, keep_dim=False, name=None):
3156
    """
Y
yangyaming 已提交
3157
    Computes the maximum of tensor elements over the given dimension.
3158 3159 3160

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3161
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3162 3163 3164
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3165
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3166 3167
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3168
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3169 3170
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3171 3172 3173

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3186 3187 3188 3189 3190 3191 3192

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3193 3194 3195
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3196 3197
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3198 3199 3200 3201 3202
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3203
            'dim': dim if dim != None else [0],
3204 3205 3206 3207 3208 3209
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3210
def reduce_min(input, dim=None, keep_dim=False, name=None):
3211
    """
Y
yangyaming 已提交
3212
    Computes the minimum of tensor elements over the given dimension.
3213 3214 3215

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3216
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3217 3218 3219
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3220
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3221 3222
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3223
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3224 3225
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3226 3227 3228

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3229

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3241 3242 3243 3244 3245 3246 3247

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3248 3249 3250
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3251 3252
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3253 3254 3255 3256 3257
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3258
            'dim': dim if dim != None else [0],
3259 3260 3261 3262
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3263 3264


3265 3266 3267 3268 3269 3270
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3271
        dim (list|int|None): The dimensions along which the product is performed. If
3272 3273
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3274 3275
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3276 3277 3278
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3279
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3280
            layer will be named automatically.
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3295
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3296
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3297 3298 3299 3300 3301 3302 3303

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3304 3305 3306
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3307 3308
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3309 3310 3311 3312 3313
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3314
            'dim': dim if dim != None else [0],
3315 3316 3317 3318 3319 3320
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3321
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3322
    """
C
caoying03 已提交
3323
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3324 3325 3326

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3327 3328 3329 3330 3331
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3332
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3333
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3334
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3335 3336
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3337 3338

    Returns:
D
dzhwinter 已提交
3339
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3349 3350
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3389
    .. math::
3390 3391

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3392 3393 3394 3395 3396

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3397
        x(Variable|list): The input tensor to l2_normalize layer.
3398
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3399 3400
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3401
        epsilon(float): The epsilon value is used to avoid division by zero, \
3402
            the defalut value is 1e-10.
3403
        name(str|None): A name for this layer(optional). If set None, the layer \
3404
            will be named automatically.
C
caoying03 已提交
3405 3406

    Returns:
3407
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3408 3409

    Examples:
3410

C
caoying03 已提交
3411 3412
        .. code-block:: python

3413 3414 3415 3416
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3417 3418
    """

F
fengjiayi 已提交
3419 3420
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3421 3422
    helper = LayerHelper("l2_normalize", **locals())

3423 3424
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3425
    helper.append_op(
3426 3427 3428 3429
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3430
        attrs={
3431 3432
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3433 3434
        })
    return out
3435 3436


S
sneaxiy 已提交
3437
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3438
    """
Y
ying 已提交
3439 3440 3441 3442
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3443

C
chengduoZH 已提交
3444
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3445
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3446

3447 3448 3449 3450 3451
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3452
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3453

C
chengduoZH 已提交
3454
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3455
      performs in the following way.
G
guosheng 已提交
3456

3457
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3458
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3459
        last two dimensions and a batched matrix multiply supporting broadcast
3460
        applies on the two tensors.
G
guosheng 已提交
3461

Y
ying 已提交
3462 3463
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3464
    removed after matrix multiplication.
G
guosheng 已提交
3465 3466 3467

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3468 3469 3470
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3471
        alpha (float): The scale of output. Default 1.0.
3472
        name(str|None): A name for this layer(optional). If set None, the layer
3473
            will be named automatically.
G
guosheng 已提交
3474 3475

    Returns:
3476
        Variable: The product Tensor variable.
G
guosheng 已提交
3477

G
guosheng 已提交
3478 3479 3480
    Examples:
        .. code-block:: python

3481
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3482 3483
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3484

3485 3486
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3487

3488 3489
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3490

3491 3492
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3493 3494 3495 3496

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3497 3498
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3499

Y
ying 已提交
3500
            # x: [M], y: [N]
3501
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3502
    """
Y
ying 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3515
            y_shape = y_shape + [1]
Y
ying 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3532
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3533
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3534
    helper.append_op(
3535 3536 3537 3538
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3539 3540 3541
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3542
            'alpha': alpha,
S
sneaxiy 已提交
3543
        })
3544
    return out
3545 3546


3547
def topk(input, k, name=None):
Q
qingqing01 已提交
3548 3549 3550 3551
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3552
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3553 3554 3555 3556 3557 3558
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3580 3581 3582
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3583
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3584
                 of input.
3585
        name(str|None): A name for this layer(optional). If set None, the layer
3586
                       will be named automatically.
F
fengjiayi 已提交
3587
                       Default: None
Q
qingqing01 已提交
3588 3589

    Returns:
3590 3591 3592
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3593
        within the last dimension of input.
Q
qingqing01 已提交
3594

F
fengjiayi 已提交
3595 3596
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3617
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3618
    """
Y
ying 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3628

Y
ying 已提交
3629
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3630

3631
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3632 3633
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3634
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3635

3636
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3637 3638
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3639

3640 3641 3642
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3643
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3644
                          the length of reference string.
3645
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3646
                                     calculating edit distance.
3647
        name (str): The name of this layer. It is optional.
3648

W
wanghaoshuang 已提交
3649
    Returns:
W
wanghaoshuang 已提交
3650
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3651 3652 3653 3654 3655

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3656
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3657
            cost = fluid.layers.edit_distance(input=x,label=y)
3658
    """
3659
    helper = LayerHelper("edit_distance", **locals())
3660

3661
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3662
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3663 3664 3665 3666 3667 3668 3669
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3670
            attrs={"tokens": ignored_tokens})
3671 3672 3673 3674 3675
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3676
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3677
            attrs={"tokens": ignored_tokens})
3678 3679
        label = erased_label

3680 3681
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3682
    sequence_num = helper.create_tmp_variable(dtype="int64")
3683 3684 3685 3686
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3687 3688
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3689 3690
        attrs={"normalized": normalized})

3691
    return edit_distance_out, sequence_num
3692 3693 3694 3695 3696


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3697

Y
ying 已提交
3698 3699 3700 3701
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3719
        input.lod = [[4, 4]]
3720 3721 3722 3723 3724 3725 3726

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3727
        output.lod = [[2, 1]]
3728 3729 3730

    Args:

Y
ying 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3740
        name (str): The name of this layer. It is optional.
3741 3742

    Returns:
3743
        Variable: CTC greedy decode result. If all the sequences in result were
3744
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3745 3746 3747 3748 3749

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3750

3751
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3752
    """
3753
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3754
    _, topk_indices = topk(input, k=1)
3755 3756 3757 3758 3759 3760

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3761
        outputs={"Output": [ctc_out]},
3762 3763
        attrs={"merge_repeated": True,
               "blank": blank})
3764
    return ctc_out
3765 3766


F
fengjiayi 已提交
3767
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3768
    """
3769 3770
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3771
    to compute Connectionist Temporal Classification (CTC) loss.
3772 3773
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3774 3775 3776
    input tensor.

    Args:
3777
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3778 3779 3780 3781
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3782
       label (Variable): The ground truth of variable-length sequence,
3783 3784 3785
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3786 3787
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3788 3789 3790
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3791
         follewed by a mean_op.
W
wanghaoshuang 已提交
3792 3793

    Returns:
3794 3795
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3796 3797

    Examples:
3798

W
wanghaoshuang 已提交
3799
        .. code-block:: python
3800

3801 3802 3803
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3804 3805

    """
F
fengjiayi 已提交
3806
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3833 3834 3835
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3836 3837 3838 3839 3840
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3841

3842
            out.lod  = [[0, 1, 3]]
3843 3844 3845 3846

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3847 3848 3849 3850 3851 3852 3853
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3854 3855 3856

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3857 3858

    Returns:
3859

3860 3861 3862 3863 3864
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3865
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3866
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3867 3868 3869 3870 3871 3872 3873 3874 3875
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3876 3877


3878 3879 3880 3881
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3882 3883 3884 3885 3886 3887 3888
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3889 3890 3891 3892 3893 3894 3895
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3896 3897
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3898
            sample is 1.0.
3899 3900 3901
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3902

3903
    Returns:
Y
Yibing Liu 已提交
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3931
    """
Y
Yang Yu 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3976
    return cost / (num_neg_samples + 1)
3977 3978


G
guosheng 已提交
3979
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3980 3981
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3982
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3992

W
weixing02 已提交
3993
    Args:
M
minqiyang 已提交
3994
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3995 3996 3997 3998 3999
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4000 4001
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4002
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4003 4004
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4005 4006 4007 4008 4009 4010 4011 4012

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4013 4014 4015
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4016 4017 4018 4019 4020 4021 4022 4023
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4024
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4025 4026 4027 4028 4029
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4030 4031 4032 4033 4034 4035 4036 4037
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4038 4039
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4040
        inputs=inputs,
W
weixing02 已提交
4041 4042 4043 4044 4045 4046
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4047
def transpose(x, perm, name=None):
Y
ying 已提交
4048 4049 4050 4051 4052 4053 4054
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4055 4056 4057
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4058 4059 4060 4061 4062 4063 4064 4065

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4066
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4067 4068
    """

Y
fix ci.  
ying 已提交
4069
    if len(perm) != len(x.shape):
Y
ying 已提交
4070 4071 4072
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4073 4074 4075 4076 4077 4078
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4079 4080

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4081
    out = helper.create_tmp_variable(x.dtype)
4082
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4083
    helper.append_op(
4084
        type='transpose2',
Y
fix ci.  
ying 已提交
4085
        inputs={'X': [x]},
4086 4087
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4088 4089
        attrs={'axis': perm})
    return out
4090 4091


4092 4093 4094 4095 4096 4097 4098
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4099
    """
4100 4101 4102 4103 4104 4105 4106
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4135 4136 4137 4138 4139 4140 4141 4142 4143
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4144 4145 4146
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4147 4148 4149 4150 4151
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4179 4180 4181
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4194
            output.dims = {8, 8}
4195

4196
            output.lod = [[4, 4]]
4197

D
dzhwinter 已提交
4198
     Examples:
4199 4200 4201

        .. code-block:: python

4202 4203
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4204 4205

    """
W
wanghaoshuang 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4216 4217 4218 4219 4220 4221 4222
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4223
    helper = LayerHelper('im2sequence', **locals())
4224 4225
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4226
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4227
    return out
4228 4229


Y
yuyang18 已提交
4230
@templatedoc()
4231
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4232 4233
    """
    ${comment}
4234 4235

    Args:
Y
yuyang18 已提交
4236
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4237 4238
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4239 4240 4241 4242 4243
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4244
        ${out_comment}.
4245 4246

    Examples:
Y
yuyang18 已提交
4247 4248 4249 4250
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4263
    return helper.append_activation(out)
4264 4265


Y
yuyang18 已提交
4266
@templatedoc()
4267 4268
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4269 4270 4271 4272 4273 4274 4275
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4276 4277

    Args:
Y
yuyang18 已提交
4278 4279
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4280 4281

    Returns:
Y
yuyang18 已提交
4282
        ${out_comment}.
4283 4284
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4285 4286 4287 4288 4289 4290

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4291 4292 4293 4294 4295 4296
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4297 4298


4299 4300 4301 4302
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4303 4304
    """
    **Softmax With Cross Entropy Operator.**
4305

4306 4307 4308 4309
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4310

4311 4312 4313
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4314

4315 4316 4317
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4318

4319
    The equation is as follows:
4320

4321
    1) Hard label (one-hot label, so every sample has exactly one class)
4322

4323 4324 4325 4326
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4327

4328 4329 4330
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4331

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4344 4345 4346 4347
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4348 4349 4350 4351 4352 4353 4354 4355 4356
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4357 4358
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4369 4370
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4371 4372 4373 4374 4375
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4376 4377
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4378
    For each instance, it computes the smooth L1 loss element by element first
4379
    and then sums all the losses. So the shape of ouput Variable is
4380
    [batch_size, 1].
4381

4382 4383
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4384
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4385
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4386
            L1 loss op with same shape as :attr:`x`.
4387
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4388 4389
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4390
            by this tensor element by element.
4391
        outside_weight (Variable|None): A tensor with rank at least 2. This
4392 4393
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4394
            element by element.
4395
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4396 4397
           scalar with default value 1.0.

4398
    Returns:
4399
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4400 4401 4402 4403 4404

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4405 4406
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4407
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4408
            out = fluid.layers.smooth_l1(x=fc, y=label)
4409
    """
4410

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4426 4427 4428 4429


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4430
    This layer creates the one-hot representations for input indices.
4431 4432

    Args:
Y
Yibing Liu 已提交
4433 4434
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4435 4436

    Returns:
Y
Yibing Liu 已提交
4437
        Variable: The one-hot representations of input.
4438 4439

    Examples:
C
caoying03 已提交
4440
        .. code-block:: python
4441

Y
Yibing Liu 已提交
4442 4443
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4444 4445 4446 4447 4448 4449 4450 4451 4452
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4453 4454


Y
Yu Yang 已提交
4455
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4456
    """
Y
yi.wu 已提交
4457 4458 4459
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4460 4461 4462 4463 4464 4465

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4466 4467
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4468 4469 4470 4471 4472 4473

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4474 4475
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4476 4477
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4478 4479 4480 4481 4482
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4483
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4484
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4485 4486
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4487 4488
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4489 4490 4491
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4492 4493


4494
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4495
    """
C
caoying03 已提交
4496 4497
    Gives a new shape to the input Tensor without changing its data.

4498 4499 4500 4501 4502
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4503

4504
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4505

4506 4507 4508 4509
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4510
    2. 0 means the actual dimension value is going to be copied from the
4511 4512 4513 4514
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4515 4516

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4517
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4518
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4519

4520
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4521 4522
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4523 4524
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4525
    dimensions.
C
caoying03 已提交
4526

4527
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4528 4529 4530 4531
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4532 4533

    Args:
4534
        x(variable): The input tensor.
C
caoying03 已提交
4535 4536
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4537 4538 4539 4540 4541
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4542
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4543 4544 4545 4546
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4547
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4548

4549 4550
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4551

X
Xin Pan 已提交
4552 4553 4554
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4555 4556
    Examples:
        .. code-block:: python
G
guosheng 已提交
4557

4558
            data = fluid.layers.data(
4559
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4560
            reshaped = fluid.layers.reshape(
4561
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4562 4563 4564
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4565
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4566 4567 4568 4569 4570
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4571

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4587
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4588
    out = helper.create_tmp_variable(dtype=x.dtype)
4589
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4590
    helper.append_op(
4591
        type="reshape2",
X
Xin Pan 已提交
4592
        inputs=inputs,
D
dzhwinter 已提交
4593
        attrs={"shape": shape},
4594 4595
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4596

D
dzhwinter 已提交
4597
    return helper.append_activation(out)
4598

4599

4600
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4624
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4625
        axes (list): List of integers, indicating the dimensions to be squeezed.
4626
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4627 4628 4629 4630 4631 4632 4633 4634

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4635
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4636 4637
    """
    helper = LayerHelper("squeeze", **locals())
4638
    out = helper.create_tmp_variable(dtype=input.dtype)
4639
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4640
    helper.append_op(
4641
        type="squeeze2",
4642
        inputs={"X": input},
Y
Yibing Liu 已提交
4643
        attrs={"axes": axes},
4644 4645
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4646

4647 4648 4649
    return out


4650
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4661
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4662
        axes (list): List of integers, indicating the dimensions to be inserted.
4663
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4664 4665 4666 4667 4668 4669 4670 4671

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4672
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4673 4674
    """
    helper = LayerHelper("unsqueeze", **locals())
4675
    out = helper.create_tmp_variable(dtype=input.dtype)
4676
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4677
    helper.append_op(
4678
        type="unsqueeze2",
4679
        inputs={"X": input},
Y
Yibing Liu 已提交
4680
        attrs={"axes": axes},
4681 4682
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4683

4684 4685
    return out

4686

Y
yangyaming 已提交
4687
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4688
    """
Y
Yibing Liu 已提交
4689
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4690 4691 4692 4693
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4694
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4695 4696 4697 4698 4699 4700

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4701
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4702 4703 4704
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4705
            target_lod: [4, 2]
Y
yangyaming 已提交
4706 4707

            then we get a 1-level LoDTensor:
4708
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4709 4710 4711 4712 4713 4714
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4715
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4716 4717 4718 4719
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4720
                y.data = [[2, 4]]
Y
yangyaming 已提交
4721 4722 4723
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4724
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4725 4726 4727 4728 4729 4730
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4731
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4732 4733 4734 4735
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4736
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4737 4738 4739 4740
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4741
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4742 4743 4744 4745 4746
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4747
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4748
                           from :attr:`y`.
Y
yangyaming 已提交
4749
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4750
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4751 4752

    Returns:
Y
Yibing Liu 已提交
4753
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4754 4755

    Raises:
Y
Yibing Liu 已提交
4756
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4792
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4821 4822
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4850 4851 4852 4853


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4854
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4855
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4856

G
guosheng 已提交
4857 4858 4859 4860
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4883
                         The length of :attr:paddings must be
G
guosheng 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4894

G
guosheng 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4909 4910


C
chengduo 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4991 4992 4993 4994 4995 4996 4997
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4998 4999
    called label-smoothing regularization (LSR).

5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5023
                              be :math:`(1, class\_num)`.
5024 5025
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5026
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5054 5055


Y
yi.wu 已提交
5056
@templatedoc()
5057 5058
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5059
    ${comment}
5060 5061

    Args:
Y
yi.wu 已提交
5062 5063
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5064 5065 5066
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5067 5068

    Returns:
Y
update  
yi.wu 已提交
5069
        Variable: ${out_comment}.
5070 5071

    Examples:
5072 5073
        .. code-block:: python

5074
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5120 5121
        .. code-block:: python

W
whs 已提交
5122 5123 5124 5125
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5126
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5127 5128 5129 5130 5131 5132
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5133 5134


5135 5136 5137 5138 5139
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5140
    """
Q
qiaolongfei 已提交
5141
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5142

5143
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5144 5145 5146
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5147

5148
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5149

5150
    Args:
5151
        input (Variable): The input tensor of image resize layer,
5152 5153
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5154
        out_shape(list|tuple|Variable|None): Output shape of image resize
5155 5156
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5157
        scale(float|None): The multiplier for the input height or width.
5158 5159 5160
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5161 5162
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5163 5164
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5165 5166

    Returns:
Q
update  
qiaolongfei 已提交
5167 5168
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5169

5170 5171 5172
    Examples:
        .. code-block:: python

5173
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5174
    """
5175 5176 5177 5178
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5179 5180
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5181 5182
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5183 5184 5185 5186

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5187 5188 5189
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5190
    if out_shape is not None:
B
baiyf 已提交
5191 5192 5193
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5194 5195 5196 5197 5198 5199
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5200 5201 5202 5203
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5204 5205
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5206
        type=resample_methods[resample],
5207
        inputs=inputs,
5208 5209 5210 5211
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5212 5213


Y
yuyang18 已提交
5214
@templatedoc(op_type="bilinear_interp")
5215 5216
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5217 5218 5219 5220 5221 5222
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5223

Y
yuyang18 已提交
5224 5225 5226 5227 5228 5229 5230 5231
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5232 5233 5234 5235 5236 5237 5238
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5239 5240 5241
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5242 5243 5244 5245 5246 5247 5248
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5249
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5250

5251
    Returns:
Q
update  
qiaolongfei 已提交
5252
        Variable: The output is a 4-D tensor of the shape
5253
        (num_batches, channls, out_h, out_w).
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5264 5265 5266
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5267 5268 5269
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5270 5271
def gather(input, index):
    """
Q
qiaolongfei 已提交
5272 5273
    **Gather Layer**

5274
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5275 5276 5277 5278
    of X indexed by `index` and concatenate them together.

    .. math::

5279
        Out = X[Index]
W
whs 已提交
5280 5281 5282 5283 5284 5285 5286


    .. code-block:: text


                Given:

5287 5288
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5299
        input (Variable): The source input with rank>=1.
W
whs 已提交
5300 5301 5302 5303 5304 5305
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5306

W
whs 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5436

5437 5438 5439
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5440
    """
F
stash  
fengjiayi 已提交
5441
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5442
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5443
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5444
    if seed is None:
5445
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5446
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5447
    if isinstance(seed, int):
F
fengjiayi 已提交
5448 5449 5450 5451 5452
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5453 5454 5455 5456
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5457
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5458 5459
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5460 5461
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5462
    return out
W
whs 已提交
5463 5464


5465
def log(x, name=None):
W
wanghaoshuang 已提交
5466 5467 5468 5469 5470
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5471
        Out = \\ln(x)
W
wanghaoshuang 已提交
5472 5473

    Args:
5474
        x (Variable): Input tensor.
5475 5476
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5477 5478 5479 5480 5481 5482 5483 5484

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5485
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5486 5487
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5488
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5489
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5490
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5491 5492 5493
    return out


5494
def relu(x, name=None):
W
wanghaoshuang 已提交
5495 5496
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5497
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5498 5499 5500 5501
    the tensor elementwise.

    .. math::

5502
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5503 5504

    Args:
5505
        x (Variable): The input tensor.
5506 5507
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5508 5509 5510 5511 5512 5513 5514 5515

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5516
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5517 5518
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5519
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5520
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5521
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5522
    return out
5523 5524


W
whs 已提交
5525 5526 5527
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5528 5529 5530 5531
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5532
    .. math::
5533 5534

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5535

5536
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5537 5538 5539 5540 5541
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5542
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5543
                           Its shape should be the same as input.
5544
        num_classes (int): The possible number of labels.
W
whs 已提交
5545 5546 5547 5548

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5549
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5550 5551 5552 5553

    Examples:

        .. code-block:: python
5554

W
whs 已提交
5555 5556 5557 5558 5559 5560 5561 5562 5563
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5564 5565
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5566
        outputs={
W
whs 已提交
5567 5568 5569
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5570 5571 5572
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5647
                    isinstance(shape, Variable)):
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5681

5682 5683
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5684

5685 5686 5687 5688
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5689

5690 5691 5692 5693 5694
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5695 5696 5697

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5742 5743


W
whs 已提交
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5988 5989
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6040

6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6051 6052
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6068
        ValueError: If axis is not in range [0, rank(x)].
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6086
    x_shape = helper.create_tmp_variable(x.dtype)
6087
    helper.append_op(
6088
        type='flatten2',
6089
        inputs={"X": x},
6090 6091
        outputs={'Out': out,
                 'XShape': x_shape},
6092 6093
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6094 6095


C
chenweihang 已提交
6096
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6097
    """
C
chenweihang 已提交
6098
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
6099 6100 6101
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
6102 6103 6104 6105 6106
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6107
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6108 6109 6110 6111 6112 6113
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6114
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6115 6116 6117
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6118 6119 6120
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6132
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6133 6134 6135 6136 6137 6138
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6139

6140

S
sneaxiy 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6150

S
sneaxiy 已提交
6151
    .. math::
6152

S
sneaxiy 已提交
6153 6154 6155
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6156
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6157 6158 6159 6160
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6161 6162 6163
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6164 6165
    Returns:
        Variable: The output sequence mask.
6166

S
sneaxiy 已提交
6167 6168
    """

Q
qingqing01 已提交
6169
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6170 6171 6172 6173 6174
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6175 6176 6177
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6178 6179
        outputs={'Y': out},
        attrs={
6180
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6181 6182 6183
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6184 6185


X
Xin Pan 已提交
6186
def stack(x, axis=0):
S
sneaxiy 已提交
6187 6188 6189 6190
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6191 6192 6193 6194 6195 6196 6197

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6198
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6199
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6200 6201

    Args:
6202
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6203
        axis (int|None): The axis along which all inputs are stacked.
6204

S
sneaxiy 已提交
6205 6206
    Returns:
        Variable: The stacked variable.
6207

S
sneaxiy 已提交
6208 6209
    """

X
Xin Pan 已提交
6210 6211 6212 6213 6214 6215 6216 6217
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6218 6219
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6220

X
Xin Pan 已提交
6221
    return out
D
dzhwinter 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341


from paddle.fluid.framework import convert_np_dtype_to_dtype_


def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
    UniformRandomBatchSizeLike operator.
    This operator initializes a tensor with the same batch_size as the Input tensor with random values sampled from a uniform distribution.


    Args:
        input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size.
        shape (tuple|list): the shape of the output.
        input_dim_idx (Int): The index of input's batch size dimension.
        output_dim_idx (Int): The index of output's batch size dimension.
        min (Float): Minimum value of uniform random.
        max (Float): Maximum value of uniform random.
        seed (Int): Random seed used for generating samples. 0 means use a seed generated by the system.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
fix  
gongweibao 已提交
6342
        out (Variable): Output of this operator.
G
fix  
gongweibao 已提交
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408


def gaussian_random(shape,
                    mean=0.0,
                    std=1.0,
                    seed=0,
                    dtype='float32',
                    use_mkldnn=False):
    """
    GaussianRandom Operator.

    Used to initialize tensors with gaussian random generator.

    Args:
        shape (tuple|list): The dimension of random tensor.
        mean (Float): Mean of random tensor.
        std (Float): Std of random tensor.
        seed (Int): Random seed of generator.0 means use system wide seed.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.
        use_mkldnn (Bool): Only used in mkldnn kernel.

    Returns:
        out (Variable): Output of this operator.

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
            'use_mkldnn': use_mkldnn
        })

    return out


G
fix  
gongweibao 已提交
6409
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
    """
    SamplingId Operator.

    A layer for sampling id from multinomial distribution from the input.
    Sampling one id for one sample.

    Args:
        x (Variable): The input tensor of softmax. 2-D with shape [batch_size, input_feature_dimensions].
        min (Float): Minimum value of random.
        max (Float): Maximun value of random.
        seed (Float): random seed used for the random number engine.0 means use a seed generated by the system.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
G
fix  
gongweibao 已提交
6422
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6423 6424 6425 6426 6427 6428 6429

    Returns:
        out (Variable): Output of this operator.

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6430
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
    Used to initialize tensors with gaussian random generator. The defalut mean of the distribution is 0. and defalut standard deviation (std) of the distribution is 1.. Uers can set mean and std by input arguments.

    Args:
        input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size.
        shape (tuple|list): the shape of the output.
        input_dim_idx (Int): The index of input's batch size dimension
        output_dim_idx (Int): The index of output's batch size dimension
        mean (Float): The mean (or center) of the gaussian distribution.
        std (Float): The standard deviation (std, or spread) of the gaussian distribution.
        seed (Int): Random seed of generator.0 means use system wide seed._note that if seed is not 0, this operator will always generate the same random numbers every time.
G
fix  
gongweibao 已提交
6461
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503

    Returns:
        out (Variable): Output of this operator
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


def sum(x, use_mkldnn=False):
    """
    Sum operator.
    This operators sums the input tensors. All the inputs can carry
    the LoD (Level of Details) information. However, the output only
    shares the LoD information with the first input.

    Args:
        x (Variable): The input tensors of sum operator.
        use_mkldnn (Bool): Only used in mkldnn kernel

    Returns:
        out (Variable): Output of this operator

    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6504
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'use_mkldnn': use_mkldnn})

    return out


def slice(input, axes, starts, ends):
    """
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1].
    Following examples will explain how slice works:

    .. code-block:: text

        Cast1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Cast2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]

    Args:
        input (Variable): Tensor of data to extract slices from.
        axes (List): Axes that `starts` and `ends` apply to. It's optional._if not present, will be treated as [0, 1, ..., len(`starts`) - 1].
        starts (List): Starting indices of corresponding axis in `axes`.
        ends (List): Starting indices of corresponding axis in `axes`.

    Returns:
        out (Variable): The output of this operator.

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6561
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
    Shape Operator
    Get the shape of input tensor. Only support CPU input Tensor now.

    Args:
        input (Variable): The input tensor.

    Returns:
        out (Variable): The output of this operator.

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6587
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6588
    helper.append_op(
G
fix  
gongweibao 已提交
6589
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6590 6591

    return out