nn.py 159.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
W
whs 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'batch_norm',
    'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'lstm_unit',
    'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
    'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
    'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
    'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'lod_reset', 'lrn', 'pad',
    'label_smooth', 'roi_pool', 'dice_loss', 'image_resize',
    'image_resize_short', 'resize_bilinear', 'gather', 'random_crop', 'mean_iou'
Y
Yu Yang 已提交
42 43 44 45 46 47 48 49
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
50
       use_mkldnn=False,
Y
Yu Yang 已提交
51
       act=None,
J
Jacek Czaja 已提交
52
       is_test=False,
53
       name=None):
Y
Yu Yang 已提交
54
    """
55
    **Fully Connected Layer**
Y
Yu Yang 已提交
56

C
caoying03 已提交
57
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
58 59 60 61 62 63
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
64
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
65

C
caoying03 已提交
66
    This process can be formulated as follows:
67 68 69

    .. math::

70
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
71 72 73

    In the above equation:

C
caoying03 已提交
74 75 76 77
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
78
    * :math:`Act`: The activation function.
C
caoying03 已提交
79
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
80 81

    Args:
R
ranqiu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
99
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
100 101
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
102
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
103

104
    Returns:
R
ranqiu 已提交
105
        A tensor variable storing the transformation result.
106 107

    Raises:
C
caoying03 已提交
108
        ValueError: If rank of the input tensor is less than 2.
109 110 111 112

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
113 114
          data = fluid.layers.data(
              name="data", shape=[32, 32], dtype="float32")
115
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
116
    """
C
caoying03 已提交
117

C
caoying03 已提交
118
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
119 120 121 122

    dtype = helper.input_dtype()

    mul_results = []
123 124
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
125 126 127
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
128

Y
Yu Yang 已提交
129
        w = helper.create_parameter(
130 131
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
132
        helper.append_op(
133 134 135
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
136
            outputs={"Out": tmp},
M
mozga-intel 已提交
137 138
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
139 140 141 142
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
143
    else:
144 145 146 147 148 149 150
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
151 152


153 154 155
def embedding(input,
              size,
              is_sparse=False,
156
              is_distributed=False,
157 158 159
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
160
    """
161 162
    **Embedding Layer**

163
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
164 165
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
166 167 168

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
169 170

    Args:
171 172 173 174 175
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
176
        is_distributed (bool): Whether to run lookup table from remote parameter server.
177 178
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
179 180
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
181 182
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
183
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
184

185 186 187
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
188

189 190
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
191

C
chengduoZH 已提交
192
          dict_size = len(dataset.ids)
193
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
194
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
195 196 197 198 199 200
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
201 202
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
203 204 205 206 207
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
208 209 210 211 212
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
213 214 215 216 217
    return tmp


def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
218 219
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
220 221 222 223 224 225 226
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
227 228
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
229 230 231 232 233 234
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
235
    .. math::
Y
Yibing Liu 已提交
236

237
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
238

239
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
240

241
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
242

243 244 245
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
246

Y
Yibing Liu 已提交
247
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
248

249
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
250
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
251 252 253
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
254
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
255 256
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
257 258
    all of which have the same size as the cell output activation vector :math:`h`.

259 260 261 262
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
263 264 265
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
266 267 268
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
269 270 271
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
272 273

    Args:
274 275 276 277
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
278 279
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
Y
Yancey 已提交
280 281 282 283 284 285 286
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

287
        param_attr(ParamAttr|None): The parameter attribute for the learnable
288
                               hidden-hidden weights.
Y
Yibing Liu 已提交
289 290 291

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
292 293 294
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
295 296 297
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
298

299
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
300
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
301
                                - The shape is (1 x 4D).
302
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
303 304
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
305
                                - The shape is (1 x 7D).
306
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
307 308
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
309 310
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
311
                              "identity"], default "sigmoid".
312
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
313 314
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
315 316
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
317 318
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
319 320
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
321 322

    Returns:
Y
Yibing Liu 已提交
323 324
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
325

Y
Yibing Liu 已提交
326
    Examples:
Y
Yibing Liu 已提交
327 328
        .. code-block:: python

Y
Yibing Liu 已提交
329 330
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
331
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
332 333
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
334
    """
335

Y
Yu Yang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
350 351 352 353 354 355 356 357 358 359
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
360 361 362

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
363
        inputs=inputs,
Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
380 381 382 383 384 385 386 387 388 389 390
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
391 392
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
393 394 395
    """
    **Dynamic LSTMP Layer**

396 397 398 399 400 401
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
402 403 404 405 406

    The formula is as follows:

    .. math::

407
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
408

409
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
410

411
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
412

413
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
414

415
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
416

417
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
418

419
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
420

Y
Yibing Liu 已提交
421 422 423 424 425 426
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
427
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
428
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
429
          bias vector).
Y
Yibing Liu 已提交
430 431 432
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
433
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
434
    * :math:`h`: The hidden state.
435
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
436 437
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
438
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
439
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
440
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
441 442
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
443 444 445 446

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
447

Y
Yibing Liu 已提交
448 449 450 451 452 453 454 455 456 457 458 459
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
460
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
461 462
                               hidden-hidden weight and projection weight.

463 464
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
465 466
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
467 468
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
469 470
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
471 472 473 474 475 476
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
477
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
478 479 480
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
481
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
482 483 484 485 486 487 488 489 490
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
491 492
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
493 494
                              default "tanh".
        proj_activation(str): The activation for projection output.
F
stash  
fengjiayi 已提交
495 496
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
497 498
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
499 500
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
501 502

    Returns:
503 504
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
505 506 507 508 509
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
510
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
511 512
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
513 514 515
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
516 517 518 519
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
520
    """
521

Y
Yibing Liu 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
568 569 570 571 572 573 574 575 576 577 578
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

579
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
580
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
581

G
guosheng 已提交
582 583 584 585 586 587 588 589 590
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
591

G
guosheng 已提交
592
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
593

G
guosheng 已提交
594
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
595 596
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
597 598 599 600
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
601
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
602 603

    Args:
604 605
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
606
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
607
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
608 609
            is the hidden size.
        size(int): The dimension of the gru cell.
610
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
611 612
            hidden-hidden weight matrix. Note:

613
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
614
              :math:`D` is the hidden size.
615
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
616
              The first part are weights of the update gate and reset gate with
617
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
618
              candidate hidden state with shape :math:`(D \\times D)`.
619
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
620
            hidden-hidden bias.
621
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
622 623 624
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
625
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
626
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
627
        h_0 (Variable): The hidden output of the first time step.
G
guosheng 已提交
628 629

    Returns:
G
guosheng 已提交
630 631
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
632

G
guosheng 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
648
    batch_size = input.shape[0]
G
guosheng 已提交
649 650 651
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
652 653 654
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
678 679 680
def gru_unit(input,
             hidden,
             size,
681 682
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
683
             activation='tanh',
684
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
685
    """
686
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
687

688 689
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
690

691
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
692

693
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
694

695
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
696 697

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
698 699 700
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
701 702
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

703 704
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
705 706 707
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
708 709 710 711 712

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
713 714
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
715 716 717 718
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
719

720 721 722 723 724 725
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
726

727
             # assuming we have x_t_data and prev_hidden of size=10
728
             x_t = fluid.layers.fc(input=x_t_data, size=30)
729 730
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
746 747
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
748

749 750 751 752
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
753
    # create bias
754
    if helper.bias_attr:
Y
Yu Yang 已提交
755 756 757
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
758
        inputs['Bias'] = bias
Y
Yu Yang 已提交
759 760 761

    helper.append_op(
        type='gru_unit',
762
        inputs=inputs,
Y
Yu Yang 已提交
763 764 765 766 767 768
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
769 770
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
771 772 773 774 775
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
776
@templatedoc()
777
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
817
@templatedoc()
818
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
819 820 821 822 823 824 825 826 827 828 829
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        param_attr(ParamAttr): The parameter attribute for training.
        label(${label_type}): ${label_comment}

    Returns:
        ${viterbi_path_comment}
    """
Y
Yu Yang 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
843
def cos_sim(X, Y):
Y
Yu Yang 已提交
844 845 846
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
847 848 849 850 851 852 853

    Args:
        X (Variable): The input X.
        Y (Variable): The input Y.
    
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
854
    """
F
fengjiayi 已提交
855
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


869
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
870 871 872 873 874 875 876 877 878 879
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
880 881 882 883 884 885 886 887 888
        x (Variable): The input tensor.
         dropout_prob (float): Probability of setting units to zero.
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
889 890 891 892 893 894 895 896 897 898 899

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
900
    helper = LayerHelper('dropout', **locals())
901 902 903 904 905 906 907
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
908 909 910 911 912 913
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
914 915 916
    return out


F
fengjiayi 已提交
917
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
918
    """
Y
Yibing Liu 已提交
919 920
    **Cross Entropy Layer**

921 922 923
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
924 925

    1) One-hot cross-entropy:
F
fengjiayi 已提交
926
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
927

Y
Yibing Liu 已提交
928
        .. math::
Y
yangyaming 已提交
929

Y
Yibing Liu 已提交
930 931 932
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
933 934
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
935 936 937 938 939

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
940
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
941 942 943
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
944 945
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
946
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
947

Y
Yibing Liu 已提交
948
    Args:
Y
yangyaming 已提交
949
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
950 951 952 953
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
954
        label (Variable|list): the ground truth which is a 2-D tensor. When
955 956 957 958
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
959
        soft_label (bool): a flag indicating whether to
960 961
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
962 963 964 965 966

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
967 968 969 970 971
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
972 973 974 975 976 977

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
978
    """
F
fengjiayi 已提交
979
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
980 981 982 983 984 985
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
986
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
987 988 989
    return out


F
fengjiayi 已提交
990
def square_error_cost(input, label):
Y
Yu Yang 已提交
991
    """
992 993
    **Square error cost layer**

994 995
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
996

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1010 1011
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1012 1013

    Returns:
G
guosheng 已提交
1014
        Variable: The tensor variable storing the element-wise squared error \
1015
                  difference of input and label.
1016 1017 1018 1019 1020 1021 1022 1023

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1024
    """
F
fengjiayi 已提交
1025
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1035 1036
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1037 1038 1039
    return square_out


1040
@templatedoc()
Y
Yu Yang 已提交
1041 1042 1043 1044
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1045
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1046
    """
Y
yangyaming 已提交
1047
    This function computes and outputs the precision, recall and
1048
    F1-score of chunk detection.
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
    
    Returns:
        tuple: tuple containing: (precision, recall, f1_score,
               num_infer_chunks, num_label_chunks,
               num_correct_chunks)
Y
Yu Yang 已提交
1061
    """
F
fengjiayi 已提交
1062
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1063 1064 1065 1066 1067

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1068 1069 1070
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1071 1072 1073 1074 1075 1076 1077 1078

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1079 1080 1081 1082
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1083 1084 1085
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1086 1087
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1088
        })
1089 1090
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1091 1092


1093
@templatedoc()
Y
Yu Yang 已提交
1094 1095 1096 1097 1098 1099 1100
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1101
                  act=None):
Y
Yu Yang 已提交
1102 1103 1104 1105
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
    
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1160
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1172 1173 1174
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1175 1176
           stride=1,
           padding=0,
1177
           dilation=1,
Y
Yu Yang 已提交
1178 1179 1180
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1181
           use_cudnn=True,
1182
           use_mkldnn=False,
1183 1184
           act=None,
           name=None):
Y
Yu Yang 已提交
1185
    """
C
chengduoZH 已提交
1186
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1187 1188
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1189
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1190 1191 1192 1193 1194 1195 1196
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1197 1198 1199
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1200

1201
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1202

C
chengduoZH 已提交
1203 1204
    .. math::

C
refine  
chengduoZH 已提交
1205
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1206

T
tensor-tang 已提交
1207
    Where:
C
chengduoZH 已提交
1208

1209 1210 1211 1212 1213
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1214
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1215 1216 1217

    Example:

1218 1219
        - Input:

W
weixing02 已提交
1220
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1221

W
weixing02 已提交
1222
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1223

1224
        - Output:
T
tensor-tang 已提交
1225

W
weixing02 已提交
1226
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1227

C
chengduoZH 已提交
1228
        Where
1229 1230

        .. math::
C
chengduoZH 已提交
1231

W
weixing02 已提交
1232 1233
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1234 1235

    Args:
1236
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1237
        num_filters(int): The number of filter. It is as same as the output
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1260 1261
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1262 1263 1264
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1265 1266

    Returns:
G
guosheng 已提交
1267
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1268 1269
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1270
    Raises:
1271 1272
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1273

C
chengduoZH 已提交
1274 1275 1276
    Examples:
        .. code-block:: python

1277 1278 1279 1280
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1281 1282 1283 1284 1285
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1286 1287

    l_type = 'conv2d'
X
xzl 已提交
1288 1289
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1290
        l_type = 'depthwise_conv2d'
1291 1292 1293 1294

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1295 1296 1297 1298 1299 1300 1301
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1302 1303 1304
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1305
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1306

C
chengduoZH 已提交
1307 1308
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1326
        type=l_type,
Y
Yu Yang 已提交
1327 1328 1329 1330 1331
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1332 1333 1334
        attrs={
            'strides': stride,
            'paddings': padding,
1335
            'dilations': dilation,
C
chengduoZH 已提交
1336
            'groups': groups,
1337 1338
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1339
        })
Y
Yu Yang 已提交
1340 1341 1342 1343 1344 1345

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1346
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1347
    """
Y
yangyaming 已提交
1348 1349 1350
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1376 1377
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1378

L
Luo Tao 已提交
1379 1380
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1381
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1382 1383 1384 1385 1386 1387 1388 1389
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1390

Y
yangyaming 已提交
1391
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1392 1393 1394 1395 1396
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1397 1398
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1399
    """
F
fengjiayi 已提交
1400
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1412 1413 1414 1415 1416
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1417 1418 1419
    return pool_out


F
fengjiayi 已提交
1420
def sequence_first_step(input):
L
Luo Tao 已提交
1421
    """
L
Luo Tao 已提交
1422
    This function gets the first step of sequence.
L
Luo Tao 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1435

L
Luo Tao 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1445

Y
yangyaming 已提交
1446
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1447 1448 1449
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1450 1451 1452
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1453
def sequence_last_step(input):
L
Luo Tao 已提交
1454
    """
L
Luo Tao 已提交
1455
    This function gets the last step of sequence.
L
Luo Tao 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1468

L
Luo Tao 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1478

Y
yangyaming 已提交
1479
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1480 1481 1482
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1483 1484 1485
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1486
def pool2d(input,
C
chengduoZH 已提交
1487 1488
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1489 1490
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1491
           global_pooling=False,
C
chengduoZH 已提交
1492
           use_cudnn=True,
1493
           ceil_mode=False,
1494
           use_mkldnn=False,
C
caoying03 已提交
1495
           name=None):
Y
Yu Yang 已提交
1496 1497 1498
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
    
    Returns:
        Variable: output of pool2d layer.
Y
Yu Yang 已提交
1515 1516 1517 1518 1519
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1520

C
chengduoZH 已提交
1521 1522 1523 1524 1525
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1526 1527 1528 1529
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1530 1531
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1546
            "paddings": pool_padding,
1547
            "use_cudnn": use_cudnn,
1548 1549
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1562
               data_layout='NCHW',
Y
Yang Yang 已提交
1563
               in_place=False,
1564
               use_mkldnn=False,
1565 1566
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1567
               moving_variance_name=None,
W
wanghaoshuang 已提交
1568
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1569 1570 1571
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1614
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1615

1616 1617
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1618 1619 1620
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1621
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1622
        shape=param_shape,
1623 1624 1625 1626 1627 1628 1629
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1630
            trainable=False,
W
wanghaoshuang 已提交
1631
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1632
        shape=param_shape,
1633 1634
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1635 1636 1637 1638 1639 1640

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1641 1642
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1643

Y
Yang Yang 已提交
1644
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1662 1663 1664 1665 1666 1667
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1668 1669 1670 1671

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1684
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1705
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1706
            normalization.
1707
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1708
            normalization.
1709
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1710
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1711
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1712 1713 1714 1715 1716 1717
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
1718
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1744
    if shift:
G
guosheng 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1769
def beam_search_decode(ids, scores, name=None):
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    """
    ${beam_search_decode}

    Args:
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        name (str): The name of this layer. It is optional.
    
    Returns:
        tuple: a tuple of two output variable: sentence_ids, sentence_scores
    """
Y
Yu Yang 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1801 1802 1803
                     padding=0,
                     stride=1,
                     dilation=1,
1804
                     groups=None,
C
caoying03 已提交
1805
                     param_attr=None,
1806
                     bias_attr=None,
C
chengduoZH 已提交
1807
                     use_cudnn=True,
1808
                     act=None,
C
caoying03 已提交
1809
                     name=None):
Y
Yu Yang 已提交
1810
    """
1811 1812 1813 1814 1815 1816 1817 1818
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1819 1820
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1833 1834
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1849

1850 1851 1852 1853
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1854 1855

    Args:
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
1889 1890

    Returns:
1891
        Variable: The tensor variable storing the convolution transpose result.
1892 1893

    Raises:
1894 1895
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
1896 1897 1898 1899

    Examples:
       .. code-block:: python

1900 1901 1902 1903
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1904 1905 1906 1907 1908 1909
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1910 1911 1912
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1913

C
chengduoZH 已提交
1914 1915 1916
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1917 1918 1919 1920 1921 1922 1923 1924
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1925 1926 1927 1928 1929

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1930
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1931 1932 1933
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1934

1935 1936
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
1937 1938 1939
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

1940
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
1941 1942 1943 1944
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
1945
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
1946 1947 1948 1949
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
1950
            'groups': groups,
C
chengduoZH 已提交
1951 1952
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1953

1954 1955
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
1956
    return out
Y
yangyaming 已提交
1957 1958


Y
yangyaming 已提交
1959
def sequence_expand(x, y, ref_level=-1, name=None):
1960
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
1961 1962 1963 1964
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
1965 1966 1967 1968 1969

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
1970 1971
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
1972 1973 1974 1975 1976 1977
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
1978
            ref_level: 0
1979

Y
yangyaming 已提交
1980 1981 1982
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
1983 1984 1985 1986
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
1987
                x.data = [[a], [b], [c]]
1988 1989 1990
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1991
                y.lod = [[0, 2, 2, 5]]
1992

Y
yangyaming 已提交
1993
            ref_level: -1
1994

Y
yangyaming 已提交
1995 1996 1997
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
1998 1999 2000
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2001 2002
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2003
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2004
                        will be named automatically.
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2015
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2016
    """
Y
yangyaming 已提交
2017
    helper = LayerHelper('sequence_expand', input=x, **locals())
2018 2019 2020
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2021 2022 2023 2024 2025
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2026
    return tmp
2027 2028


Q
Qiao Longfei 已提交
2029 2030 2031
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    Args:
        pre_ids (Variable): ${pre_ids_comment}
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        beam_size (int): ${beam_size_comment}
        end_id (int): ${end_id_comment}
        level (int): ${level_comment}
    
    Returns:
        tuple: a tuple of beam_search output variables: selected_ids, selected_scores
Q
Qiao Longfei 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2072 2073 2074 2075
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2076
              param_attr=None,
C
caoying03 已提交
2077 2078
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2079 2080 2081 2082
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2083
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2084

2085
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2086

2087
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2088

2089
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2090 2091 2092

            h_t & = o_t tanh(c_t)

2093 2094 2095 2096 2097 2098
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2099 2100 2101

        .. math::

2102
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2103 2104 2105 2106 2107 2108 2109 2110

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2111
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2112 2113

    Args:
Y
yangyaming 已提交
2114 2115 2116 2117 2118 2119
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2120
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2121 2122
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2123 2124
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2125 2126
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2127 2128

    Returns:
Y
yangyaming 已提交
2129
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2130 2131

    Raises:
2132 2133 2134 2135
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2136 2137 2138 2139 2140 2141

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2142
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2143
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2144
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2161
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2162 2163 2164 2165
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2166 2167
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2168 2169 2170
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2171
    size = cell_t_prev.shape[1]
2172
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2173 2174
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2175
                param_attr=param_attr,
2176
                bias_attr=bias_attr)
Y
yangyaming 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2189
    return h, c
G
guosheng 已提交
2190 2191


C
caoying03 已提交
2192
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2193
    """
Y
yangyaming 已提交
2194
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2195 2196 2197

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2198
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2199 2200
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2201 2202
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2203
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2204
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2205
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2206 2207
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2208 2209 2210

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2211

G
guosheng 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2223 2224 2225 2226 2227 2228 2229 2230

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2231 2232 2233
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2234 2235
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2236 2237 2238 2239 2240
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2241
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2242 2243 2244 2245
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2246 2247


C
caoying03 已提交
2248
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2249
    """
Y
yangyaming 已提交
2250
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2251 2252 2253

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2254
        dim (list|int|None): The dimensions along which the mean is computed. If
Y
yangyaming 已提交
2255 2256 2257
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
W
whs 已提交
2258
            :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2259 2260
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2261
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2262 2263
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2264 2265 2266

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2267

G
guosheng 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2278 2279
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2280 2281 2282 2283 2284 2285 2286

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2287 2288 2289
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2290 2291
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2292 2293 2294 2295 2296
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2297
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2298 2299 2300 2301
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2302 2303


C
caoying03 已提交
2304
def reduce_max(input, dim=None, keep_dim=False, name=None):
2305
    """
Y
yangyaming 已提交
2306
    Computes the maximum of tensor elements over the given dimension.
2307 2308 2309

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2310
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2311 2312 2313
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2314
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2315 2316
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2317
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2318 2319
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2320 2321 2322

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2335 2336 2337 2338 2339 2340 2341

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2342 2343 2344
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2345 2346
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2347 2348 2349 2350 2351
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2352
            'dim': dim if dim != None else [0],
2353 2354 2355 2356 2357 2358
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2359
def reduce_min(input, dim=None, keep_dim=False, name=None):
2360
    """
Y
yangyaming 已提交
2361
    Computes the minimum of tensor elements over the given dimension.
2362 2363 2364

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2365
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2366 2367 2368
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2369
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2370 2371
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2372
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2373 2374
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2375 2376 2377

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2378

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2390 2391 2392 2393 2394 2395 2396

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2397 2398 2399
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2400 2401
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2402 2403 2404 2405 2406
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2407
            'dim': dim if dim != None else [0],
2408 2409 2410 2411
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2412 2413


2414 2415 2416 2417 2418 2419
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2420
        dim (list|int|None): The dimensions along which the product is performed. If
2421 2422
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2423 2424
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2425 2426 2427
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2428
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2429
            layer will be named automatically.
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2444
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2445
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2446 2447 2448 2449 2450 2451 2452

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2453 2454 2455
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2456 2457
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2458 2459 2460 2461 2462
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2463
            'dim': dim if dim != None else [0],
2464 2465 2466 2467 2468 2469
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2470
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2471
    """
C
caoying03 已提交
2472
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2473 2474 2475

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2476 2477 2478 2479 2480
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2481
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2482
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2483
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2484 2485
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
2498 2499
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2538 2539
    .. math::
    y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2540 2541 2542 2543 2544

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2545 2546 2547 2548 2549 2550 2551 2552
        x(Variable|list): The input tensor to l2_normalize layer.
        axis(int): The axis on which to apply normalization. If `axis < 0`,
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
        epsilon(float): The epsilon value is used to avoid division by zero,
            the defalut value is 1e-10.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
caoying03 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2564
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2565 2566
    """

F
fengjiayi 已提交
2567 2568
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2569 2570
    helper = LayerHelper("l2_normalize", **locals())

2571 2572
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
2573
    helper.append_op(
2574 2575 2576 2577
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
2578
        attrs={
2579 2580
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
2581 2582
        })
    return out
2583 2584


2585
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2586
    """
Y
ying 已提交
2587 2588 2589 2590
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2591

C
chengduoZH 已提交
2592
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2593
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2594

2595 2596 2597 2598 2599
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2600
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2601

C
chengduoZH 已提交
2602
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2603
      performs in the following way.
G
guosheng 已提交
2604

2605
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2606
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2607
        last two dimensions and a batched matrix multiply supporting broadcast
2608
        applies on the two tensors.
G
guosheng 已提交
2609

Y
ying 已提交
2610 2611
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2612
    removed after matrix multiplication.
G
guosheng 已提交
2613 2614 2615

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2616 2617 2618
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2619
        name(str|None): A name for this layer(optional). If set None, the layer
2620
            will be named automatically.
G
guosheng 已提交
2621 2622

    Returns:
2623
        Variable: The product Tensor variable.
G
guosheng 已提交
2624

G
guosheng 已提交
2625 2626 2627
    Examples:
        .. code-block:: python

2628
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2629 2630
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2631

2632 2633
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2634

2635 2636
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2637

2638 2639
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2640 2641 2642 2643

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2644 2645
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2646

Y
ying 已提交
2647
            # x: [M], y: [N]
2648
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2649
    """
Y
ying 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2662
            y_shape = y_shape + [1]
Y
ying 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2679
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2680
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2681
    helper.append_op(
2682 2683 2684 2685 2686 2687 2688
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2689 2690


2691
def topk(input, k, name=None):
Q
qingqing01 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.
2707 2708
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Q
qingqing01 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


W
wanghaoshuang 已提交
2740
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2741
                  name=None):
2742
    """
Y
ying 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2752

Y
ying 已提交
2753
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2754

Y
ying 已提交
2755 2756 2757 2758
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2759

Y
ying 已提交
2760 2761 2762
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2763

2764 2765 2766
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
Y
ying 已提交
2767 2768 2769 2770
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2771
        name (str): The name of this layer. It is optional.
2772

W
wanghaoshuang 已提交
2773
    Returns:
W
wanghaoshuang 已提交
2774
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2775 2776 2777 2778 2779

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2780 2781
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2782
            cost = fluid.layers.edit_distance(input=x,label=y)
2783
    """
2784
    helper = LayerHelper("edit_distance", **locals())
2785

2786
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2787
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2788 2789 2790 2791 2792 2793 2794
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2795
            attrs={"tokens": ignored_tokens})
2796 2797 2798 2799 2800
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
2801
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
2802
            attrs={"tokens": ignored_tokens})
2803 2804
        label = erased_label

2805 2806
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2807
    sequence_num = helper.create_tmp_variable(dtype="int64")
2808 2809 2810 2811
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2812 2813
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2814 2815
        attrs={"normalized": normalized})

2816
    return edit_distance_out, sequence_num
2817 2818 2819 2820 2821


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2822 2823 2824 2825
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2864
        name (str): The name of this layer. It is optional.
2865 2866

    Returns:
2867
        Variable: CTC greedy decode result. If all the sequences in result were
2868
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2869 2870 2871 2872 2873

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2874

2875
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2876
    """
2877
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
2878
    _, topk_indices = topk(input, k=1)
2879 2880 2881 2882 2883 2884

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2885
        outputs={"Output": [ctc_out]},
2886 2887
        attrs={"merge_repeated": True,
               "blank": blank})
2888
    return ctc_out
2889 2890


F
fengjiayi 已提交
2891
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2892
    """
2893 2894
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2895
    to compute Connectionist Temporal Classification (CTC) loss.
2896 2897
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2898 2899 2900
    input tensor.

    Args:
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
        input(Variable): (LodTensor, default: LoDTensor<float>),
            the unscaled probabilities of variable-length sequences,
            which is a 2-D Tensor with LoD information.
            It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
            sequences' length and num_classes is the true number of classes.
            (not including the blank label).
        label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
            of variable-length sequence, which is a 2-D Tensor with LoD
            information. It is of the shape [Lg, 1], where Lg is th sum of
            all labels' length.
        blank (int): default 0, the blank label index of Connectionist
            Temporal Classification (CTC) loss, which is in the
            half-opened interval [0, num_classes + 1).
        norm_by_times (bool): default false, whether to normalize
            the gradients by the number of time-step, which is also the
            sequence's length. There is no need to normalize the gradients
            if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2918 2919

    Returns:
2920 2921
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2922 2923 2924

    Examples:
        .. code-block:: python
2925 2926 2927 2928
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2929 2930 2931
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2932
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
2976 2977 2978
        input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
            with shape being [N, M] where M for dimension.
        new_dim (int): New dimension which the input LoDTensor is reshaped to.
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2998 2999


3000 3001 3002 3003
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3004 3005 3006 3007 3008 3009 3010
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
        sample_weight (int): ${sample_weight_comment}
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
    
    Returns:
        Variable: output of nce layer.
    """
Y
Yang Yu 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3070
    return cost / (num_neg_samples + 1)
3071 3072


Y
fix ci.  
ying 已提交
3073
def transpose(x, perm, name=None):
Y
ying 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3083 3084 3085
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3086 3087 3088 3089 3090 3091 3092 3093

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3094
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3095 3096
    """

Y
fix ci.  
ying 已提交
3097
    if len(perm) != len(x.shape):
Y
ying 已提交
3098 3099 3100
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3101 3102 3103 3104 3105 3106
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3107 3108

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3109
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3110 3111
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3112
        inputs={'X': [x]},
Y
ying 已提交
3113 3114 3115
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3116 3117


3118
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3119
    """
3120 3121 3122 3123 3124 3125 3126
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3155 3156 3157
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3158 3159 3160 3161 3162
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3192 3193 3194
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3215 3216
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3217 3218

    """
W
wanghaoshuang 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3230
    helper = LayerHelper('im2sequence', **locals())
3231 3232
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3233
        type='im2sequence',
3234 3235 3236
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3237 3238 3239
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3240 3241
        })
    return out
3242 3243


3244 3245 3246 3247
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3248
    equation of row convolution is as follows:
3249 3250 3251 3252 3253 3254 3255

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3256
    * :math:`\\tau`: Future context size.
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3267 3268
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3294
    return helper.append_activation(out)
3295 3296


3297 3298 3299 3300
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3316 3317

    Args:
3318
        inputs (list): A list of variables to gather from. All variables have the
Y
yangyaming 已提交
3319
                same shape and the rank is at least 2.
3320
        index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3321
                with shape [M, 1] where M is the batch size.
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3335 3336 3337 3338 3339 3340

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3341 3342 3343 3344 3345 3346
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3347 3348 3349 3350 3351


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3352

3353 3354 3355 3356
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3357

3358 3359 3360
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3361

3362 3363 3364
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3365

3366
    The equation is as follows:
3367

3368
    1) Hard label (one-hot label, so every sample has exactly one class)
3369

3370 3371 3372 3373
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3374

3375 3376 3377
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3378

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3400 3401
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

Q
qingqing01 已提交
3420
    This operator computes the smooth L1 loss for X and Y.
3421
    The operator takes the first dimension of X and Y as batch size.
Q
qingqing01 已提交
3422
    For each instance, it computes the smooth L1 loss element by element first
3423
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3424

3425 3426
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3427
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3428
        y (Variable): A tensor with rank at least 2. The target value of smooth
Q
qingqing01 已提交
3429
            L1 loss op with same shape as x.
3430 3431 3432 3433 3434 3435
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
Q
qingqing01 已提交
3436
            the out smooth L1 loss will be multiplied by this tensor element
3437
            by element.
Q
qingqing01 已提交
3438
        sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
3439 3440
            with default value 1.0.
    Returns:
Q
qingqing01 已提交
3441
        Variable: A tensor with rank be 2. The output smooth L1 loss with
3442 3443 3444 3445 3446 3447
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3448 3449
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3450
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3451
            out = fluid.layers.smooth_l1(x=fc, y=label)
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3468 3469 3470 3471 3472 3473 3474 3475 3476


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3477
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3478 3479 3480 3481 3482 3483
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
C
caoying03 已提交
3484 3485
        .. code-block:: python

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3507 3508


Y
Yu Yang 已提交
3509
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3510
    """
Y
Yu Yang 已提交
3511
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3512
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3513 3514 3515 3516 3517 3518

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

3519 3520
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
3521 3522
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3523 3524
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3525 3526 3527 3528 3529
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3530
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3531 3532 3533
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3534 3535
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3536 3537 3538
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3539 3540


3541
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3542
    """
C
caoying03 已提交
3543 3544
    Gives a new shape to the input Tensor without changing its data.

3545 3546 3547 3548 3549
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3550

3551
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3552

3553 3554 3555 3556
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3557
    2. 0 means the actual dimension value is going to be copied from the
3558 3559 3560 3561
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3562 3563

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3564
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3565
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3566

3567
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3568 3569
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3570 3571
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
3572
    dimensions.
C
caoying03 已提交
3573

3574
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3575 3576 3577 3578
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
3579 3580

    Args:
3581
        x(variable): The input tensor.
C
caoying03 已提交
3582 3583
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
3584 3585 3586 3587 3588
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
3589 3590 3591 3592
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
3593
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
3594

3595 3596
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
3597 3598 3599

    Examples:
        .. code-block:: python
G
guosheng 已提交
3600

3601
            data = fluid.layers.data(
3602
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
3603
            reshaped = fluid.layers.reshape(
3604
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
3605 3606 3607 3608 3609
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
3625 3626 3627 3628
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
3629 3630 3631
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
3632 3633 3634 3635 3636
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
3637 3638


Y
yangyaming 已提交
3639
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
3774 3775
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
3803 3804 3805 3806


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
3807
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
3808
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
3809

G
guosheng 已提交
3810 3811 3812 3813
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
3836
                         The length of :attr:paddings must be
G
guosheng 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3847

G
guosheng 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
3862 3863 3864 3865 3866 3867 3868 3869 3870


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
3871 3872
    called label-smoothing regularization (LSR).

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
3896
                              be :math:`(1, class\_num)`.
3897 3898
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
3899
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
3927 3928 3929 3930


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
3931
    Region of interest pooling (also known as RoI pooling) is to perform
3932 3933
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
3934 3935 3936 3937
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
3938 3939 3940 3941 3942 3943 3944
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
3945 3946
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
3947 3948 3949 3950 3951 3952 3953 3954
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
3955
        pool_out (Variable): The output is a 4-D tensor of the shape
3956 3957 3958
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
3959 3960
        .. code-block:: python

3961
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4007 4008
        .. code-block:: python

W
whs 已提交
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4020 4021


4022 4023 4024 4025 4026
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4027
    """
4028
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4029

4030 4031 4032 4033 4034
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4035

4036
    Args:
4037
        input (Variable): The input tensor of image resize layer,
4038 4039
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4040
        out_shape(list|tuple|Variable|None): Output shape of image resize
4041 4042
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4043
        scale(float|None): The multiplier for the input height or width.
4044 4045 4046
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4047 4048
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4049 4050
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4051 4052 4053 4054

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4055

4056 4057 4058
    Examples:
        .. code-block:: python

4059
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4060
    """
4061 4062 4063 4064
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4065 4066
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4067 4068
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4069 4070 4071 4072

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4073 4074 4075
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4076
    if out_shape is not None:
B
baiyf 已提交
4077 4078 4079
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4080 4081 4082 4083 4084 4085
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4086 4087 4088 4089
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4090 4091
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4092
        type=resample_methods[resample],
4093
        inputs=inputs,
4094 4095 4096 4097
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4098 4099


Y
yuyang18 已提交
4100
@templatedoc(op_type="bilinear_interp")
4101 4102
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4103 4104 4105 4106 4107 4108
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4109

Y
yuyang18 已提交
4110 4111 4112 4113 4114 4115 4116 4117
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4135
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4136

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4150 4151 4152
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4153 4154 4155
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4156 4157 4158 4159 4160 4161 4162
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4163
        Out = X[Index]
W
whs 已提交
4164 4165 4166 4167 4168 4169 4170


    .. code-block:: text


                Given:

4171 4172
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4190

W
whs 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}

    """
F
stash  
fengjiayi 已提交
4225 4226 4227
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4228 4229 4230
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4231
    if isinstance(seed, int):
F
fengjiayi 已提交
4232
        seed_value = seed
F
fengjiayi 已提交
4233 4234 4235 4236 4237 4238 4239 4240
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4241 4242
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4243
            })
F
stash  
fengjiayi 已提交
4244 4245
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4246
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4247 4248
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
4249
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4250 4251 4252 4253 4254
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
W
whs 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304


def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
    semantic image segmentation, which first computes the IOU for each 
    semantic class and then computes the average over classes. 
    IOU is defined as follows: 
    
    .. math::
        
        IOU = true_positive / (true_positive + false_positive + false_negative). 

    The predictions are accumulated in a confusion matrix and mean-IOU 
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
        label (Variable):  A Tensor of ground truth labels with type int32 or int64. 
                           Its shape should be the same as input.

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. 


    Examples:

        .. code-block:: python

            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
        inputs={"predictions": input,
                "labels": label},
        outputs={
            "out_mean_iou": out_mean_iou,
            "out_wrong": out_wrong,
            "out_correct": out_correct
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct