nn.py 433.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
Y
Yu Yang 已提交
206 207
]

J
jerrywgz 已提交
208 209
kIgnoreIndex = -100

Y
Yu Yang 已提交
210 211 212 213 214 215 216

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
217
       is_test=False,
218
       name=None):
Y
Yu Yang 已提交
219
    """
220
    **Fully Connected Layer**
Y
Yu Yang 已提交
221

222
    This function creates a fully connected layer in the network. It can take
223
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
224
    Args in detail). It creates a variable called weights for each input tensor,
225 226 227 228
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
229
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
230 231
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
232

233
    When the input is single tensor:
C
caoying03 已提交
234

235 236 237 238 239
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
240 241 242

    .. math::

243
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
244 245 246

    In the above equation:

247 248 249
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
250
    * :math:`b`: The bias parameter created by this layer (if needed).
251
    * :math:`Act`: The activation function.
C
caoying03 已提交
252
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
272
    Args:
R
ranqiu 已提交
273 274 275 276 277 278 279 280 281 282
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
283
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
284 285 286 287
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
288 289
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
290
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
291
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
292
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
293

294
    Returns:
F
fengjiayi 已提交
295
        Variable: The transformation result.
296 297

    Raises:
C
caoying03 已提交
298
        ValueError: If rank of the input tensor is less than 2.
299 300 301 302

    Examples:
        .. code-block:: python

303
          # when input is single tensor
F
fengjiayi 已提交
304
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
305
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
306 307 308 309 310

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
311
    """
C
caoying03 已提交
312
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
313 314 315 316

    dtype = helper.input_dtype()

    mul_results = []
317 318
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
319 320 321
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
322

Y
Yu Yang 已提交
323
        w = helper.create_parameter(
324
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
325
        tmp = helper.create_variable_for_type_inference(dtype)
326
        helper.append_op(
327 328 329
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
330
            outputs={"Out": tmp},
M
mozga-intel 已提交
331 332
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
333 334 335 336
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
337
    else:
X
Xin Pan 已提交
338
        pre_bias = helper.create_variable_for_type_inference(dtype)
339
        helper.append_op(
340 341 342
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
343
            attrs={"use_mkldnn": False})
344 345 346 347
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
348 349


350 351 352
def embedding(input,
              size,
              is_sparse=False,
353
              is_distributed=False,
354 355 356
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
357
    """
358 359
    **Embedding Layer**

360
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
361 362
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
363 364 365

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
366 367

    Args:
368 369 370 371 372
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
373
        is_distributed(bool): Whether to run lookup table from remote parameter server.
374 375
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
376
            with zeros whenever lookup encounters it in :attr:`input`. If
377
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
378 379
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
380
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
381

382 383 384
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
385

386 387
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
388

B
bdzhuxiaoning 已提交
389 390 391
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
392 393 394
    """

    helper = LayerHelper('embedding', **locals())
395
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
396 397
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
398 399
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
400
    tmp = helper.create_variable_for_type_inference(dtype)
401 402
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
403 404 405 406 407
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
408 409 410
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
411
            'remote_prefetch': remote_prefetch,
412 413
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
414 415 416
    return tmp


W
wopeizl 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
433

W
wopeizl 已提交
434 435 436 437 438 439 440 441 442 443 444
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
445

W
wopeizl 已提交
446 447 448 449
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
450

W
wopeizl 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
487 488 489
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
490
            hidden_dim = 512
491 492 493 494 495 496
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
497
                                           bias_attr=False)
498

W
wopeizl 已提交
499 500 501
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
502
    assert in_dygraph_mode(
503
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
547 548


P
phlrain 已提交
549 550 551 552 553 554
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
555
         dropout_prob=0.0,
P
phlrain 已提交
556 557 558 559 560
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
561
    """
P
phlrain 已提交
562
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
563 564

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
565
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
566 567
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
568
    .. math::
M
minqiyang 已提交
569 570 571 572 573 574 575

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
576
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
577 578 579 580

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
581 582

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
583 584 585 586 587 588
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
589 590 591
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
592
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
593

M
minqiyang 已提交
594
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
595 596 597 598 599
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
600
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
601 602 603 604 605
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
606
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
607 608
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
609 610
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
611 612 613 614 615 616
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
617
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
618

L
liuhongyu 已提交
619 620

    Returns:
M
minqiyang 已提交
621 622
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
623
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
624

H
haowang101779990 已提交
625 626 627 628
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
629
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
630 631
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
632
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
633 634 635 636


    Examples:
        .. code-block:: python
637 638 639 640 641 642
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
643 644 645 646 647 648
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
649 650 651 652 653
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
654 655 656 657
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
658 659 660
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
720 721 722 723 724 725 726 727 728 729
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
730
                  proj_activation='tanh',
731
                  dtype='float32',
X
xuezhong 已提交
732 733 734 735 736
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
737 738 739
    """
    **Dynamic LSTMP Layer**

740 741 742 743 744 745
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
746 747 748 749 750

    The formula is as follows:

    .. math::

751
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
752

753
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
754

755
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
756

757
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
758

759
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
760

761
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
762

763
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
764

Y
Yibing Liu 已提交
765 766 767 768 769 770
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
771
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
772
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
773
          bias vector).
Y
Yibing Liu 已提交
774 775 776
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
777
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
778
    * :math:`h`: The hidden state.
779
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
780 781
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
782
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
783
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
784
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
785 786
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
787 788 789 790

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
791

Y
Yibing Liu 已提交
792 793 794 795 796 797 798 799 800 801 802 803
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
804
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
805 806
                               hidden-hidden weight and projection weight.

807 808
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
809 810
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
811 812
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
813
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
814 815 816 817 818

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
819
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
820 821 822 823 824 825
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
826
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
827 828 829
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
830
                                - The shape is (1 x 7D).
C
chengduo 已提交
831 832 833 834 835

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
836 837 838 839 840 841 842 843 844
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
845
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
846 847
                              default "tanh".
        proj_activation(str): The activation for projection output.
848
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
849
                              default "tanh".
Y
Yibing Liu 已提交
850
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
851 852
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
853 854 855 856 857 858 859 860 861 862 863
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
864 865

    Returns:
866 867 868 869
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
870 871

    Examples:
872

Y
Yibing Liu 已提交
873 874
        .. code-block:: python

875 876 877 878
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
879
            hidden_dim, proj_dim = 512, 256
880
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
881
                                     act=None, bias_attr=None)
882 883 884
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
885 886 887 888
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
889
    """
890

L
lujun 已提交
891
    assert in_dygraph_mode(
892 893
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
894
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
895
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
896
    size = size // 4
Y
Yibing Liu 已提交
897 898 899 900 901 902 903 904 905 906
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
907 908 909 910 911 912
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
928

X
xuezhong 已提交
929 930 931 932 933
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
934 935
    helper.append_op(
        type='lstmp',
936
        inputs=inputs,
Y
Yibing Liu 已提交
937 938 939 940 941 942 943 944 945
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
946 947
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
948 949 950 951 952 953 954 955 956
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
957 958 959 960 961 962 963
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
964 965
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
966
    """
967
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
968

969 970 971
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
972

G
guosheng 已提交
973 974 975 976 977 978 979 980 981
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
982

G
guosheng 已提交
983
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
984

Q
Qiao Longfei 已提交
985 986 987

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
988 989 990 991 992 993 994 995 996 997 998 999
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1000
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1001 1002
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1003 1004 1005 1006
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1007
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1008 1009

    Args:
1010 1011
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1012
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1013
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1014 1015
            is the hidden size.
        size(int): The dimension of the gru cell.
1016
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1017 1018
            hidden-hidden weight matrix. Note:

1019
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1020
              :math:`D` is the hidden size.
1021
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1022
              The first part are weights of the update gate and reset gate with
1023
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1024
              candidate hidden state with shape :math:`(D \\times D)`.
1025 1026 1027 1028 1029

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1030
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1031
            the bias in the update gate, reset gate and candidate calculations.
1032 1033 1034
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1035 1036
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1037
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1038 1039 1040
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1041
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1042
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1043 1044 1045 1046
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1047 1048

    Returns:
G
guosheng 已提交
1049
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1050
            and sequence length is the same with the input.
1051

G
guosheng 已提交
1052
    Examples:
1053

G
guosheng 已提交
1054 1055
        .. code-block:: python

1056 1057
            import paddle.fluid as fluid

1058 1059 1060 1061
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1062
            hidden_dim = 512
1063
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1064
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1065 1066
    """

L
lujun 已提交
1067
    assert in_dygraph_mode(
1068 1069
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1070 1071 1072 1073 1074 1075 1076
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1077
    batch_size = input.shape[0]
G
guosheng 已提交
1078
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1079
    if h_0:
G
guosheng 已提交
1080
        assert h_0.shape == (
Y
Yancey 已提交
1081 1082 1083
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1084

X
Xin Pan 已提交
1085 1086 1087 1088
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1102 1103
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1104 1105 1106 1107
        })
    return hidden


Y
Yu Yang 已提交
1108 1109 1110
def gru_unit(input,
             hidden,
             size,
1111 1112
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1113
             activation='tanh',
Q
Qiao Longfei 已提交
1114 1115
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1116
    """
1117 1118 1119
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1120
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1121
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1122

1123 1124
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1125

1126
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1127

1128
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1145 1146

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1147 1148 1149
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1150 1151
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1152 1153
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1154 1155 1156
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1157 1158 1159

    Args:
        input (Variable): The fc transformed input value of current step.
1160
        hidden (Variable): The hidden value of gru unit from previous step.
1161
        size (integer): The input dimension value.
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1176
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1177
            the bias in the update gate, reset gate and candidate calculations.
1178 1179 1180
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1181 1182
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1183 1184 1185 1186
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1187

1188 1189 1190 1191 1192 1193
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1218
    size = size // 3
Y
Yu Yang 已提交
1219 1220

    # create weight
1221 1222
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1223

X
Xin Pan 已提交
1224 1225 1226
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1227
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1228
    # create bias
1229
    if helper.bias_attr:
Y
Yu Yang 已提交
1230 1231 1232
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1233
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1234 1235 1236

    helper.append_op(
        type='gru_unit',
1237
        inputs=inputs,
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1244 1245
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1246 1247 1248 1249 1250
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1251
@templatedoc()
1252
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1253 1254 1255 1256 1257 1258 1259
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1260
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1261 1262 1263 1264
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1265 1266 1267
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1268

J
JesseyXujin 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1282
    """
Y
Yu Yang 已提交
1283 1284 1285 1286 1287 1288
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1289 1290 1291 1292 1293 1294 1295 1296
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1312 1313 1314 1315
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1316

W
wopeizl 已提交
1317 1318
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1319

W
wopeizl 已提交
1320
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1321

W
wopeizl 已提交
1322
        label(${label_type}): ${label_comment}
1323

W
wopeizl 已提交
1324 1325
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1326

W
wopeizl 已提交
1327 1328
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1329

Y
Yibing Liu 已提交
1330 1331 1332 1333 1334 1335 1336
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1337 1338 1339 1340 1341 1342 1343 1344
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1345
                "Transition": transition,
W
wopeizl 已提交
1346 1347
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1348

W
wopeizl 已提交
1349
    return viterbi_path
Y
Yu Yang 已提交
1350 1351


Y
yi.wu 已提交
1352
@templatedoc()
F
fengjiayi 已提交
1353
def cos_sim(X, Y):
Y
Yu Yang 已提交
1354
    """
Y
yi.wu 已提交
1355 1356 1357
    ${comment}

    Args:
1358 1359
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1360

Y
yi.wu 已提交
1361
    Returns:
1362
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1363 1364 1365 1366 1367 1368 1369

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1370
    """
F
fengjiayi 已提交
1371
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1372 1373 1374
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1385 1386 1387 1388 1389
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1390
            dropout_implementation="downgrade_in_infer"):
1391 1392 1393 1394 1395
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1396
    training. The dropout operator randomly sets (according to the given dropout
1397 1398 1399
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1400 1401
    dropout op can be removed from the program to make the program more efficient.

1402
    Args:
1403 1404
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1405 1406 1407 1408 1409 1410 1411
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1412 1413
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1414
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1415 1416

                                           - train: out = input * mask
C
ceci3 已提交
1417
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1418 1419 1420

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1421
                                        2. upscale_in_train, upscale the outcome at training time
1422

H
haowang101779990 已提交
1423 1424
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1425

H
haowang101779990 已提交
1426 1427
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1428

M
minqiyang 已提交
1429

1430
    Returns:
1431
        Variable: A tensor variable is the shape with `x`.
1432 1433

    Examples:
1434

1435 1436
        .. code-block:: python

1437 1438
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1439 1440
    """

F
fengjiayi 已提交
1441
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1442 1443
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1444
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1445 1446 1447 1448

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1449 1450 1451 1452 1453
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1454 1455 1456 1457
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1458 1459
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1460
        })
1461 1462 1463
    return out


J
jerrywgz 已提交
1464
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1465
    """
Y
Yibing Liu 已提交
1466 1467
    **Cross Entropy Layer**

1468 1469 1470
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1471 1472

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1473
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1474

Y
Yibing Liu 已提交
1475
        .. math::
Y
yangyaming 已提交
1476

Y
Yibing Liu 已提交
1477 1478 1479
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1480 1481
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1482 1483 1484 1485 1486

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1487
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1488 1489 1490
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1491 1492
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1493
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1494

Y
Yibing Liu 已提交
1495
    Args:
Y
yangyaming 已提交
1496
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1497 1498 1499 1500
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1501
        label (Variable|list): the ground truth which is a 2-D tensor. When
1502 1503 1504 1505
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1506
        soft_label (bool): a flag indicating whether to
1507
                                           interpretate the given labels as soft
1508
                                           labels. Default: `False`.
M
minqiyang 已提交
1509 1510
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1511
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1512 1513 1514 1515 1516

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1517 1518 1519
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1520

H
haowang101779990 已提交
1521 1522
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1523

H
haowang101779990 已提交
1524 1525
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1526 1527 1528 1529

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1530 1531 1532 1533
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1534
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1535
    """
S
sneaxiy 已提交
1536 1537
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1538
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1539
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1540 1541 1542 1543 1544
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1545 1546
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1547 1548 1549
    return out


S
sneaxiy 已提交
1550 1551 1552 1553
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1554
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1555 1556 1557 1558 1559
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1560
                 'MatchX': [match_x],
S
sneaxiy 已提交
1561 1562 1563 1564 1565
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1566
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1567
    """
1568
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1569

1570
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1571
    The loss at a given point in one session is defined as:
1572 1573 1574

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1575 1576

    Learn more details by reading paper <session-based recommendations with recurrent
1577
    neural networks>.
F
frankwhzhang 已提交
1578

1579 1580 1581 1582 1583 1584
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1585 1586
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1587 1588 1589
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1590 1591 1592
    Examples:
        .. code-block:: python

1593 1594 1595 1596 1597 1598 1599
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1600
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1601
    """
1602 1603 1604 1605 1606
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1607
                'Label': [label]},
1608 1609 1610 1611
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1612
def square_error_cost(input, label):
Y
Yu Yang 已提交
1613
    """
1614 1615
    **Square error cost layer**

1616 1617
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1632 1633
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1634 1635

    Returns:
G
guosheng 已提交
1636
        Variable: The tensor variable storing the element-wise squared error \
1637
                  difference of input and label.
1638 1639 1640 1641

    Examples:
        .. code-block:: python

R
ruri 已提交
1642 1643 1644
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1645

Y
Yu Yang 已提交
1646
    """
F
fengjiayi 已提交
1647
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1648
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1649 1650 1651 1652 1653 1654
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1655
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1656
    helper.append_op(
F
fengjiayi 已提交
1657 1658
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1659 1660 1661
    return square_out


Y
yi.wu 已提交
1662
@templatedoc()
Y
Yu Yang 已提交
1663 1664 1665 1666
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1667
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1668
    """
Y
yi.wu 已提交
1669
    **Chunk Evaluator**
Y
yi.wu 已提交
1670

Y
yangyaming 已提交
1671
    This function computes and outputs the precision, recall and
1672
    F1-score of chunk detection.
Y
yi.wu 已提交
1673

M
minqiyang 已提交
1674
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1675
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1676 1677 1678 1679 1680 1681

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1682

Y
yi.wu 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1708

Y
yi.wu 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1733
    Args:
1734 1735 1736 1737 1738
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1739

Y
yi.wu 已提交
1740
    Returns:
Y
update  
yi.wu 已提交
1741 1742 1743
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1744

Y
yi.wu 已提交
1745 1746 1747
    Examples:
        .. code-block:: python

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1759
            crf = fluid.layers.linear_chain_crf(
1760
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1761
            crf_decode = fluid.layers.crf_decoding(
1762
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1763 1764 1765 1766 1767
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1768
    """
F
fengjiayi 已提交
1769
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1770 1771

    # prepare output
X
Xin Pan 已提交
1772 1773 1774 1775 1776 1777 1778
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1779 1780 1781 1782 1783 1784 1785 1786

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1787 1788 1789 1790
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1791 1792 1793
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1794 1795
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1796
        })
1797 1798
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1799 1800


1801
@templatedoc()
Y
Yu Yang 已提交
1802 1803 1804 1805 1806 1807 1808
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1809 1810
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1811 1812 1813 1814
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1815 1816 1817 1818 1819 1820 1821

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1835

1836 1837
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1838 1839 1840 1841 1842 1843 1844

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1845 1846
    """

L
lujun 已提交
1847
    assert not in_dygraph_mode(), (
1848
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1849 1850 1851 1852 1853
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1854
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1865
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1866 1867 1868 1869 1870 1871
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1872
def sequence_softmax(input, use_cudnn=False, name=None):
1873 1874 1875
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1876
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1893 1894 1895
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1908
    assert not in_dygraph_mode(), (
1909
        "sequence layer is not supported in dygraph mode yet.")
1910 1911
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1912
    softmax_out = helper.create_variable_for_type_inference(dtype)
1913 1914 1915 1916 1917 1918 1919 1920
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1921
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1922
    """
1923
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1924
    has the same shape as the input.
Q
qiaolongfei 已提交
1925

D
dengkaipeng 已提交
1926
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1927
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1928
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1929 1930 1931
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1932
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1933
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1934 1935 1936 1937 1938 1939 1940

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1941
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1942 1943 1944 1945 1946 1947 1948 1949

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1950 1951
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1952 1953
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1954 1955 1956
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1957 1958 1959 1960 1961 1962 1963 1964

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1965 1966
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1967
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1968
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1969
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1970 1971
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1972 1973

    """
1974 1975
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1976
    softmax_out = helper.create_variable_for_type_inference(dtype)
1977 1978 1979 1980
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1981 1982
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1983 1984 1985
    return softmax_out


Y
Yu Yang 已提交
1986 1987 1988
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1989 1990
           stride=1,
           padding=0,
1991
           dilation=1,
Y
Yu Yang 已提交
1992 1993 1994
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1995
           use_cudnn=True,
1996 1997
           act=None,
           name=None):
Y
Yu Yang 已提交
1998
    """
C
chengduoZH 已提交
1999
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2000 2001
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2002
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2003 2004 2005 2006 2007 2008 2009
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2010 2011 2012
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2013

2014
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2015

C
chengduoZH 已提交
2016 2017
    .. math::

C
refine  
chengduoZH 已提交
2018
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2019

T
tensor-tang 已提交
2020
    Where:
C
chengduoZH 已提交
2021

2022 2023 2024 2025 2026
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2027
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2028 2029 2030

    Example:

2031 2032
        - Input:

W
weixing02 已提交
2033
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2034

W
weixing02 已提交
2035
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2036

2037
        - Output:
T
tensor-tang 已提交
2038

W
weixing02 已提交
2039
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2040

C
chengduoZH 已提交
2041
        Where
2042 2043

        .. math::
C
chengduoZH 已提交
2044

W
weixing02 已提交
2045 2046
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2047 2048

    Args:
2049
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2050
        num_filters(int): The number of filter. It is as same as the output
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2068 2069 2070 2071 2072
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2073
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2074 2075 2076 2077 2078
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2079 2080
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2081 2082
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2083
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2084
            will be named automatically. Default: None
C
chengduoZH 已提交
2085 2086

    Returns:
G
guosheng 已提交
2087
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2088 2089
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2090
    Raises:
2091 2092
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2093

C
chengduoZH 已提交
2094 2095 2096
    Examples:
        .. code-block:: python

2097 2098
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2099 2100 2101
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2102
    assert param_attr is not False, "param_attr should not be False here."
2103
    l_type = 'conv2d'
X
xzl 已提交
2104 2105
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2106
        l_type = 'depthwise_conv2d'
2107 2108 2109 2110

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2111 2112 2113 2114 2115
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2116
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2117

C
chengduoZH 已提交
2118 2119 2120
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2121
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2122

C
chengduoZH 已提交
2123 2124
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2125 2126

    input_shape = input.shape
M
minqiyang 已提交
2127
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2128 2129

    def _get_default_param_initializer():
C
chengduo 已提交
2130 2131
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2140
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2156
    helper.append_op(
2157
        type=l_type,
Y
Yu Yang 已提交
2158 2159 2160 2161 2162
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2163 2164 2165
        attrs={
            'strides': stride,
            'paddings': padding,
2166
            'dilations': dilation,
C
chengduoZH 已提交
2167
            'groups': groups,
2168
            'use_cudnn': use_cudnn,
2169
            'use_mkldnn': False,
2170
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2171
        })
Y
Yu Yang 已提交
2172 2173 2174 2175 2176 2177

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2195 2196 2197 2198 2199 2200
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2210 2211
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2212 2213 2214
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2215
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2241
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2242 2243
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2244
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2245 2246
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2247
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2248 2249
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2250
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2251 2252 2253 2254 2255 2256
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2267 2268
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2269 2270
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2271
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2272
            will be named automatically. Default: None.
C
chengduoZH 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2285 2286
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2287 2288 2289
    """

    l_type = 'conv3d'
C
chengduo 已提交
2290
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2301
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2315 2316 2317
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2318 2319 2320 2321 2322 2323 2324 2325
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2326
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2341
            'use_mkldnn': False
C
chengduoZH 已提交
2342 2343
        })

2344
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2345 2346 2347 2348

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2349
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2350
    """
Y
yangyaming 已提交
2351 2352 2353
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2365
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2366 2367 2368 2369 2370
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2371
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2372 2373 2374 2375 2376 2377 2378

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2379 2380
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2381

L
Luo Tao 已提交
2382 2383
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2384
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2385
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2386
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2387 2388 2389 2390 2391 2392 2393

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2394

Y
yangyaming 已提交
2395
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2396 2397 2398 2399 2400
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2401 2402
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2403
    """
L
lujun 已提交
2404
    assert not in_dygraph_mode(), (
2405
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2406
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2407
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2408 2409
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2410 2411 2412 2413 2414 2415

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2416 2417
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2418

Y
yangyaming 已提交
2419 2420 2421 2422 2423
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2424 2425 2426
    return pool_out


C
add doc  
chengduoZH 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2443 2444 2445 2446
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2447
    """
L
lujun 已提交
2448
    assert not in_dygraph_mode(), (
2449
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2450
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2451
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2452 2453 2454 2455 2456
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2457
def sequence_first_step(input):
L
Luo Tao 已提交
2458
    """
L
Luo Tao 已提交
2459
    This function gets the first step of sequence.
L
Luo Tao 已提交
2460 2461 2462 2463

    .. code-block:: text

       x is a 1-level LoDTensor:
2464
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2465 2466 2467 2468 2469
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2470
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2471
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2472

L
Luo Tao 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2482

Y
yangyaming 已提交
2483
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2484 2485 2486
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2487 2488 2489
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2490
def sequence_last_step(input):
L
Luo Tao 已提交
2491
    """
L
Luo Tao 已提交
2492
    This function gets the last step of sequence.
L
Luo Tao 已提交
2493 2494 2495 2496

    .. code-block:: text

       x is a 1-level LoDTensor:
2497
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2498 2499 2500 2501 2502
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2503
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2504
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2505

L
Luo Tao 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2515

Y
yangyaming 已提交
2516
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2517 2518 2519
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2520 2521 2522
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2523 2524 2525 2526
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2527
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2528 2529 2530 2531 2532
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2533

H
haowang101779990 已提交
2534
              - Case:
Y
Yibing Liu 已提交
2535

2536
            Given the input Variable **input**:
2537

2538 2539 2540
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2541

2542
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2543

2544
            the output Variable will be
2545

2546 2547 2548
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2549

M
minqiyang 已提交
2550
    Note:
H
haowang101779990 已提交
2551
          The first dimension size of **input**, **offset** and **length**
2552
          should be equal. The **offset** should start from 0.
2553

Y
Yibing Liu 已提交
2554
    Args:
2555
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2556
                         sequences.
Y
Yibing Liu 已提交
2557 2558 2559 2560 2561 2562
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2563
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2574
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2575 2576
                                                   length=length)
    """
L
lujun 已提交
2577
    assert not in_dygraph_mode(), (
2578
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2579 2580
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2581
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2596
@templatedoc()
Y
Yu Yang 已提交
2597
def pool2d(input,
C
chengduoZH 已提交
2598 2599
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2600 2601
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2602
           global_pooling=False,
C
chengduoZH 已提交
2603
           use_cudnn=True,
2604
           ceil_mode=False,
2605 2606
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2607
    """
F
fengjiayi 已提交
2608
    ${comment}
2609 2610

    Args:
2611 2612 2613
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2614
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2615
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2616 2617
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2618
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2619 2620 2621 2622 2623 2624
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2625 2626 2627
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2628
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2629
                        layer will be named automatically.
2630
        exclusive (bool): Whether to exclude padding points in average pooling
2631
                          mode, default is true
F
fengjiayi 已提交
2632

2633
    Returns:
F
fengjiayi 已提交
2634
        Variable: The pooling result.
F
fengjiayi 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2647
          pool2d = fluid.layers.pool2d(
2648 2649 2650 2651
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2652
                            global_pooling=False)
Y
Yu Yang 已提交
2653 2654 2655 2656 2657
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2658

C
chengduoZH 已提交
2659 2660 2661 2662 2663
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2664 2665 2666 2667
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2668 2669
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2670

C
Add doc  
chengduoZH 已提交
2671
    l_type = 'pool2d'
2672 2673

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2674
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2675
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2676 2677

    helper.append_op(
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2689 2690
            "use_mkldnn": False,
            "exclusive": exclusive,
2691 2692 2693 2694 2695
        })

    return pool_out


D
dengkaipeng 已提交
2696
@templatedoc()
2697 2698 2699 2700 2701 2702 2703 2704
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2705 2706
           name=None,
           exclusive=True):
2707
    """
2708
    ${comment}
2709 2710

    Args:
D
dengkaipeng 已提交
2711 2712 2713 2714 2715
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2716 2717 2718 2719 2720
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2721 2722 2723 2724 2725 2726 2727
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2728
        exclusive (bool): Whether to exclude padding points in average pooling
2729
                          mode, default is true
2730

2731
    Returns:
2732
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2746 2747 2748 2749 2750
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2751

C
chengduoZH 已提交
2752 2753 2754 2755 2756
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2757 2758 2759
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2760

C
chengduoZH 已提交
2761 2762
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2763

2764 2765
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2766
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2767
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2768 2769

    helper.append_op(
2770
        type=l_type,
Y
Yu Yang 已提交
2771 2772 2773 2774 2775 2776 2777
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2778
            "paddings": pool_padding,
2779
            "use_cudnn": use_cudnn,
2780
            "ceil_mode": ceil_mode,
2781 2782
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2783 2784 2785 2786 2787
        })

    return pool_out


2788 2789 2790 2791 2792 2793 2794
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2795 2796 2797 2798 2799 2800 2801
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2816 2817 2818 2819 2820 2821 2822 2823 2824

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2825 2826
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2841
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2842
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2843
          # of input data into m * n grids averagely and performs poolings in each
2844 2845
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2846
          #
2847 2848 2849 2850 2851 2852 2853 2854
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2855 2856
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2857
          pool_out = fluid.layers.adaptive_pool2d(
2858 2859
                            input=data,
                            pool_size=[3, 3],
2860
                            pool_type='avg')
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2871
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2897
    return (pool_out, mask) if require_index else pool_out
2898 2899 2900 2901 2902 2903 2904 2905 2906


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2907 2908 2909 2910 2911 2912 2913
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2914

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2932 2933 2934

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2935 2936 2937
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2938
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2939
            it must contain three integers, (Depth, Height, Width).
2940
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2941 2942
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2957 2958
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2959
          # of input data into l * m * n grids averagely and performs poolings in each
2960 2961
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2962
          #
2963 2964 2965 2966 2967 2968 2969 2970 2971
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2972
          #                 output[:, :, i, j, k] =
2973 2974
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2975 2976 2977

          import paddle.fluid as fluid

2978
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2979 2980
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2981
                            input=data,
D
dengkaipeng 已提交
2982
                            pool_size=[3, 3, 3],
2983
                            pool_type='avg')
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2994
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3020
    return (pool_out, mask) if require_index else pool_out
3021 3022


Y
Yu Yang 已提交
3023 3024 3025 3026 3027 3028 3029
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3030
               data_layout='NCHW',
Y
Yang Yang 已提交
3031
               in_place=False,
3032 3033
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3034
               moving_variance_name=None,
3035
               do_model_average_for_mean_and_var=False,
3036 3037
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3038
    """
Q
qiaolongfei 已提交
3039 3040 3041 3042
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3043

Q
qiaolongfei 已提交
3044
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3045

Q
qiaolongfei 已提交
3046 3047
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3048 3049 3050
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3077
    Args:
Q
qingqing01 已提交
3078
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3079
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3089 3090 3091 3092 3093 3094 3095 3096
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3097
        data_layout(string, default NCHW): NCHW|NHWC
3098
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3099 3100 3101 3102
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3103
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3104
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3105 3106 3107 3108 3109
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3110 3111

    Returns:
Q
qiaolongfei 已提交
3112
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3113 3114 3115 3116 3117

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3118
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3119 3120
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3121
    """
C
chengduo 已提交
3122
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3123 3124 3125
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3126 3127 3128 3129
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3148
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3149

3150 3151
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3152 3153 3154
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3155
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3156
        shape=param_shape,
W
Wu Yi 已提交
3157
        dtype=dtype)
3158 3159 3160 3161 3162 3163
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3164
            trainable=False,
W
wanghaoshuang 已提交
3165
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3166
        shape=param_shape,
W
Wu Yi 已提交
3167
        dtype=dtype)
3168
    variance.stop_gradient = True
Y
Yu Yang 已提交
3169 3170 3171 3172 3173 3174

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3175 3176 3177 3178
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3179

X
Xin Pan 已提交
3180 3181
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3199 3200 3201 3202
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3203
            "data_layout": data_layout,
X
Xin Pan 已提交
3204
            "use_mkldnn": False,
3205 3206
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3207
        })
Y
Yu Yang 已提交
3208 3209 3210 3211

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3263 3264
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3265

3266 3267
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3333
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3334 3335 3336 3337

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3338
@templatedoc()
G
guosheng 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3349
    ${comment}
G
guosheng 已提交
3350 3351 3352

    The formula is as follows:

Y
yuyang18 已提交
3353
    ..  math::
G
guosheng 已提交
3354 3355 3356 3357 3358 3359 3360

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3361 3362 3363 3364 3365 3366 3367 3368
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3369

G
guosheng 已提交
3370 3371
    Args:
        input(Variable): The input tensor variable.
3372
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3373
            normalization. Default True.
3374
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3375 3376
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3377
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3378
            Default 1.
3379
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3380
            division by zero. Default 1e-05.
G
guosheng 已提交
3381
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3382 3383
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3384 3385
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3386
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3387 3388
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3389
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3390
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3391
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3392 3393 3394
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3395 3396

    Returns:
Y
yuyang18 已提交
3397
        ${y_comment}
G
guosheng 已提交
3398 3399 3400

    Examples:

Y
yuyang18 已提交
3401 3402 3403
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3404
    """
L
lujun 已提交
3405
    assert in_dygraph_mode(
L
lujun 已提交
3406
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3421
    if shift:
G
guosheng 已提交
3422 3423 3424 3425 3426 3427
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3428 3429 3430 3431 3432
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3460
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3508 3509
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3527
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3528 3529 3530
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3531
    This layer calculates the spectral normalization value of weight parameters of
3532
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3533
    Parameters. Calculations are showed as follows.
3534

D
dengkaipeng 已提交
3535 3536 3537
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3538
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3551
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3552 3553 3554 3555

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3556

D
dengkaipeng 已提交
3557
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3558 3559
                

D
dengkaipeng 已提交
3560 3561 3562 3563
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3564 3565 3566
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3567 3568 3569
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3570
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3571 3572

    Examples:
K
Kaipeng Deng 已提交
3573
       .. code-block:: python
D
dengkaipeng 已提交
3574

K
Kaipeng Deng 已提交
3575 3576 3577 3578 3579
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3580 3581
    """
    helper = LayerHelper('spectral_norm', **locals())
3582
    dtype = weight.dtype
D
dengkaipeng 已提交
3583 3584 3585

    # create intput and parameters
    inputs = {'Weight': weight}
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3604 3605

    # create output
3606
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3607 3608

    helper.append_op(
3609
        type="spectral_norm",
D
Dun 已提交
3610
        inputs=inputs,
3611 3612 3613 3614 3615 3616
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3617

3618
    return out
D
Dun 已提交
3619 3620


Y
Yu Yang 已提交
3621 3622 3623 3624
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3625 3626 3627
                     padding=0,
                     stride=1,
                     dilation=1,
3628
                     groups=None,
C
caoying03 已提交
3629
                     param_attr=None,
3630
                     bias_attr=None,
C
chengduoZH 已提交
3631
                     use_cudnn=True,
3632
                     act=None,
C
caoying03 已提交
3633
                     name=None):
Y
Yu Yang 已提交
3634
    """
3635 3636 3637 3638 3639 3640 3641 3642
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3643 3644
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3645 3646 3647
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3648 3649 3650 3651 3652

    For each input :math:`X`, the equation is:

    .. math::

3653
        Out = \sigma (W \\ast X + b)
3654

3655
    Where:
3656 3657 3658

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3659 3660 3661 3662
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3663

3664 3665 3666 3667
    Example:

        - Input:

3668
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3669

3670
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3671 3672 3673

        - Output:

3674
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3675 3676

        Where
Y
Yu Yang 已提交
3677

3678 3679
        .. math::

3680 3681
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3682 3683
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3684 3685

    Args:
3686 3687 3688 3689
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3690 3691 3692 3693
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3722
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3723 3724 3725
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3726
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3727
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3728 3729

    Returns:
3730
        Variable: The tensor variable storing the convolution transpose result.
3731 3732

    Raises:
3733 3734
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3735 3736 3737 3738

    Examples:
       .. code-block:: python

3739 3740
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3741
    """
C
chengduo 已提交
3742
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3743 3744 3745 3746 3747 3748 3749 3750
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3751 3752 3753
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3754 3755 3756
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3757

C
chengduoZH 已提交
3758 3759
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3760

Y
Yu Yang 已提交
3761 3762 3763 3764 3765
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3766

Y
Yu Yang 已提交
3767 3768
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3769

C
chengduoZH 已提交
3770
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3771
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3772
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3773
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3774
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3775 3776 3777
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3778

3779 3780 3781 3782 3783 3784 3785
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3786
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3787
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3788

Y
Yu Yang 已提交
3789 3790 3791
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3792
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3793
    helper.append_op(
3794
        type=op_type,
Y
Yu Yang 已提交
3795 3796
        inputs={'Input': [input],
                'Filter': [img_filter]},
3797
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3798
        attrs={
3799
            'output_size': output_size,
3800 3801 3802 3803 3804
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3805 3806
        })

3807 3808 3809
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3810 3811


3812
def conv3d_transpose(input,
Y
Yu Yang 已提交
3813 3814 3815
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3816 3817 3818
                     padding=0,
                     stride=1,
                     dilation=1,
3819
                     groups=None,
C
caoying03 已提交
3820
                     param_attr=None,
3821
                     bias_attr=None,
C
chengduoZH 已提交
3822
                     use_cudnn=True,
3823
                     act=None,
C
caoying03 已提交
3824
                     name=None):
Y
Yu Yang 已提交
3825
    """
3826
    **Convlution3D transpose layer**
3827

3828
    The convolution3D transpose layer calculates the output based on the input,
3829
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3830 3831 3832 3833 3834 3835
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3836 3837 3838
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3839 3840 3841 3842 3843

    For each input :math:`X`, the equation is:

    .. math::

3844
        Out = \sigma (W \\ast X + b)
3845 3846 3847

    In the above equation:

3848 3849
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3850 3851 3852 3853
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3854

3855 3856 3857 3858
    Example:

        - Input:

3859
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3860

3861
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3862 3863 3864

        - Output:

3865
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3866 3867

        Where
Y
Yu Yang 已提交
3868

3869 3870
        .. math::

3871 3872 3873
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3874 3875

    Args:
3876
        input(Variable): The input image with [N, C, D, H, W] format.
3877 3878 3879
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3880
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3881 3882
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3883
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3884 3885 3886
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3887 3888
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3889
        stride(int|tuple): The stride size. If stride is a tuple, it must
3890 3891
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3892
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3893 3894 3895
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3896 3897 3898 3899 3900
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3910 3911
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3912 3913
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3914 3915
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3916 3917

    Returns:
3918
        Variable: The tensor variable storing the convolution transpose result.
3919 3920

    Raises:
3921 3922
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3923 3924 3925 3926

    Examples:
       .. code-block:: python

3927 3928
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3929
    """
C
chengduo 已提交
3930
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3931 3932
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3933
    if not isinstance(input, Variable):
3934
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3935 3936
    input_channel = input.shape[1]

3937 3938 3939
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3940

C
chengduoZH 已提交
3941 3942 3943
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3944 3945 3946 3947 3948 3949
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3950 3951 3952
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3953

3954
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3955
                         padding[0] - 1) // dilation[0] + 1
3956
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3957
                         padding[1] - 1) // dilation[1] + 1
3958
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3959
                         padding[2] - 1) // dilation[2] + 1
3960
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3961
    else:
3962 3963
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3964

3965
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3966
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3967 3968 3969
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3970
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3971
    helper.append_op(
3972
        type=l_type,
Y
Yu Yang 已提交
3973 3974
        inputs={'Input': [input],
                'Filter': [img_filter]},
3975
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3976 3977 3978 3979
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3980
            'groups': groups,
C
chengduoZH 已提交
3981 3982
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3983

3984 3985
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3986
    return out
Y
yangyaming 已提交
3987 3988


Y
yangyaming 已提交
3989
def sequence_expand(x, y, ref_level=-1, name=None):
3990
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3991 3992 3993 3994
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3995 3996 3997 3998 3999

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4000
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4001
                x.data = [[a], [b], [c], [d]]
4002 4003 4004
                x.dims = [4, 1]

            y is a LoDTensor:
4005 4006
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4007

Y
yangyaming 已提交
4008
            ref_level: 0
4009

Y
yangyaming 已提交
4010
            then output is a 1-level LoDTensor:
4011
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4012
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4013 4014 4015 4016
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4017
                x.data = [[a], [b], [c]]
4018 4019 4020
                x.dims = [3, 1]

            y is a LoDTensor:
4021
                y.lod = [[2, 0, 3]]
4022

Y
yangyaming 已提交
4023
            ref_level: -1
4024

Y
yangyaming 已提交
4025 4026 4027
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4028 4029 4030
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4031 4032
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4033
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4034
                        will be named automatically.
4035 4036 4037 4038 4039 4040

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4041 4042
	
            import paddle.fluid.layers as layers
4043 4044 4045
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4046
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4047
    """
L
lujun 已提交
4048
    assert not in_dygraph_mode(), (
4049
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4050
    helper = LayerHelper('sequence_expand', input=x, **locals())
4051
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4052
    tmp = helper.create_variable_for_type_inference(dtype)
4053
    helper.append_op(
Y
yangyaming 已提交
4054 4055 4056 4057 4058
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4059
    return tmp
4060 4061


C
chengduo 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4110
            import paddle.fluid.layers as layers
C
chengduo 已提交
4111 4112 4113 4114 4115 4116

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4117
    assert not in_dygraph_mode(), (
4118
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4119 4120
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4121
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4122 4123 4124 4125 4126 4127 4128 4129
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4130
@templatedoc()
4131
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4132 4133 4134 4135 4136
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4137 4138 4139
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4140
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4141 4142 4143 4144
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4145 4146 4147
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4148

F
fengjiayi 已提交
4149
    Returns:
M
minqiyang 已提交
4150
        Variable: The padded sequence batch and the original lengths before
4151
                  padding. All sequences has the same length.
M
minqiyang 已提交
4152

F
fengjiayi 已提交
4153 4154 4155 4156 4157 4158 4159
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4160
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4161
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4162 4163 4164
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4165
    assert not in_dygraph_mode(), (
4166
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4167 4168
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4169 4170
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4171 4172 4173 4174

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4175 4176 4177 4178 4179 4180
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4181 4182
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4183
        attrs={'padded_length': maxlen})
4184
    return out, length
F
fengjiayi 已提交
4185 4186


4187
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4188
    """
4189
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4190

4191 4192
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4202 4203 4204
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4205
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4206 4207 4208 4209 4210 4211

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4212
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4213 4214 4215 4216 4217 4218

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4219 4220
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4233
    assert not in_dygraph_mode(), (
4234
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4235 4236
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4237
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4249 4250 4251 4252 4253 4254 4255
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4256
                is_accumulated=True,
4257 4258
                name=None,
                return_parent_idx=False):
4259
    """
4260 4261
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4262 4263 4264

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4265 4266

    This layer does the search in beams for one time step. Specifically, it
4267 4268 4269
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4281 4282 4283 4284

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4285

4286
    Args:
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4310 4311
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4312 4313
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4314 4315 4316 4317
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4318

4319
    Returns:
4320 4321 4322 4323
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4324 4325 4326 4327

    Examples:
        .. code-block:: python

4328 4329
            import paddle.fluid as fluid

4330 4331 4332
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4345
                axis=0)
4346
            selected_ids, selected_scores = fluid.layers.beam_search(
4347 4348 4349 4350 4351 4352 4353
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4354
    helper = LayerHelper('beam_search', **locals())
4355 4356 4357 4358 4359 4360
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4361

X
Xin Pan 已提交
4362 4363 4364
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4365 4366 4367 4368 4369
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4370 4371 4372

    helper.append_op(
        type='beam_search',
4373
        inputs=inputs,
Q
Qiao Longfei 已提交
4374 4375 4376
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4377
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4378 4379 4380 4381 4382 4383
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4384
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4385
        })
4386 4387 4388 4389
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4390 4391


4392 4393 4394 4395 4396 4397 4398
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4399

4400 4401 4402 4403 4404 4405 4406 4407 4408
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4409

4410 4411 4412 4413 4414 4415
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4416

4417 4418
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4419

4420 4421
            import paddle.fluid as fluid

4422 4423
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4424 4425 4426
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4427 4428 4429
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4430 4431
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4447 4448 4449 4450
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4451
              param_attr=None,
C
caoying03 已提交
4452 4453
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4454 4455 4456 4457
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4458
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4459

4460
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4461

4462
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4463

4464
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4465 4466 4467

            h_t & = o_t tanh(c_t)

4468 4469 4470 4471 4472 4473
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4474 4475 4476

        .. math::

4477
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4478 4479 4480 4481 4482 4483 4484 4485

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4486
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4487 4488

    Args:
Y
yangyaming 已提交
4489 4490 4491 4492 4493 4494
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4495
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4508 4509
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4510 4511

    Returns:
Y
yangyaming 已提交
4512
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4513 4514

    Raises:
4515 4516 4517 4518
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4519 4520 4521 4522 4523

    Examples:

        .. code-block:: python

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4551
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4552 4553 4554 4555
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4556 4557
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4558 4559 4560
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4561
    size = cell_t_prev.shape[1]
4562
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4563 4564
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4565
                param_attr=param_attr,
4566
                bias_attr=bias_attr)
Y
yangyaming 已提交
4567
    dtype = x_t.dtype
X
Xin Pan 已提交
4568 4569
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4579
    return h, c
G
guosheng 已提交
4580 4581


C
caoying03 已提交
4582
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4583
    """
Y
yangyaming 已提交
4584
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4585 4586 4587

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4588
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4589 4590
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4591 4592
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4593
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4594
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4595
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4596 4597
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4598 4599 4600

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4601

G
guosheng 已提交
4602 4603 4604
    Examples:
        .. code-block:: python

4605
            import paddle.fluid as fluid
G
guosheng 已提交
4606 4607 4608
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4609
            # Each example is followed by the corresponding output tensor.
4610
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4611 4612 4613 4614
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4615

4616
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4617 4618
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4619
            # Each example is followed by the corresponding output tensor.
4620 4621 4622
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4623

G
guosheng 已提交
4624 4625
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4626
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4627 4628
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4629 4630 4631 4632 4633
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4634
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4635 4636 4637 4638
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4639 4640


C
caoying03 已提交
4641
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4642
    """
Y
Yibing Liu 已提交
4643
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4644 4645 4646

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4647 4648 4649
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4650
            must be in the range :math:`[-rank(input), rank(input))`. If
4651
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4652
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4653 4654
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4655
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4656
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4657
                       will be named automatically.
G
guosheng 已提交
4658 4659

    Returns:
Y
Yibing Liu 已提交
4660
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4661

G
guosheng 已提交
4662 4663 4664
    Examples:
        .. code-block:: python

4665
            import paddle.fluid as fluid
G
guosheng 已提交
4666 4667 4668 4669
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4670
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4671 4672 4673
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4674
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4675

4676
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4677 4678 4679
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4680 4681 4682
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4683 4684
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4685
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4686 4687
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4688 4689 4690 4691 4692
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4693
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4694 4695 4696 4697
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4698 4699


C
caoying03 已提交
4700
def reduce_max(input, dim=None, keep_dim=False, name=None):
4701
    """
Y
yangyaming 已提交
4702
    Computes the maximum of tensor elements over the given dimension.
4703 4704 4705

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4706
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4707 4708 4709
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4710
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4711 4712
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4713
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4714 4715
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4716 4717 4718

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4719

4720 4721 4722
    Examples:
        .. code-block:: python

4723
            import paddle.fluid as fluid
4724 4725 4726 4727
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4728
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4729 4730 4731 4732
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4733

4734
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4735 4736 4737
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4738 4739 4740
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4741 4742
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4743
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4744 4745
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4746 4747 4748 4749 4750
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4751
            'dim': dim if dim != None else [0],
4752 4753 4754 4755 4756 4757
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4758
def reduce_min(input, dim=None, keep_dim=False, name=None):
4759
    """
Y
yangyaming 已提交
4760
    Computes the minimum of tensor elements over the given dimension.
4761 4762 4763

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4764
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4765 4766 4767
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4768
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4769 4770
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4771
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4772 4773
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4774 4775 4776

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4777

4778 4779 4780
    Examples:
        .. code-block:: python

4781
            import paddle.fluid as fluid
4782 4783 4784 4785
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4786
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4787 4788 4789 4790
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4791

4792
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4793 4794 4795
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4796 4797 4798
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4799 4800
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4801
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4802 4803
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4804 4805 4806 4807 4808
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4809
            'dim': dim if dim != None else [0],
4810 4811 4812 4813
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4814 4815


4816 4817 4818 4819 4820 4821
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4822
        dim (list|int|None): The dimensions along which the product is performed. If
4823 4824
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4825 4826
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4827 4828 4829
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4830
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4831
            layer will be named automatically.
4832 4833 4834 4835 4836 4837 4838

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4839
            import paddle.fluid as fluid
4840 4841 4842 4843
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4844
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4845 4846 4847
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4848
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4849
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4850

4851
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4852 4853 4854
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4855 4856 4857
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4858 4859
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4860
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4861 4862
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4863 4864 4865 4866 4867
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4868
            'dim': dim if dim != None else [0],
4869 4870 4871 4872 4873 4874
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4875 4876
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4877
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4897
        
Z
zhoukunsheng 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4927
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4947

Z
zhoukunsheng 已提交
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4970 4971 4972 4973 4974
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4975
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4976
    """
C
caoying03 已提交
4977
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4978 4979 4980

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4981 4982 4983 4984 4985
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4986
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4987
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4988
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4989 4990
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4991 4992

    Returns:
D
dzhwinter 已提交
4993
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4994 4995 4996 4997

    Examples:
        .. code-block:: python

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5013 5014 5015 5016 5017 5018 5019 5020
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5021
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5022 5023 5024
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5025
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5048
    .. math::
5049 5050

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5051 5052 5053 5054 5055

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5056
        x(Variable|list): The input tensor to l2_normalize layer.
5057
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5058 5059
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5060
        epsilon(float): The epsilon value is used to avoid division by zero, \
5061
            the defalut value is 1e-12.
5062
        name(str|None): A name for this layer(optional). If set None, the layer \
5063
            will be named automatically.
C
caoying03 已提交
5064 5065

    Returns:
5066
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5067 5068

    Examples:
5069

C
caoying03 已提交
5070 5071
        .. code-block:: python

5072 5073 5074 5075
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5076 5077
    """

F
fengjiayi 已提交
5078 5079
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5080 5081
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5082 5083
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5084
    helper.append_op(
5085 5086 5087 5088
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5089
        attrs={
5090 5091
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5092 5093
        })
    return out
5094 5095


S
sneaxiy 已提交
5096
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5097
    """
Y
ying 已提交
5098 5099 5100 5101
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5102

C
chengduoZH 已提交
5103
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5104
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5105

5106 5107 5108 5109 5110
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5111
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5112

C
chengduoZH 已提交
5113
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5114
      performs in the following way.
G
guosheng 已提交
5115

5116
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5117
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5118
        last two dimensions and a batched matrix multiply supporting broadcast
5119
        applies on the two tensors.
G
guosheng 已提交
5120

Y
ying 已提交
5121 5122
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5123
    removed after matrix multiplication.
G
guosheng 已提交
5124 5125 5126

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5127 5128 5129
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5130
        alpha (float): The scale of output. Default 1.0.
5131
        name(str|None): A name for this layer(optional). If set None, the layer
5132
            will be named automatically.
G
guosheng 已提交
5133 5134

    Returns:
5135
        Variable: The product Tensor variable.
G
guosheng 已提交
5136

G
guosheng 已提交
5137 5138 5139
    Examples:
        .. code-block:: python

5140
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5141
            # x: [B, ..., M, K], y: [B, ..., K, N]
5142
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5143

5144
            # x: [B, M, K], y: [B, K, N]
5145
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5146

5147
            # x: [B, M, K], y: [K, N]
5148
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5149

5150
            # x: [M, K], y: [K, N]
5151
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5152 5153

            # x: [B, M, K], y: [K]
5154
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5155

5156
            # x: [K], y: [K]
5157
            # fluid.layers.matmul(x, y)  # out: [1]
5158

Y
ying 已提交
5159
            # x: [M], y: [N]
5160 5161 5162 5163 5164
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5165
    """
Y
ying 已提交
5166 5167 5168 5169 5170 5171 5172

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5173
            y_shape = y_shape + [1]
Y
ying 已提交
5174 5175 5176 5177 5178 5179 5180

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5181 5182
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5183

C
chengduo 已提交
5184
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5185
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5186 5187 5188
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5189
                if dim_x != y_shape[i]:
C
chengduo 已提交
5190 5191
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5192 5193 5194

    __check_input(x, y)

5195
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5196
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5197
    helper.append_op(
5198 5199 5200 5201
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5202 5203 5204
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5205
            'alpha': float(alpha),
S
sneaxiy 已提交
5206
        })
5207
    return out
5208 5209


5210
def topk(input, k, name=None):
Q
qingqing01 已提交
5211 5212 5213 5214
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5215
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5216 5217 5218 5219 5220 5221
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5243 5244 5245
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5246
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5247
                 of input.
5248
        name(str|None): A name for this layer(optional). If set None, the layer
5249
                       will be named automatically.
F
fengjiayi 已提交
5250
                       Default: None
Q
qingqing01 已提交
5251 5252

    Returns:
5253 5254 5255
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5256
        within the last dimension of input.
Q
qingqing01 已提交
5257

F
fengjiayi 已提交
5258 5259
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5260 5261 5262 5263

    Examples:
        .. code-block:: python

5264 5265
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5266 5267 5268
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5269 5270
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5271 5272 5273 5274 5275 5276
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5277 5278
    helper.append_op(
        type="top_k",
W
whs 已提交
5279
        inputs=inputs,
Q
qingqing01 已提交
5280 5281
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5282
        attrs=attrs)
Q
qingqing01 已提交
5283 5284 5285 5286 5287
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5288
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5289
    """
Y
ying 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5299

Y
ying 已提交
5300
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5301

5302
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5303 5304
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5305
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5306

5307
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5308 5309
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5310

5311 5312 5313
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5314
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5315
                          the length of reference string.
5316
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5317
                                     calculating edit distance.
5318
        name (str): The name of this layer. It is optional.
5319

W
wanghaoshuang 已提交
5320
    Returns:
W
wanghaoshuang 已提交
5321
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5322 5323 5324 5325

    Examples:
        .. code-block:: python

T
tink2123 已提交
5326 5327
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5328
            cost = fluid.layers.edit_distance(input=x,label=y)
5329
    """
5330
    helper = LayerHelper("edit_distance", **locals())
5331

5332
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5333
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5334 5335
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5336 5337 5338 5339 5340

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5341
            attrs={"tokens": ignored_tokens})
5342 5343 5344 5345 5346
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5347
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5348
            attrs={"tokens": ignored_tokens})
5349 5350
        label = erased_label

5351
    # edit distance op
X
Xin Pan 已提交
5352 5353
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5354 5355 5356 5357
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5358 5359
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5360 5361
        attrs={"normalized": normalized})

5362
    return edit_distance_out, sequence_num
5363 5364 5365 5366 5367


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5368

Y
ying 已提交
5369 5370 5371 5372
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5390
        input.lod = [[4, 4]]
M
minqiyang 已提交
5391

W
whs 已提交
5392
        Computation:
5393

W
whs 已提交
5394 5395 5396 5397 5398 5399
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5400 5401 5402 5403 5404

        output.data = [[2],
                       [1],
                       [3]]

5405
        output.lod = [[2, 1]]
5406

W
whs 已提交
5407

5408 5409
    Args:

Y
ying 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5419
        name (str): The name of this layer. It is optional.
5420 5421

    Returns:
H
haowang101779990 已提交
5422 5423 5424
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5425
                  LoD [[]] and dims [1, 1].
5426 5427 5428 5429

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5430
            import paddle.fluid as fluid
5431 5432
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5433
    """
5434
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5435
    _, topk_indices = topk(input, k=1)
5436 5437

    # ctc align op
X
Xin Pan 已提交
5438
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5439 5440 5441
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5442
        outputs={"Output": [ctc_out]},
5443 5444
        attrs={"merge_repeated": True,
               "blank": blank})
5445
    return ctc_out
5446 5447


W
Wu Yi 已提交
5448
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5449
    """
5450 5451
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5452
    to compute Connectionist Temporal Classification (CTC) loss.
5453 5454
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5455 5456 5457
    input tensor.

    Args:
5458
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5459 5460 5461 5462
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5463
       label (Variable): The ground truth of variable-length sequence,
5464 5465 5466
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5467 5468
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5469 5470 5471
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5472
         follewed by a mean_op.
W
Wu Yi 已提交
5473
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5474 5475

    Returns:
5476 5477
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5478 5479

    Examples:
5480

W
wanghaoshuang 已提交
5481
        .. code-block:: python
5482

B
Bai Yifan 已提交
5483 5484 5485 5486 5487
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5488
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5489 5490

    """
F
fengjiayi 已提交
5491
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5492 5493
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5494 5495 5496 5497 5498 5499
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5500 5501 5502 5503 5504
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5505
    return loss_out
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5521 5522 5523
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5524 5525 5526 5527 5528
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5529

5530
            out.lod  = [[0, 1, 3]]
5531 5532 5533 5534

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5535 5536 5537 5538 5539 5540 5541
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5542 5543 5544

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5545 5546

    Returns:
5547

5548 5549 5550 5551 5552
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5553 5554 5555
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5556
    """
L
lujun 已提交
5557
    assert not in_dygraph_mode(), (
5558
        "sequence layer is not supported in dygraph mode yet.")
5559
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5560
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5561 5562 5563 5564 5565 5566
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5567 5568


5569 5570 5571 5572
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5573 5574 5575 5576 5577 5578
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5579
        num_neg_samples=None,
5580 5581 5582
        name=None,
        sampler="uniform",
        custom_dist=None,
5583 5584
        seed=0,
        is_sparse=False):
5585 5586 5587 5588 5589 5590 5591
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5592 5593
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5594
            sample is 1.0.
C
chengduo 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5604
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5605 5606
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5607 5608 5609
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5610
        custom_dist (float[]): A float[] with size=num_total_classes.
5611 5612 5613 5614
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5615
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5616

5617
    Returns:
Y
Yibing Liu 已提交
5618 5619 5620 5621 5622 5623
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5624
	    import numpy as np
Y
Yibing Liu 已提交
5625

Y
Yibing Liu 已提交
5626 5627 5628 5629 5630 5631 5632 5633
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5634

Y
Yibing Liu 已提交
5635 5636 5637 5638
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5639

Y
Yibing Liu 已提交
5640 5641 5642
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5643

Y
Yibing Liu 已提交
5644 5645 5646 5647
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5648

Y
Yibing Liu 已提交
5649 5650 5651 5652 5653 5654 5655 5656
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5657
    """
Y
Yang Yu 已提交
5658 5659 5660
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5661 5662

    dim = input.shape[1]
Y
Yang Yu 已提交
5663 5664 5665 5666 5667 5668
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5669
    inputs = {}
C
chengduo 已提交
5670 5671 5672 5673 5674 5675 5676
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5677 5678 5679
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5680

5681 5682 5683 5684
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5685 5686 5687 5688 5689 5690 5691

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5692 5693
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5694
        custom_dist_len = num_total_classes
5695 5696 5697 5698 5699 5700
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5701
            if normal_prob - 1.0 > 0:
5702
                bigs.append((i, normal_prob))
5703
            elif 1.0 - normal_prob > 0:
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5719
            if big_left - 1.0 > 0:
5720
                bigs.append((big_idx, big_left))
5721
            elif 1.0 - big_left > 0:
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5751 5752 5753 5754
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5755 5756 5757 5758 5759
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5760 5761 5762 5763
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5764

Y
Yang Yu 已提交
5765 5766
    attrs = {
        'num_total_classes': int(num_total_classes),
5767 5768
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5769
        'sampler': sampler,
5770 5771
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5772
    }
Y
Yang Yu 已提交
5773 5774 5775

    helper.append_op(
        type='nce',
C
chengduo 已提交
5776
        inputs=inputs,
Y
Yang Yu 已提交
5777 5778 5779 5780 5781 5782
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5783
    return cost / (num_neg_samples + 1)
5784 5785


C
chengduo 已提交
5786 5787
def hsigmoid(input,
             label,
5788
             num_classes,
C
chengduo 已提交
5789 5790
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5791
             name=None,
5792 5793 5794
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5795
             is_sparse=False):
W
weixing02 已提交
5796 5797
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5798
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5799
    complete binary tree, or you can use is_custom to pass your own tree to
5800
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5801 5802 5803 5804 5805 5806
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5807
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5808
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5809

5810 5811
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5812 5813 5814 5815
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5816
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5817
       related to the same batch of inputs.
5818

W
weixing02 已提交
5819
    Args:
M
minqiyang 已提交
5820
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5821 5822 5823 5824
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5825 5826
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5827
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5839
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5840
            it should be in leaf -> root order
M
minqiyang 已提交
5841 5842 5843
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5844
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5845
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5846
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5847
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5848
             of W and input will be sparse.
W
weixing02 已提交
5849 5850

    Returns:
J
JiabinYang 已提交
5851
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5852 5853 5854 5855 5856

    Examples:

        .. code-block:: python

5857
            import paddle.fluid as fluid
G
guosheng 已提交
5858 5859 5860
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5861 5862 5863 5864
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5865 5866
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5867
    dim = input.shape[1]
5868
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5869 5870 5871
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5872 5873 5874 5875 5876 5877 5878 5879 5880
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5881
    if (is_custom) and (path_code is None):
5882
        raise ValueError("path_code should not be None with custom tree")
5883
    elif (is_custom) and (path_table is None):
5884
        raise ValueError("path_table should not be None with custom tree")
5885
    elif (is_custom) and (num_classes is None):
5886
        raise ValueError("num_classes should not be None with custom tree")
5887 5888 5889
    else:
        pass

J
JiabinYang 已提交
5890
    weights = None
5891 5892 5893 5894
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5895
    if not is_custom:
J
JiabinYang 已提交
5896 5897 5898 5899 5900 5901 5902 5903
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5904
            shape=[num_classes, dim],
J
JiabinYang 已提交
5905 5906
            is_bias=False,
            dtype=input.dtype)
5907 5908 5909
    inputs = {
        "X": input,
        "W": weights,
5910
        "PathTable": path_table,
5911
        "PathCode": path_code,
5912 5913
        "Label": label
    }
W
weixing02 已提交
5914
    if helper.bias_attr:
5915
        if not is_custom:
J
JiabinYang 已提交
5916 5917
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5918
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5919 5920 5921 5922 5923 5924
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5925
                shape=[num_classes, 1],
J
JiabinYang 已提交
5926 5927 5928
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5929 5930
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5931
        inputs=inputs,
W
weixing02 已提交
5932
        outputs={"Out": out,
5933 5934 5935 5936 5937 5938 5939
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5940 5941 5942
    return out


Y
fix ci.  
ying 已提交
5943
def transpose(x, perm, name=None):
Y
ying 已提交
5944 5945 5946 5947 5948 5949 5950
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5951 5952 5953
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5954 5955 5956 5957 5958 5959 5960

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5961
            # use append_batch_size=False to avoid prepending extra
5962
            # batch size in shape
5963
            import paddle.fluid as fluid
5964
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5965
                            dtype='float32', append_batch_size=False)
5966
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5967 5968
    """

Y
fix ci.  
ying 已提交
5969
    if len(perm) != len(x.shape):
Y
ying 已提交
5970 5971 5972
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5973 5974 5975 5976 5977 5978
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5979 5980

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5981 5982
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5983
    helper.append_op(
5984
        type='transpose2',
Y
fix ci.  
ying 已提交
5985
        inputs={'X': [x]},
5986 5987
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5988 5989
        attrs={'axis': perm})
    return out
5990 5991


5992 5993 5994 5995 5996 5997 5998
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5999
    """
6000 6001 6002 6003 6004 6005 6006
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6035 6036 6037 6038 6039 6040 6041 6042 6043
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6044 6045 6046
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6047 6048 6049 6050 6051
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6079 6080 6081
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6094
            output.dims = {8, 8}
6095

6096
            output.lod = [[4, 4]]
6097

T
Tink_Y 已提交
6098
    Examples:
6099 6100 6101

        .. code-block:: python

B
Bai Yifan 已提交
6102 6103 6104
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6105
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6106 6107
                input=data, stride=[1, 1], filter_size=[2, 2])

6108 6109

    """
L
lujun 已提交
6110
    assert not in_dygraph_mode(), (
6111
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6122
    inputs = {"X": input}
6123
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6124 6125 6126 6127 6128
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6129
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6130
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6131
    helper.append_op(
6132
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6133
    return out
6134 6135


Y
yuyang18 已提交
6136
@templatedoc()
6137
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6138 6139
    """
    ${comment}
6140 6141

    Args:
Y
yuyang18 已提交
6142
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6143 6144
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6145 6146 6147 6148 6149
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6150
        ${out_comment}.
6151 6152

    Examples:
Y
yuyang18 已提交
6153 6154 6155 6156
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6157 6158 6159 6160 6161 6162
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6163
    out = helper.create_variable_for_type_inference(dtype)
6164 6165 6166 6167 6168
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6169
    return helper.append_activation(out)
6170 6171


Y
yuyang18 已提交
6172
@templatedoc()
6173 6174
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6175 6176
    ${comment}

L
lujun 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6220 6221

    Args:
Y
yuyang18 已提交
6222 6223
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6224 6225

    Returns:
Y
yuyang18 已提交
6226
        ${out_comment}.
6227 6228
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6229 6230 6231 6232 6233

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6234
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6235 6236 6237 6238 6239 6240
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6241 6242


6243 6244 6245
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6246
                               ignore_index=kIgnoreIndex,
6247
                               numeric_stable_mode=True,
6248 6249
                               return_softmax=False,
                               axis=-1):
6250 6251
    """
    **Softmax With Cross Entropy Operator.**
6252

6253
    Cross entropy loss with softmax is used as the output layer extensively. This
6254 6255 6256
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6257

6258 6259 6260
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6261

6262 6263 6264 6265
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6266

6267
    The equation is as follows:
6268

6269
    1) Hard label (one-hot label, so every sample has exactly one class)
6270

6271 6272 6273 6274
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6275

6276 6277 6278
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6279

6280 6281 6282 6283
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6284 6285
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6286 6287

    .. math::
6288

H
haowang101779990 已提交
6289
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6290

H
haowang101779990 已提交
6291
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6292

H
haowang101779990 已提交
6293
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6294 6295 6296

    and then cross entropy loss is calculated by softmax and label.

6297
    Args:
6298 6299 6300 6301 6302 6303
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6304
        soft_label (bool): A flag to indicate whether to interpretate the given
6305
            labels as soft labels. Default False.
M
minqiyang 已提交
6306 6307
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6308 6309
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6310 6311
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6312 6313 6314 6315
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6316
                                    Note that the speed may be slower when use
6317
                                    stable algorithm. Default: True
6318
        return_softmax (bool): A flag indicating whether to return the softmax
6319
                               along with the cross entropy loss. Default: False
6320 6321 6322
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6323

6324
    Returns:
H
haowang101779990 已提交
6325 6326
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6327 6328 6329 6330
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6331 6332 6333 6334 6335 6336 6337

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6338 6339
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6340 6341
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6342 6343
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6344 6345 6346 6347 6348 6349
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6350 6351 6352
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6353 6354
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6355
        })
6356 6357 6358 6359

    if return_softmax:
        return loss, softmax

6360 6361 6362
    return loss


6363 6364 6365
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6366
                                       num_true=1,
6367
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6368 6369 6370
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6371
                                       seed=0):
X
xuezhong 已提交
6372 6373 6374 6375 6376
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6377
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6378 6379 6380 6381 6382 6383 6384 6385
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6386
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6387 6388 6389 6390 6391 6392 6393 6394
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6395
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6407
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6408 6409 6410 6411 6412
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6413
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6414
            logits.
X
xuezhong 已提交
6415 6416 6417 6418 6419
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6420 6421 6422
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6423 6424 6425 6426 6427 6428 6429
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6430 6431 6432
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
X
xuezhong 已提交
6433
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
6434
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6435
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6436
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6437 6438 6439 6440 6441 6442 6443 6444
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6445 6446
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6447 6448
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6449 6450 6451 6452 6453

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6454
            'Labels': label,
X
xuezhong 已提交
6455 6456
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6457 6458 6459 6460
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6461
            'SampledLabels': sampled_label,
6462 6463 6464
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6465 6466
        },
        attrs={
X
xuezhong 已提交
6467
            'use_customized_samples': use_customized_samples,
6468
            'uniq': True,
X
xuezhong 已提交
6469 6470 6471 6472
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6473 6474
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6475 6476 6477 6478 6479 6480
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6481 6482
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6483
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6484
                'Label': sampled_softlabel},
X
xuezhong 已提交
6485 6486 6487
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6488
            'soft_label': True,
X
xuezhong 已提交
6489 6490 6491
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6492
    return loss / num_true
X
xuezhong 已提交
6493 6494


6495 6496
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6497 6498
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6499
    For each instance, it computes the smooth L1 loss element by element first
6500
    and then sums all the losses. So the shape of ouput Variable is
6501
    [batch_size, 1].
6502

6503 6504
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6505
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6506
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6507
            L1 loss op with same shape as :attr:`x`.
6508
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6509 6510
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6511
            by this tensor element by element.
6512
        outside_weight (Variable|None): A tensor with rank at least 2. This
6513 6514
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6515
            element by element.
6516
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6517 6518
           scalar with default value 1.0.

6519
    Returns:
6520
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6521 6522 6523 6524 6525

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6526 6527
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6528
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6529
            out = fluid.layers.smooth_l1(x=fc, y=label)
6530
    """
6531

6532
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6533 6534
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6545
        attrs={'sigma': sigma if sigma is not None else 1.0})
6546
    return loss
6547 6548 6549 6550


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6551
    This layer creates the one-hot representations for input indices.
6552 6553

    Args:
Y
Yibing Liu 已提交
6554 6555
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6556 6557

    Returns:
Y
Yibing Liu 已提交
6558
        Variable: The one-hot representations of input.
6559 6560

    Examples:
C
caoying03 已提交
6561
        .. code-block:: python
6562

Y
Yibing Liu 已提交
6563 6564
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6565 6566
    """
    helper = LayerHelper("one_hot", **locals())
6567

X
Xin Pan 已提交
6568
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6581 6582
    helper.append_op(
        type="one_hot",
6583 6584
        inputs=inputs,
        attrs=attrs,
6585 6586
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6587
    return one_hot_out
Y
Yu Yang 已提交
6588 6589


Y
Yu Yang 已提交
6590
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6591
    """
Y
yi.wu 已提交
6592 6593 6594
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6595 6596 6597 6598 6599 6600

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6601 6602
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6603 6604 6605 6606 6607

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6608
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6609 6610
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6611 6612
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6613 6614 6615 6616 6617
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6618
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6619
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6620 6621
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6622
            outputs={'Out': [counter]},
M
minqiyang 已提交
6623 6624
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6625 6626 6627
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6628 6629


6630
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6631
    """
C
caoying03 已提交
6632 6633
    Gives a new shape to the input Tensor without changing its data.

6634 6635 6636 6637 6638
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6639

6640
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6641

6642 6643 6644 6645
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6646
    2. 0 means the actual dimension value is going to be copied from the
6647 6648 6649 6650
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6651 6652

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6653
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6654
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6655

6656
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6657 6658
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6659 6660
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6661
    dimensions.
C
caoying03 已提交
6662

6663
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6664 6665 6666 6667
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6668 6669

    Args:
6670
        x(variable): The input tensor.
C
caoying03 已提交
6671 6672
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6673 6674 6675 6676 6677
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6678 6679
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6680 6681 6682
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6683
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6684
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6685

6686
    Returns:
G
guosheng 已提交
6687 6688 6689 6690
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6691

X
Xin Pan 已提交
6692 6693 6694
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6695 6696
    Examples:
        .. code-block:: python
G
guosheng 已提交
6697

6698
            data = fluid.layers.data(
6699
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6700
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6701
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6702 6703 6704
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6705
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6706 6707 6708 6709 6710
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6711

6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6727
    helper = LayerHelper("reshape2", **locals())
6728 6729
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6730
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6731
    helper.append_op(
6732
        type="reshape2",
X
Xin Pan 已提交
6733
        inputs=inputs,
D
dzhwinter 已提交
6734
        attrs={"shape": shape},
6735 6736
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6737

D
dzhwinter 已提交
6738
    return helper.append_activation(out)
6739

6740

6741
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6742
    """
M
minqiyang 已提交
6743 6744 6745
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6746
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6747

H
haowang101779990 已提交
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6769

Y
Yibing Liu 已提交
6770
    Args:
6771
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6772
        axes (list): List of integers, indicating the dimensions to be squeezed.
6773
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6774 6775 6776 6777 6778 6779 6780

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6781
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6782
            x = layers.data(name='x', shape=[5, 1, 10])
6783
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6784
    """
L
lujun 已提交
6785
    assert not in_dygraph_mode(), (
L
lujun 已提交
6786
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6787
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6788 6789
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6790
    helper.append_op(
6791
        type="squeeze2",
6792
        inputs={"X": input},
Y
Yibing Liu 已提交
6793
        attrs={"axes": axes},
6794 6795
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6796

6797 6798 6799
    return out


6800
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6801
    """
M
minqiyang 已提交
6802 6803 6804
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6805

M
minqiyang 已提交
6806
    For example:
H
haowang101779990 已提交
6807 6808 6809

    .. code-block:: text

M
minqiyang 已提交
6810
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6811
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6812

Y
Yibing Liu 已提交
6813
    Args:
6814
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6815
        axes (list): List of integers, indicating the dimensions to be inserted.
6816
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6817 6818 6819 6820 6821 6822 6823

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6824 6825 6826
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6827 6828
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6829 6830
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6831
    helper.append_op(
6832
        type="unsqueeze2",
6833
        inputs={"X": input},
Y
Yibing Liu 已提交
6834
        attrs={"axes": axes},
6835 6836
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6837

6838 6839
    return out

6840

Y
yangyaming 已提交
6841
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6842
    """
Y
Yibing Liu 已提交
6843
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6844 6845 6846 6847
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6848
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6849 6850 6851 6852 6853 6854

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6855
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6856 6857 6858
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6859
            target_lod: [4, 2]
Y
yangyaming 已提交
6860 6861

            then we get a 1-level LoDTensor:
6862
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6863 6864 6865 6866 6867 6868
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6869
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6870 6871 6872 6873
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6874
                y.data = [[2, 4]]
Y
yangyaming 已提交
6875 6876 6877
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6878
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6879 6880 6881 6882 6883 6884
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6885
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6886 6887 6888 6889
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6890
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6891 6892 6893 6894
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6895
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6896 6897 6898 6899 6900
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6901
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6902
                           from :attr:`y`.
Y
yangyaming 已提交
6903
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6904
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6905 6906

    Returns:
Y
Yibing Liu 已提交
6907
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6908 6909

    Raises:
Y
Yibing Liu 已提交
6910
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6911 6912 6913 6914

    Examples:
        .. code-block:: python

6915 6916 6917
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6918 6919
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6920
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6946
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6975 6976
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6989 6990 6991
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7005 7006 7007 7008


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7009
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7010
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7011

G
guosheng 已提交
7012 7013 7014 7015
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7038
                         The length of :attr:paddings must be
G
guosheng 已提交
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7049

G
guosheng 已提交
7050
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7051 7052
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7053 7054 7055 7056 7057
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7058
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7059 7060 7061 7062 7063 7064 7065
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7066 7067


C
chengduo 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7099 7100
		And
            pad_value = -1,
C
chengduo 已提交
7101

T
Tink_Y 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7132 7133 7134
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7135 7136 7137 7138 7139
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7140
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7141 7142 7143 7144 7145 7146 7147 7148 7149
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7150 7151 7152 7153 7154 7155 7156
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7157 7158
    called label-smoothing regularization (LSR).

7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7182
                              be :math:`(1, class\_num)`.
7183 7184
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7185
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7186 7187 7188 7189 7190 7191 7192 7193 7194
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7195 7196
            
            import paddle.fluid.layers as layers
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7207
    smooth_label = helper.create_variable_for_type_inference(dtype)
7208 7209 7210 7211 7212 7213 7214
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7215 7216


W
wopeizl 已提交
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7265 7266


J
jerrywgz 已提交
7267 7268 7269 7270 7271 7272
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7273 7274
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7291 7292 7293 7294
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7295 7296 7297
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7298 7299 7300 7301 7302 7303
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7304
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7345 7346
        .. code-block:: python

S
SunGaofeng 已提交
7347 7348 7349
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7350
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7351
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7352 7353
    """
    label = one_hot(label, depth=input.shape[-1])
7354
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7355 7356 7357 7358 7359 7360
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7361 7362


7363 7364 7365 7366
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7367
                 resample='BILINEAR',
7368 7369
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7370
                 align_mode=1):
7371
    """
Q
qiaolongfei 已提交
7372
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7373

7374
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7375 7376 7377
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7378

7379
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7380

7381
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7382

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7393
    Align_corners and align_mode are optinal parameters,the calculation method 
7394 7395 7396 7397
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7398
    .. code-block:: text
7399

T
Tink_Y 已提交
7400
        For scale:
7401
          
T
Tink_Y 已提交
7402
            if align_corners = True && out_size > 1 :
7403

T
Tink_Y 已提交
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7415

T
Tink_Y 已提交
7416 7417
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7418

T
Tink_Y 已提交
7419 7420
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7421

T
Tink_Y 已提交
7422 7423
          else:
              align_corners = True
7424

T
Tink_Y 已提交
7425 7426
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7427

T
Tink_Y 已提交
7428 7429
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7430

T
Tink_Y 已提交
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7441

T
Tink_Y 已提交
7442 7443 7444 7445
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7446

T
Tink_Y 已提交
7447 7448
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7449 7450 7451 7452 7453 7454 7455 7456 7457

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7458
    Args:
7459
        input (Variable): The input tensor of image resize layer,
7460 7461
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7462
        out_shape(list|tuple|Variable|None): Output shape of image resize
7463 7464
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7465
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7466
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7467
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7468
             Default: None.
7469 7470
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7471
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7472
                       currently.
7473
                       Default: 'BILINEAR'
7474 7475 7476
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7477
                                :attr:`out_shape` and :attr:`scale` specifying
7478 7479 7480 7481 7482 7483 7484
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7485 7486
                                constructing stage.
                                Default: None
7487 7488 7489 7490
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7491
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7492 7493
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7494 7495

    Returns:
Q
update  
qiaolongfei 已提交
7496 7497
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7498

7499 7500 7501
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7502
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7503 7504 7505
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7506
        ValueError: scale should be greater than zero.
7507 7508
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7509

7510 7511 7512
    Examples:
        .. code-block:: python

R
ruri 已提交
7513
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7514
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7515
    """
7516 7517 7518 7519
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7520 7521
    if resample not in resample_methods:
        raise ValueError(
7522
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7523
        )
7524
    resample_type = resample_methods[resample]
7525 7526 7527 7528 7529 7530

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7531
    if out_shape is None and scale is None:
7532
        raise ValueError("One of out_shape and scale must not be None.")
7533
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7534
    dtype = helper.input_dtype()
7535 7536 7537 7538

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7539
    inputs = {"X": input}
D
dengkaipeng 已提交
7540
    attrs = {
D
dengkaipeng 已提交
7541 7542
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7543 7544 7545 7546 7547
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7548
    if out_shape is not None:
7549 7550 7551 7552
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7553
            inputs['OutSize'] = out_shape
7554 7555
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7556 7557
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7558 7559 7560 7561 7562 7563 7564
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7565
    else:
D
dengkaipeng 已提交
7566 7567
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7568
        attrs['scale'] = float(scale)
7569

7570 7571 7572 7573 7574
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7575
    out = helper.create_variable_for_type_inference(dtype)
7576
    helper.append_op(
7577
        type='{}_interp'.format(resample_type),
7578
        inputs=inputs,
7579
        outputs={"Out": out},
D
dengkaipeng 已提交
7580
        attrs=attrs)
7581
    return out
F
stash  
fengjiayi 已提交
7582 7583


7584
@templatedoc(op_type="bilinear_interp")
7585 7586 7587 7588
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7589 7590
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7591
                    align_mode=1):
7592
    """
7593 7594
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7595 7596
    in priority order.

7597 7598 7599 7600
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7601 7602
    again in the other direction.

7603
    For details of bilinear interpolation, please refer to Wikipedia:
7604
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7605

T
tink2123 已提交
7606
    Align_corners and align_mode are optinal parameters,the calculation 
7607 7608 7609 7610
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7611
    .. code-block:: text
7612

T
Tink_Y 已提交
7613
        For scale:
7614
          
T
Tink_Y 已提交
7615
            if align_corners = True && out_size > 1 :
7616

T
Tink_Y 已提交
7617 7618 7619 7620 7621
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7622

T
Tink_Y 已提交
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7633 7634


T
Tink_Y 已提交
7635
          else:
T
tink2123 已提交
7636

T
Tink_Y 已提交
7637 7638
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7639

T
Tink_Y 已提交
7640 7641
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7642 7643 7644



Y
yuyang18 已提交
7645 7646 7647
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7648 7649 7650
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7651

Y
yuyang18 已提交
7652
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7653
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7654
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7655
             Default: None.
Y
yuyang18 已提交
7656 7657

        name(str|None): The output variable name.
7658 7659 7660
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7661
                                :attr:`out_shape` and :attr:`scale` specifying
7662 7663 7664 7665 7666 7667 7668
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7669 7670
                                constructing stage.
                                Default: None
7671 7672
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7673 7674 7675

    Returns:
        ${out_comment}.
7676 7677 7678 7679

    Examples:
        .. code-block:: python

R
ruri 已提交
7680
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7681
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7682 7683
    """

7684 7685
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7686 7687


7688
@templatedoc(op_type="nearest_interp")
7689 7690 7691 7692
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7693 7694
                   actual_shape=None,
                   align_corners=True):
7695
    """
7696
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7697 7698
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7699 7700
    out_shape and scale in priority order.

7701 7702
    Example:

T
Tink_Y 已提交
7703 7704 7705 7706 7707
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7708

T
Tink_Y 已提交
7709 7710 7711 7712 7713 7714 7715 7716
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7717
          
T
Tink_Y 已提交
7718 7719
          if:
              align_corners = False
7720

T
Tink_Y 已提交
7721 7722
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7723

T
Tink_Y 已提交
7724 7725
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7726

T
Tink_Y 已提交
7727 7728
          else:
              align_corners = True
7729

T
Tink_Y 已提交
7730 7731
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7732

T
Tink_Y 已提交
7733 7734
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7735 7736


7737
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7738
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7739 7740 7741 7742

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7743 7744 7745
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7746

Y
yuyang18 已提交
7747
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7748
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7749
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7750
             Default: None.
Y
yuyang18 已提交
7751 7752

        name(str|None): The output variable name.
7753 7754 7755
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7756
                                :attr:`out_shape` and :attr:`scale` specifying
7757 7758 7759 7760 7761 7762 7763
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7764 7765
                                constructing stage.
                                Default: None
7766
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7767 7768 7769

    Returns:
        ${out_comment}.
7770 7771 7772 7773

    Examples:
        .. code-block:: python

R
ruri 已提交
7774
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7775
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7776 7777
    """

7778 7779
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7780 7781 7782 7783


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7784 7785 7786
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7787 7788 7789 7790 7791 7792 7793
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7794
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7795

7796
    Returns:
Q
update  
qiaolongfei 已提交
7797
        Variable: The output is a 4-D tensor of the shape
7798
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7799 7800 7801 7802 7803 7804

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7815 7816 7817
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7818 7819 7820
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7821 7822
def gather(input, index):
    """
Q
qiaolongfei 已提交
7823 7824
    **Gather Layer**

7825
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7826 7827 7828 7829
    of X indexed by `index` and concatenate them together.

    .. math::

7830
        Out = X[Index]
W
whs 已提交
7831 7832 7833 7834 7835 7836 7837


    .. code-block:: text


                Given:

7838 7839
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7850
        input (Variable): The source input with rank>=1.
W
whs 已提交
7851 7852 7853 7854 7855 7856
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7857

W
whs 已提交
7858 7859
        .. code-block:: python

Y
Yibing Liu 已提交
7860 7861
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7862 7863 7864 7865
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7866
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7867 7868 7869 7870 7871 7872 7873 7874
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

7901 7902 7903 7904 7905
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
7906

7907
            output = fluid.layers.scatter(input, index, updates)
7908 7909 7910
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7911
    out = helper.create_variable_for_type_inference(dtype)
7912 7913 7914 7915 7916 7917 7918 7919 7920
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7921 7922 7923 7924 7925 7926 7927 7928 7929
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7930

Q
Qingsheng Li 已提交
7931
    Given the following input:
H
haowang101779990 已提交
7932

Q
Qingsheng Li 已提交
7933
    .. code-block:: text
H
haowang101779990 已提交
7934

Q
Qingsheng Li 已提交
7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7947

Q
Qingsheng Li 已提交
7948
    .. code-block:: text
H
haowang101779990 已提交
7949

Q
Qingsheng Li 已提交
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7965
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7966 7967 7968 7969

    Examples:

        .. code-block:: python
7970 7971
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
7972

7973 7974 7975
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
7976 7977 7978
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7979
    assert not in_dygraph_mode(), (
7980
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7981 7982
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7983
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7984 7985 7986 7987 7988 7989 7990 7991 7992
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8006

8007 8008 8009
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8010
    """
F
stash  
fengjiayi 已提交
8011
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8012
    dtype = x.dtype
X
Xin Pan 已提交
8013
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8014
    if seed is None:
8015
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8016
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8017
    if isinstance(seed, int):
F
fengjiayi 已提交
8018 8019 8020 8021 8022
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8023 8024 8025 8026
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8027
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8028 8029
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8030 8031
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8032
    return out
W
whs 已提交
8033 8034


8035
def log(x, name=None):
W
wanghaoshuang 已提交
8036 8037 8038 8039 8040
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8041
        Out = \\ln(x)
W
wanghaoshuang 已提交
8042 8043

    Args:
8044
        x (Variable): Input tensor.
8045 8046
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8047 8048 8049 8050 8051 8052 8053 8054

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8055
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8056
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8057 8058
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8059
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8060
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8061
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8062 8063 8064
    return out


8065
def relu(x, name=None):
W
wanghaoshuang 已提交
8066 8067
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8068
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8069 8070 8071 8072
    the tensor elementwise.

    .. math::

8073
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8074 8075

    Args:
8076
        x (Variable): The input tensor.
8077 8078
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8079 8080 8081 8082 8083 8084 8085 8086

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8087
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8088
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8089 8090
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8091
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8092
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8093 8094
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8095
    return out
8096 8097


C
chengduo 已提交
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8122 8123 8124 8125 8126 8127
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8143 8144 8145
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8146 8147 8148 8149
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8150
    .. math::
8151

H
haowang101779990 已提交
8152
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8153

8154
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8155 8156 8157 8158 8159
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8160
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8161
                           Its shape should be the same as input.
8162
        num_classes (int): The possible number of labels.
W
whs 已提交
8163 8164

    Returns:
M
minqiyang 已提交
8165 8166
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8167
                     Three variables:
M
minqiyang 已提交
8168

H
haowang101779990 已提交
8169 8170 8171
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8172 8173 8174 8175

    Examples:

        .. code-block:: python
8176

B
Bai Yifan 已提交
8177 8178 8179 8180 8181
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8182 8183 8184
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8185 8186 8187
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8188 8189
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8190 8191
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8192
        outputs={
W
whs 已提交
8193 8194 8195
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8196 8197 8198
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8241
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8242
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8243
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8261
            import paddle.fluid as fluid
8262 8263 8264 8265 8266 8267
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8268
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8269 8270 8271 8272 8273

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8274
            isinstance(shape, Variable)):
8275 8276 8277 8278 8279
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8280
    out = helper.create_variable_for_type_inference(x.dtype)
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8298 8299


W
whs 已提交
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8317

W
whs 已提交
8318
              out_shape = [2, 3, 5, 5]
8319

W
whs 已提交
8320
          Step 1:
8321

W
whs 已提交
8322 8323 8324
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8325

W
whs 已提交
8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8371
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8372
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8385

S
SunGaofeng 已提交
8386
            import paddle.fluid as fluid
W
whs 已提交
8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8398
            isinstance(out_shape, Variable)):
W
whs 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8420 8421
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8422

8423 8424
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8425
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8426 8427 8428
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8429

8430 8431
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8432

H
haowang101779990 已提交
8433 8434
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8435 8436
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8437

H
haowang101779990 已提交
8438 8439 8440 8441 8442 8443 8444 8445
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8446 8447 8448

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8466 8467 8468
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8483
    out = helper.create_variable_for_type_inference("float32")
8484 8485 8486 8487 8488 8489 8490 8491

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8492 8493


M
minqiyang 已提交
8494 8495
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8496
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8497
    which compares left score and right score passed in.
M
minqiyang 已提交
8498
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8499 8500 8501

    .. math::

H
haowang101779990 已提交
8502
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8503 8504

    Args:
M
minqiyang 已提交
8505
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8506 8507
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8508
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8509 8510
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8511

M
minqiyang 已提交
8512
    Returns:
M
minqiyang 已提交
8513
       Variable: The ranking loss.
H
haowang101779990 已提交
8514

M
minqiyang 已提交
8515
    Raises:
M
minqiyang 已提交
8516
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8517

M
minqiyang 已提交
8518
    Examples:
H
haowang101779990 已提交
8519

M
minqiyang 已提交
8520
        .. code-block:: python
H
haowang101779990 已提交
8521

Y
Yibing Liu 已提交
8522 8523 8524
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8525 8526
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8527
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8528 8529 8530 8531 8532 8533
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8534 8535
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8559
        .. code-block:: text
W
whs 已提交
8560

T
Tink_Y 已提交
8561
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8562

T
Tink_Y 已提交
8563 8564
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8565

T
Tink_Y 已提交
8566
	      Case 0:
M
minqiyang 已提交
8567

T
Tink_Y 已提交
8568 8569 8570
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8571

T
Tink_Y 已提交
8572 8573 8574
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8575

T
Tink_Y 已提交
8576
	      Case 1:
M
minqiyang 已提交
8577

T
Tink_Y 已提交
8578 8579
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8580

T
Tink_Y 已提交
8581 8582 8583
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8584

T
Tink_Y 已提交
8585
	      Case 2:
M
minqiyang 已提交
8586

T
Tink_Y 已提交
8587 8588
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8589

T
Tink_Y 已提交
8590 8591 8592
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8593 8594


W
whs 已提交
8595 8596
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8597
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8615 8616 8617 8618 8619
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8620 8621 8622 8623
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8624
    out = helper.create_variable_for_type_inference(dtype)
8625 8626 8627 8628 8629 8630 8631 8632 8633
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8634
    helper.append_op(
8635
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8636 8637 8638 8639

    return out


8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8652 8653 8654 8655 8656

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8657 8658
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8659 8660
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8661
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8682 8683 8684 8685 8686

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8687 8688
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8689 8690
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8691
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8712 8713 8714 8715 8716

    Examples:

        .. code-block:: python

8717
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8718 8719
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8720 8721
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8722
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8744 8745 8746 8747 8748

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8749
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8750
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8751 8752
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8753
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8776 8777 8778 8779 8780

    Examples:

        .. code-block:: python

8781
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8782 8783
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8784 8785
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8786
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8808 8809 8810 8811 8812

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8813 8814
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8815 8816
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8817
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8818 8819 8820 8821 8822 8823 8824 8825
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8826 8827 8828 8829
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8830 8831
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8832

J
jerrywgz 已提交
8833 8834 8835 8836 8837 8838 8839 8840
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8841 8842
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8843
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8844
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8845
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8846
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8847
          will be named automatically.
J
jerrywgz 已提交
8848 8849 8850 8851 8852 8853 8854 8855

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8856 8857 8858
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8859
            mode = 'channel'
J
jerrywgz 已提交
8860 8861 8862
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8874
        attr=helper.param_attr,
J
jerrywgz 已提交
8875 8876 8877 8878
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8879
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8880 8881 8882 8883 8884 8885 8886 8887 8888
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8889 8890 8891 8892 8893 8894 8895 8896 8897 8898
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8899
    Returns:
8900
        output(${out_type}): ${out_comment}
8901 8902 8903

    Examples:

8904
    .. code-block:: python
8905

H
haowang101779990 已提交
8906 8907
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8908 8909
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8910
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8929
    Returns:
8930
        output(${out_type}): ${out_comment}
8931 8932 8933 8934 8935

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8936 8937
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8938 8939
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8940
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8958
    Returns:
8959
        output(${out_type}): ${out_comment}
8960 8961 8962

    Examples:

8963 8964 8965 8966 8967
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
8968
            y = fluid.layers.soft_relu(x, threshold=20.0)
8969 8970
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8971
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8972 8973 8974 8975 8976 8977 8978 8979
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8980 8981 8982 8983
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8984

H
haowang101779990 已提交
8985
    For Example:
M
minqiyang 已提交
8986

H
haowang101779990 已提交
8987
    .. code-block:: text
8988

H
haowang101779990 已提交
8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9010 9011 9012

    Args:
        x (Variable): A tensor of rank >= axis.
9013 9014
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9015 9016 9017 9018 9019 9020 9021 9022
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9023 9024 9025
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9026 9027 9028 9029
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9030
        ValueError: If axis is not in range [0, rank(x)].
9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9047 9048
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9049
    helper.append_op(
9050
        type='flatten2',
9051
        inputs={"X": x},
9052 9053
        outputs={'Out': out,
                 'XShape': x_shape},
9054 9055
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9056 9057


C
chenweihang 已提交
9058
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9059
    """
C
chenweihang 已提交
9060
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9061
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9062 9063
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9064

H
haowang101779990 已提交
9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9082 9083

    Args:
C
chenweihang 已提交
9084 9085 9086
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9087 9088 9089 9090 9091 9092 9093

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9094
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9095 9096
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9097
    assert not in_dygraph_mode(), (
9098
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9099
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9100 9101
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9102 9103 9104 9105 9106 9107
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9108
    return out
9109

9110

S
sneaxiy 已提交
9111 9112 9113 9114 9115 9116 9117 9118 9119
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9120

S
sneaxiy 已提交
9121
    .. math::
9122

S
sneaxiy 已提交
9123 9124 9125
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9126
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9127 9128 9129 9130
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9131 9132 9133
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9134 9135
    Returns:
        Variable: The output sequence mask.
9136

9137 9138 9139 9140 9141 9142 9143 9144
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9145
    """
L
lujun 已提交
9146
    assert not in_dygraph_mode(), (
9147
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9148

Q
qingqing01 已提交
9149
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9150
    if name is None:
X
Xin Pan 已提交
9151
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9152
    else:
X
Xin Pan 已提交
9153
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9154

Q
qingqing01 已提交
9155 9156 9157
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9158 9159
        outputs={'Y': out},
        attrs={
9160
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9161 9162 9163
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9164 9165


X
Xin Pan 已提交
9166
def stack(x, axis=0):
S
sneaxiy 已提交
9167 9168 9169 9170
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9171 9172 9173 9174 9175 9176 9177

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9178
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9179
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9180

C
chengduozh 已提交
9181 9182
    For Example:

C
chengduozh 已提交
9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9221
    Args:
9222
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9223
        axis (int|None): The axis along which all inputs are stacked.
9224

S
sneaxiy 已提交
9225 9226
    Returns:
        Variable: The stacked variable.
9227

9228 9229 9230 9231 9232 9233 9234 9235
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
            x1 = layers.data(name='x1', shape[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape[1, 2], dtype='int32')
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9236 9237
    """

X
Xin Pan 已提交
9238 9239 9240 9241 9242 9243
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9244
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9245
    helper.append_op(
S
sneaxiy 已提交
9246 9247
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9248

X
Xin Pan 已提交
9249
    return out
D
dzhwinter 已提交
9250 9251 9252 9253 9254 9255 9256


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9257

D
dzhwinter 已提交
9258 9259 9260
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9261
    raised.
D
dzhwinter 已提交
9262 9263

    Args:
M
minqiyang 已提交
9264
        x (Variable): Input variable.
D
dzhwinter 已提交
9265 9266
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9267

D
dzhwinter 已提交
9268 9269
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9270

9271 9272 9273 9274 9275 9276
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9277 9278 9279 9280 9281 9282 9283 9284 9285 9286
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9287
    for _ in range(num):
X
Xin Pan 已提交
9288
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9289 9290 9291 9292 9293 9294 9295 9296

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9309

W
whs 已提交
9310 9311 9312 9313
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9314

W
whs 已提交
9315
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9316

W
whs 已提交
9317
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9318

W
whs 已提交
9319 9320 9321 9322
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9323

W
whs 已提交
9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9340
    out = helper.create_variable_for_type_inference(dtype)
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9371
    helper.append_op(
9372
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9373
    return out
S
sneaxiy 已提交
9374 9375


G
fix  
gongweibao 已提交
9376 9377 9378
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9379
@templatedoc()
G
fix  
gongweibao 已提交
9380 9381 9382 9383 9384 9385 9386 9387 9388
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9389
    ${comment}
G
fix  
gongweibao 已提交
9390 9391

    Args:
G
gongweibao 已提交
9392 9393 9394
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9395
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9396 9397 9398
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9399 9400
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9401
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9402

9403 9404 9405
    Examples:
        .. code-block:: python

9406 9407
            import paddle.fluid.layers as layers 

9408 9409
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9410 9411 9412
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9413
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9430 9431


G
gongweibao 已提交
9432
@templatedoc()
X
Xin Pan 已提交
9433
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9434
    """
G
gongweibao 已提交
9435
    ${comment}
G
fix  
gongweibao 已提交
9436 9437

    Args:
G
gongweibao 已提交
9438 9439 9440 9441
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9442 9443 9444
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9445
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9446

9447 9448 9449
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9450
            import paddle.fluid.layers as layers
9451
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9452 9453 9454
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9455
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9466
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9467 9468 9469 9470 9471
        })

    return out


G
gongweibao 已提交
9472
@templatedoc()
G
fix  
gongweibao 已提交
9473
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9474
    """
G
gongweibao 已提交
9475
    ${comment}
G
fix  
gongweibao 已提交
9476 9477

    Args:
G
gongweibao 已提交
9478 9479 9480 9481
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9482
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9483 9484

    Returns:
G
gongweibao 已提交
9485
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9486

9487 9488 9489
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9490
            x = fluid.layers.data(
9491 9492 9493 9494 9495
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9496
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9497 9498 9499
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9500
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9512
@templatedoc()
G
fix  
gongweibao 已提交
9513 9514 9515 9516 9517 9518 9519 9520 9521
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9522
    ${comment}
G
fix  
gongweibao 已提交
9523 9524

    Args:
G
gongweibao 已提交
9525 9526
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9527
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9528 9529 9530 9531
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9532
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9533 9534

    Returns:
G
gongweibao 已提交
9535
        out (Variable): ${out_comment}
9536 9537 9538 9539

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9540
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9541

Y
Yibing Liu 已提交
9542
            out = fluid.layers.gaussian_random_batch_size_like(
9543
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9544 9545 9546
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9547
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9566
@templatedoc()
X
Xin Pan 已提交
9567
def sum(x):
G
fix  
gongweibao 已提交
9568
    """
G
gongweibao 已提交
9569
    ${comment}
G
fix  
gongweibao 已提交
9570 9571

    Args:
G
gongweibao 已提交
9572
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9573 9574

    Returns:
G
gongweibao 已提交
9575
        out (Variable): ${out_comment}
9576 9577 9578 9579 9580 9581

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9582 9583 9584
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9585 9586
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9587 9588 9589 9590
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9591
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9592 9593 9594 9595

    return out


G
gongweibao 已提交
9596
@templatedoc()
G
fix  
gongweibao 已提交
9597 9598
def slice(input, axes, starts, ends):
    """
9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9614

9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9632
    Args:
G
gongweibao 已提交
9633 9634 9635 9636
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9637 9638

    Returns:
G
gongweibao 已提交
9639
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9640

9641 9642 9643
    Examples:
        .. code-block:: python

9644 9645
            import paddle.fluid as fluid
 
9646 9647 9648 9649
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9650
            input = fluid.layers.data(
9651 9652
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9653
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9654 9655 9656
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9657 9658
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9672 9673
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9674
    Get the shape of the input.
G
fix  
gongweibao 已提交
9675 9676

    Args:
C
chengduozh 已提交
9677
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9678 9679

    Returns:
C
fix doc  
chengduozh 已提交
9680
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9681

9682 9683 9684
    Examples:
        .. code-block:: python

9685 9686 9687
            import paddle.fluid as fluid

            input = fluid.layers.data(
9688
                name="input", shape=[3, 100, 100], dtype="float32")
9689
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9690 9691 9692
    """

    helper = LayerHelper('shape', **locals())
9693
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9694
    helper.append_op(
G
fix  
gongweibao 已提交
9695
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9696 9697

    return out
G
merge  
gongweibao 已提交
9698 9699


Z
zhoukunsheng 已提交
9700 9701 9702 9703
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9704
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9726 9727 9728 9729
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9730
    if in_dygraph_mode():
X
Xin Pan 已提交
9731 9732 9733
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9734 9735 9736 9737
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9738 9739
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9740
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9741 9742 9743
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9744

S
sneaxiy 已提交
9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9756
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9757 9758 9759 9760 9761 9762 9763 9764
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9765
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9766
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9767 9768 9769

    Returns:
        out(${out_type}): ${out_comment}
9770 9771 9772 9773 9774 9775 9776 9777

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9778 9779 9780
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9781
    if name is None:
X
Xin Pan 已提交
9782
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9783 9784 9785
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9786 9787 9788 9789 9790 9791 9792 9793 9794 9795

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9796
    return helper.append_activation(out)
S
sneaxiy 已提交
9797 9798


X
Xin Pan 已提交
9799
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9800 9801 9802
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9803
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9804 9805 9806
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9807
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9808 9809 9810
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9811
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9812 9813 9814
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9815
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9816 9817 9818
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9819
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9820 9821 9822
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9823
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9824 9825 9826
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9827 9828 9829 9830 9831 9832 9833 9834
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9835
for func in [
9836 9837 9838 9839 9840 9841 9842 9843 9844
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9845 9846 9847 9848 9849
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9850 9851
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9852
        ])
9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
9890 9891


9892
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9893 9894
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9895 9896
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9897 9898 9899

    if out is None:
        if name is None:
X
Xin Pan 已提交
9900
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9916
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9928 9929 9930 9931 9932 9933 9934 9935 9936

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9937 9938 9939 9940 9941 9942 9943
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9944
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9956 9957 9958 9959 9960 9961 9962 9963 9964

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9965 9966 9967 9968 9969 9970 9971
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9972
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9984 9985 9986 9987 9988 9989 9990 9991 9992

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9993 9994 9995 9996 9997 9998 9999
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10000
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10001 10002 10003 10004 10005 10006 10007 10008 10009 10010
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10011 10012 10013 10014 10015 10016 10017

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10018 10019 10020 10021
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10037 10038 10039 10040

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10041
            import paddle.fluid as fluid
10042 10043 10044
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10045 10046 10047 10048 10049
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10050 10051
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10052 10053 10054

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10078 10079 10080 10081 10082 10083 10084

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10085 10086 10087 10088 10089
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10090 10091
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10092 10093 10094

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10095 10096 10097 10098 10099 10100 10101 10102

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10116 10117 10118 10119 10120 10121 10122

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10123 10124 10125 10126 10127
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10128
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10129 10130 10131 10132 10133 10134 10135 10136 10137 10138
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10150 10151 10152 10153 10154 10155 10156 10157 10158

    Examples:
        .. code-block:: python

            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10197 10198 10199 10200 10201
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10202
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10203 10204 10205 10206 10207 10208 10209 10210 10211
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10212 10213
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10214 10215 10216 10217 10218 10219
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10220 10221 10222
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10223 10224
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10225 10226 10227 10228 10229 10230
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10231
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10232
        name(basestring|None): Name of the output.
10233 10234
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10235 10236 10237

    Returns:
        out(${out_type}): ${out_comment}
10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10252 10253 10254 10255 10256
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10257
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10258 10259 10260 10261 10262 10263 10264 10265
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10266 10267
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10284 10285 10286 10287 10288 10289 10290 10291 10292

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10293 10294 10295 10296
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10297
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10298 10299 10300 10301 10302 10303 10304 10305 10306 10307
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10308 10309


J
JiabinYang 已提交
10310
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10311
    """
J
JiabinYang 已提交
10312
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10313 10314 10315

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10316
    The attr blocksize indicates the input block size.
10317 10318

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10319
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10320 10321

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10322
    (but keeping all data)
J
JiabinYang 已提交
10323

J
JiabinYang 已提交
10324
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10325
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10326 10327 10328 10329 10330
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10331
    Args:
J
JiabinYang 已提交
10332
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10333
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10334 10335

    Returns:
J
JiabinYang 已提交
10336
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10337 10338

    Raises:
J
JiabinYang 已提交
10339
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10340 10341 10342

    Examples:
        .. code-block:: python
10343 10344 10345
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10346 10347

            data = fluid.layers.data(
10348
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10349
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10350
                x=data, blocksize=2)
10351 10352 10353 10354 10355 10356

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10357

J
JiabinYang 已提交
10358 10359
    """

J
JiabinYang 已提交
10360
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10361

J
JiabinYang 已提交
10362 10363
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10364 10365

    if name is None:
J
JiabinYang 已提交
10366 10367
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10368 10369 10370 10371 10372
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10373
        type="space_to_depth",
J
JiabinYang 已提交
10374
        inputs={"X": x},
J
JiabinYang 已提交
10375
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10376
        outputs={"Out": out})
J
JiabinYang 已提交
10377 10378
    return out

J
JiabinYang 已提交
10379

S
sneaxiy 已提交
10380 10381
@templatedoc()
def sequence_reverse(x, name=None):
10382
    """
S
sneaxiy 已提交
10383 10384 10385 10386 10387 10388 10389 10390
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10391 10392 10393 10394 10395 10396 10397

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10398
    """
L
lujun 已提交
10399
    assert not in_dygraph_mode(), (
10400
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10401 10402
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10403
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10404 10405 10406 10407 10408 10409 10410 10411 10412 10413
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10414 10415


10416 10417 10418 10419 10420 10421
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10422 10423 10424 10425 10426
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10427

10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10440
        act (str, default None): Activation to be applied to the output of this layer.
10441 10442 10443

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10458 10459 10460 10461
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10462
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10474
    return helper.append_activation(out)
10475 10476


B
barrierye 已提交
10477
def similarity_focus(input, axis, indexes, name=None):
10478
    """
B
barrierye 已提交
10479
    SimilarityFocus Operator
B
barrierye 已提交
10480 10481

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10482

10483 10484 10485
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10486
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10487 10488 10489 10490 10491 10492 10493
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10494
       each index.
B
barrierye 已提交
10495 10496 10497 10498
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10548
    Args:
10549
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10550
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10551
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10552
            1, 2 or 3.
B
barrierye 已提交
10553
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10554 10555

    Returns:
H
haowang101779990 已提交
10556 10557
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10558

B
barrierye 已提交
10559 10560
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10561

B
barrierye 已提交
10562
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10563 10564
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10577 10578 10579 10580 10581
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10582 10583 10584 10585 10586 10587 10588
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10589 10590


M
minqiyang 已提交
10591 10592
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10593 10594
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10595 10596
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10597 10598 10599 10600 10601 10602 10603 10604 10605

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10606 10607
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10624 10625
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10626 10627 10628 10629 10630 10631 10632 10633 10634
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10635
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10636
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10637 10638 10639 10640 10641 10642

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10643

10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10662 10663
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10664 10665
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10666 10667 10668 10669 10670 10671 10672
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10673 10674


D
dengkaipeng 已提交
10675
@templatedoc()
10676 10677
def grid_sampler(x, grid, name=None):
    """
10678
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10679
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10680 10681 10682 10683
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10684
    interpolation value of 4 nearest corner points.
10685

H
haowang101779990 已提交
10686
    .. code-block:: text
10687

H
haowang101779990 已提交
10688 10689
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10690

H
haowang101779990 已提交
10691 10692
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10693

H
haowang101779990 已提交
10694 10695 10696
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10697

H
haowang101779990 已提交
10698 10699 10700 10701 10702 10703 10704 10705 10706
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10707

H
haowang101779990 已提交
10708 10709 10710 10711
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10712

H
haowang101779990 已提交
10713 10714 10715 10716
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10717

H
haowang101779990 已提交
10718 10719 10720 10721
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10722

H
haowang101779990 已提交
10723 10724
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10725 10726

    Args:
10727 10728 10729
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10730 10731

    Returns:
H
haowang101779990 已提交
10732
        Variable: Output of shape [N, C, H, W] data samples input X
10733 10734
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10735 10736 10737 10738
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10739 10740 10741 10742 10743
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10744
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10745

D
dengkaipeng 已提交
10746 10747 10748 10749 10750 10751 10752 10753 10754
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10755
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10756 10757
    ipts = {'X': x, 'Grid': grid}

10758
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10759 10760 10761
    return out


G
gmcather 已提交
10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10789 10790
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10829
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10830 10831 10832 10833 10834 10835 10836
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10837 10838
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10839

10840 10841 10842 10843 10844
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10845
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10846

H
heqiaozhi 已提交
10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10860 10861 10862 10863
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10864
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10865 10866
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10867
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10868 10869

    .. math::
H
haowang101779990 已提交
10870 10871 10872
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10873 10874

    Where:
H
haowang101779990 已提交
10875 10876
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10890 10891 10892 10893 10894 10895 10896 10897 10898
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10899

G
gmcather 已提交
10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10916 10917 10918 10919 10920 10921 10922 10923 10924 10925


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10926
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10927

Q
Qiao Longfei 已提交
10928
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10929 10930 10931
    For example:

    .. math::
H
haowang101779990 已提交
10932
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10933

Q
Qiao Longfei 已提交
10934
    In this formula:
10935 10936
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10937
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10938
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10939 10940 10941
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10942 10943
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10944 10945 10946
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10947
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10948
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10949
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10950 10951 10952 10953
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10954
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10955 10956 10957 10958

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10959 10960 10961
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10962 10963
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10964
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10965 10966 10967 10968

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10969
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11000 11001 11002 11003 11004 11005 11006 11007

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11008 11009 11010 11011 11012 11013 11014 11015 11016 11017
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11018 11019


S
shippingwang 已提交
11020
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11021 11022
    """
    **Shuffle Channel Operator**
11023

S
shippingwang 已提交
11024 11025 11026 11027 11028 11029
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11030
    
S
shippingwang 已提交
11031
    .. code-block:: text
11032

S
shippingwang 已提交
11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11061
    Args: 
S
shippingwang 已提交
11062 11063
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11064 11065

    Returns:
S
shippingwang 已提交
11066 11067
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11068 11069

    Raises:
S
shippingwang 已提交
11070
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11071 11072 11073

    Examples:
        .. code-block:: python
11074 11075

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11076
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11077 11078 11079
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11080
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11081 11082 11083 11084 11085 11086 11087 11088 11089

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11090
    return out
S
Add  
shippingwang 已提交
11091 11092


11093
@templatedoc()
D
dengkaipeng 已提交
11094
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11095 11096 11097 11098 11099 11100 11101 11102
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11103
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11104
        name (str, default None): The name of this layer.
11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11117
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11130 11131
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11132 11133 11134
    return out


S
sneaxiy 已提交
11135
class PyFuncRegistry(object):
S
sneaxiy 已提交
11136 11137 11138
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11139
        if func is None or not callable(func):
S
sneaxiy 已提交
11140 11141 11142
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11143
        # find named args using reflection
S
sneaxiy 已提交
11144 11145 11146 11147 11148 11149 11150
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11151 11152 11153
        '''
        Why record self here?

M
minqiyang 已提交
11154 11155
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11156
           to find the registered function corresponding
M
minqiyang 已提交
11157
           to :code:`idx`.
S
sneaxiy 已提交
11158

M
minqiyang 已提交
11159 11160
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11161
           whose reference count is 1 would cause
M
minqiyang 已提交
11162
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11163 11164
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11165
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11180 11181 11182 11183 11184 11185 11186 11187 11188
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11189

S
sneaxiy 已提交
11190 11191
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11192 11193

        ret = []
S
sneaxiy 已提交
11194 11195 11196
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11197 11198
                continue

S
sneaxiy 已提交
11199 11200
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11201

S
sneaxiy 已提交
11202 11203 11204
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11205

S
sneaxiy 已提交
11206
        return tuple(ret)
S
sneaxiy 已提交
11207 11208


S
sneaxiy 已提交
11209 11210 11211 11212
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11213

S
sneaxiy 已提交
11214 11215 11216 11217 11218 11219 11220 11221
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11222
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11223

S
sneaxiy 已提交
11224 11225
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11226 11227 11228 11229
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11230
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11231
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11232 11233
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11234 11235 11236 11237 11238
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11239
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11240
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11241
                                       None means no backward. Default None.
S
sneaxiy 已提交
11242
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11243
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11244 11245
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11246
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11247 11248 11249

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11250 11251

    Examples:
M
minqiyang 已提交
11252

S
sneaxiy 已提交
11253 11254 11255 11256 11257
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11258
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11259 11260
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11261
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11262 11263 11264
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11265
        >>>
S
sneaxiy 已提交
11266 11267 11268 11269 11270
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11271
        >>>     print(x)
S
sneaxiy 已提交
11272 11273 11274 11275 11276 11277
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11278
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11279 11280
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11281 11282
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11283 11284 11285 11286 11287 11288 11289 11290
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11291
    """
S
sneaxiy 已提交
11292
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11293 11294 11295
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11296
        x = [x]
S
sneaxiy 已提交
11297 11298
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11299

S
sneaxiy 已提交
11300 11301 11302
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11303
        out_list = [out]
S
sneaxiy 已提交
11304
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11305
        out_list = out
S
sneaxiy 已提交
11306 11307 11308
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11309

S
sneaxiy 已提交
11310 11311
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11312
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11313 11314

    for each_out in out_list:
S
sneaxiy 已提交
11315 11316
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11317 11318
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11319

S
sneaxiy 已提交
11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11335 11336 11337 11338

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11339 11340
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11341 11342 11343
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11344
        })
S
sneaxiy 已提交
11345
    return out
S
sneaxiy 已提交
11346 11347 11348


# For debug usage
S
sneaxiy 已提交
11349 11350 11351 11352
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11366 11367 11368 11369 11370
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11383 11384 11385 11386
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11412

M
minqiyang 已提交
11413

M
minqiyang 已提交
11414
def huber_loss(input, label, delta):
11415
    """
M
minqiyang 已提交
11416 11417 11418
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11419 11420 11421 11422

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11423
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11424 11425 11426 11427

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11428
        huber\_loss = 0.5 * (label - input) * (label - input)
11429 11430 11431 11432 11433 11434 11435


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11436
        delta (float): The parameter of huber loss, which controls
11437 11438 11439
                       the range of outliers

    Returns:
M
minqiyang 已提交
11440
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11441 11442 11443 11444

    Examples:
        .. code-block:: python

11445 11446 11447 11448 11449 11450 11451 11452 11453
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11454
    """
M
minqiyang 已提交
11455
    helper = LayerHelper('huber_loss', **locals())
11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11467 11468


D
dengkaipeng 已提交
11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11531 11532 11533
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11534
          # edges must be directional
T
Tao Luo 已提交
11535 11536 11537 11538
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11539
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11540 11541
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11542
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11543
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11567 11568


C
ceci3 已提交
11569
from .ops import square
C
ceci3 已提交
11570
from .control_flow import equal
C
ceci3 已提交
11571 11572


C
ceci3 已提交
11573 11574 11575
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11576

C
ceci3 已提交
11577
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11578 11579

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11580
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11581 11582 11583 11584 11585
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11586 11587
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11588 11589 11590 11591 11592 11593 11594

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11595 11596 11597 11598 11599 11600 11601 11602
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11603 11604 11605 11606 11607 11608 11609
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11610
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11611 11612
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11613 11614
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11615 11616 11617 11618
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11619 11620 11621
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11622 11623 11624
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11625 11626


R
ruri 已提交
11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11656
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11657 11658 11659 11660 11661 11662 11663 11664 11665

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11666
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11717 11718 11719 11720 11721 11722
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11723 11724 11725 11726 11727 11728 11729 11730
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11731 11732 11733 11734


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11735

H
heqiaozhi 已提交
11736
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11737

H
fix doc  
heqiaozhi 已提交
11738
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11739 11740 11741
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11742
    
H
fix doc  
heqiaozhi 已提交
11743
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11744

H
heqiaozhi 已提交
11745
    Args:
H
fix doc  
heqiaozhi 已提交
11746 11747

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11748 11749
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11750
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11751
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11752

H
heqiaozhi 已提交
11753
    Returns:
H
fix doc  
heqiaozhi 已提交
11754 11755 11756

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11757
    Examples:
H
fix doc  
heqiaozhi 已提交
11758

H
heqiaozhi 已提交
11759
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11760

H
heqiaozhi 已提交
11761 11762 11763 11764 11765 11766 11767 11768 11769 11770
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11771

H
heqiaozhi 已提交
11772 11773 11774 11775 11776 11777 11778 11779 11780
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11781
    return out
Z
zhoukunsheng 已提交
11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output