提交 efcff3d9 编写于 作者: Y yi.wu

polish api ref docs

上级 5be454bf
......@@ -790,6 +790,12 @@ shape
.. autofunction:: paddle.fluid.layers.shape
:noindex:
iou_similarity
-----
.. autofunction:: paddle.fluid.layers.iou_similarity
:noindex:
sigmoid
-------
......
......@@ -69,10 +69,11 @@ class IOUSimilarityOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
IOU Similarity Operator.
Computes intersection-over-union (IOU) between two box lists.
Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
boxes in 'Y' are shared by all instance of the batched inputs of X.
Given two boxes A and B, the calculation of IOU is as follows:
Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
boxes in 'Y' are shared by all instance of the batched inputs of X.
Given two boxes A and B, the calculation of IOU is as follows:
$$
IOU(A, B) =
......
......@@ -146,6 +146,7 @@ is to perform max pooling on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7).
The operator has three steps:
1. Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height
2. Finding the largest value in each section
......
......@@ -135,8 +135,8 @@ class ListenAndServ(object):
fluid.initializer.Constant(value=1.0)(x, main.global_block())
layers.scale(x=x, scale=10.0, out=out_var)
self.server_exe = fluid.Executor(place)
self.server_exe.run(main)
exe = fluid.Executor(place)
exe.run(main)
"""
def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
......
......@@ -850,7 +850,9 @@ def crf_decoding(input, param_attr, label=None):
Args:
input(${emission_type}): ${emission_comment}
param_attr(ParamAttr): The parameter attribute for training.
label(${label_type}): ${label_comment}
Returns:
......@@ -875,8 +877,8 @@ def cos_sim(X, Y):
${comment}
Args:
X(${X_type}): ${X_comment}
Y(${Y_type}): ${Y_comment}
X(${x_type}): ${x_comment}
Y(${y_type}): ${x_comment}
Returns:
A Variable contains the output of this layer.
......@@ -1076,13 +1078,18 @@ def chunk_eval(input,
${comment}
Args:
input(Variable): ${Inference_comment}
label(Variable): ${Label_comment}
input(Variable): ${inference_comment}
label(Variable): ${label_comment}
chunk_scheme(${chunk_scheme_type}): ${chunk_scheme_comment}
num_chunk_types(${num_chunk_types_type}): ${num_chunk_types_comment}
excluded_chunk_types(${excluded_chunk_types_type}): ${excluded_chunk_types_comment}
Returns(typle): a tuple of variables:
Returns:
chunk_eval(tuple): a tuple of variables:
(precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks)
"""
......@@ -1755,7 +1762,6 @@ def beam_search_decode(ids, scores, name=None):
return sentence_ids, sentence_scores
@templatedoc()
def conv2d_transpose(input,
num_filters,
output_size=None,
......@@ -3893,14 +3899,18 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
${comment}
Args:
input (Variable): ${X_comment}
rois (Variable): ${ROIs_comment}
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns:
pool_out (Variable): ${Out_comment}.
roi_pool (Variable): ${out_comment}.
Examples:
.. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册