nn.py 316.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179 180
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
181
       is_test=False,
182
       name=None):
Y
Yu Yang 已提交
183
    """
184
    **Fully Connected Layer**
Y
Yu Yang 已提交
185

186 187 188 189 190 191 192 193
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
194
    to the output as well.
C
caoying03 已提交
195

C
caoying03 已提交
196
    This process can be formulated as follows:
197 198 199

    .. math::

200
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
201 202 203

    In the above equation:

C
caoying03 已提交
204 205 206 207
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
208
    * :math:`Act`: The activation function.
C
caoying03 已提交
209
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
210 211

    Args:
R
ranqiu 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
227 228
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
229
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
230
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
231
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
232

233
    Returns:
F
fengjiayi 已提交
234
        Variable: The transformation result.
235 236

    Raises:
C
caoying03 已提交
237
        ValueError: If rank of the input tensor is less than 2.
238 239 240 241

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
242
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
243
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
244
    """
C
caoying03 已提交
245

C
caoying03 已提交
246
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
247 248 249 250

    dtype = helper.input_dtype()

    mul_results = []
251 252
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
253 254 255
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
256

Y
Yu Yang 已提交
257
        w = helper.create_parameter(
258
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
259
        tmp = helper.create_variable_for_type_inference(dtype)
260
        helper.append_op(
261 262 263
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
264
            outputs={"Out": tmp},
M
mozga-intel 已提交
265 266
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
267 268 269 270
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
271
    else:
X
Xin Pan 已提交
272
        pre_bias = helper.create_variable_for_type_inference(dtype)
273
        helper.append_op(
274 275 276
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
277
            attrs={"use_mkldnn": False})
278 279 280 281
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
282 283


284 285 286
def embedding(input,
              size,
              is_sparse=False,
287
              is_distributed=False,
288 289 290
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
291
    """
292 293
    **Embedding Layer**

294
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
295 296
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
297 298 299

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
300 301

    Args:
302 303 304 305 306
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
307
        is_distributed(bool): Whether to run lookup table from remote parameter server.
308 309
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
310
            with zeros whenever lookup encounters it in :attr:`input`. If
311
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
312 313
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
314
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
315

316 317 318
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
319

320 321
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
322

C
chengduoZH 已提交
323
          dict_size = len(dataset.ids)
324
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
325
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
326 327 328
    """

    helper = LayerHelper('embedding', **locals())
329 330 331
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
332 333
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
334 335
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
336
    tmp = helper.create_variable_for_type_inference(dtype)
337 338
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
339 340 341 342 343
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
344 345 346
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
347
            'remote_prefetch': remote_prefetch,
348 349
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
350 351 352
    return tmp


W
wopeizl 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
369

W
wopeizl 已提交
370 371 372 373 374 375 376 377 378 379 380
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
381

W
wopeizl 已提交
382 383 384 385
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
386

W
wopeizl 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
473 474


Y
Yibing Liu 已提交
475 476 477 478 479 480 481 482 483 484 485
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
486 487
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
488 489 490
    """
    **Dynamic LSTMP Layer**

491 492 493 494 495 496
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
497 498 499 500 501

    The formula is as follows:

    .. math::

502
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
503

504
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
505

506
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
507

508
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
509

510
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
511

512
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
513

514
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
515

Y
Yibing Liu 已提交
516 517 518 519 520 521
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
522
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
523
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
524
          bias vector).
Y
Yibing Liu 已提交
525 526 527
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
528
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
529
    * :math:`h`: The hidden state.
530
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
531 532
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
533
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
534
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
535
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
536 537
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
538 539 540 541

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
542

Y
Yibing Liu 已提交
543 544 545 546 547 548 549 550 551 552 553 554
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
555
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
556 557
                               hidden-hidden weight and projection weight.

558 559
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
560 561
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
562 563
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
564
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
565 566 567 568 569

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
570
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
571 572 573 574 575 576
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
577
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
578 579 580
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
581
                                - The shape is (1 x 7D).
C
chengduo 已提交
582 583 584 585 586

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
587 588 589 590 591 592 593 594 595
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
596
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
597 598
                              default "tanh".
        proj_activation(str): The activation for projection output.
599
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
600 601
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
602 603
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
604 605

    Returns:
606 607 608 609
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
610 611

    Examples:
612

Y
Yibing Liu 已提交
613 614
        .. code-block:: python

615 616 617 618
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
619
            hidden_dim, proj_dim = 512, 256
620
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
621
                                     act=None, bias_attr=None)
622 623 624
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
625 626 627 628
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
629
    """
630

C
chengduo 已提交
631
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
632
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
633
    size = size // 4
Y
Yibing Liu 已提交
634 635 636 637 638 639 640 641 642 643
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
644 645 646 647 648 649
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
678 679 680 681 682 683 684 685 686
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
687
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
688

689
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
690
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
691

G
guosheng 已提交
692 693 694 695 696 697 698 699 700
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
701

G
guosheng 已提交
702
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
703

G
guosheng 已提交
704
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
705 706
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
707 708 709 710
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
711
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
712 713

    Args:
714 715
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
716
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
717
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
718 719
            is the hidden size.
        size(int): The dimension of the gru cell.
720
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
721 722
            hidden-hidden weight matrix. Note:

723
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
724
              :math:`D` is the hidden size.
725
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
726
              The first part are weights of the update gate and reset gate with
727
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
728
              candidate hidden state with shape :math:`(D \\times D)`.
729 730 731 732 733

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
734
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
735
            the bias in the update gate, reset gate and candidate calculations.
736 737 738
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
739 740
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
741
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
742 743 744
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
745
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
746
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
747 748 749 750
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
751 752

    Returns:
G
guosheng 已提交
753
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
754
            and sequence length is the same with the input.
755

G
guosheng 已提交
756
    Examples:
757

G
guosheng 已提交
758 759
        .. code-block:: python

760 761 762 763
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
764
            hidden_dim = 512
765
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
766 767 768 769 770 771 772 773 774 775
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
776
    batch_size = input.shape[0]
G
guosheng 已提交
777
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
778
    if h_0:
G
guosheng 已提交
779
        assert h_0.shape == (
Y
Yancey 已提交
780 781 782
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
783

X
Xin Pan 已提交
784 785 786 787
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
806 807 808
def gru_unit(input,
             hidden,
             size,
809 810
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
811
             activation='tanh',
812
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
813
    """
814
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
815

816 817
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
818

819
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
820

821
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
822

823
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
824 825

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
826 827 828
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
829 830
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

831 832
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
833 834 835
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
836 837 838

    Args:
        input (Variable): The fc transformed input value of current step.
839
        hidden (Variable): The hidden value of gru unit from previous step.
840
        size (integer): The input dimension value.
841 842 843 844 845 846 847 848 849 850 851 852 853 854
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
855
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
856
            the bias in the update gate, reset gate and candidate calculations.
857 858 859
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
860 861
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
862 863 864 865
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
866

867 868 869 870 871 872
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
873

874
             # assuming we have x_t_data and prev_hidden of size=10
875
             x_t = fluid.layers.fc(input=x_t_data, size=30)
876 877
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
878 879 880 881 882 883 884 885 886 887 888 889

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
890
    size = size // 3
Y
Yu Yang 已提交
891 892

    # create weight
893 894
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
895

X
Xin Pan 已提交
896 897 898
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
899
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
900
    # create bias
901
    if helper.bias_attr:
Y
Yu Yang 已提交
902 903 904
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
905
        inputs['Bias'] = bias
Y
Yu Yang 已提交
906 907 908

    helper.append_op(
        type='gru_unit',
909
        inputs=inputs,
Y
Yu Yang 已提交
910 911 912 913 914 915
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
916 917
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
918 919 920 921 922
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
923
@templatedoc()
924
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
925 926 927 928 929 930 931
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
932
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
933 934 935 936
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
937 938 939
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
940 941

    """
Y
Yu Yang 已提交
942 943 944 945 946 947
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
948 949 950 951 952 953 954 955
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
971 972 973 974
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
975

W
wopeizl 已提交
976 977
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
978

W
wopeizl 已提交
979
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
980

W
wopeizl 已提交
981
        label(${label_type}): ${label_comment}
982

W
wopeizl 已提交
983 984
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
985

W
wopeizl 已提交
986 987
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
988

W
wopeizl 已提交
989 990 991 992 993 994 995 996 997 998
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
999
                "Transition": transition,
W
wopeizl 已提交
1000 1001
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1002

W
wopeizl 已提交
1003
    return viterbi_path
Y
Yu Yang 已提交
1004 1005


Y
yi.wu 已提交
1006
@templatedoc()
F
fengjiayi 已提交
1007
def cos_sim(X, Y):
Y
Yu Yang 已提交
1008
    """
Y
yi.wu 已提交
1009 1010 1011
    ${comment}

    Args:
1012 1013
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1014

Y
yi.wu 已提交
1015
    Returns:
1016
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1017
    """
F
fengjiayi 已提交
1018
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1019 1020 1021
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1032 1033 1034 1035 1036
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1037
            dropout_implementation="downgrade_in_infer"):
1038 1039 1040 1041 1042
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1043
    training. The dropout operator randomly sets (according to the given dropout
1044 1045 1046 1047
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1048 1049
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1050 1051 1052 1053 1054 1055 1056
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1068
                                           dropout op can be removed from the program.
P
phlrain 已提交
1069
                                           the program will be efficient
1070

P
phlrain 已提交
1071

1072 1073

    Returns:
1074
        Variable: A tensor variable is the shape with `x`.
1075 1076

    Examples:
1077

1078 1079
        .. code-block:: python

1080 1081
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1082 1083
    """

F
fengjiayi 已提交
1084
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1085 1086 1087
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1088 1089 1090 1091

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1092 1093 1094 1095 1096
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1097 1098 1099 1100
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1101 1102
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1103
        })
1104 1105 1106
    return out


1107
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1108
    """
Y
Yibing Liu 已提交
1109 1110
    **Cross Entropy Layer**

1111 1112 1113
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1114 1115

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1116
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1117

Y
Yibing Liu 已提交
1118
        .. math::
Y
yangyaming 已提交
1119

Y
Yibing Liu 已提交
1120 1121 1122
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1123 1124
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1125 1126 1127 1128 1129

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1130
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1131 1132 1133
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1134 1135
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1136
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1137

Y
Yibing Liu 已提交
1138
    Args:
Y
yangyaming 已提交
1139
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1140 1141 1142 1143
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1144
        label (Variable|list): the ground truth which is a 2-D tensor. When
1145 1146 1147 1148
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1149
        soft_label (bool): a flag indicating whether to
1150
                                           interpretate the given labels as soft
1151
                                           labels. Default: `False`.
M
minqiyang 已提交
1152 1153
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1154
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1155 1156 1157 1158 1159

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1160 1161 1162 1163 1164
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1165 1166 1167 1168 1169 1170

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1171
    """
F
fengjiayi 已提交
1172
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1173
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1174 1175 1176 1177 1178
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1179 1180
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1181 1182 1183
    return out


F
fengjiayi 已提交
1184
def square_error_cost(input, label):
Y
Yu Yang 已提交
1185
    """
1186 1187
    **Square error cost layer**

1188 1189
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1204 1205
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1206 1207

    Returns:
G
guosheng 已提交
1208
        Variable: The tensor variable storing the element-wise squared error \
1209
                  difference of input and label.
1210 1211 1212 1213 1214 1215 1216 1217

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1218
    """
F
fengjiayi 已提交
1219
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1220
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1221 1222 1223 1224 1225 1226
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1227
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1228
    helper.append_op(
F
fengjiayi 已提交
1229 1230
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1231 1232 1233
    return square_out


Y
yi.wu 已提交
1234
@templatedoc()
Y
Yu Yang 已提交
1235 1236 1237 1238
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1239
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1240
    """
Y
yi.wu 已提交
1241
    **Chunk Evaluator**
Y
yi.wu 已提交
1242

Y
yangyaming 已提交
1243
    This function computes and outputs the precision, recall and
1244
    F1-score of chunk detection.
Y
yi.wu 已提交
1245

Y
yi.wu 已提交
1246 1247 1248 1249 1250 1251 1252 1253
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1254

Y
yi.wu 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1280

Y
yi.wu 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1305
    Args:
1306 1307 1308 1309 1310
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1311

Y
yi.wu 已提交
1312
    Returns:
Y
update  
yi.wu 已提交
1313 1314 1315
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1316

Y
yi.wu 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1329
    """
F
fengjiayi 已提交
1330
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1331 1332

    # prepare output
X
Xin Pan 已提交
1333 1334 1335 1336 1337 1338 1339
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1340 1341 1342 1343 1344 1345 1346 1347

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1348 1349 1350 1351
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1352 1353 1354
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1355 1356
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1357
        })
1358 1359
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1360 1361


1362
@templatedoc()
Y
Yu Yang 已提交
1363 1364 1365 1366 1367 1368 1369
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1370 1371
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1372 1373 1374 1375
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1376 1377 1378 1379 1380 1381 1382

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1396

1397 1398
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1399 1400 1401 1402 1403 1404 1405
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1406
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1417
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1418 1419 1420 1421 1422 1423
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1424
def sequence_softmax(input, use_cudnn=False, name=None):
1425 1426 1427
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1428
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1445 1446 1447
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1460 1461
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1462
    softmax_out = helper.create_variable_for_type_inference(dtype)
1463 1464 1465 1466 1467 1468 1469 1470
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1471
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1472
    """
1473
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1474
    has the same shape as the input.
Q
qiaolongfei 已提交
1475

1476 1477 1478 1479 1480 1481
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1482
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1483 1484 1485 1486 1487 1488 1489

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1490
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1491 1492 1493 1494 1495 1496 1497 1498

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1499 1500 1501
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1514 1515
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1516
    softmax_out = helper.create_variable_for_type_inference(dtype)
1517 1518 1519 1520 1521 1522 1523 1524
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1525 1526 1527
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1528 1529
           stride=1,
           padding=0,
1530
           dilation=1,
Y
Yu Yang 已提交
1531 1532 1533
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1534
           use_cudnn=True,
1535 1536
           act=None,
           name=None):
Y
Yu Yang 已提交
1537
    """
C
chengduoZH 已提交
1538
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1539 1540
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1541
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1542 1543 1544 1545 1546 1547 1548
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1549 1550 1551
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1552

1553
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1554

C
chengduoZH 已提交
1555 1556
    .. math::

C
refine  
chengduoZH 已提交
1557
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1558

T
tensor-tang 已提交
1559
    Where:
C
chengduoZH 已提交
1560

1561 1562 1563 1564 1565
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1566
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1567 1568 1569

    Example:

1570 1571
        - Input:

W
weixing02 已提交
1572
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1573

W
weixing02 已提交
1574
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1575

1576
        - Output:
T
tensor-tang 已提交
1577

W
weixing02 已提交
1578
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1579

C
chengduoZH 已提交
1580
        Where
1581 1582

        .. math::
C
chengduoZH 已提交
1583

W
weixing02 已提交
1584 1585
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1586 1587

    Args:
1588
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1589
        num_filters(int): The number of filter. It is as same as the output
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1618 1619
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1620 1621
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1622
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1623
            will be named automatically. Default: None
C
chengduoZH 已提交
1624 1625

    Returns:
G
guosheng 已提交
1626
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1627 1628
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1629
    Raises:
1630 1631
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1632

C
chengduoZH 已提交
1633 1634 1635
    Examples:
        .. code-block:: python

1636 1637
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1638 1639 1640
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1641
    assert param_attr is not False, "param_attr should not be False here."
1642
    l_type = 'conv2d'
X
xzl 已提交
1643 1644
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1645
        l_type = 'depthwise_conv2d'
1646 1647 1648 1649

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1650 1651 1652 1653 1654
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1655
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1656

C
chengduoZH 已提交
1657 1658 1659
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1660
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1661

C
chengduoZH 已提交
1662 1663
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1664 1665

    input_shape = input.shape
M
minqiyang 已提交
1666
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1667 1668

    def _get_default_param_initializer():
C
chengduo 已提交
1669 1670
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1671 1672 1673 1674 1675 1676 1677 1678
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1679
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1695
    helper.append_op(
1696
        type=l_type,
Y
Yu Yang 已提交
1697 1698 1699 1700 1701
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1702 1703 1704
        attrs={
            'strides': stride,
            'paddings': padding,
1705
            'dilations': dilation,
C
chengduoZH 已提交
1706
            'groups': groups,
1707
            'use_cudnn': use_cudnn,
1708
            'use_mkldnn': False,
C
chengduoZH 已提交
1709
        })
Y
Yu Yang 已提交
1710 1711 1712 1713 1714 1715

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1733 1734 1735 1736 1737 1738
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1748 1749
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1750 1751 1752
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1753
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1779
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1780 1781
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1782
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1783 1784
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1785
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1786 1787
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1788
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1789 1790 1791 1792 1793 1794
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1805 1806
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1807 1808
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1809
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1810
            will be named automatically. Default: None.
C
chengduoZH 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1823 1824
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1825 1826 1827
    """

    l_type = 'conv3d'
C
chengduo 已提交
1828
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1839
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1853 1854 1855
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1856 1857 1858 1859 1860 1861 1862 1863
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1864
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1879
            'use_mkldnn': False
C
chengduoZH 已提交
1880 1881
        })

1882
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1883 1884 1885 1886

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1887
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1888
    """
Y
yangyaming 已提交
1889 1890 1891
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1903
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1904 1905 1906 1907 1908
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1909
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1910 1911 1912 1913 1914 1915 1916

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1917 1918
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1919

L
Luo Tao 已提交
1920 1921
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1922
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1923
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1924
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1925 1926 1927 1928 1929 1930 1931

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1932

Y
yangyaming 已提交
1933
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1934 1935 1936 1937 1938
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1939 1940
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1941
    """
F
fengjiayi 已提交
1942
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1943
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1944 1945
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1946 1947 1948 1949 1950 1951

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1952 1953
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1954

Y
yangyaming 已提交
1955 1956 1957 1958 1959
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1960 1961 1962
    return pool_out


C
add doc  
chengduoZH 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1982
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1983 1984 1985 1986 1987
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1988
def sequence_first_step(input):
L
Luo Tao 已提交
1989
    """
L
Luo Tao 已提交
1990
    This function gets the first step of sequence.
L
Luo Tao 已提交
1991 1992 1993 1994

    .. code-block:: text

       x is a 1-level LoDTensor:
1995
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1996 1997 1998 1999 2000
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2001
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2002
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2003

L
Luo Tao 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2013

Y
yangyaming 已提交
2014
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2015 2016 2017
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2018 2019 2020
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2021
def sequence_last_step(input):
L
Luo Tao 已提交
2022
    """
L
Luo Tao 已提交
2023
    This function gets the last step of sequence.
L
Luo Tao 已提交
2024 2025 2026 2027

    .. code-block:: text

       x is a 1-level LoDTensor:
2028
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2029 2030 2031 2032 2033
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2034
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2035
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2036

L
Luo Tao 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2046

Y
yangyaming 已提交
2047
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2048 2049 2050
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2051 2052 2053
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2054 2055 2056 2057
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2058
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2059 2060 2061 2062 2063
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2064

Y
Yibing Liu 已提交
2065 2066
	- Case:

2067
            Given the input Variable **input**:
2068

2069 2070 2071
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2072

2073
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2074

2075
            the output Variable will be
2076

2077 2078 2079
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2080 2081

    NOTE: The first dimension size of **input**, **offset** and **length**
2082
          should be equal. The **offset** should start from 0.
2083

Y
Yibing Liu 已提交
2084
    Args:
2085
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2086
                         sequences.
Y
Yibing Liu 已提交
2087 2088 2089 2090 2091 2092
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2093
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2104
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2105 2106 2107 2108
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2109
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2124
@templatedoc()
Y
Yu Yang 已提交
2125
def pool2d(input,
C
chengduoZH 已提交
2126 2127
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2128 2129
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2130
           global_pooling=False,
C
chengduoZH 已提交
2131
           use_cudnn=True,
2132
           ceil_mode=False,
2133 2134
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2135
    """
F
fengjiayi 已提交
2136
    ${comment}
2137 2138

    Args:
2139 2140 2141
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2142
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2143
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2144 2145
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2146
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2147 2148 2149 2150 2151 2152
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2153 2154 2155
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2156
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2157
                        layer will be named automatically.
2158
        exclusive (bool): Whether to exclude padding points in average pooling
2159
                          mode, default is true
F
fengjiayi 已提交
2160

2161
    Returns:
F
fengjiayi 已提交
2162
        Variable: The pooling result.
F
fengjiayi 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2176 2177 2178 2179
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2180
                            global_pooling=False)
Y
Yu Yang 已提交
2181 2182 2183 2184 2185
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2186

C
chengduoZH 已提交
2187 2188 2189 2190 2191
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2192 2193 2194 2195
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2196 2197
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2198

C
Add doc  
chengduoZH 已提交
2199
    l_type = 'pool2d'
2200 2201

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2202
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2203
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2204 2205

    helper.append_op(
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2217 2218
            "use_mkldnn": False,
            "exclusive": exclusive,
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2232 2233
           name=None,
           exclusive=True):
2234 2235
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2236
    pooling configurations mentioned in input parameters.
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2249
        exclusive (bool): Whether to exclude padding points in average pooling
2250
                          mode, default is true
2251

2252
    Returns:
2253
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2254 2255 2256 2257 2258
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2259

C
chengduoZH 已提交
2260 2261 2262 2263 2264
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2265 2266 2267
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2268

C
chengduoZH 已提交
2269 2270
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2271

2272 2273
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2274
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2275
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2276 2277

    helper.append_op(
2278
        type=l_type,
Y
Yu Yang 已提交
2279 2280 2281 2282 2283 2284 2285
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2286
            "paddings": pool_padding,
2287
            "use_cudnn": use_cudnn,
2288
            "ceil_mode": ceil_mode,
2289 2290
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2303
               data_layout='NCHW',
Y
Yang Yang 已提交
2304
               in_place=False,
2305 2306
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2307
               moving_variance_name=None,
2308
               do_model_average_for_mean_and_var=False,
2309 2310
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2311
    """
Q
qiaolongfei 已提交
2312 2313 2314 2315
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2316

Q
qiaolongfei 已提交
2317
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2318

Q
qiaolongfei 已提交
2319 2320
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2321 2322 2323
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2336

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2350
    Args:
Q
qiaolongfei 已提交
2351
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2352 2353 2354 2355
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2356 2357 2358 2359 2360 2361 2362 2363
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2364
        data_layout(string, default NCHW): NCHW|NHWC
2365
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2366 2367 2368 2369
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2370
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2371
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2372 2373 2374 2375 2376
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2377 2378

    Returns:
Q
qiaolongfei 已提交
2379
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2380 2381 2382 2383 2384 2385 2386

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2387
    """
C
chengduo 已提交
2388
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2409 2410 2411
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2412 2413

    bias = helper.create_parameter(
2414
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2415 2416 2417
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2418

2419 2420
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2421 2422 2423
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2424
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2425
        shape=param_shape,
2426 2427 2428 2429 2430 2431 2432
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2433
            trainable=False,
W
wanghaoshuang 已提交
2434
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2435
        shape=param_shape,
2436 2437
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2438 2439 2440 2441 2442 2443

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2444 2445 2446 2447
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2448

X
Xin Pan 已提交
2449 2450
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2468 2469 2470 2471
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2472
            "use_mkldnn": False,
2473 2474
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2475
        })
Y
Yu Yang 已提交
2476 2477 2478 2479

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2480
@templatedoc()
G
guosheng 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2491
    ${comment}
G
guosheng 已提交
2492 2493 2494

    The formula is as follows:

Y
yuyang18 已提交
2495
    ..  math::
G
guosheng 已提交
2496 2497 2498 2499 2500 2501 2502

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2503 2504 2505 2506 2507 2508 2509 2510
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2511

G
guosheng 已提交
2512 2513
    Args:
        input(Variable): The input tensor variable.
2514
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2515
            normalization. Default True.
2516
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2517 2518
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2519
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2520
            Default 1.
2521
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2522
            division by zero. Default 1e-05.
G
guosheng 已提交
2523
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2524 2525
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2526 2527
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2528
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2529 2530
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2531
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2532
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2533
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2534 2535 2536
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2537 2538

    Returns:
Y
yuyang18 已提交
2539
        ${y_comment}
G
guosheng 已提交
2540 2541 2542

    Examples:

Y
yuyang18 已提交
2543 2544 2545
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2561
    if shift:
G
guosheng 已提交
2562 2563 2564 2565 2566 2567
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2568 2569 2570 2571 2572
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2666 2667 2668 2669
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2670 2671 2672
                     padding=0,
                     stride=1,
                     dilation=1,
2673
                     groups=None,
C
caoying03 已提交
2674
                     param_attr=None,
2675
                     bias_attr=None,
C
chengduoZH 已提交
2676
                     use_cudnn=True,
2677
                     act=None,
C
caoying03 已提交
2678
                     name=None):
Y
Yu Yang 已提交
2679
    """
2680 2681 2682 2683 2684 2685 2686 2687
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2688 2689
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2690 2691 2692
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2693 2694 2695 2696 2697

    For each input :math:`X`, the equation is:

    .. math::

2698
        Out = \sigma (W \\ast X + b)
2699

2700
    Where:
2701 2702 2703

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2704 2705 2706 2707
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2708

2709 2710 2711 2712
    Example:

        - Input:

2713
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2714

2715
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2716 2717 2718

        - Output:

2719
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2720 2721

        Where
Y
Yu Yang 已提交
2722

2723 2724
        .. math::

2725 2726 2727 2728
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2729 2730

    Args:
2731 2732 2733 2734
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2735 2736 2737 2738
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2767
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2768 2769 2770
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2771
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2772
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2773 2774

    Returns:
2775
        Variable: The tensor variable storing the convolution transpose result.
2776 2777

    Raises:
2778 2779
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2780 2781 2782 2783

    Examples:
       .. code-block:: python

2784 2785
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2786
    """
C
chengduo 已提交
2787
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2788 2789 2790 2791 2792 2793 2794 2795
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2796 2797 2798
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2799 2800 2801
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2802

C
chengduoZH 已提交
2803 2804
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2805

Y
Yu Yang 已提交
2806 2807 2808 2809 2810
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2811

Y
Yu Yang 已提交
2812 2813
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2814

C
chengduoZH 已提交
2815
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2816
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2817
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2818
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2819
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2820 2821 2822
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2823

2824 2825 2826 2827 2828 2829 2830
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2831
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2832
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2833

Y
Yu Yang 已提交
2834 2835 2836
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2837
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2838
    helper.append_op(
2839
        type=op_type,
Y
Yu Yang 已提交
2840 2841
        inputs={'Input': [input],
                'Filter': [img_filter]},
2842
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2843
        attrs={
2844
            'output_size': output_size,
2845 2846 2847 2848 2849
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2850 2851
        })

2852 2853 2854
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2855 2856


2857
def conv3d_transpose(input,
Y
Yu Yang 已提交
2858 2859 2860
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2861 2862 2863
                     padding=0,
                     stride=1,
                     dilation=1,
2864
                     groups=None,
C
caoying03 已提交
2865
                     param_attr=None,
2866
                     bias_attr=None,
C
chengduoZH 已提交
2867
                     use_cudnn=True,
2868
                     act=None,
C
caoying03 已提交
2869
                     name=None):
Y
Yu Yang 已提交
2870
    """
2871
    **Convlution3D transpose layer**
2872

2873
    The convolution3D transpose layer calculates the output based on the input,
2874
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2875 2876 2877 2878 2879 2880
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2881 2882 2883
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2884 2885 2886 2887 2888

    For each input :math:`X`, the equation is:

    .. math::

2889
        Out = \sigma (W \\ast X + b)
2890 2891 2892

    In the above equation:

2893 2894
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2895 2896 2897 2898
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2899

2900 2901 2902 2903
    Example:

        - Input:

2904
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2905

2906
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2907 2908 2909

        - Output:

2910
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2911 2912

        Where
Y
Yu Yang 已提交
2913

2914 2915
        .. math::

2916 2917 2918
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2919 2920

    Args:
2921
        input(Variable): The input image with [N, C, D, H, W] format.
2922 2923 2924
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2925
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2926 2927
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2928
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2929 2930 2931
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2932 2933
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2934
        stride(int|tuple): The stride size. If stride is a tuple, it must
2935 2936
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2937
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2938 2939 2940
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2941 2942 2943 2944 2945
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2955 2956
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2957 2958
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2959 2960
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2961 2962

    Returns:
2963
        Variable: The tensor variable storing the convolution transpose result.
2964 2965

    Raises:
2966 2967
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2968 2969 2970 2971

    Examples:
       .. code-block:: python

2972 2973
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2974
    """
C
chengduo 已提交
2975
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2976 2977
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2978
    if not isinstance(input, Variable):
2979
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2980 2981
    input_channel = input.shape[1]

2982 2983 2984
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2985

C
chengduoZH 已提交
2986 2987 2988
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2989 2990 2991 2992 2993 2994
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2995 2996 2997
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2998

2999
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3000
                         padding[0] - 1) // dilation[0] + 1
3001
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3002
                         padding[1] - 1) // dilation[1] + 1
3003
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3004
                         padding[2] - 1) // dilation[2] + 1
3005
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3006
    else:
3007 3008
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3009

3010
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3011
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3012 3013 3014
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3015
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3016
    helper.append_op(
3017
        type=l_type,
Y
Yu Yang 已提交
3018 3019
        inputs={'Input': [input],
                'Filter': [img_filter]},
3020
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3021 3022 3023 3024
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3025
            'groups': groups,
C
chengduoZH 已提交
3026 3027
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3028

3029 3030
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3031
    return out
Y
yangyaming 已提交
3032 3033


Y
yangyaming 已提交
3034
def sequence_expand(x, y, ref_level=-1, name=None):
3035
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3036 3037 3038 3039
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3040 3041 3042 3043 3044

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3045
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3046
                x.data = [[a], [b], [c], [d]]
3047 3048 3049
                x.dims = [4, 1]

            y is a LoDTensor:
3050 3051
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3052

Y
yangyaming 已提交
3053
            ref_level: 0
3054

Y
yangyaming 已提交
3055
            then output is a 1-level LoDTensor:
3056
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3057
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3058 3059 3060 3061
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3062
                x.data = [[a], [b], [c]]
3063 3064 3065
                x.dims = [3, 1]

            y is a LoDTensor:
3066
                y.lod = [[2, 0, 3]]
3067

Y
yangyaming 已提交
3068
            ref_level: -1
3069

Y
yangyaming 已提交
3070 3071 3072
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3073 3074 3075
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3076 3077
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3078
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3079
                        will be named automatically.
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3090
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3091
    """
Y
yangyaming 已提交
3092
    helper = LayerHelper('sequence_expand', input=x, **locals())
3093
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3094
    tmp = helper.create_variable_for_type_inference(dtype)
3095
    helper.append_op(
Y
yangyaming 已提交
3096 3097 3098 3099 3100
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3101
    return tmp
3102 3103


C
chengduo 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3160
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3161 3162 3163 3164 3165 3166 3167 3168
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3169
@templatedoc()
3170
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3171 3172 3173 3174 3175
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3176 3177 3178
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3179
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3180 3181 3182 3183
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3184 3185 3186
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3187

F
fengjiayi 已提交
3188
    Returns:
M
minqiyang 已提交
3189
        Variable: The padded sequence batch and the original lengths before
3190
                  padding. All sequences has the same length.
M
minqiyang 已提交
3191

F
fengjiayi 已提交
3192 3193 3194 3195 3196 3197 3198
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3199
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3200
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3201 3202 3203 3204 3205
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3206 3207
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3208 3209 3210 3211

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3212 3213 3214 3215 3216 3217
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3218 3219
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3220
        attrs={'padded_length': maxlen})
3221
    return out, length
F
fengjiayi 已提交
3222 3223


3224
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3225
    """
3226
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3227

3228 3229
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3230 3231 3232 3233 3234 3235 3236 3237 3238
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3239 3240 3241
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3242
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3243 3244 3245 3246 3247 3248

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3249
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3250 3251 3252 3253 3254 3255

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3256 3257
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3272
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3284 3285 3286 3287 3288 3289 3290 3291 3292
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3293 3294
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3295 3296 3297

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3298 3299

    This layer does the search in beams for one time step. Specifically, it
3300 3301 3302 3303 3304 3305
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3306

3307 3308 3309 3310 3311 3312 3313 3314
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3315

3316
    Args:
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3342

3343
    Returns:
3344 3345
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3346 3347 3348 3349

    Examples:
        .. code-block:: python

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3367 3368 3369 3370
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3371 3372 3373
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3374 3375 3376 3377 3378

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3379
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3397 3398 3399 3400 3401 3402 3403
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3414

3415 3416 3417 3418 3419 3420
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3421

3422 3423 3424 3425 3426 3427 3428 3429
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3430 3431
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3447 3448 3449 3450
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3451
              param_attr=None,
C
caoying03 已提交
3452 3453
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3454 3455 3456 3457
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3458
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3459

3460
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3461

3462
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3463

3464
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3465 3466 3467

            h_t & = o_t tanh(c_t)

3468 3469 3470 3471 3472 3473
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3474 3475 3476

        .. math::

3477
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3478 3479 3480 3481 3482 3483 3484 3485

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3486
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3487 3488

    Args:
Y
yangyaming 已提交
3489 3490 3491 3492 3493 3494
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3495
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3508 3509
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3510 3511

    Returns:
Y
yangyaming 已提交
3512
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3513 3514

    Raises:
3515 3516 3517 3518
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3519 3520 3521 3522 3523 3524

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3525
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3526
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3527
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3544
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3545 3546 3547 3548
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3549 3550
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3551 3552 3553
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3554
    size = cell_t_prev.shape[1]
3555
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3556 3557
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3558
                param_attr=param_attr,
3559
                bias_attr=bias_attr)
Y
yangyaming 已提交
3560
    dtype = x_t.dtype
X
Xin Pan 已提交
3561 3562
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3572
    return h, c
G
guosheng 已提交
3573 3574


C
caoying03 已提交
3575
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3576
    """
Y
yangyaming 已提交
3577
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3578 3579 3580

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3581
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3582 3583
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3584 3585
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3586
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3587
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3588
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3589 3590
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3591 3592 3593

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3594

G
guosheng 已提交
3595 3596 3597 3598 3599 3600
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3601
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3602 3603 3604 3605
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3606 3607 3608 3609

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3610
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3611 3612 3613
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3614 3615
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3616
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3617 3618
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3619 3620 3621 3622 3623
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3624
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3625 3626 3627 3628
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3629 3630


C
caoying03 已提交
3631
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3632
    """
Y
Yibing Liu 已提交
3633
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3634 3635 3636

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3637 3638 3639
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3640
            must be in the range :math:`[-rank(input), rank(input))`. If
3641
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3642
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3643 3644
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3645
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3646
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3647
                       will be named automatically.
G
guosheng 已提交
3648 3649

    Returns:
Y
Yibing Liu 已提交
3650
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3651

G
guosheng 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3662 3663
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3664 3665 3666 3667 3668 3669 3670

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3671 3672
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3673
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3674 3675
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3676 3677 3678 3679 3680
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3681
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3682 3683 3684 3685
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3686 3687


C
caoying03 已提交
3688
def reduce_max(input, dim=None, keep_dim=False, name=None):
3689
    """
Y
yangyaming 已提交
3690
    Computes the maximum of tensor elements over the given dimension.
3691 3692 3693

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3694
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3695 3696 3697
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3698
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3699 3700
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3701
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3702 3703
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3704 3705 3706

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3707

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3719 3720 3721 3722 3723 3724 3725

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3726 3727
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3728
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3729 3730
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3731 3732 3733 3734 3735
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3736
            'dim': dim if dim != None else [0],
3737 3738 3739 3740 3741 3742
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3743
def reduce_min(input, dim=None, keep_dim=False, name=None):
3744
    """
Y
yangyaming 已提交
3745
    Computes the minimum of tensor elements over the given dimension.
3746 3747 3748

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3749
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3750 3751 3752
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3753
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3754 3755
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3756
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3757 3758
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3759 3760 3761

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3774 3775 3776 3777 3778 3779 3780

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3781 3782
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3783
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3784 3785
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3786 3787 3788 3789 3790
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3791
            'dim': dim if dim != None else [0],
3792 3793 3794 3795
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3796 3797


3798 3799 3800 3801 3802 3803
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3804
        dim (list|int|None): The dimensions along which the product is performed. If
3805 3806
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3807 3808
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3809 3810 3811
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3812
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3813
            layer will be named automatically.
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3828
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3829
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3830 3831 3832 3833 3834 3835 3836

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3837 3838
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3839
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3840 3841
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3842 3843 3844 3845 3846
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3847
            'dim': dim if dim != None else [0],
3848 3849 3850 3851 3852 3853
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3854
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3855
    """
C
caoying03 已提交
3856
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3857 3858 3859

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3860 3861 3862 3863 3864
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3865
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3866
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3867
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3868 3869
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3870 3871

    Returns:
D
dzhwinter 已提交
3872
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3882 3883
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3899
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3922
    .. math::
3923 3924

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3925 3926 3927 3928 3929

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3930
        x(Variable|list): The input tensor to l2_normalize layer.
3931
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3932 3933
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3934
        epsilon(float): The epsilon value is used to avoid division by zero, \
3935
            the defalut value is 1e-10.
3936
        name(str|None): A name for this layer(optional). If set None, the layer \
3937
            will be named automatically.
C
caoying03 已提交
3938 3939

    Returns:
3940
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3941 3942

    Examples:
3943

C
caoying03 已提交
3944 3945
        .. code-block:: python

3946 3947 3948 3949
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3950 3951
    """

F
fengjiayi 已提交
3952 3953
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3954 3955
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3956 3957
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3958
    helper.append_op(
3959 3960 3961 3962
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3963
        attrs={
3964 3965
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3966 3967
        })
    return out
3968 3969


S
sneaxiy 已提交
3970
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3971
    """
Y
ying 已提交
3972 3973 3974 3975
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3976

C
chengduoZH 已提交
3977
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3978
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3979

3980 3981 3982 3983 3984
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3985
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3986

C
chengduoZH 已提交
3987
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3988
      performs in the following way.
G
guosheng 已提交
3989

3990
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3991
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3992
        last two dimensions and a batched matrix multiply supporting broadcast
3993
        applies on the two tensors.
G
guosheng 已提交
3994

Y
ying 已提交
3995 3996
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3997
    removed after matrix multiplication.
G
guosheng 已提交
3998 3999 4000

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4001 4002 4003
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4004
        alpha (float): The scale of output. Default 1.0.
4005
        name(str|None): A name for this layer(optional). If set None, the layer
4006
            will be named automatically.
G
guosheng 已提交
4007 4008

    Returns:
4009
        Variable: The product Tensor variable.
G
guosheng 已提交
4010

G
guosheng 已提交
4011 4012 4013
    Examples:
        .. code-block:: python

4014
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4015 4016
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4017

4018 4019
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4020

4021 4022
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4023

4024 4025
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4026 4027 4028 4029

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4030 4031
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4032

Y
ying 已提交
4033
            # x: [M], y: [N]
4034
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4035
    """
Y
ying 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4048
            y_shape = y_shape + [1]
Y
ying 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4065
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4066
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4067
    helper.append_op(
4068 4069 4070 4071
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4072 4073 4074
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4075
            'alpha': float(alpha),
S
sneaxiy 已提交
4076
        })
4077
    return out
4078 4079


4080
def topk(input, k, name=None):
Q
qingqing01 已提交
4081 4082 4083 4084
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4085
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4086 4087 4088 4089 4090 4091
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4113 4114 4115
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4116
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4117
                 of input.
4118
        name(str|None): A name for this layer(optional). If set None, the layer
4119
                       will be named automatically.
F
fengjiayi 已提交
4120
                       Default: None
Q
qingqing01 已提交
4121 4122

    Returns:
4123 4124 4125
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4126
        within the last dimension of input.
Q
qingqing01 已提交
4127

F
fengjiayi 已提交
4128 4129
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4130 4131 4132 4133 4134 4135 4136

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4137 4138
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4150
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4151
    """
Y
ying 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4161

Y
ying 已提交
4162
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4163

4164
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4165 4166
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4167
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4168

4169
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4170 4171
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4172

4173 4174 4175
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4176
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4177
                          the length of reference string.
4178
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4179
                                     calculating edit distance.
4180
        name (str): The name of this layer. It is optional.
4181

W
wanghaoshuang 已提交
4182
    Returns:
W
wanghaoshuang 已提交
4183
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4184 4185 4186 4187

    Examples:
        .. code-block:: python

T
tink2123 已提交
4188 4189
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4190
            cost = fluid.layers.edit_distance(input=x,label=y)
4191
    """
4192
    helper = LayerHelper("edit_distance", **locals())
4193

4194
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4195
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4196 4197
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4198 4199 4200 4201 4202

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4203
            attrs={"tokens": ignored_tokens})
4204 4205 4206 4207 4208
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4209
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4210
            attrs={"tokens": ignored_tokens})
4211 4212
        label = erased_label

4213
    # edit distance op
X
Xin Pan 已提交
4214 4215
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4216 4217 4218 4219
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4220 4221
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4222 4223
        attrs={"normalized": normalized})

4224
    return edit_distance_out, sequence_num
4225 4226 4227 4228 4229


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4230

Y
ying 已提交
4231 4232 4233 4234
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4252
        input.lod = [[4, 4]]
4253 4254 4255 4256 4257 4258 4259

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4260
        output.lod = [[2, 1]]
4261 4262 4263

    Args:

Y
ying 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4273
        name (str): The name of this layer. It is optional.
4274 4275

    Returns:
4276
        Variable: CTC greedy decode result. If all the sequences in result were
4277
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4278 4279 4280 4281 4282

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4283

4284
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4285
    """
4286
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4287
    _, topk_indices = topk(input, k=1)
4288 4289

    # ctc align op
X
Xin Pan 已提交
4290
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4291 4292 4293
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4294
        outputs={"Output": [ctc_out]},
4295 4296
        attrs={"merge_repeated": True,
               "blank": blank})
4297
    return ctc_out
4298 4299


W
Wu Yi 已提交
4300
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4301
    """
4302 4303
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4304
    to compute Connectionist Temporal Classification (CTC) loss.
4305 4306
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4307 4308 4309
    input tensor.

    Args:
4310
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4311 4312 4313 4314
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4315
       label (Variable): The ground truth of variable-length sequence,
4316 4317 4318
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4319 4320
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4321 4322 4323
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4324
         follewed by a mean_op.
W
Wu Yi 已提交
4325
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4326 4327

    Returns:
4328 4329
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4330 4331

    Examples:
4332

W
wanghaoshuang 已提交
4333
        .. code-block:: python
4334

4335 4336 4337
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4338 4339

    """
F
fengjiayi 已提交
4340
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4341 4342
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4343 4344 4345 4346 4347 4348
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4349 4350 4351 4352 4353
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4354
    return loss_out
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4370 4371 4372
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4373 4374 4375 4376 4377
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4378

4379
            out.lod  = [[0, 1, 3]]
4380 4381 4382 4383

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4384 4385 4386 4387 4388 4389 4390
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4391 4392 4393

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4394 4395

    Returns:
4396

4397 4398 4399 4400 4401
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4402
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4403
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4404 4405
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4406
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4407 4408 4409 4410 4411 4412
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4413 4414


4415 4416 4417 4418
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4419 4420 4421 4422 4423 4424
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4425
        num_neg_samples=None,
4426 4427 4428
        name=None,
        sampler="uniform",
        custom_dist=None,
4429 4430
        seed=0,
        is_sparse=False):
4431 4432 4433 4434 4435 4436 4437
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4438 4439
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4440
            sample is 1.0.
C
chengduo 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4450
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4451 4452
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4453 4454 4455
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4456
        custom_dist (float[]): A float[] with size=num_total_classes.
4457 4458 4459 4460
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4461
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4462

4463
    Returns:
Y
Yibing Liu 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4491 4492 4493 4494 4495 4496 4497 4498 4499

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4500

4501
    """
Y
Yang Yu 已提交
4502 4503 4504
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4505 4506

    dim = input.shape[1]
Y
Yang Yu 已提交
4507 4508 4509 4510 4511 4512
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4513
    inputs = {}
C
chengduo 已提交
4514 4515 4516 4517 4518 4519 4520
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4521 4522 4523
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4524

4525 4526 4527 4528
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4529 4530 4531 4532 4533 4534 4535

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4588 4589 4590 4591
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4592 4593 4594 4595 4596
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4597 4598
    attrs = {
        'num_total_classes': int(num_total_classes),
4599 4600
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4601 4602
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4603
    }
Y
Yang Yu 已提交
4604 4605 4606

    helper.append_op(
        type='nce',
C
chengduo 已提交
4607
        inputs=inputs,
Y
Yang Yu 已提交
4608 4609 4610 4611 4612 4613
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4614
    return cost / (num_neg_samples + 1)
4615 4616


C
chengduo 已提交
4617 4618
def hsigmoid(input,
             label,
4619
             num_classes,
C
chengduo 已提交
4620 4621
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4622
             name=None,
4623 4624 4625
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4626
             is_sparse=False):
W
weixing02 已提交
4627 4628
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4629
    process of language model. This operator organizes the classes into a
4630 4631
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4632 4633 4634 4635 4636 4637
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4638
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4639
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4640

4641 4642 4643 4644 4645 4646 4647 4648 4649
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4650
    Args:
M
minqiyang 已提交
4651
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4652 4653 4654 4655
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4656 4657 4658
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4670 4671 4672 4673 4674 4675 4676
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4677
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4678 4679
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4680 4681

    Returns:
J
JiabinYang 已提交
4682
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4683 4684 4685 4686 4687

    Examples:

        .. code-block:: python

G
guosheng 已提交
4688 4689 4690
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4691 4692 4693 4694
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4695 4696
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4697
    dim = input.shape[1]
4698
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4699 4700 4701
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4702 4703 4704 4705
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4706 4707
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4708 4709 4710
    else:
        pass

J
JiabinYang 已提交
4711 4712
    weights = None

4713
    if not is_custom:
J
JiabinYang 已提交
4714 4715 4716 4717 4718 4719 4720 4721
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4722
            shape=[num_classes, dim],
J
JiabinYang 已提交
4723 4724
            is_bias=False,
            dtype=input.dtype)
4725 4726 4727
    inputs = {
        "X": input,
        "W": weights,
4728 4729
        "PTable": path_table,
        "PathCode": path_code,
4730 4731
        "Label": label
    }
W
weixing02 已提交
4732
    if helper.bias_attr:
4733
        if not is_custom:
J
JiabinYang 已提交
4734 4735
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4736
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4737 4738 4739 4740 4741 4742
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4743
                shape=[num_classes, 1],
J
JiabinYang 已提交
4744 4745 4746
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4747 4748
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4749
        inputs=inputs,
W
weixing02 已提交
4750 4751
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4752 4753
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4754 4755 4756
    return out


Y
fix ci.  
ying 已提交
4757
def transpose(x, perm, name=None):
Y
ying 已提交
4758 4759 4760 4761 4762 4763 4764
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4765 4766 4767
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4768 4769 4770 4771 4772 4773 4774

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4775
            # use append_batch_size=False to avoid prepending extra
4776
            # batch size in shape
4777
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4778
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4779
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4780 4781
    """

Y
fix ci.  
ying 已提交
4782
    if len(perm) != len(x.shape):
Y
ying 已提交
4783 4784 4785
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4786 4787 4788 4789 4790 4791
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4792 4793

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4794 4795
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4796
    helper.append_op(
4797
        type='transpose2',
Y
fix ci.  
ying 已提交
4798
        inputs={'X': [x]},
4799 4800
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4801 4802
        attrs={'axis': perm})
    return out
4803 4804


4805 4806 4807 4808 4809 4810 4811
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4812
    """
4813 4814 4815 4816 4817 4818 4819
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4848 4849 4850 4851 4852 4853 4854 4855 4856
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4857 4858 4859
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4860 4861 4862 4863 4864
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4892 4893 4894
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4907
            output.dims = {8, 8}
4908

4909
            output.lod = [[4, 4]]
4910

D
dzhwinter 已提交
4911
     Examples:
4912 4913 4914

        .. code-block:: python

4915 4916
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4917 4918

    """
W
wanghaoshuang 已提交
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4929 4930 4931 4932 4933 4934 4935
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4936
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4937
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4938
    helper.append_op(
4939
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4940
    return out
4941 4942


Y
yuyang18 已提交
4943
@templatedoc()
4944
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4945 4946
    """
    ${comment}
4947 4948

    Args:
Y
yuyang18 已提交
4949
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4950 4951
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4952 4953 4954 4955 4956
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4957
        ${out_comment}.
4958 4959

    Examples:
Y
yuyang18 已提交
4960 4961 4962 4963
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4964 4965 4966 4967 4968 4969
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4970
    out = helper.create_variable_for_type_inference(dtype)
4971 4972 4973 4974 4975
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4976
    return helper.append_activation(out)
4977 4978


Y
yuyang18 已提交
4979
@templatedoc()
4980 4981
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4982 4983 4984 4985 4986 4987 4988
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4989 4990

    Args:
Y
yuyang18 已提交
4991 4992
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4993 4994

    Returns:
Y
yuyang18 已提交
4995
        ${out_comment}.
4996 4997
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4998 4999 5000 5001 5002

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5003
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5004 5005 5006 5007 5008 5009
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5010 5011


5012 5013 5014
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5015
                               ignore_index=-100,
5016 5017
                               numeric_stable_mode=False,
                               return_softmax=False):
5018 5019
    """
    **Softmax With Cross Entropy Operator.**
5020

5021 5022 5023 5024
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5025

5026 5027 5028
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5029

5030 5031 5032
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5033

5034
    The equation is as follows:
5035

5036
    1) Hard label (one-hot label, so every sample has exactly one class)
5037

5038 5039 5040 5041
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5042

5043 5044 5045
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5046

5047 5048 5049 5050
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5051 5052 5053
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5054

S
sneaxiy 已提交
5055 5056 5057 5058 5059 5060 5061 5062
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5063 5064 5065 5066 5067 5068 5069 5070
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5071 5072
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5073
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5074 5075 5076
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5077 5078 5079
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5080
                                    stable algorithm. Default: False
5081
        return_softmax (bool): A flag indicating whether to return the softmax
5082
                               along with the cross entropy loss. Default: False
5083

5084
    Returns:
5085 5086 5087 5088
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5089
                              2-D tensor with shape [N x K].
5090 5091 5092 5093 5094 5095 5096

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5097 5098
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5099 5100
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5101 5102
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5103 5104 5105 5106 5107 5108
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5109 5110 5111 5112 5113
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5114 5115 5116 5117

    if return_softmax:
        return loss, softmax

5118 5119 5120 5121 5122
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5123 5124
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5125
    For each instance, it computes the smooth L1 loss element by element first
5126
    and then sums all the losses. So the shape of ouput Variable is
5127
    [batch_size, 1].
5128

5129 5130
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5131
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5132
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5133
            L1 loss op with same shape as :attr:`x`.
5134
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5135 5136
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5137
            by this tensor element by element.
5138
        outside_weight (Variable|None): A tensor with rank at least 2. This
5139 5140
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5141
            element by element.
5142
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5143 5144
           scalar with default value 1.0.

5145
    Returns:
5146
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5147 5148 5149 5150 5151

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5152 5153
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5154
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5155
            out = fluid.layers.smooth_l1(x=fc, y=label)
5156
    """
5157

5158
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5159 5160
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5173 5174 5175 5176


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5177
    This layer creates the one-hot representations for input indices.
5178 5179

    Args:
Y
Yibing Liu 已提交
5180 5181
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5182 5183

    Returns:
Y
Yibing Liu 已提交
5184
        Variable: The one-hot representations of input.
5185 5186

    Examples:
C
caoying03 已提交
5187
        .. code-block:: python
5188

Y
Yibing Liu 已提交
5189 5190
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5191 5192
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5193
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5194 5195 5196 5197 5198 5199
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5200 5201


Y
Yu Yang 已提交
5202
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5203
    """
Y
yi.wu 已提交
5204 5205 5206
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5207 5208 5209 5210 5211 5212

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5213 5214
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5215 5216 5217 5218 5219 5220

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5221 5222
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5223 5224
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5225 5226 5227 5228 5229
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5230
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5231
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5232 5233
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5234 5235
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5236 5237 5238
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5239 5240


5241
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5242
    """
C
caoying03 已提交
5243 5244
    Gives a new shape to the input Tensor without changing its data.

5245 5246 5247 5248 5249
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5250

5251
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5252

5253 5254 5255 5256
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5257
    2. 0 means the actual dimension value is going to be copied from the
5258 5259 5260 5261
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5262 5263

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5264
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5265
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5266

5267
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5268 5269
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5270 5271
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5272
    dimensions.
C
caoying03 已提交
5273

5274
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5275 5276 5277 5278
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5279 5280

    Args:
5281
        x(variable): The input tensor.
C
caoying03 已提交
5282 5283
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5284 5285 5286 5287 5288
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5289 5290
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5291 5292 5293 5294 5295 5296 5297
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5298
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5299

5300
    Returns:
G
guosheng 已提交
5301 5302 5303 5304
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5305

X
Xin Pan 已提交
5306 5307 5308
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5309 5310
    Examples:
        .. code-block:: python
G
guosheng 已提交
5311

5312
            data = fluid.layers.data(
5313
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5314
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5315
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5316 5317 5318
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5319
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5320 5321 5322 5323 5324
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5325

5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5341
    helper = LayerHelper("reshape2", **locals())
5342 5343
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5344
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5345
    helper.append_op(
5346
        type="reshape2",
X
Xin Pan 已提交
5347
        inputs=inputs,
D
dzhwinter 已提交
5348
        attrs={"shape": shape},
5349 5350
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5351

D
dzhwinter 已提交
5352
    return helper.append_activation(out)
5353

5354

5355
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5356
    """
M
minqiyang 已提交
5357 5358 5359
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5360
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5361

Y
Yibing Liu 已提交
5362 5363
    Examples:
    Case 1:
M
minqiyang 已提交
5364
      Given
Y
Yibing Liu 已提交
5365 5366 5367 5368 5369 5370 5371 5372
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5373
        and
Y
Yibing Liu 已提交
5374 5375 5376
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5377

Y
Yibing Liu 已提交
5378
    Args:
5379
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5380
        axes (list): List of integers, indicating the dimensions to be squeezed.
5381
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5382 5383 5384 5385 5386 5387 5388 5389

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5390
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5391 5392
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5393 5394
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5395
    helper.append_op(
5396
        type="squeeze2",
5397
        inputs={"X": input},
Y
Yibing Liu 已提交
5398
        attrs={"axes": axes},
5399 5400
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5401

5402 5403 5404
    return out


5405
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5406
    """
M
minqiyang 已提交
5407 5408 5409
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5410

M
minqiyang 已提交
5411 5412
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5413
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5414

Y
Yibing Liu 已提交
5415
    Args:
5416
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5417
        axes (list): List of integers, indicating the dimensions to be inserted.
5418
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5419 5420 5421 5422 5423 5424 5425 5426

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5427
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5428 5429
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5430 5431
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5432
    helper.append_op(
5433
        type="unsqueeze2",
5434
        inputs={"X": input},
Y
Yibing Liu 已提交
5435
        attrs={"axes": axes},
5436 5437
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5438

5439 5440
    return out

5441

Y
yangyaming 已提交
5442
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5443
    """
Y
Yibing Liu 已提交
5444
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5445 5446 5447 5448
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5449
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5450 5451 5452 5453 5454 5455

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5456
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5457 5458 5459
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5460
            target_lod: [4, 2]
Y
yangyaming 已提交
5461 5462

            then we get a 1-level LoDTensor:
5463
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5464 5465 5466 5467 5468 5469
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5470
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5471 5472 5473 5474
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5475
                y.data = [[2, 4]]
Y
yangyaming 已提交
5476 5477 5478
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5479
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5480 5481 5482 5483 5484 5485
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5486
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5487 5488 5489 5490
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5491
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5492 5493 5494 5495
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5496
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5497 5498 5499 5500 5501
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5502
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5503
                           from :attr:`y`.
Y
yangyaming 已提交
5504
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5505
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5506 5507

    Returns:
Y
Yibing Liu 已提交
5508
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5509 5510

    Raises:
Y
Yibing Liu 已提交
5511
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5521
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5547
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5576 5577
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5590 5591 5592
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5606 5607 5608 5609


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5610
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5611
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5612

G
guosheng 已提交
5613 5614 5615 5616
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5639
                         The length of :attr:paddings must be
G
guosheng 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5650

G
guosheng 已提交
5651 5652 5653 5654 5655 5656
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5657
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5658 5659 5660 5661 5662 5663 5664
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5665 5666


C
chengduo 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5737
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5738 5739 5740 5741 5742 5743 5744 5745 5746
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5747 5748 5749 5750 5751 5752 5753
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5754 5755
    called label-smoothing regularization (LSR).

5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5779
                              be :math:`(1, class\_num)`.
5780 5781
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5782
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5802
    smooth_label = helper.create_variable_for_type_inference(dtype)
5803 5804 5805 5806 5807 5808 5809
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5810 5811


W
wopeizl 已提交
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5848 5849


J
jerrywgz 已提交
5850 5851 5852 5853 5854 5855
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5856 5857
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5874 5875 5876
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5877 5878 5879 5880 5881 5882
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5883
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5924 5925
        .. code-block:: python

W
whs 已提交
5926 5927 5928 5929
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5930
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5931 5932 5933 5934 5935 5936
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5937 5938


5939 5940 5941 5942
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5943 5944
                 resample='BILINEAR',
                 actual_shape=None):
5945
    """
Q
qiaolongfei 已提交
5946
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5947

5948
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5949 5950 5951
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5952

5953
        'BILINEAR' : Bilinear interpolation
5954
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5955

5956
    Args:
5957
        input (Variable): The input tensor of image resize layer,
5958 5959
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5960
        out_shape(list|tuple|Variable|None): Output shape of image resize
5961 5962
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5963
        scale(float|None): The multiplier for the input height or width.
5964 5965 5966
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5967 5968
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5969
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5970
                       currently.
5971
                       Default: 'BILINEAR'
5972 5973 5974
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5975
                                :attr:`out_shape` and :attr:`scale` specifying
5976 5977 5978 5979 5980 5981 5982
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5983 5984
                                constructing stage.
                                Default: None
5985 5986

    Returns:
Q
update  
qiaolongfei 已提交
5987 5988
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5989

5990 5991 5992
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5993
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
5994 5995 5996 5997
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5998 5999 6000
    Examples:
        .. code-block:: python

6001
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6002
    """
6003 6004 6005 6006
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6007 6008
    if resample not in resample_methods:
        raise ValueError(
6009
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6010
        )
6011
    resample_type = resample_methods[resample]
6012
    if out_shape is None and scale is None:
6013
        raise ValueError("One of out_shape and scale must not be None.")
6014
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6015
    dtype = helper.input_dtype()
6016 6017 6018 6019

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6020 6021 6022
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6023
    if out_shape is not None:
6024 6025 6026 6027
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6028
            inputs['OutSize'] = out_shape
6029 6030 6031 6032 6033 6034 6035 6036
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6037 6038 6039 6040
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6041 6042 6043 6044 6045
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6046
    out = helper.create_variable_for_type_inference(dtype)
6047
    helper.append_op(
6048
        type='{}_interp'.format(resample_type),
6049
        inputs=inputs,
6050
        outputs={"Out": out},
6051 6052 6053
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6054
    return out
F
stash  
fengjiayi 已提交
6055 6056


6057
@templatedoc(op_type="bilinear_interp")
6058 6059 6060 6061 6062
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6063
    """
6064 6065
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6066 6067
    in priority order.

6068 6069 6070 6071
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6072 6073
    again in the other direction.

6074
    For details of bilinear interpolation, please refer to Wikipedia:
6075
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6076 6077 6078 6079 6080

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6081

Y
yuyang18 已提交
6082 6083 6084 6085 6086
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6087 6088 6089
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6090
                                :attr:`out_shape` and :attr:`scale` specifying
6091 6092 6093 6094 6095 6096 6097
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6098 6099
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6100 6101 6102

    Returns:
        ${out_comment}.
6103 6104 6105 6106 6107

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6108 6109
    """

6110
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6111 6112


6113
@templatedoc(op_type="nearest_interp")
6114 6115 6116 6117 6118
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6119
    """
6120
    Resize input by performing nearest neighbor interpolation in both the
6121 6122
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6123 6124
    out_shape and scale in priority order.

6125
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6126
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6127 6128 6129 6130 6131

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6132

Y
yuyang18 已提交
6133 6134 6135 6136 6137
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6138 6139 6140
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6141
                                :attr:`out_shape` and :attr:`scale` specifying
6142 6143 6144 6145 6146 6147 6148
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6149 6150
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6151 6152 6153

    Returns:
        ${out_comment}.
6154 6155 6156 6157 6158

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6159 6160
    """

6161
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6162 6163 6164 6165


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6166 6167 6168
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6169 6170 6171 6172 6173 6174 6175
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6176
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6177

6178
    Returns:
Q
update  
qiaolongfei 已提交
6179
        Variable: The output is a 4-D tensor of the shape
6180
        (num_batches, channls, out_h, out_w).
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6191 6192 6193
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6194 6195 6196
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6197 6198
def gather(input, index):
    """
Q
qiaolongfei 已提交
6199 6200
    **Gather Layer**

6201
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6202 6203 6204 6205
    of X indexed by `index` and concatenate them together.

    .. math::

6206
        Out = X[Index]
W
whs 已提交
6207 6208 6209 6210 6211 6212 6213


    .. code-block:: text


                Given:

6214 6215
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6226
        input (Variable): The source input with rank>=1.
W
whs 已提交
6227 6228 6229 6230 6231 6232
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6233

W
whs 已提交
6234 6235 6236 6237 6238 6239
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6240
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6241 6242 6243 6244 6245 6246 6247 6248
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6280
    out = helper.create_variable_for_type_inference(dtype)
6281 6282 6283 6284 6285 6286 6287 6288 6289
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6340
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6341 6342 6343 6344 6345 6346 6347 6348 6349
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6363

6364 6365 6366
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6367
    """
F
stash  
fengjiayi 已提交
6368
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6369
    dtype = x.dtype
X
Xin Pan 已提交
6370
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6371
    if seed is None:
6372
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6373
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6374
    if isinstance(seed, int):
F
fengjiayi 已提交
6375 6376 6377 6378 6379
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6380 6381 6382 6383
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6384
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6385 6386
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6387 6388
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6389
    return out
W
whs 已提交
6390 6391


6392
def log(x, name=None):
W
wanghaoshuang 已提交
6393 6394 6395 6396 6397
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6398
        Out = \\ln(x)
W
wanghaoshuang 已提交
6399 6400

    Args:
6401
        x (Variable): Input tensor.
6402 6403
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6404 6405 6406 6407 6408 6409 6410 6411

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6412
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6413 6414
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6415
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6416
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6417
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6418 6419 6420
    return out


6421
def relu(x, name=None):
W
wanghaoshuang 已提交
6422 6423
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6424
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6425 6426 6427 6428
    the tensor elementwise.

    .. math::

6429
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6430 6431

    Args:
6432
        x (Variable): The input tensor.
6433 6434
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6435 6436 6437 6438 6439 6440 6441 6442

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6443
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6444 6445
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6446
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6447
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6448
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6449
    return out
6450 6451


C
chengduo 已提交
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6493 6494 6495
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6496 6497 6498 6499
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6500
    .. math::
6501 6502

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6503

6504
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6505 6506 6507 6508 6509
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6510
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6511
                           Its shape should be the same as input.
6512
        num_classes (int): The possible number of labels.
W
whs 已提交
6513 6514 6515 6516

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6517
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6518 6519 6520 6521

    Examples:

        .. code-block:: python
6522

W
whs 已提交
6523 6524 6525 6526
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6527 6528 6529
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6530 6531
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6532 6533
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6534
        outputs={
W
whs 已提交
6535 6536 6537
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6538 6539 6540
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6615
            isinstance(shape, Variable)):
6616 6617 6618 6619 6620
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6621
    out = helper.create_variable_for_type_inference(x.dtype)
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6639 6640


W
whs 已提交
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6658

W
whs 已提交
6659
              out_shape = [2, 3, 5, 5]
6660

W
whs 已提交
6661
          Step 1:
6662

W
whs 已提交
6663 6664 6665
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6666

W
whs 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6737
            isinstance(out_shape, Variable)):
W
whs 已提交
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6759 6760 6761 6762 6763 6764 6765 6766
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6767

6768 6769
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6770

6771 6772 6773 6774
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6775

6776 6777 6778 6779 6780
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6781 6782 6783

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6819
    out = helper.create_variable_for_type_inference("float32")
6820 6821 6822 6823 6824 6825 6826 6827

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6828 6829


M
minqiyang 已提交
6830 6831
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6832
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6833
    which compares left score and right score passed in.
M
minqiyang 已提交
6834
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6835 6836 6837 6838 6839 6840

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6841
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6842 6843
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6844
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6845 6846 6847
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6848
       Variable: The ranking loss.
M
minqiyang 已提交
6849
    Raises:
M
minqiyang 已提交
6850
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6851 6852 6853 6854 6855 6856 6857
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6858
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6859 6860 6861 6862 6863 6864
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6865 6866
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6892

W
whs 已提交
6893 6894
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6895

W
whs 已提交
6896
      Case 0:
M
minqiyang 已提交
6897

W
whs 已提交
6898 6899 6900
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6901

W
whs 已提交
6902 6903 6904
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6905

W
whs 已提交
6906
      Case 1:
M
minqiyang 已提交
6907

W
whs 已提交
6908 6909
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6910

W
whs 已提交
6911 6912 6913
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6914

W
whs 已提交
6915
      Case 2:
M
minqiyang 已提交
6916

W
whs 已提交
6917 6918
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6919

W
whs 已提交
6920 6921 6922
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6923 6924


W
whs 已提交
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6951
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6978 6979 6980 6981 6982

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6983 6984
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
6985 6986
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6987
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7008 7009 7010 7011 7012

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7013 7014
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7015 7016
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7017
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7038 7039 7040 7041 7042

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7043 7044
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7045 7046
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7047
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7069 7070 7071 7072 7073

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7074
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7075
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7076 7077
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7078
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7101 7102 7103 7104 7105

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7106 7107
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7108 7109
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7110
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7132 7133 7134 7135 7136

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7137 7138
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7139 7140
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7141
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7142 7143 7144 7145 7146 7147 7148 7149
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7150 7151 7152 7153
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7154
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7155 7156 7157

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7158 7159
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7160 7161 7162 7163
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7164
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7165
                       will be named automatically.
J
jerrywgz 已提交
7166 7167 7168 7169 7170 7171 7172 7173

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7174
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7188
        attr=helper.param_attr,
J
jerrywgz 已提交
7189 7190 7191 7192
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7193
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7194 7195 7196 7197 7198 7199 7200 7201 7202
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7213
    Returns:
7214
        output(${out_type}): ${out_comment}
7215 7216 7217 7218 7219 7220 7221

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7222 7223
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7224
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7243
    Returns:
7244
        output(${out_type}): ${out_comment}
7245 7246 7247 7248 7249 7250 7251

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7252 7253
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7254
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7272
    Returns:
7273
        output(${out_type}): ${out_comment}
7274 7275 7276 7277 7278 7279 7280

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7281 7282
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7283
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7284 7285 7286 7287 7288 7289 7290 7291
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7305

7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7316 7317
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7333
        ValueError: If axis is not in range [0, rank(x)].
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7350 7351
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7352
    helper.append_op(
7353
        type='flatten2',
7354
        inputs={"X": x},
7355 7356
        outputs={'Out': out,
                 'XShape': x_shape},
7357 7358
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7359 7360


C
chenweihang 已提交
7361
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7362
    """
C
chenweihang 已提交
7363
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7364
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7365 7366
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7367

C
chenweihang 已提交
7368 7369 7370 7371
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7372
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7373 7374 7375 7376 7377 7378
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7379
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7380 7381 7382
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7383 7384 7385
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7397 7398
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7399 7400 7401 7402 7403 7404
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7405
    return out
7406

7407

S
sneaxiy 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7417

S
sneaxiy 已提交
7418
    .. math::
7419

S
sneaxiy 已提交
7420 7421 7422
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7423
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7424 7425 7426 7427
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7428 7429 7430
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7431 7432
    Returns:
        Variable: The output sequence mask.
7433

S
sneaxiy 已提交
7434 7435
    """

Q
qingqing01 已提交
7436
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7437
    if name is None:
X
Xin Pan 已提交
7438
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7439
    else:
X
Xin Pan 已提交
7440
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7441

Q
qingqing01 已提交
7442 7443 7444
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7445 7446
        outputs={'Y': out},
        attrs={
7447
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7448 7449 7450
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7451 7452


X
Xin Pan 已提交
7453
def stack(x, axis=0):
S
sneaxiy 已提交
7454 7455 7456 7457
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7458 7459 7460 7461 7462 7463 7464

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7465
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7466
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7467 7468

    Args:
7469
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7470
        axis (int|None): The axis along which all inputs are stacked.
7471

S
sneaxiy 已提交
7472 7473
    Returns:
        Variable: The stacked variable.
7474

S
sneaxiy 已提交
7475 7476
    """

X
Xin Pan 已提交
7477 7478 7479 7480 7481 7482
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7483
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7484
    helper.append_op(
S
sneaxiy 已提交
7485 7486
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7487

X
Xin Pan 已提交
7488
    return out
D
dzhwinter 已提交
7489 7490 7491 7492 7493 7494 7495


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7496

D
dzhwinter 已提交
7497 7498 7499
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7500
    raised.
D
dzhwinter 已提交
7501 7502

    Args:
M
minqiyang 已提交
7503
        x (Variable): Input variable.
D
dzhwinter 已提交
7504 7505
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7506

D
dzhwinter 已提交
7507 7508
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7509

D
dzhwinter 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7521
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7522 7523 7524 7525 7526 7527 7528 7529

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7542

W
whs 已提交
7543 7544 7545 7546
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7547

W
whs 已提交
7548
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7549

W
whs 已提交
7550
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7551

W
whs 已提交
7552 7553 7554 7555
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7556

W
whs 已提交
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7573
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7574 7575 7576 7577 7578 7579
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7580 7581


G
fix  
gongweibao 已提交
7582 7583 7584
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7585
@templatedoc()
G
fix  
gongweibao 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7595
    ${comment}
G
fix  
gongweibao 已提交
7596 7597

    Args:
G
gongweibao 已提交
7598 7599 7600
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7601
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7602 7603 7604
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7605 7606
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7607
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7608

7609 7610 7611 7612 7613
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7614 7615 7616
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7617
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7634 7635


G
gongweibao 已提交
7636
@templatedoc()
X
Xin Pan 已提交
7637
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7638
    """
G
gongweibao 已提交
7639
    ${comment}
G
fix  
gongweibao 已提交
7640 7641

    Args:
G
gongweibao 已提交
7642 7643 7644 7645
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7646 7647 7648
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7649
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7650

7651 7652 7653 7654
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7655 7656 7657
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7658
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7669
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7670 7671 7672 7673 7674
        })

    return out


G
gongweibao 已提交
7675
@templatedoc()
G
fix  
gongweibao 已提交
7676
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7677
    """
G
gongweibao 已提交
7678
    ${comment}
G
fix  
gongweibao 已提交
7679 7680

    Args:
G
gongweibao 已提交
7681 7682 7683 7684
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7685
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7686 7687

    Returns:
G
gongweibao 已提交
7688
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7689

7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7700 7701 7702
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7703
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7715
@templatedoc()
G
fix  
gongweibao 已提交
7716 7717 7718 7719 7720 7721 7722 7723 7724
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7725
    ${comment}
G
fix  
gongweibao 已提交
7726 7727

    Args:
G
gongweibao 已提交
7728 7729
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7730
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7731 7732 7733 7734
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7735
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7736 7737

    Returns:
G
gongweibao 已提交
7738
        out (Variable): ${out_comment}
7739 7740 7741 7742 7743 7744 7745 7746

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7747 7748 7749
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7750
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7769
@templatedoc()
X
Xin Pan 已提交
7770
def sum(x):
G
fix  
gongweibao 已提交
7771
    """
G
gongweibao 已提交
7772
    ${comment}
G
fix  
gongweibao 已提交
7773 7774

    Args:
G
gongweibao 已提交
7775
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7776 7777

    Returns:
G
gongweibao 已提交
7778
        out (Variable): ${out_comment}
7779 7780 7781 7782 7783 7784

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7785 7786 7787
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7788 7789
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7790 7791 7792 7793
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7794
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7795 7796 7797 7798

    return out


G
gongweibao 已提交
7799
@templatedoc()
G
fix  
gongweibao 已提交
7800 7801
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7802
    ${comment}
G
fix  
gongweibao 已提交
7803 7804

    Args:
G
gongweibao 已提交
7805 7806 7807 7808
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7809 7810

    Returns:
G
gongweibao 已提交
7811
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7812

7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
7824 7825 7826
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7827 7828
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7840
@templatedoc()
G
fix  
gongweibao 已提交
7841 7842
def shape(input):
    """
G
gongweibao 已提交
7843
    ${comment}
G
fix  
gongweibao 已提交
7844 7845

    Args:
G
gongweibao 已提交
7846
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7847 7848

    Returns:
G
gongweibao 已提交
7849
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7850

7851 7852 7853 7854 7855 7856
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
7857 7858 7859
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7860 7861
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7862
    helper.append_op(
G
fix  
gongweibao 已提交
7863
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7864 7865

    return out
G
merge  
gongweibao 已提交
7866 7867


S
sneaxiy 已提交
7868 7869 7870 7871 7872 7873 7874 7875
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7876 7877
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7878
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7879 7880 7881
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7882

S
sneaxiy 已提交
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7894
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7895 7896 7897 7898 7899 7900 7901 7902
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7903
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7904
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7905 7906 7907 7908 7909 7910

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7911
    if name is None:
X
Xin Pan 已提交
7912
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7913 7914 7915
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7926
    return helper.append_activation(out)
S
sneaxiy 已提交
7927 7928


X
Xin Pan 已提交
7929
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7930 7931 7932
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7933
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7934 7935 7936
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7937
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7938 7939 7940
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7941
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7942 7943 7944
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7945
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7946 7947 7948
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7949
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7950 7951 7952
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7953
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7965 7966
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7967
        ])
M
minqiyang 已提交
7968 7969


7970
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7971 7972
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7973 7974
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7975 7976 7977

    if out is None:
        if name is None:
X
Xin Pan 已提交
7978
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7994
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8006 8007 8008 8009 8010 8011 8012 8013 8014

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8015 8016 8017 8018 8019 8020 8021
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8022
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8034 8035 8036 8037 8038 8039 8040 8041 8042

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8043 8044 8045 8046 8047 8048 8049
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8050
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8062 8063 8064 8065 8066 8067 8068 8069 8070

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8071 8072 8073 8074 8075 8076 8077
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8078
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8089 8090 8091 8092 8093 8094 8095

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8096 8097 8098 8099
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8115 8116 8117 8118 8119 8120 8121

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8122 8123 8124 8125 8126
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8127 8128 8129 8130
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8154 8155 8156 8157 8158 8159 8160

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8161 8162 8163 8164 8165
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8166 8167 8168 8169
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8170 8171 8172 8173 8174 8175 8176 8177

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8196
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8226
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8227 8228 8229 8230 8231 8232 8233 8234 8235
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8236 8237
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8260
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8290
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8291 8292 8293 8294 8295 8296 8297 8298 8299 8300
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8301 8302


J
JiabinYang 已提交
8303
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8304
    """
J
JiabinYang 已提交
8305
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8306 8307 8308

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8309
    The attr blocksize indicates the input block size.
8310 8311

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8312
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8313 8314

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8315
    (but keeping all data)
J
JiabinYang 已提交
8316

J
JiabinYang 已提交
8317
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8318
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8319 8320 8321 8322 8323
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8324
    Args:
J
JiabinYang 已提交
8325
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8326
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8327 8328

    Returns:
J
JiabinYang 已提交
8329
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8330 8331

    Raises:
J
JiabinYang 已提交
8332
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8333 8334 8335 8336 8337 8338

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8339
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8340
                x=data, blocksize=2)
J
JiabinYang 已提交
8341 8342
    """

J
JiabinYang 已提交
8343
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8344

J
JiabinYang 已提交
8345 8346
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8347 8348

    if name is None:
J
JiabinYang 已提交
8349 8350
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8351 8352 8353 8354 8355
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8356
        type="space_to_depth",
J
JiabinYang 已提交
8357
        inputs={"X": x},
J
JiabinYang 已提交
8358
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8359
        outputs={"Out": out})
J
JiabinYang 已提交
8360 8361
    return out

J
JiabinYang 已提交
8362

S
sneaxiy 已提交
8363 8364
@templatedoc()
def sequence_reverse(x, name=None):
8365
    """
S
sneaxiy 已提交
8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8377
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8388 8389


8390 8391 8392 8393 8394 8395
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8396

8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8416
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8429 8430


B
barrierye 已提交
8431
def similarity_focus(input, axis, indexes, name=None):
8432
    """
B
barrierye 已提交
8433
    SimilarityFocus Operator
B
barrierye 已提交
8434 8435

    Generate a similarity focus mask with the same shape of input using the following method:
8436 8437 8438
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8439
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8440 8441 8442 8443 8444 8445 8446
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8447
       each index.
B
barrierye 已提交
8448 8449 8450 8451
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8501
    Args:
8502
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8503
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8504
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8505
            1, 2 or 3.
B
barrierye 已提交
8506
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8507 8508

    Returns:
8509
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8510
            as the input.
8511

B
barrierye 已提交
8512 8513 8514
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8515 8516
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8529 8530 8531 8532 8533
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8534 8535 8536 8537 8538 8539 8540
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8541 8542


M
minqiyang 已提交
8543 8544
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8545 8546
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8547 8548
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8587
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8588
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8589 8590 8591 8592 8593 8594 8595 8596 8597

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8598 8599
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8600 8601
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8602 8603 8604 8605 8606 8607 8608
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8609 8610


D
dengkaipeng 已提交
8611
@templatedoc()
8612 8613
def grid_sampler(x, grid, name=None):
    """
8614
    This operation samples input X by using bilinear interpolation based on
8615
    flow field grid, which is usually gennerated by affine_grid. The grid of
8616 8617 8618 8619
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8620
    interpolation value of 4 nearest corner points.
8621 8622 8623 8624 8625 8626 8627 8628

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8629
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8659 8660

    Args:
8661 8662 8663
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8664 8665

    Returns:
8666
        out(Variable): Output of shape [N, C, H, W] data samples input X
8667 8668 8669 8670 8671 8672 8673 8674 8675
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8676 8677 8678 8679 8680 8681 8682 8683 8684
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8685
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8686 8687
    ipts = {'X': x, 'Grid': grid}

8688
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8689 8690 8691
    return out


G
gmcather 已提交
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8796
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8797

Q
Qiao Longfei 已提交
8798
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8799 8800 8801
    For example:

    .. math::
8802
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8803

Q
Qiao Longfei 已提交
8804
    In this formula:
8805 8806
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8807
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8808
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8809 8810 8811
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8812 8813
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8814 8815 8816
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8817
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8818
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8819
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8820 8821 8822 8823
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8824
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8825 8826 8827 8828

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8829
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8830 8831
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8832
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8833 8834 8835 8836

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8837
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)