nn.py 195.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#   Copyright (c ) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
16
#
D
dzhwinter 已提交
17 18 19
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
20
#
D
dzhwinter 已提交
21
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
22
#
D
dzhwinter 已提交
23 24 25 26 27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
28
"""
29
All layers just related to the neural network.
Y
Yu Yang 已提交
30 31 32 33 34
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
35
from ..param_attr import ParamAttr
Y
yuyang18 已提交
36
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
37
from tensor import concat
C
chengduoZH 已提交
38
import utils
Y
yuyang18 已提交
39
import random
F
fengjiayi 已提交
40
from .. import unique_name
Y
Yu Yang 已提交
41 42

__all__ = [
Y
ying 已提交
43 44 45
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
46
    'dynamic_lstmp',
G
guosheng 已提交
47
    'dynamic_gru',
Y
ying 已提交
48 49 50 51 52 53 54 55 56
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
57
    'conv3d',
Y
ying 已提交
58
    'sequence_pool',
59 60
    'sequence_softmax',
    'softmax',
Y
ying 已提交
61
    'pool2d',
Y
yuyang18 已提交
62
    'pool3d',
Y
ying 已提交
63 64 65
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
66
    'conv3d_transpose',
Y
ying 已提交
67 68 69 70 71 72
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
73
    'reduce_prod',
Y
ying 已提交
74 75 76 77
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
78 79
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
80 81
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
82
    'topk',
Y
ying 已提交
83 84
    'warpctc',
    'sequence_reshape',
85
    'transpose',
86
    'im2sequence',
87
    'nce',
W
weixing02 已提交
88
    'hsigmoid',
Q
Qiao Longfei 已提交
89
    'beam_search',
90
    'row_conv',
91
    'multiplex',
G
guosheng 已提交
92
    'layer_norm',
93 94
    'softmax_with_cross_entropy',
    'smooth_l1',
95
    'one_hot',
Y
Yu Yang 已提交
96
    'autoincreased_step_counter',
C
caoying03 已提交
97
    'reshape',
Y
yangyaming 已提交
98
    'lod_reset',
D
dragonwarrior 已提交
99
    'lrn',
G
guosheng 已提交
100
    'pad',
101
    'label_smooth',
102
    'roi_pool',
W
whs 已提交
103
    'dice_loss',
F
fengjiayi 已提交
104 105
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
106
    'resize_bilinear',
W
whs 已提交
107
    'gather',
108
    'random_crop',
Y
yuyang18 已提交
109 110 111
    'mean_iou',
    'relu',
    'log',
112
    'crop',
113
    'rank_loss',
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
122
       use_mkldnn=False,
Y
Yu Yang 已提交
123
       act=None,
J
Jacek Czaja 已提交
124
       is_test=False,
125
       name=None):
Y
Yu Yang 已提交
126
    """
127
    **Fully Connected Layer**
Y
Yu Yang 已提交
128

129 130 131 132 133 134 135 136
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
137
    to the output as well.
C
caoying03 已提交
138

C
caoying03 已提交
139
    This process can be formulated as follows:
140 141 142

    .. math::

143
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
144 145 146

    In the above equation:

C
caoying03 已提交
147 148 149 150
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
151
    * :math:`Act`: The activation function.
C
caoying03 已提交
152
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
153 154

    Args:
R
ranqiu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
170 171
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
172
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
173
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
174 175
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
176
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
177

178
    Returns:
F
fengjiayi 已提交
179
        Variable: The transformation result.
180 181

    Raises:
C
caoying03 已提交
182
        ValueError: If rank of the input tensor is less than 2.
183 184 185 186

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
187
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
188
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
189
    """
C
caoying03 已提交
190

C
caoying03 已提交
191
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
192 193 194 195

    dtype = helper.input_dtype()

    mul_results = []
196 197
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
198 199 200
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
201

Y
Yu Yang 已提交
202
        w = helper.create_parameter(
203 204
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
205
        helper.append_op(
206 207 208
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
209
            outputs={"Out": tmp},
M
mozga-intel 已提交
210 211
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
212 213 214 215
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
216
    else:
217 218
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
219 220 221 222
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
223 224 225 226
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
227 228


229 230 231
def embedding(input,
              size,
              is_sparse=False,
232
              is_distributed=False,
233 234 235
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
236
    """
237 238
    **Embedding Layer**

239
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
240 241
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
242 243 244

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
245 246

    Args:
247 248 249 250 251
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
252
        is_distributed(bool): Whether to run lookup table from remote parameter server.
253 254
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
255
            with zeros whenever lookup encounters it in :attr:`input`. If
256
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
257 258
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
259
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
260

261 262 263
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
264

265 266
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
267

C
chengduoZH 已提交
268
          dict_size = len(dataset.ids)
269
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
270
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
271 272 273 274 275 276
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
277 278
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
279 280 281 282 283
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
284 285 286 287 288
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
289 290 291
    return tmp


Y
yi.wu 已提交
292
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
293 294
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
295 296
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
297 298 299 300 301 302 303
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
304 305
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
306
    """
Y
yi.wu 已提交
307
    ${comment}
Y
Yibing Liu 已提交
308 309

    Args:
Y
yi.wu 已提交
310 311
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
312 313 314 315 316 317 318
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

319
        param_attr(ParamAttr|None): The parameter attribute for the learnable
320
                               hidden-hidden weights.
Y
Yibing Liu 已提交
321 322 323

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
324 325
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
326
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
327 328 329
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
330

331
                              1. `use_peepholes = False`
Y
yi.wu 已提交
332 333
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
334
                              2. `use_peepholes = True`
Y
yi.wu 已提交
335
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
336
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
337
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
338 339 340 341 342 343 344 345
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
346 347

    Returns:
Y
Yibing Liu 已提交
348 349
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
350

Y
Yibing Liu 已提交
351
    Examples:
Y
Yibing Liu 已提交
352 353
        .. code-block:: python

Y
Yibing Liu 已提交
354 355
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
356
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
357 358
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
359
    """
360

Y
Yu Yang 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
375 376 377 378 379 380 381 382 383 384
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
385 386 387

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
388
        inputs=inputs,
Y
Yu Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
405 406 407 408 409 410 411 412 413 414 415
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
416 417
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
418 419 420
    """
    **Dynamic LSTMP Layer**

421 422 423 424 425 426
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
427 428 429 430 431

    The formula is as follows:

    .. math::

432
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
433

434
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
435

436
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
437

438
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
439

440
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
441

442
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
443

444
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
445

Y
Yibing Liu 已提交
446 447 448 449 450 451
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
452
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
453
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
454
          bias vector).
Y
Yibing Liu 已提交
455 456 457
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
458
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
459
    * :math:`h`: The hidden state.
460
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
461 462
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
463
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
464
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
465
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
466 467
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
468 469 470 471

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
472

Y
Yibing Liu 已提交
473 474 475 476 477 478 479 480 481 482 483 484
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
485
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
486 487
                               hidden-hidden weight and projection weight.

488 489
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
490 491
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
492 493
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
494 495
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
496 497 498 499 500 501
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
502
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
503 504 505
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
506
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
507 508 509 510 511 512 513 514 515
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
516
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
517 518
                              default "tanh".
        proj_activation(str): The activation for projection output.
519
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
520 521
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
522 523
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
524 525

    Returns:
526 527 528 529
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
530 531

    Examples:
532

Y
Yibing Liu 已提交
533 534
        .. code-block:: python

535 536 537 538
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
539
            hidden_dim, proj_dim = 512, 256
540
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
541
                                     act=None, bias_attr=None)
542 543 544
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
545 546 547 548
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
549
    """
550

Y
Yibing Liu 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
597 598 599 600 601 602 603 604 605
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
606
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
607

608
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
609
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
610

G
guosheng 已提交
611 612 613 614 615 616 617 618 619
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
620

G
guosheng 已提交
621
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
622

G
guosheng 已提交
623
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
624 625
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
626 627 628 629
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
630
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
631 632

    Args:
633 634
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
635
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
636
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
637 638
            is the hidden size.
        size(int): The dimension of the gru cell.
639
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
640 641
            hidden-hidden weight matrix. Note:

642
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
643
              :math:`D` is the hidden size.
644
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
645
              The first part are weights of the update gate and reset gate with
646
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
647
              candidate hidden state with shape :math:`(D \\times D)`.
648
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
649
            hidden-hidden bias.
650
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
651 652 653
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
654
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
655
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
656 657 658 659
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
660 661

    Returns:
G
guosheng 已提交
662
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
663
            and sequence length is the same with the input.
664

G
guosheng 已提交
665
    Examples:
666

G
guosheng 已提交
667 668
        .. code-block:: python

669 670 671 672
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
673
            hidden_dim = 512
674
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
675 676 677 678 679 680 681 682 683 684
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
685
    batch_size = input.shape[0]
G
guosheng 已提交
686 687 688
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
689 690 691
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
715 716 717
def gru_unit(input,
             hidden,
             size,
718 719
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
720
             activation='tanh',
721
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
722
    """
723
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
724

725 726
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
727

728
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
729

730
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
731

732
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
733 734

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
735 736 737
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
738 739
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

740 741
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
742 743 744
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
745 746 747 748 749

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
750 751
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
752 753 754 755
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
756

757 758 759 760 761 762
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
763

764
             # assuming we have x_t_data and prev_hidden of size=10
765
             x_t = fluid.layers.fc(input=x_t_data, size=30)
766 767
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
783 784
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
785

786 787 788 789
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
790
    # create bias
791
    if helper.bias_attr:
Y
Yu Yang 已提交
792 793 794
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
795
        inputs['Bias'] = bias
Y
Yu Yang 已提交
796 797 798

    helper.append_op(
        type='gru_unit',
799
        inputs=inputs,
Y
Yu Yang 已提交
800 801 802 803 804 805
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
806 807
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
808 809 810 811 812
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
813
@templatedoc()
814
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
815 816 817 818 819 820 821
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
822
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
823 824 825 826
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
827 828 829
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
830 831

    """
Y
Yu Yang 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
857
@templatedoc()
858
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
859 860 861 862 863
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
864

Y
yuyang18 已提交
865
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
866

Y
yuyang18 已提交
867 868 869
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
870
        Variable: ${viterbi_path_comment}
871

Y
yi.wu 已提交
872 873 874 875 876
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
877
    """
Y
Yu Yang 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
891
@templatedoc()
F
fengjiayi 已提交
892
def cos_sim(X, Y):
Y
Yu Yang 已提交
893
    """
Y
yi.wu 已提交
894 895 896
    ${comment}

    Args:
897 898
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
899

Y
yi.wu 已提交
900
    Returns:
901
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
902
    """
F
fengjiayi 已提交
903
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


917
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
918 919 920 921 922
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
923
    training. The dropout operator randomly sets (according to the given dropout
924 925 926 927
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
928 929
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
930 931 932 933 934 935 936
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
937 938

    Returns:
939
        Variable: A tensor variable is the shape with `x`.
940 941

    Examples:
942

943 944
        .. code-block:: python

945 946
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
947 948
    """

F
fengjiayi 已提交
949
    helper = LayerHelper('dropout', **locals())
950 951 952 953 954 955 956
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
957 958 959 960 961 962
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
963 964 965
    return out


F
fengjiayi 已提交
966
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
967
    """
Y
Yibing Liu 已提交
968 969
    **Cross Entropy Layer**

970 971 972
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
973 974

    1) One-hot cross-entropy:
F
fengjiayi 已提交
975
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
976

Y
Yibing Liu 已提交
977
        .. math::
Y
yangyaming 已提交
978

Y
Yibing Liu 已提交
979 980 981
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
982 983
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
984 985 986 987 988

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
989
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
990 991 992
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
993 994
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
995
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
996

Y
Yibing Liu 已提交
997
    Args:
Y
yangyaming 已提交
998
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
999 1000 1001 1002
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1003
        label (Variable|list): the ground truth which is a 2-D tensor. When
1004 1005 1006 1007
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1008
        soft_label (bool): a flag indicating whether to
1009 1010
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1011 1012 1013 1014 1015

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1016 1017 1018 1019 1020
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1021 1022 1023 1024 1025 1026

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1027
    """
F
fengjiayi 已提交
1028
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1029 1030 1031 1032 1033 1034
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1035
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1036 1037 1038
    return out


F
fengjiayi 已提交
1039
def square_error_cost(input, label):
Y
Yu Yang 已提交
1040
    """
1041 1042
    **Square error cost layer**

1043 1044
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1059 1060
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1061 1062

    Returns:
G
guosheng 已提交
1063
        Variable: The tensor variable storing the element-wise squared error \
1064
                  difference of input and label.
1065 1066 1067 1068 1069 1070 1071 1072

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1073
    """
F
fengjiayi 已提交
1074
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1084 1085
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1086 1087 1088
    return square_out


Y
yi.wu 已提交
1089
@templatedoc()
Y
Yu Yang 已提交
1090 1091 1092 1093
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1094
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1095
    """
Y
yi.wu 已提交
1096
    **Chunk Evaluator**
Y
yi.wu 已提交
1097

Y
yangyaming 已提交
1098
    This function computes and outputs the precision, recall and
1099
    F1-score of chunk detection.
Y
yi.wu 已提交
1100

Y
yi.wu 已提交
1101 1102 1103 1104 1105 1106 1107 1108
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1109

Y
yi.wu 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1135

Y
yi.wu 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1160
    Args:
1161 1162 1163 1164 1165
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1166

Y
yi.wu 已提交
1167
    Returns:
Y
update  
yi.wu 已提交
1168 1169 1170
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1171

Y
yi.wu 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1184
    """
F
fengjiayi 已提交
1185
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1186 1187 1188 1189 1190

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1191 1192 1193
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1194 1195 1196 1197 1198 1199 1200 1201

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1202 1203 1204 1205
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1206 1207 1208
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1209 1210
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1211
        })
1212 1213
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1214 1215


1216
@templatedoc()
Y
Yu Yang 已提交
1217 1218 1219 1220 1221 1222 1223
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1224
                  act=None):
Y
Yu Yang 已提交
1225 1226 1227 1228
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1239

1240 1241
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1267
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1268 1269 1270
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1271
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1314
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    """
    The input of the softmax layer is a 2-D tensor with shape N x K (N is the
    batch_size, K is the dimension of input feature). The output tensor has the
    same shape as the input tensor.

    For each row of the input tensor, the softmax operator squashes the
    K-dimensional vector of arbitrary real values to a K-dimensional vector of real
    values in the range [0, 1] that add up to 1.

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in Input(X), we have:

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1365 1366 1367
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1368 1369
           stride=1,
           padding=0,
1370
           dilation=1,
Y
Yu Yang 已提交
1371 1372 1373
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1374
           use_cudnn=True,
1375
           use_mkldnn=False,
1376 1377
           act=None,
           name=None):
Y
Yu Yang 已提交
1378
    """
C
chengduoZH 已提交
1379
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1380 1381
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1382
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1383 1384 1385 1386 1387 1388 1389
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1390 1391 1392
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1393

1394
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1395

C
chengduoZH 已提交
1396 1397
    .. math::

C
refine  
chengduoZH 已提交
1398
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1399

T
tensor-tang 已提交
1400
    Where:
C
chengduoZH 已提交
1401

1402 1403 1404 1405 1406
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1407
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1408 1409 1410

    Example:

1411 1412
        - Input:

W
weixing02 已提交
1413
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1414

W
weixing02 已提交
1415
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1416

1417
        - Output:
T
tensor-tang 已提交
1418

W
weixing02 已提交
1419
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1420

C
chengduoZH 已提交
1421
        Where
1422 1423

        .. math::
C
chengduoZH 已提交
1424

W
weixing02 已提交
1425 1426
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1427 1428

    Args:
1429
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1430
        num_filters(int): The number of filter. It is as same as the output
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1453 1454
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1455 1456 1457
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1458 1459

    Returns:
G
guosheng 已提交
1460
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1461 1462
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1463
    Raises:
1464 1465
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1466

C
chengduoZH 已提交
1467 1468 1469
    Examples:
        .. code-block:: python

1470 1471
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1472 1473 1474
    """

    num_channels = input.shape[1]
1475 1476

    l_type = 'conv2d'
X
xzl 已提交
1477 1478
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1479
        l_type = 'depthwise_conv2d'
1480 1481 1482 1483

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1484 1485 1486 1487 1488 1489 1490
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1491 1492 1493
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1494
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1495

C
chengduoZH 已提交
1496 1497
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1515
        type=l_type,
Y
Yu Yang 已提交
1516 1517 1518 1519 1520
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1521 1522 1523
        attrs={
            'strides': stride,
            'paddings': padding,
1524
            'dilations': dilation,
C
chengduoZH 已提交
1525
            'groups': groups,
1526 1527
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1528
        })
Y
Yu Yang 已提交
1529 1530 1531 1532 1533 1534

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1553 1554 1555 1556 1557 1558
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1568 1569
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1570 1571 1572
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1573
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1599
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1600 1601
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1602
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1603 1604
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1605
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1606 1607
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1608
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1635 1636
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1692
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1693 1694 1695 1696

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1697
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1698
    """
Y
yangyaming 已提交
1699 1700 1701
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1713
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1714 1715 1716 1717 1718
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1719
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725 1726

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1727 1728
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1729

L
Luo Tao 已提交
1730 1731
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1732
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1733 1734 1735 1736 1737 1738 1739 1740
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1741

Y
yangyaming 已提交
1742
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1743 1744 1745 1746 1747
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1748 1749
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1750
    """
F
fengjiayi 已提交
1751
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1763 1764 1765 1766 1767
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1768 1769 1770
    return pool_out


F
fengjiayi 已提交
1771
def sequence_first_step(input):
L
Luo Tao 已提交
1772
    """
L
Luo Tao 已提交
1773
    This function gets the first step of sequence.
L
Luo Tao 已提交
1774 1775 1776 1777

    .. code-block:: text

       x is a 1-level LoDTensor:
1778
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1779 1780 1781 1782 1783
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1784
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1785
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1786

L
Luo Tao 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1796

Y
yangyaming 已提交
1797
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1798 1799 1800
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1801 1802 1803
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1804
def sequence_last_step(input):
L
Luo Tao 已提交
1805
    """
L
Luo Tao 已提交
1806
    This function gets the last step of sequence.
L
Luo Tao 已提交
1807 1808 1809 1810

    .. code-block:: text

       x is a 1-level LoDTensor:
1811
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1812 1813 1814 1815 1816
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1817
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1818
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1819

L
Luo Tao 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1829

Y
yangyaming 已提交
1830
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1831 1832 1833
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1834 1835 1836
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1837
@templatedoc()
Y
Yu Yang 已提交
1838
def pool2d(input,
C
chengduoZH 已提交
1839 1840
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1841 1842
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1843
           global_pooling=False,
C
chengduoZH 已提交
1844
           use_cudnn=True,
1845
           ceil_mode=False,
1846
           use_mkldnn=False,
C
caoying03 已提交
1847
           name=None):
Y
Yu Yang 已提交
1848
    """
F
fengjiayi 已提交
1849
    ${comment}
1850 1851

    Args:
1852 1853 1854
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1855
                          feature, and W is the width of the feature.
1856
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1857
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1858
        pool_type: ${pooling_type_comment}
1859 1860
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1861 1862 1863 1864
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1865
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1866 1867
                        layer will be named automatically.

1868
    Returns:
F
fengjiayi 已提交
1869
        Variable: The pooling result.
F
fengjiayi 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1883 1884 1885 1886
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1887
                            global_pooling=False)
Y
Yu Yang 已提交
1888 1889 1890 1891 1892
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1893

C
chengduoZH 已提交
1894 1895 1896 1897 1898
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1899 1900 1901 1902
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1903 1904
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1905

C
Add doc  
chengduoZH 已提交
1906
    l_type = 'pool2d'
1907 1908

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1909 1910 1911 1912
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1942
    pooling configurations mentioned in input parameters.
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1956

1957
    Returns:
1958
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1959 1960 1961 1962 1963
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1964

C
chengduoZH 已提交
1965 1966 1967 1968 1969
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1970 1971 1972
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1973

C
chengduoZH 已提交
1974 1975
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1976

1977 1978
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1979 1980 1981 1982
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1983
        type=l_type,
Y
Yu Yang 已提交
1984 1985 1986 1987 1988 1989 1990
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1991
            "paddings": pool_padding,
1992
            "use_cudnn": use_cudnn,
1993 1994
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2007
               data_layout='NCHW',
Y
Yang Yang 已提交
2008
               in_place=False,
2009
               use_mkldnn=False,
2010 2011
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2012
               moving_variance_name=None,
2013 2014
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2015
    """
Q
qiaolongfei 已提交
2016 2017 2018 2019
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2020

Q
qiaolongfei 已提交
2021
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2022

Q
qiaolongfei 已提交
2023 2024
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2025 2026 2027
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2040 2041

    Args:
Q
qiaolongfei 已提交
2042
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2043 2044 2045 2046
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2047 2048 2049
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2050
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2051 2052 2053 2054 2055
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2056
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2057
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2058 2059

    Returns:
Q
qiaolongfei 已提交
2060
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2061 2062 2063 2064 2065 2066 2067

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2091
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2092

2093 2094
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2095 2096 2097
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2098
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2099
        shape=param_shape,
2100 2101 2102 2103 2104 2105 2106
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2107
            trainable=False,
W
wanghaoshuang 已提交
2108
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2109
        shape=param_shape,
2110 2111
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2112 2113 2114 2115 2116 2117

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2118 2119
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2120

Y
Yang Yang 已提交
2121
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2139 2140 2141 2142
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2143 2144
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2145
        })
Y
Yu Yang 已提交
2146 2147 2148 2149

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2150
@templatedoc()
G
guosheng 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2161
    ${comment}
G
guosheng 已提交
2162 2163 2164

    The formula is as follows:

Y
yuyang18 已提交
2165
    ..  math::
G
guosheng 已提交
2166 2167 2168 2169 2170 2171 2172

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2173 2174 2175 2176 2177 2178 2179 2180
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2181

G
guosheng 已提交
2182 2183
    Args:
        input(Variable): The input tensor variable.
2184
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2185
            normalization.
2186
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2187
            normalization.
2188
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2189
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2190
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2191 2192 2193 2194 2195 2196
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2197
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2198 2199

    Returns:
Y
yuyang18 已提交
2200
        ${y_comment}
G
guosheng 已提交
2201 2202 2203

    Examples:

Y
yuyang18 已提交
2204 2205 2206
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2222
    if shift:
G
guosheng 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2247 2248 2249 2250
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2251 2252 2253
                     padding=0,
                     stride=1,
                     dilation=1,
2254
                     groups=None,
C
caoying03 已提交
2255
                     param_attr=None,
2256
                     bias_attr=None,
C
chengduoZH 已提交
2257
                     use_cudnn=True,
2258
                     act=None,
C
caoying03 已提交
2259
                     name=None):
Y
Yu Yang 已提交
2260
    """
2261 2262 2263 2264 2265 2266 2267 2268
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2269 2270
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2271 2272 2273
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2274 2275 2276 2277 2278

    For each input :math:`X`, the equation is:

    .. math::

2279
        Out = \sigma (W \\ast X + b)
2280

2281
    Where:
2282 2283 2284

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2285 2286 2287 2288
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2289

2290 2291 2292 2293
    Example:

        - Input:

2294
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2295

2296
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2297 2298 2299

        - Output:

2300
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2301 2302

        Where
Y
Yu Yang 已提交
2303

2304 2305 2306 2307
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2308 2309

    Args:
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2343 2344

    Returns:
2345
        Variable: The tensor variable storing the convolution transpose result.
2346 2347

    Raises:
2348 2349
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2350 2351 2352 2353

    Examples:
       .. code-block:: python

2354 2355
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2356
    """
2357 2358 2359 2360 2361 2362 2363 2364 2365

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2366 2367 2368
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2369 2370 2371
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2372

C
chengduoZH 已提交
2373 2374
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2375

Y
Yu Yang 已提交
2376 2377 2378 2379 2380
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2381

Y
Yu Yang 已提交
2382 2383
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2384

C
chengduoZH 已提交
2385 2386 2387 2388
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2389
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2390 2391 2392
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2393

2394 2395
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2396 2397 2398
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2399
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2400
    helper.append_op(
2401
        type=op_type,
Y
Yu Yang 已提交
2402 2403
        inputs={'Input': [input],
                'Filter': [img_filter]},
2404
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2405
        attrs={
2406 2407 2408 2409 2410
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2411 2412
        })

2413 2414 2415
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2416 2417


2418
def conv3d_transpose(input,
Y
Yu Yang 已提交
2419 2420 2421
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2422 2423 2424
                     padding=0,
                     stride=1,
                     dilation=1,
2425
                     groups=None,
C
caoying03 已提交
2426
                     param_attr=None,
2427
                     bias_attr=None,
C
chengduoZH 已提交
2428
                     use_cudnn=True,
2429
                     act=None,
C
caoying03 已提交
2430
                     name=None):
Y
Yu Yang 已提交
2431
    """
2432
    **Convlution3D transpose layer**
2433

2434
    The convolution3D transpose layer calculates the output based on the input,
2435
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2436 2437 2438 2439 2440 2441
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2442 2443 2444
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2445 2446 2447 2448 2449

    For each input :math:`X`, the equation is:

    .. math::

2450
        Out = \sigma (W \\ast X + b)
2451 2452 2453

    In the above equation:

2454 2455
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2456 2457 2458 2459
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2460

2461 2462 2463 2464
    Example:

        - Input:

2465
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2466

2467
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2468 2469 2470

        - Output:

2471
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2472 2473

        Where
Y
Yu Yang 已提交
2474

2475 2476
        .. math::

2477 2478 2479
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2480 2481

    Args:
2482
        input(Variable): The input image with [N, C, D, H, W] format.
2483 2484 2485
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2486
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2487 2488
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2489
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2490 2491 2492
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2493 2494
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2495
        stride(int|tuple): The stride size. If stride is a tuple, it must
2496 2497
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2498
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2499 2500 2501
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2502 2503 2504 2505 2506
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2507 2508 2509
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2510 2511 2512 2513 2514
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2515 2516

    Returns:
2517
        Variable: The tensor variable storing the convolution transpose result.
2518 2519

    Raises:
2520 2521
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2522 2523 2524 2525

    Examples:
       .. code-block:: python

2526 2527
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2528
    """
2529 2530
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2531
    if not isinstance(input, Variable):
2532
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2533 2534
    input_channel = input.shape[1]

2535 2536 2537
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2538

C
chengduoZH 已提交
2539 2540 2541
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2542 2543 2544 2545 2546 2547
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2548 2549 2550
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2551

2552
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2553
                         padding[0] - 1) / dilation[0] + 1
2554
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2555
                         padding[1] - 1) / dilation[1] + 1
2556 2557 2558
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2559
    else:
2560 2561
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2562

2563 2564
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2565 2566 2567
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2568
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2569
    helper.append_op(
2570
        type=l_type,
Y
Yu Yang 已提交
2571 2572
        inputs={'Input': [input],
                'Filter': [img_filter]},
2573
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2574 2575 2576 2577
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2578
            'groups': groups,
C
chengduoZH 已提交
2579 2580
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2581

2582 2583
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2584
    return out
Y
yangyaming 已提交
2585 2586


Y
yangyaming 已提交
2587
def sequence_expand(x, y, ref_level=-1, name=None):
2588
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2589 2590 2591 2592
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2593 2594 2595 2596 2597

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2598
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2599
                x.data = [[a], [b], [c], [d]]
2600 2601 2602
                x.dims = [4, 1]

            y is a LoDTensor:
2603 2604
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2605

Y
yangyaming 已提交
2606
            ref_level: 0
2607

Y
yangyaming 已提交
2608
            then output is a 1-level LoDTensor:
2609
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2610
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2611 2612 2613 2614
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2615
                x.data = [[a], [b], [c]]
2616 2617 2618
                x.dims = [3, 1]

            y is a LoDTensor:
2619
                y.lod = [[2, 0, 3]]
2620

Y
yangyaming 已提交
2621
            ref_level: -1
2622

Y
yangyaming 已提交
2623 2624 2625
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2626 2627 2628
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2629 2630
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2631
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2632
                        will be named automatically.
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2643
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2644
    """
Y
yangyaming 已提交
2645
    helper = LayerHelper('sequence_expand', input=x, **locals())
2646 2647 2648
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2649 2650 2651 2652 2653
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2654
    return tmp
2655 2656


2657 2658 2659 2660 2661 2662 2663 2664 2665
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2666 2667
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2668 2669 2670

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
2671 2672 2673 2674 2675 2676 2677 2678
    
    This layer does the search in beams for one time step. Specifically, it 
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
2679 2680 2681 2682 2683 2684 2685 2686 2687
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2688

2689
    Args:
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2715

2716
    Returns:
2717 2718
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2719 2720 2721 2722

    Examples:
        .. code-block:: python

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2751
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2769 2770 2771 2772 2773 2774 2775
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2776

2777 2778 2779 2780 2781 2782 2783 2784 2785
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2786

2787 2788 2789 2790 2791 2792
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2819 2820 2821 2822
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2823
              param_attr=None,
C
caoying03 已提交
2824 2825
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2826 2827 2828 2829
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2830
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2831

2832
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2833

2834
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2835

2836
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2837 2838 2839

            h_t & = o_t tanh(c_t)

2840 2841 2842 2843 2844 2845
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2846 2847 2848

        .. math::

2849
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2850 2851 2852 2853 2854 2855 2856 2857

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2858
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2859 2860

    Args:
Y
yangyaming 已提交
2861 2862 2863 2864 2865 2866
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2867
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2868 2869
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2870 2871
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2872 2873
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2874 2875

    Returns:
Y
yangyaming 已提交
2876
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2877 2878

    Raises:
2879 2880 2881 2882
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2883 2884 2885 2886 2887 2888

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2889
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2890
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2891
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2908
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2909 2910 2911 2912
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2913 2914
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2915 2916 2917
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2918
    size = cell_t_prev.shape[1]
2919
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2920 2921
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2922
                param_attr=param_attr,
2923
                bias_attr=bias_attr)
Y
yangyaming 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2936
    return h, c
G
guosheng 已提交
2937 2938


C
caoying03 已提交
2939
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2940
    """
Y
yangyaming 已提交
2941
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2942 2943 2944

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2945
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2946 2947
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2948 2949
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2950
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2951
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2952
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2953 2954
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2955 2956 2957

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2958

G
guosheng 已提交
2959 2960 2961 2962 2963 2964
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2965
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2966 2967 2968 2969
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2970 2971 2972 2973

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2974
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2975 2976 2977
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2978 2979 2980
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2981 2982
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2983 2984 2985 2986 2987
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2988
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2989 2990 2991 2992
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2993 2994


C
caoying03 已提交
2995
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2996
    """
Y
Yibing Liu 已提交
2997
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2998 2999 3000

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3001 3002 3003
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3004
            must be in the range :math:`[-rank(input), rank(input))`. If
3005
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3006
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3007 3008
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3009
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3010
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3011
                       will be named automatically.
G
guosheng 已提交
3012 3013

    Returns:
Y
Yibing Liu 已提交
3014
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3015

G
guosheng 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3026 3027
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3028 3029 3030 3031 3032 3033 3034

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3035 3036 3037
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3038 3039
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3040 3041 3042 3043 3044
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3045
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3046 3047 3048 3049
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3050 3051


C
caoying03 已提交
3052
def reduce_max(input, dim=None, keep_dim=False, name=None):
3053
    """
Y
yangyaming 已提交
3054
    Computes the maximum of tensor elements over the given dimension.
3055 3056 3057

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3058
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3059 3060 3061
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3062
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3063 3064
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3065
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3066 3067
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3068 3069 3070

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3083 3084 3085 3086 3087 3088 3089

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3090 3091 3092
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3093 3094
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3095 3096 3097 3098 3099
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3100
            'dim': dim if dim != None else [0],
3101 3102 3103 3104 3105 3106
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3107
def reduce_min(input, dim=None, keep_dim=False, name=None):
3108
    """
Y
yangyaming 已提交
3109
    Computes the minimum of tensor elements over the given dimension.
3110 3111 3112

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3113
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3114 3115 3116
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3117
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3118 3119
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3120
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3121 3122
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3123 3124 3125

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3138 3139 3140 3141 3142 3143 3144

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3145 3146 3147
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3148 3149
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3150 3151 3152 3153 3154
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3155
            'dim': dim if dim != None else [0],
3156 3157 3158 3159
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3160 3161


3162 3163 3164 3165 3166 3167
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3168
        dim (list|int|None): The dimensions along which the product is performed. If
3169 3170
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3171 3172
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3173 3174 3175
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3176
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3177
            layer will be named automatically.
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3192
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3193
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3194 3195 3196 3197 3198 3199 3200

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3201 3202 3203
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3204 3205
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3206 3207 3208 3209 3210
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3211
            'dim': dim if dim != None else [0],
3212 3213 3214 3215 3216 3217
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3218
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3219
    """
C
caoying03 已提交
3220
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3221 3222 3223

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3224 3225 3226 3227 3228
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3229
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3230
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3231
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3232 3233
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3234 3235

    Returns:
D
dzhwinter 已提交
3236
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3246 3247
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3286
    .. math::
3287 3288

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3289 3290 3291 3292 3293

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3294
        x(Variable|list): The input tensor to l2_normalize layer.
3295
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3296 3297
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3298
        epsilon(float): The epsilon value is used to avoid division by zero, \
3299
            the defalut value is 1e-10.
3300
        name(str|None): A name for this layer(optional). If set None, the layer \
3301
            will be named automatically.
C
caoying03 已提交
3302 3303

    Returns:
3304
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3305 3306

    Examples:
3307

C
caoying03 已提交
3308 3309
        .. code-block:: python

3310 3311 3312 3313
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3314 3315
    """

F
fengjiayi 已提交
3316 3317
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3318 3319
    helper = LayerHelper("l2_normalize", **locals())

3320 3321
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3322
    helper.append_op(
3323 3324 3325 3326
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3327
        attrs={
3328 3329
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3330 3331
        })
    return out
3332 3333


3334
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3335
    """
Y
ying 已提交
3336 3337 3338 3339
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3340

C
chengduoZH 已提交
3341
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3342
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3343

3344 3345 3346 3347 3348
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3349
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3350

C
chengduoZH 已提交
3351
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3352
      performs in the following way.
G
guosheng 已提交
3353

3354
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3355
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3356
        last two dimensions and a batched matrix multiply supporting broadcast
3357
        applies on the two tensors.
G
guosheng 已提交
3358

Y
ying 已提交
3359 3360
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3361
    removed after matrix multiplication.
G
guosheng 已提交
3362 3363 3364

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3365 3366 3367
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3368
        name(str|None): A name for this layer(optional). If set None, the layer
3369
            will be named automatically.
G
guosheng 已提交
3370 3371

    Returns:
3372
        Variable: The product Tensor variable.
G
guosheng 已提交
3373

G
guosheng 已提交
3374 3375 3376
    Examples:
        .. code-block:: python

3377
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3378 3379
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3380

3381 3382
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3383

3384 3385
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3386

3387 3388
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3389 3390 3391 3392

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3393 3394
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3395

Y
ying 已提交
3396
            # x: [M], y: [N]
3397
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3398
    """
Y
ying 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3411
            y_shape = y_shape + [1]
Y
ying 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3428
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3429
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3430
    helper.append_op(
3431 3432 3433 3434 3435 3436 3437
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3438 3439


3440
def topk(input, k, name=None):
Q
qingqing01 已提交
3441 3442 3443 3444
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3445
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3446 3447 3448 3449 3450 3451
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3473 3474 3475
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3476
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3477
                 of input.
3478
        name(str|None): A name for this layer(optional). If set None, the layer
3479
                       will be named automatically.
F
fengjiayi 已提交
3480
                       Default: None
Q
qingqing01 已提交
3481 3482

    Returns:
3483 3484 3485
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3486
        within the last dimension of input.
Q
qingqing01 已提交
3487

F
fengjiayi 已提交
3488 3489
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3490 3491 3492 3493 3494 3495 3496

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3497
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3515
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3516
    """
Y
ying 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3526

Y
ying 已提交
3527
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3528

3529
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3530 3531
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3532
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3533

3534
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3535 3536
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3537

3538 3539 3540
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3541
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3542
                          the length of reference string.
3543
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3544
                                     calculating edit distance.
3545
        name (str): The name of this layer. It is optional.
3546

W
wanghaoshuang 已提交
3547
    Returns:
W
wanghaoshuang 已提交
3548
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3549 3550 3551 3552 3553

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3554
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3555
            cost = fluid.layers.edit_distance(input=x,label=y)
3556
    """
3557
    helper = LayerHelper("edit_distance", **locals())
3558

3559
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3560
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3561 3562 3563 3564 3565 3566 3567
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3568
            attrs={"tokens": ignored_tokens})
3569 3570 3571 3572 3573
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3574
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3575
            attrs={"tokens": ignored_tokens})
3576 3577
        label = erased_label

3578 3579
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3580
    sequence_num = helper.create_tmp_variable(dtype="int64")
3581 3582 3583 3584
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3585 3586
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3587 3588
        attrs={"normalized": normalized})

3589
    return edit_distance_out, sequence_num
3590 3591 3592 3593 3594


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3595

Y
ying 已提交
3596 3597 3598 3599
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3617
        input.lod = [[4, 4]]
3618 3619 3620 3621 3622 3623 3624

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3625
        output.lod = [[2, 1]]
3626 3627 3628

    Args:

Y
ying 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3638
        name (str): The name of this layer. It is optional.
3639 3640

    Returns:
3641
        Variable: CTC greedy decode result. If all the sequences in result were
3642
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3643 3644 3645 3646 3647

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3648

3649
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3650
    """
3651
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3652
    _, topk_indices = topk(input, k=1)
3653 3654 3655 3656 3657 3658

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3659
        outputs={"Output": [ctc_out]},
3660 3661
        attrs={"merge_repeated": True,
               "blank": blank})
3662
    return ctc_out
3663 3664


F
fengjiayi 已提交
3665
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3666
    """
3667 3668
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3669
    to compute Connectionist Temporal Classification (CTC) loss.
3670 3671
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3672 3673 3674
    input tensor.

    Args:
3675
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3676 3677 3678 3679
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3680
       label (Variable): The ground truth of variable-length sequence,
3681 3682 3683
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3684 3685
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3686 3687 3688
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3689
         follewed by a mean_op.
W
wanghaoshuang 已提交
3690 3691

    Returns:
3692 3693
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3694 3695

    Examples:
3696

W
wanghaoshuang 已提交
3697
        .. code-block:: python
3698

3699 3700 3701
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3702 3703

    """
F
fengjiayi 已提交
3704
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3731 3732 3733
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3734 3735 3736 3737 3738
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3739

3740
            out.lod  = [[0, 1, 3]]
3741 3742 3743 3744

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3745 3746 3747 3748 3749 3750 3751
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3752 3753 3754

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3755 3756

    Returns:
3757

3758 3759 3760 3761 3762
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3763
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3764
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3765 3766 3767 3768 3769 3770 3771 3772 3773
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3774 3775


3776 3777 3778 3779
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3780 3781 3782 3783 3784 3785 3786
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3787 3788 3789 3790 3791 3792 3793
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3794 3795
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3796
            sample is 1.0.
3797 3798 3799
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3800

3801
    Returns:
Y
Yibing Liu 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3829
    """
Y
Yang Yu 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3874
    return cost / (num_neg_samples + 1)
3875 3876


G
guosheng 已提交
3877
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3878 3879 3880
    """
    The hierarchical sigmoid operator is used to accelerate the training
    process of language model. This operator organizes the classes into a 
G
guosheng 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
    
W
weixing02 已提交
3891
    Args:
G
guosheng 已提交
3892 3893 3894 3895 3896 3897
        input (Variable): The input tensor variable with shape 
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3898 3899 3900
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter 
G
guosheng 已提交
3901 3902
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3903 3904 3905 3906 3907 3908 3909 3910

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3911 3912 3913
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3914 3915 3916 3917 3918 3919 3920 3921
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3922
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3923 3924 3925 3926 3927
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3928 3929 3930 3931 3932 3933 3934 3935
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3936 3937
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3938
        inputs=inputs,
W
weixing02 已提交
3939 3940 3941 3942 3943 3944
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3945
def transpose(x, perm, name=None):
Y
ying 已提交
3946 3947 3948 3949 3950 3951 3952
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3953 3954 3955
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3956 3957 3958 3959 3960 3961 3962 3963

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3964
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3965 3966
    """

Y
fix ci.  
ying 已提交
3967
    if len(perm) != len(x.shape):
Y
ying 已提交
3968 3969 3970
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3971 3972 3973 3974 3975 3976
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3977 3978

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3979
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3980 3981
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3982
        inputs={'X': [x]},
Y
ying 已提交
3983 3984 3985
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3986 3987


3988 3989 3990 3991 3992 3993 3994
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
3995
    """
3996 3997 3998 3999 4000 4001 4002
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4031 4032 4033 4034 4035 4036 4037 4038 4039
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4040 4041 4042
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4043 4044 4045 4046 4047
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4075 4076 4077
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4090
            output.dims = {8, 8}
4091

4092
            output.lod = [[4, 4]]
4093

D
dzhwinter 已提交
4094
     Examples:
4095 4096 4097

        .. code-block:: python

4098 4099
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4100 4101

    """
W
wanghaoshuang 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4112 4113 4114 4115 4116 4117 4118
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4119
    helper = LayerHelper('im2sequence', **locals())
4120 4121
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4122
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4123
    return out
4124 4125


Y
yuyang18 已提交
4126
@templatedoc()
4127
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4128 4129
    """
    ${comment}
4130 4131

    Args:
Y
yuyang18 已提交
4132
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4133 4134
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4135 4136 4137 4138 4139
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4140
        ${out_comment}.
4141 4142

    Examples:
Y
yuyang18 已提交
4143 4144 4145 4146
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4159
    return helper.append_activation(out)
4160 4161


Y
yuyang18 已提交
4162
@templatedoc()
4163 4164
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4165 4166 4167 4168 4169 4170 4171
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4172 4173

    Args:
Y
yuyang18 已提交
4174 4175
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4176 4177

    Returns:
Y
yuyang18 已提交
4178
        ${out_comment}.
4179 4180
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4181 4182 4183 4184 4185 4186

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4187 4188 4189 4190 4191 4192
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4193 4194 4195 4196 4197


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4198

4199 4200 4201 4202
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4203

4204 4205 4206
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4207

4208 4209 4210
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4211

4212
    The equation is as follows:
4213

4214
    1) Hard label (one-hot label, so every sample has exactly one class)
4215

4216 4217 4218 4219
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4220

4221 4222 4223
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4224

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4246 4247
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4264 4265
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4266
    For each instance, it computes the smooth L1 loss element by element first
4267
    and then sums all the losses. So the shape of ouput Variable is
4268
    [batch_size, 1].
4269

4270 4271
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4272
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4273
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4274
            L1 loss op with same shape as :attr:`x`.
4275
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4276 4277
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4278
            by this tensor element by element.
4279
        outside_weight (Variable|None): A tensor with rank at least 2. This
4280 4281
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4282
            element by element.
4283
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4284 4285
           scalar with default value 1.0.

4286
    Returns:
4287
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4288 4289 4290 4291 4292

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4293 4294
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4295
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4296
            out = fluid.layers.smooth_l1(x=fc, y=label)
4297
    """
4298

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4314 4315 4316 4317


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4318
    This layer creates the one-hot representations for input indices.
4319 4320

    Args:
Y
Yibing Liu 已提交
4321 4322
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4323 4324

    Returns:
Y
Yibing Liu 已提交
4325
        Variable: The one-hot representations of input.
4326 4327

    Examples:
C
caoying03 已提交
4328
        .. code-block:: python
4329

Y
Yibing Liu 已提交
4330 4331
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4332 4333 4334 4335 4336 4337 4338 4339 4340
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4341 4342


Y
Yu Yang 已提交
4343
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4344
    """
Y
yi.wu 已提交
4345 4346 4347
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4348 4349 4350 4351 4352 4353

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4354 4355
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4356 4357 4358 4359 4360 4361

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4362 4363
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4364 4365
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4366 4367 4368 4369 4370
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4371
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4372
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4373 4374
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4375 4376
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4377 4378 4379
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4380 4381


4382
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4383
    """
C
caoying03 已提交
4384 4385
    Gives a new shape to the input Tensor without changing its data.

4386 4387 4388 4389 4390
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4391

4392
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4393

4394 4395 4396 4397
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4398
    2. 0 means the actual dimension value is going to be copied from the
4399 4400 4401 4402
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4403 4404

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4405
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4406
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4407

4408
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4409 4410
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4411 4412
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4413
    dimensions.
C
caoying03 已提交
4414

4415
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4416 4417 4418 4419
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4420 4421

    Args:
4422
        x(variable): The input tensor.
C
caoying03 已提交
4423 4424
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4425 4426 4427 4428 4429
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4430
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4431 4432 4433 4434
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4435
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4436

4437 4438
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4439

X
Xin Pan 已提交
4440 4441 4442
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4443 4444
    Examples:
        .. code-block:: python
G
guosheng 已提交
4445

4446
            data = fluid.layers.data(
4447
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4448
            reshaped = fluid.layers.reshape(
4449
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4450 4451 4452 4453
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4454 4455 4456 4457 4458
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4459

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4475 4476 4477 4478
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4479
        inputs=inputs,
C
caoying03 已提交
4480 4481 4482 4483 4484
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4485 4486


Y
yangyaming 已提交
4487
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4488
    """
Y
Yibing Liu 已提交
4489
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4490 4491 4492 4493
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4494
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4495 4496 4497 4498 4499 4500

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4501
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4502 4503 4504
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4505
            target_lod: [4, 2]
Y
yangyaming 已提交
4506 4507

            then we get a 1-level LoDTensor:
4508
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4509 4510 4511 4512 4513 4514
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4515
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4516 4517 4518 4519
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4520
                y.data = [[2, 4]]
Y
yangyaming 已提交
4521 4522 4523
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4524
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4525 4526 4527 4528 4529 4530
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4531
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4532 4533 4534 4535
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4536
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4537 4538 4539 4540
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4541
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4542 4543 4544 4545 4546
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4547
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4548
                           from :attr:`y`.
Y
yangyaming 已提交
4549
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4550
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4551 4552

    Returns:
Y
Yibing Liu 已提交
4553
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4554 4555

    Raises:
Y
Yibing Liu 已提交
4556
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4592
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4621 4622
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4650 4651 4652 4653


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4654
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4655
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4656

G
guosheng 已提交
4657 4658 4659 4660
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4683
                         The length of :attr:paddings must be
G
guosheng 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4694

G
guosheng 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4709 4710 4711 4712 4713 4714 4715 4716 4717


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4718 4719
    called label-smoothing regularization (LSR).

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4743
                              be :math:`(1, class\_num)`.
4744 4745
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4746
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4774 4775


Y
yi.wu 已提交
4776
@templatedoc()
4777 4778
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4779
    ${comment}
4780 4781

    Args:
Y
yi.wu 已提交
4782 4783
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4784 4785 4786
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4787 4788

    Returns:
Y
update  
yi.wu 已提交
4789
        Variable: ${out_comment}.
4790 4791

    Examples:
4792 4793
        .. code-block:: python

4794
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4840 4841
        .. code-block:: python

W
whs 已提交
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4853 4854


4855 4856 4857 4858 4859
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4860
    """
Q
qiaolongfei 已提交
4861
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4862

4863
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4864 4865 4866
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4867

4868
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4869

4870
    Args:
4871
        input (Variable): The input tensor of image resize layer,
4872 4873
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4874
        out_shape(list|tuple|Variable|None): Output shape of image resize
4875 4876
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4877
        scale(float|None): The multiplier for the input height or width.
4878 4879 4880
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4881 4882
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4883 4884
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4885 4886

    Returns:
Q
update  
qiaolongfei 已提交
4887 4888
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4889

4890 4891 4892
    Examples:
        .. code-block:: python

4893
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4894
    """
4895 4896 4897 4898
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4899 4900
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4901 4902
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4903 4904 4905 4906

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4907 4908 4909
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4910
    if out_shape is not None:
B
baiyf 已提交
4911 4912 4913
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4914 4915 4916 4917 4918 4919
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4920 4921 4922 4923
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4924 4925
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4926
        type=resample_methods[resample],
4927
        inputs=inputs,
4928 4929 4930 4931
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4932 4933


Y
yuyang18 已提交
4934
@templatedoc(op_type="bilinear_interp")
4935 4936
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4937 4938 4939 4940 4941 4942
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4943

Y
yuyang18 已提交
4944 4945 4946 4947 4948 4949 4950 4951
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4952 4953 4954 4955 4956 4957 4958
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4959 4960 4961
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4962 4963 4964 4965 4966 4967 4968
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4969
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4970

4971
    Returns:
Q
update  
qiaolongfei 已提交
4972
        Variable: The output is a 4-D tensor of the shape
4973
        (num_batches, channls, out_h, out_w).
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4984 4985 4986
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4987 4988 4989
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4990 4991
def gather(input, index):
    """
Q
qiaolongfei 已提交
4992 4993
    **Gather Layer**

4994
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4995 4996 4997 4998
    of X indexed by `index` and concatenate them together.

    .. math::

4999
        Out = X[Index]
W
whs 已提交
5000 5001 5002 5003 5004 5005 5006


    .. code-block:: text


                Given:

5007 5008
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5019
        input (Variable): The source input with rank>=1.
W
whs 已提交
5020 5021 5022 5023 5024 5025
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5026

W
whs 已提交
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5055

5056 5057 5058
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5059
    """
F
stash  
fengjiayi 已提交
5060
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5061
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5062
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5063 5064
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5065
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5066
    if isinstance(seed, int):
F
fengjiayi 已提交
5067 5068 5069 5070 5071
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5072 5073 5074 5075
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5076
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5077 5078
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5079 5080
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5081
    return out
W
whs 已提交
5082 5083


5084
def log(x):
W
wanghaoshuang 已提交
5085 5086 5087 5088 5089
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5090
        Out = \\ln(x)
W
wanghaoshuang 已提交
5091 5092

    Args:
5093
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5094 5095 5096 5097 5098 5099 5100 5101

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5102
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5103 5104
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5105
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5106
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5107
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5108 5109 5110
    return out


5111
def relu(x):
W
wanghaoshuang 已提交
5112 5113
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5114
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5115 5116 5117 5118
    the tensor elementwise.

    .. math::

5119
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5120 5121

    Args:
5122
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5123 5124 5125 5126 5127 5128 5129 5130

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5131
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5132 5133
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5134
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5135
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5136
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5137
    return out
5138 5139


W
whs 已提交
5140 5141 5142
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5143 5144 5145 5146
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5147
    .. math::
5148 5149

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5150

5151
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5152 5153 5154 5155 5156
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5157
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5158
                           Its shape should be the same as input.
5159
        num_classes (int): The possible number of labels.
W
whs 已提交
5160 5161 5162 5163

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5164
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5165 5166 5167 5168

    Examples:

        .. code-block:: python
5169

W
whs 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5179 5180
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5181
        outputs={
W
whs 已提交
5182 5183 5184
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5185 5186 5187
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
 
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
    
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
    
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
    
    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).   
 
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out