nn.py 488.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124 125 126 127 128 129
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
130
    'selu',
X
Xin Pan 已提交
131 132 133
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
134
    'margin_rank_loss',
X
Xin Pan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
151
    'unique',
152
    'unique_with_counts',
X
Xin Pan 已提交
153 154 155 156 157 158 159 160 161 162
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
163 164
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
165 166 167 168 169 170 171
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
172
    'rank',
Z
zhoukunsheng 已提交
173
    'size',
X
Xin Pan 已提交
174 175 176 177 178 179 180 181 182 183
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
184
    'space_to_depth',
W
whs 已提交
185
    'affine_grid',
S
sneaxiy 已提交
186
    'sequence_reverse',
187
    'affine_channel',
B
barrierye 已提交
188
    'similarity_focus',
M
minqiyang 已提交
189
    'hash',
D
dengkaipeng 已提交
190
    'grid_sampler',
G
gmcather 已提交
191 192
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
193
    'bilinear_tensor_product',
C
chengduo 已提交
194 195
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
196
    'lstm',
S
shippingwang 已提交
197
    'shuffle_channel',
198
    'temporal_shift',
S
sneaxiy 已提交
199
    'py_func',
200
    'psroi_pool',
H
heqiaozhi 已提交
201
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
202
    'huber_loss',
D
dengkaipeng 已提交
203
    'kldiv_loss',
Z
zhaozhehao 已提交
204
    'tree_conv',
C
ceci3 已提交
205
    'npair_loss',
R
ruri 已提交
206
    'pixel_shuffle',
207
    'fsp_matrix',
H
heqiaozhi 已提交
208
    'continuous_value_model',
Z
zhoukunsheng 已提交
209
    'where',
Z
zhoukunsheng 已提交
210
    'sign',
211
    'deformable_conv',
212
    'unfold',
C
cjt222 已提交
213
    'deformable_roi_pooling',
A
Aurelius84 已提交
214
    'match_matrix_tensor',
J
Jiawei Wang 已提交
215
    'filter_by_instag',
K
Kevin 已提交
216
    'var_conv_2d',
217
    'shard_index',
H
huangjun12 已提交
218
    'hard_swish',
Y
Yu Yang 已提交
219 220
]

J
jerrywgz 已提交
221 222
kIgnoreIndex = -100

Y
Yu Yang 已提交
223 224 225 226 227 228 229

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
230
       name=None):
Y
Yu Yang 已提交
231
    """
232
    **Fully Connected Layer**
Y
Yu Yang 已提交
233

234
    This function creates a fully connected layer in the network. It can take
235
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
236
    Args in detail). It creates a variable called weights for each input tensor,
237 238 239 240
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
241
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
242 243
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
244

245
    When the input is single tensor:
C
caoying03 已提交
246

247 248 249 250 251
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
252 253 254

    .. math::

255
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
256 257 258

    In the above equation:

259 260 261
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
262
    * :math:`b`: The bias parameter created by this layer (if needed).
263
    * :math:`Act`: The activation function.
C
caoying03 已提交
264
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
284
    Args:
R
ranqiu 已提交
285 286 287 288 289 290 291 292 293 294
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
295
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
296 297 298 299
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
300 301
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
302 303
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
304

305
    Returns:
F
fengjiayi 已提交
306
        Variable: The transformation result.
307 308

    Raises:
C
caoying03 已提交
309
        ValueError: If rank of the input tensor is less than 2.
310 311 312 313

    Examples:
        .. code-block:: python

314
          import paddle.fluid as fluid
315
          # when input is single tensor
F
fengjiayi 已提交
316
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
317
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
318 319 320 321 322

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
323
    """
C
caoying03 已提交
324
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
325 326 327 328

    dtype = helper.input_dtype()

    mul_results = []
329 330
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
331 332 333
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
334

Y
Yu Yang 已提交
335
        w = helper.create_parameter(
336
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
337
        tmp = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
342
            outputs={"Out": tmp},
M
mozga-intel 已提交
343 344
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
345 346 347 348
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
349
    else:
X
Xin Pan 已提交
350
        pre_bias = helper.create_variable_for_type_inference(dtype)
351
        helper.append_op(
352 353 354
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
355
            attrs={"use_mkldnn": False})
356 357 358 359
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
360 361


H
HaoRen 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


448 449 450
def embedding(input,
              size,
              is_sparse=False,
451
              is_distributed=False,
452 453 454
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
455
    """
456 457
    **Embedding Layer**

458
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
459 460
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
461 462 463

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
464 465

    Args:
466
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
467
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
468 469 470 471
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
472
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
473 474 475 476 477 478 479 480
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
481

482 483 484
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
485

486 487
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
488

B
bdzhuxiaoning 已提交
489 490 491
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
492 493 494
    """

    helper = LayerHelper('embedding', **locals())
495
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
496 497
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
498 499
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
500
    tmp = helper.create_variable_for_type_inference(dtype)
501 502
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
503 504 505 506 507
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
508 509 510
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
511
            'remote_prefetch': remote_prefetch,
512 513
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
514 515 516
    return tmp


W
wopeizl 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
533

W
wopeizl 已提交
534 535 536 537 538 539 540 541 542 543 544
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
545

W
wopeizl 已提交
546 547 548 549
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
550

W
wopeizl 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
587
            
588
            import paddle.fluid as fluid
589 590
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
591
            hidden_dim = 512
592 593 594 595 596 597
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
598
                                           bias_attr=False)
599

W
wopeizl 已提交
600 601 602
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
603
    assert in_dygraph_mode(
604
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
648 649


P
phlrain 已提交
650 651 652 653 654 655
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
656
         dropout_prob=0.0,
P
phlrain 已提交
657 658 659 660 661
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
662
    """
P
phlrain 已提交
663
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
664 665

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
666
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
667 668
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
669
    .. math::
M
minqiyang 已提交
670 671 672 673 674 675 676

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
677
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
678 679 680 681

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
682 683

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
684 685 686 687 688 689
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
690 691 692
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
693
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
694

M
minqiyang 已提交
695
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
696 697 698 699 700
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
701
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
702 703 704 705 706
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
707
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
708 709
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
710 711
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
712 713 714 715 716 717
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
718
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
719

L
liuhongyu 已提交
720 721

    Returns:
M
minqiyang 已提交
722 723
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
724
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
725

H
haowang101779990 已提交
726 727 728 729
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
730
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
731 732
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
733
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
734 735 736 737


    Examples:
        .. code-block:: python
738
            
739 740 741
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

742 743 744 745 746
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
747 748 749 750 751 752
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
753 754 755 756 757
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
758 759 760 761
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
762 763 764
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832 833
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
834
                  proj_activation='tanh',
835
                  dtype='float32',
X
xuezhong 已提交
836 837 838 839 840
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
841 842 843
    """
    **Dynamic LSTMP Layer**

844 845 846 847 848 849
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
850 851 852 853 854

    The formula is as follows:

    .. math::

855
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
856

857
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
858

859
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
860

861
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
862

863
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
864

865
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
866

867
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
868

Y
Yibing Liu 已提交
869 870 871 872 873 874
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
875
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
876
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
877
          bias vector).
Y
Yibing Liu 已提交
878 879 880
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
881
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
882
    * :math:`h`: The hidden state.
883
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
884 885
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
886
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
887
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
888
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
889 890
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
891 892 893 894

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
895

Y
Yibing Liu 已提交
896 897 898 899 900 901 902 903 904 905 906 907
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
908
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
909 910
                               hidden-hidden weight and projection weight.

911 912
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
913 914
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
915 916
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
917
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
918 919 920 921 922

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
923
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
924 925 926 927 928 929
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
930
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
931 932 933
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
934
                                - The shape is (1 x 7D).
C
chengduo 已提交
935 936 937 938 939

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
940 941 942 943 944 945 946 947 948
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
949
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
950 951
                              default "tanh".
        proj_activation(str): The activation for projection output.
952
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
953
                              default "tanh".
Y
Yibing Liu 已提交
954
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
955 956
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
957 958 959 960 961 962 963 964 965 966 967
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
968 969

    Returns:
970 971 972 973
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
974 975

    Examples:
976

Y
Yibing Liu 已提交
977 978
        .. code-block:: python

979
            import paddle.fluid as fluid
980 981 982 983
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
984
            hidden_dim, proj_dim = 512, 256
985
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
986
                                     act=None, bias_attr=None)
987 988 989
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
990 991 992 993
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
994
    """
995

L
lujun 已提交
996
    assert in_dygraph_mode(
997 998
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
999
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1000
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1001
    size = size // 4
Y
Yibing Liu 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1012 1013 1014 1015 1016 1017
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1033

X
xuezhong 已提交
1034 1035 1036 1037 1038
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1039 1040
    helper.append_op(
        type='lstmp',
1041
        inputs=inputs,
Y
Yibing Liu 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1051 1052
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1062 1063 1064 1065 1066 1067 1068
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1069 1070
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1071
    """
1072
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1073

1074 1075 1076
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1077

G
guosheng 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1087

G
guosheng 已提交
1088
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1089

Q
Qiao Longfei 已提交
1090 1091 1092

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1105
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1106 1107
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1108 1109 1110 1111
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1112
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1113 1114

    Args:
1115 1116
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1117
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1118
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1119 1120
            is the hidden size.
        size(int): The dimension of the gru cell.
1121
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1122 1123
            hidden-hidden weight matrix. Note:

1124
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1125
              :math:`D` is the hidden size.
1126
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1127
              The first part are weights of the update gate and reset gate with
1128
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1129
              candidate hidden state with shape :math:`(D \\times D)`.
1130 1131 1132 1133 1134

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1135
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1136
            the bias in the update gate, reset gate and candidate calculations.
1137 1138 1139
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1140 1141
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1142
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1143 1144 1145
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1146
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1147
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1148 1149 1150 1151
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1152 1153

    Returns:
G
guosheng 已提交
1154
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1155
            and sequence length is the same with the input.
1156

G
guosheng 已提交
1157
    Examples:
1158

G
guosheng 已提交
1159 1160
        .. code-block:: python

1161 1162
            import paddle.fluid as fluid

1163 1164 1165 1166
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1167
            hidden_dim = 512
1168
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1169
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1170 1171
    """

L
lujun 已提交
1172
    assert in_dygraph_mode(
1173 1174
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1175 1176 1177 1178 1179 1180 1181
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1182
    batch_size = input.shape[0]
G
guosheng 已提交
1183
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1184
    if h_0:
G
guosheng 已提交
1185
        assert h_0.shape == (
Y
Yancey 已提交
1186 1187 1188
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1189

X
Xin Pan 已提交
1190 1191 1192 1193
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1207 1208
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1209 1210 1211 1212
        })
    return hidden


Y
Yu Yang 已提交
1213 1214 1215
def gru_unit(input,
             hidden,
             size,
1216 1217
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1218
             activation='tanh',
Q
Qiao Longfei 已提交
1219 1220
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1221
    """
1222 1223 1224
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1225
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1226
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1227

1228 1229
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1230

1231
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1232

1233
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1250 1251

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1252 1253 1254
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1255 1256
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1257 1258
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1259 1260 1261
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1262 1263 1264

    Args:
        input (Variable): The fc transformed input value of current step.
1265
        hidden (Variable): The hidden value of gru unit from previous step.
1266
        size (integer): The input dimension value.
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1281
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1282
            the bias in the update gate, reset gate and candidate calculations.
1283 1284 1285
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1286 1287
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1288 1289 1290 1291
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1292

1293 1294 1295 1296 1297 1298
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1323
    size = size // 3
Y
Yu Yang 已提交
1324 1325

    # create weight
1326 1327
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1328

X
Xin Pan 已提交
1329 1330 1331
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1332
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1333
    # create bias
1334
    if helper.bias_attr:
Y
Yu Yang 已提交
1335 1336 1337
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1338
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1339 1340 1341

    helper.append_op(
        type='gru_unit',
1342
        inputs=inputs,
Y
Yu Yang 已提交
1343 1344 1345 1346 1347 1348
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1349 1350
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1351 1352 1353 1354 1355
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1356
@templatedoc()
1357
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1358 1359 1360 1361 1362 1363 1364
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1365
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1366 1367 1368 1369
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1370 1371 1372
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1373

J
JesseyXujin 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1387
    """
Y
Yu Yang 已提交
1388 1389 1390 1391 1392 1393
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1394 1395 1396 1397 1398 1399 1400 1401
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1417 1418 1419 1420
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1421

W
wopeizl 已提交
1422 1423
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1424

W
wopeizl 已提交
1425
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1426

W
wopeizl 已提交
1427
        label(${label_type}): ${label_comment}
1428

W
wopeizl 已提交
1429 1430
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1431

W
wopeizl 已提交
1432 1433
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1434

1435
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1436 1437 1438 1439 1440 1441 1442
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1443 1444 1445 1446 1447 1448 1449 1450
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1451
                "Transition": transition,
W
wopeizl 已提交
1452 1453
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1454

W
wopeizl 已提交
1455
    return viterbi_path
Y
Yu Yang 已提交
1456 1457


Y
yi.wu 已提交
1458
@templatedoc()
F
fengjiayi 已提交
1459
def cos_sim(X, Y):
Y
Yu Yang 已提交
1460
    """
Y
yi.wu 已提交
1461 1462 1463
    ${comment}

    Args:
1464 1465
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1466

Y
yi.wu 已提交
1467
    Returns:
1468
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1469 1470 1471 1472

    Examples:
        .. code-block:: python

1473
            import paddle.fluid as fluid
L
lvmengsi 已提交
1474 1475 1476
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1477
    """
F
fengjiayi 已提交
1478
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1479 1480 1481
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1492 1493 1494 1495 1496
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1497
            dropout_implementation="downgrade_in_infer"):
1498 1499 1500 1501 1502
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1503
    training. The dropout operator randomly sets (according to the given dropout
1504 1505 1506
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1507 1508
    dropout op can be removed from the program to make the program more efficient.

1509
    Args:
1510 1511
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1512 1513 1514 1515 1516 1517 1518
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1519 1520
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1521
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1522 1523

                                           - train: out = input * mask
C
ceci3 已提交
1524
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1525 1526 1527

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1528
                                        2. upscale_in_train, upscale the outcome at training time
1529

H
haowang101779990 已提交
1530 1531
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1532

H
haowang101779990 已提交
1533 1534
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1535

M
minqiyang 已提交
1536

1537
    Returns:
1538
        Variable: A tensor variable is the shape with `x`.
1539 1540

    Examples:
1541

1542 1543
        .. code-block:: python

1544
            import paddle.fluid as fluid
1545 1546
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1547 1548
    """

F
fengjiayi 已提交
1549
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1550 1551
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1552
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1553 1554 1555 1556

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1557 1558 1559 1560 1561
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1562 1563 1564 1565
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1566
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1567
            'dropout_implementation': dropout_implementation,
1568
        })
1569 1570 1571
    return out


J
jerrywgz 已提交
1572
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1573
    """
Y
Yibing Liu 已提交
1574 1575
    **Cross Entropy Layer**

1576 1577 1578
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1579 1580

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1581
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1582

Y
Yibing Liu 已提交
1583
        .. math::
Y
yangyaming 已提交
1584

Y
Yibing Liu 已提交
1585 1586 1587
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1588 1589
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1590 1591 1592 1593 1594

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1595
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1596 1597 1598
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1599 1600
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1601
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1602

Y
Yibing Liu 已提交
1603
    Args:
Y
yangyaming 已提交
1604
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1605 1606 1607 1608
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1609
        label (Variable|list): the ground truth which is a 2-D tensor. When
1610 1611 1612 1613
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1614
        soft_label (bool): a flag indicating whether to
1615
                                           interpretate the given labels as soft
1616
                                           labels. Default: `False`.
M
minqiyang 已提交
1617 1618
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1619
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1620 1621 1622 1623 1624

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1625 1626 1627
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1628

H
haowang101779990 已提交
1629 1630
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1631

H
haowang101779990 已提交
1632 1633
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1634 1635 1636 1637

    Examples:
        .. code-block:: python

1638
          import paddle.fluid as fluid
L
lvmengsi 已提交
1639 1640 1641 1642
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1643
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1644
    """
S
sneaxiy 已提交
1645 1646
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1647
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1648
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1649 1650 1651 1652 1653
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1654 1655
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1656 1657 1658
    return out


S
sneaxiy 已提交
1659 1660 1661 1662
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1663
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1664 1665 1666 1667 1668
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1669
                 'MatchX': [match_x],
S
sneaxiy 已提交
1670 1671 1672 1673 1674
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1675
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1676
    """
1677
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1678

1679
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1680
    The loss at a given point in one session is defined as:
1681 1682 1683

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1684 1685

    Learn more details by reading paper <session-based recommendations with recurrent
1686
    neural networks>.
F
frankwhzhang 已提交
1687

1688 1689 1690 1691 1692 1693
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1694 1695
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1696 1697 1698
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1699 1700 1701
    Examples:
        .. code-block:: python

1702 1703 1704 1705 1706 1707 1708
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1709
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1710
    """
1711 1712 1713 1714 1715
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1716
                'Label': [label]},
1717 1718 1719 1720
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1721
def square_error_cost(input, label):
Y
Yu Yang 已提交
1722
    """
1723 1724
    **Square error cost layer**

1725 1726
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1741 1742
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1743 1744

    Returns:
G
guosheng 已提交
1745
        Variable: The tensor variable storing the element-wise squared error \
1746
                  difference of input and label.
1747 1748 1749 1750

    Examples:
        .. code-block:: python

1751
          import paddle.fluid as fluid
R
ruri 已提交
1752 1753 1754
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1755

Y
Yu Yang 已提交
1756
    """
F
fengjiayi 已提交
1757
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1758
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1759 1760 1761 1762 1763 1764
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1765
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1766
    helper.append_op(
F
fengjiayi 已提交
1767 1768
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1769 1770 1771
    return square_out


Y
yi.wu 已提交
1772
@templatedoc()
Y
Yu Yang 已提交
1773 1774 1775 1776
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1777 1778
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1779
    """
Y
yi.wu 已提交
1780
    **Chunk Evaluator**
Y
yi.wu 已提交
1781

Y
yangyaming 已提交
1782
    This function computes and outputs the precision, recall and
1783
    F1-score of chunk detection.
Y
yi.wu 已提交
1784

M
minqiyang 已提交
1785
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1786
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1787 1788 1789 1790 1791 1792

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1793

Y
yi.wu 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1819

Y
yi.wu 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1844
    Args:
1845 1846 1847 1848 1849
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1850
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1851

Y
yi.wu 已提交
1852
    Returns:
Y
update  
yi.wu 已提交
1853 1854 1855
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1856

Y
yi.wu 已提交
1857 1858 1859
    Examples:
        .. code-block:: python

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1871
            crf = fluid.layers.linear_chain_crf(
1872
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1873
            crf_decode = fluid.layers.crf_decoding(
1874
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1875 1876 1877 1878 1879
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1880
    """
F
fengjiayi 已提交
1881
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1882 1883

    # prepare output
X
Xin Pan 已提交
1884 1885 1886 1887 1888 1889 1890
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1891

1892 1893 1894 1895 1896
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1897 1898
    helper.append_op(
        type="chunk_eval",
1899
        inputs=this_input,
Y
Yu Yang 已提交
1900 1901 1902
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1903 1904 1905 1906
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1907 1908 1909
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1910 1911
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1912
        })
1913 1914
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1915 1916


1917
@templatedoc()
Y
Yu Yang 已提交
1918 1919 1920 1921
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
1922 1923
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
1924 1925
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1926 1927
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1928
    """
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
1965 1966 1967

    Args:
        input (Variable): ${x_comment}
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1999

2000 2001
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2002 2003

    Examples:
2004

B
bdzhuxiaoning 已提交
2005 2006 2007
        .. code-block:: python

             import paddle.fluid as fluid
2008

B
bdzhuxiaoning 已提交
2009
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2010
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2011 2012
    """

L
lujun 已提交
2013
    assert not in_dygraph_mode(), (
2014
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2015 2016 2017 2018 2019
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2020
    pre_bias = helper.create_variable_for_type_inference(dtype)
2021 2022
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2033 2034
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2035 2036 2037 2038 2039
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2040
def sequence_softmax(input, use_cudnn=False, name=None):
2041 2042 2043
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2044
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2061 2062 2063
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2064

2065 2066 2067 2068 2069 2070 2071
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2072
             import paddle.fluid as fluid
2073 2074 2075 2076
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2077
    assert not in_dygraph_mode(), (
2078
        "sequence layer is not supported in dygraph mode yet.")
2079 2080
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2081
    softmax_out = helper.create_variable_for_type_inference(dtype)
2082 2083 2084 2085 2086 2087 2088 2089
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2090
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2091
    """
2092
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2093
    has the same shape as the input.
Q
qiaolongfei 已提交
2094

D
dengkaipeng 已提交
2095
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2096
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2097
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2098 2099 2100
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2101
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2102
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2103 2104 2105 2106 2107 2108 2109

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2110
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2111 2112 2113 2114 2115 2116 2117 2118

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2119 2120
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2121 2122
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2123 2124 2125
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2126 2127 2128 2129 2130 2131 2132 2133

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2134 2135
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2136
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2137
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2138
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2139 2140
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2141 2142

    """
2143 2144
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2145
    softmax_out = helper.create_variable_for_type_inference(dtype)
2146 2147 2148 2149
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2150 2151
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2152 2153 2154
    return softmax_out


Y
Yu Yang 已提交
2155 2156 2157
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2158 2159
           stride=1,
           padding=0,
2160
           dilation=1,
Y
Yu Yang 已提交
2161 2162 2163
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2164
           use_cudnn=True,
2165 2166
           act=None,
           name=None):
Y
Yu Yang 已提交
2167
    """
C
chengduoZH 已提交
2168
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2169 2170
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2171
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2172 2173 2174 2175 2176 2177
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2178
    for more details.
2179 2180 2181
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2182

2183
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2184

C
chengduoZH 已提交
2185 2186
    .. math::

C
refine  
chengduoZH 已提交
2187
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2188

T
tensor-tang 已提交
2189
    Where:
C
chengduoZH 已提交
2190

2191 2192 2193 2194 2195
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2196
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2197 2198 2199

    Example:

2200 2201
        - Input:

W
weixing02 已提交
2202
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2203

W
weixing02 已提交
2204
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2205

2206
        - Output:
T
tensor-tang 已提交
2207

W
weixing02 已提交
2208
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2209

C
chengduoZH 已提交
2210
        Where
2211 2212

        .. math::
C
chengduoZH 已提交
2213

W
weixing02 已提交
2214 2215
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2216 2217

    Args:
2218
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2219
        num_filters(int): The number of filter. It is as same as the output
2220
            image channel.
2221
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2237 2238 2239 2240 2241
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2242
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2243 2244 2245 2246 2247
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2248 2249
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2250 2251
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2252
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2253
            will be named automatically. Default: None
C
chengduoZH 已提交
2254 2255

    Returns:
G
guosheng 已提交
2256
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2257 2258
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2259
    Raises:
2260 2261
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2262

C
chengduoZH 已提交
2263 2264 2265
    Examples:
        .. code-block:: python

2266
          import paddle.fluid as fluid
2267 2268
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2269 2270 2271
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2272
    assert param_attr is not False, "param_attr should not be False here."
2273
    l_type = 'conv2d'
X
xzl 已提交
2274 2275
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2276
        l_type = 'depthwise_conv2d'
2277 2278 2279 2280

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2281 2282 2283 2284 2285
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2286
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2287

C
chengduoZH 已提交
2288 2289 2290
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2291
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2292

C
chengduoZH 已提交
2293 2294
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2295 2296

    input_shape = input.shape
M
minqiyang 已提交
2297
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2298 2299

    def _get_default_param_initializer():
C
chengduo 已提交
2300 2301
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2302 2303 2304 2305 2306 2307 2308 2309
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2310
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2311

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2326
    helper.append_op(
2327
        type=l_type,
Y
Yu Yang 已提交
2328 2329 2330 2331 2332
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2333 2334 2335
        attrs={
            'strides': stride,
            'paddings': padding,
2336
            'dilations': dilation,
C
chengduoZH 已提交
2337
            'groups': groups,
2338
            'use_cudnn': use_cudnn,
2339
            'use_mkldnn': False,
2340
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2341
        })
Y
Yu Yang 已提交
2342 2343 2344 2345 2346 2347

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2365 2366 2367 2368 2369 2370
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2380 2381
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2382 2383 2384
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2385
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2408
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2409 2410
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2411
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2412 2413
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2414
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2415 2416
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2417
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2418 2419
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2420
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2421 2422 2423 2424 2425 2426
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2437 2438
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2439 2440
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2441
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2442
            will be named automatically. Default: None.
C
chengduoZH 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2455
          import paddle.fluid as fluid
2456 2457
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2458 2459 2460
    """

    l_type = 'conv3d'
C
chengduo 已提交
2461
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2472
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2486 2487 2488
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2489 2490 2491 2492 2493 2494 2495 2496
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2497
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2512
            'use_mkldnn': False
C
chengduoZH 已提交
2513 2514
        })

2515
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2516 2517 2518 2519

    return helper.append_activation(pre_act)


2520
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2521
    """
Y
yangyaming 已提交
2522 2523 2524
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2535 2536
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2537 2538 2539 2540
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2541
         out.dim = [4, 1]
2542
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2543 2544

       for different pool_type:
2545 2546 2547
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2548
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2549 2550 2551 2552 2553
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2554

L
Luo Tao 已提交
2555
    Args:
2556
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2557
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2558
            It supports average, sum, sqrt and max.
2559 2560
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2561 2562 2563 2564 2565 2566 2567

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2568

2569 2570
             import paddle.fluid as fluid

Y
yangyaming 已提交
2571
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2572 2573 2574 2575 2576
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2577 2578
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2579
    """
L
lujun 已提交
2580
    assert not in_dygraph_mode(), (
2581
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2582
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2583
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2584 2585
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2586 2587 2588 2589 2590 2591

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2592 2593 2594 2595 2596
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2597

Y
yangyaming 已提交
2598 2599 2600 2601 2602
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2603 2604 2605
    return pool_out


C
add doc  
chengduoZH 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2622 2623 2624 2625
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2626
    """
L
lujun 已提交
2627
    assert not in_dygraph_mode(), (
2628
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2629
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2630
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2631 2632 2633 2634 2635
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2636
def sequence_first_step(input):
L
Luo Tao 已提交
2637
    """
L
Luo Tao 已提交
2638
    This function gets the first step of sequence.
L
Luo Tao 已提交
2639 2640 2641 2642

    .. code-block:: text

       x is a 1-level LoDTensor:
2643
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2644 2645 2646 2647 2648
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2649
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2650
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2651

L
Luo Tao 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2661

2662
             import paddle.fluid as fluid
Y
yangyaming 已提交
2663
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2664 2665 2666
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2667 2668 2669
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2670
def sequence_last_step(input):
L
Luo Tao 已提交
2671
    """
L
Luo Tao 已提交
2672
    This function gets the last step of sequence.
L
Luo Tao 已提交
2673 2674 2675 2676

    .. code-block:: text

       x is a 1-level LoDTensor:
2677
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2678 2679 2680 2681 2682
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2683
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2684
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2685

L
Luo Tao 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2695

2696
             import paddle.fluid as fluid
Y
yangyaming 已提交
2697
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2698 2699 2700
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2701 2702 2703
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2704 2705 2706 2707
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2708
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2709 2710 2711 2712 2713
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2714

H
haowang101779990 已提交
2715
              - Case:
Y
Yibing Liu 已提交
2716

2717
            Given the input Variable **input**:
2718

2719 2720 2721
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2722

2723
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2724

2725
            the output Variable will be
2726

2727 2728 2729
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2730

M
minqiyang 已提交
2731
    Note:
H
haowang101779990 已提交
2732
          The first dimension size of **input**, **offset** and **length**
2733
          should be equal. The **offset** should start from 0.
2734

Y
Yibing Liu 已提交
2735
    Args:
2736
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2737
                         sequences.
Y
Yibing Liu 已提交
2738 2739 2740 2741 2742 2743
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2744
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2745 2746 2747 2748 2749

    Examples:

        .. code-block:: python

2750
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2751 2752 2753 2754 2755
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2756
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2757 2758
                                                   length=length)
    """
L
lujun 已提交
2759
    assert not in_dygraph_mode(), (
2760
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2761 2762
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2763
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2778
@templatedoc()
Y
Yu Yang 已提交
2779
def pool2d(input,
C
chengduoZH 已提交
2780 2781
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2782 2783
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2784
           global_pooling=False,
C
chengduoZH 已提交
2785
           use_cudnn=True,
2786
           ceil_mode=False,
2787 2788
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2789
    """
F
fengjiayi 已提交
2790
    ${comment}
2791 2792

    Args:
2793 2794 2795
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2796
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2797
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2798 2799
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2800
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2801 2802 2803 2804 2805 2806
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2807 2808 2809
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2810
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2811
                        layer will be named automatically.
2812
        exclusive (bool): Whether to exclude padding points in average pooling
2813
                          mode, default is true
F
fengjiayi 已提交
2814

2815
    Returns:
F
fengjiayi 已提交
2816
        Variable: The pooling result.
F
fengjiayi 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2827
          import paddle.fluid as fluid
F
fengjiayi 已提交
2828 2829
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2830
          pool2d = fluid.layers.pool2d(
2831 2832 2833 2834
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2835
                            global_pooling=False)
Y
Yu Yang 已提交
2836 2837 2838 2839 2840
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2841

C
chengduoZH 已提交
2842 2843 2844 2845 2846
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2847 2848 2849 2850
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2851 2852
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2853

C
Add doc  
chengduoZH 已提交
2854
    l_type = 'pool2d'
2855 2856

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2857
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2858
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2859 2860

    helper.append_op(
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2872 2873
            "use_mkldnn": False,
            "exclusive": exclusive,
2874 2875 2876 2877 2878
        })

    return pool_out


D
dengkaipeng 已提交
2879
@templatedoc()
2880 2881 2882 2883 2884 2885 2886 2887
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2888 2889
           name=None,
           exclusive=True):
2890
    """
2891
    ${comment}
2892 2893

    Args:
D
dengkaipeng 已提交
2894 2895 2896 2897 2898
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2899 2900 2901 2902 2903
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2904 2905 2906 2907 2908 2909 2910
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2911
        exclusive (bool): Whether to exclude padding points in average pooling
2912
                          mode, default is true
2913

2914
    Returns:
2915
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2916 2917 2918 2919 2920

    Examples:

        .. code-block:: python

2921
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2922 2923 2924 2925 2926 2927 2928 2929
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2930 2931 2932 2933 2934
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2935

C
chengduoZH 已提交
2936 2937 2938 2939 2940
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2941 2942 2943
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2944

C
chengduoZH 已提交
2945 2946
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2947

2948 2949
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2950
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2951
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2952 2953

    helper.append_op(
2954
        type=l_type,
Y
Yu Yang 已提交
2955 2956 2957 2958 2959 2960 2961
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2962
            "paddings": pool_padding,
2963
            "use_cudnn": use_cudnn,
2964
            "ceil_mode": ceil_mode,
2965 2966
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2967 2968 2969 2970 2971
        })

    return pool_out


2972 2973 2974 2975 2976 2977 2978
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2979 2980 2981 2982 2983 2984 2985
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3000 3001 3002 3003 3004 3005 3006 3007 3008

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3009 3010
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3025
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3026
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3027
          # of input data into m * n grids averagely and performs poolings in each
3028 3029
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3030
          #
3031 3032 3033 3034 3035 3036 3037 3038
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3039
          import paddle.fluid as fluid
3040 3041
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3042
          pool_out = fluid.layers.adaptive_pool2d(
3043 3044
                            input=data,
                            pool_size=[3, 3],
3045
                            pool_type='avg')
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3056
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3082
    return (pool_out, mask) if require_index else pool_out
3083 3084 3085 3086 3087 3088 3089 3090 3091


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3092 3093 3094 3095 3096 3097 3098
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3117 3118 3119

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3120 3121 3122
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3123
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3124
            it must contain three integers, (Depth, Height, Width).
3125
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3126 3127
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3142 3143
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3144
          # of input data into l * m * n grids averagely and performs poolings in each
3145 3146
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3147
          #
3148 3149 3150 3151 3152 3153 3154 3155 3156
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3157
          #                 output[:, :, i, j, k] =
3158 3159
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3160 3161 3162

          import paddle.fluid as fluid

3163
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3164 3165
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3166
                            input=data,
D
dengkaipeng 已提交
3167
                            pool_size=[3, 3, 3],
3168
                            pool_type='avg')
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3179
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3205
    return (pool_out, mask) if require_index else pool_out
3206 3207


Y
Yu Yang 已提交
3208 3209 3210 3211 3212 3213 3214
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3215
               data_layout='NCHW',
Y
Yang Yang 已提交
3216
               in_place=False,
3217 3218
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3219
               moving_variance_name=None,
3220
               do_model_average_for_mean_and_var=False,
3221 3222
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3223
    """
Q
qiaolongfei 已提交
3224 3225 3226 3227
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3228

Q
qiaolongfei 已提交
3229
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3230

Q
qiaolongfei 已提交
3231 3232
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3233 3234 3235
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3248

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3262 3263 3264 3265
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3266
    Args:
Q
qingqing01 已提交
3267
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3268
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3278 3279
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3280 3281 3282
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3283 3284
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3285 3286 3287
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3288
        data_layout(string, default NCHW): NCHW|NHWC
3289
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3290 3291
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3292 3293 3294
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3295
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3296 3297
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3298
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3299
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3300 3301 3302 3303 3304
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3305 3306

    Returns:
Q
qiaolongfei 已提交
3307
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3308 3309 3310 3311 3312

    Examples:

        .. code-block:: python

3313
            import paddle.fluid as fluid
L
lvmengsi 已提交
3314
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3315 3316
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3317
    """
C
chengduo 已提交
3318
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3319 3320 3321
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3322 3323 3324 3325
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3344
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3345

3346 3347
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3348 3349 3350
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3351
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3352
        shape=param_shape,
W
Wu Yi 已提交
3353
        dtype=dtype)
3354 3355 3356 3357 3358 3359
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3360
            trainable=False,
W
wanghaoshuang 已提交
3361
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3362
        shape=param_shape,
W
Wu Yi 已提交
3363
        dtype=dtype)
3364
    variance.stop_gradient = True
Y
Yu Yang 已提交
3365 3366 3367 3368 3369 3370

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3371 3372 3373 3374
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3375

X
Xin Pan 已提交
3376 3377
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3395 3396 3397 3398
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3399
            "data_layout": data_layout,
X
Xin Pan 已提交
3400
            "use_mkldnn": False,
3401 3402
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3403
        })
Y
Yu Yang 已提交
3404 3405 3406 3407

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3459 3460
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3461

3462 3463
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3529
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3530 3531 3532 3533

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3534
@templatedoc()
G
guosheng 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3545
    ${comment}
G
guosheng 已提交
3546 3547 3548

    The formula is as follows:

Y
yuyang18 已提交
3549
    ..  math::
G
guosheng 已提交
3550 3551 3552 3553 3554 3555 3556

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3557 3558 3559 3560 3561 3562 3563 3564
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3565

G
guosheng 已提交
3566 3567
    Args:
        input(Variable): The input tensor variable.
3568
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3569
            normalization. Default True.
3570
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3571 3572
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3573
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3574
            Default 1.
3575
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3576
            division by zero. Default 1e-05.
G
guosheng 已提交
3577
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3578 3579
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3580 3581
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3582
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3583 3584
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3585
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3586
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3587
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3588 3589 3590
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3591 3592

    Returns:
Y
yuyang18 已提交
3593
        ${y_comment}
G
guosheng 已提交
3594 3595 3596

    Examples:

3597
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3598 3599 3600
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3601
    """
L
lujun 已提交
3602
    assert in_dygraph_mode(
L
lujun 已提交
3603
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3618
    if shift:
G
guosheng 已提交
3619 3620 3621 3622 3623 3624
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3625 3626 3627 3628 3629
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3657
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3679
        >>> import paddle.fluid as fluid
D
Dun 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3706 3707
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3725
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3726 3727 3728
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3729
    This layer calculates the spectral normalization value of weight parameters of
3730
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3731
    Parameters. Calculations are showed as follows.
3732

D
dengkaipeng 已提交
3733 3734 3735
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3736
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3749
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3750 3751 3752 3753

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3754

D
dengkaipeng 已提交
3755
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3756 3757
                

D
dengkaipeng 已提交
3758 3759 3760 3761
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3762 3763 3764
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3765 3766 3767
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3768
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3769 3770

    Examples:
K
Kaipeng Deng 已提交
3771
       .. code-block:: python
D
dengkaipeng 已提交
3772

K
Kaipeng Deng 已提交
3773 3774 3775 3776 3777
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3778 3779
    """
    helper = LayerHelper('spectral_norm', **locals())
3780
    dtype = weight.dtype
D
dengkaipeng 已提交
3781 3782 3783

    # create intput and parameters
    inputs = {'Weight': weight}
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3802 3803

    # create output
3804
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3805 3806

    helper.append_op(
3807
        type="spectral_norm",
D
Dun 已提交
3808
        inputs=inputs,
3809 3810 3811 3812 3813 3814
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3815

3816
    return out
D
Dun 已提交
3817 3818


Y
Yu Yang 已提交
3819 3820 3821 3822
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3823 3824 3825
                     padding=0,
                     stride=1,
                     dilation=1,
3826
                     groups=None,
C
caoying03 已提交
3827
                     param_attr=None,
3828
                     bias_attr=None,
C
chengduoZH 已提交
3829
                     use_cudnn=True,
3830
                     act=None,
C
caoying03 已提交
3831
                     name=None):
Y
Yu Yang 已提交
3832
    """
3833 3834 3835 3836 3837 3838 3839 3840
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3841
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3842
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3843 3844 3845
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3846 3847 3848 3849 3850

    For each input :math:`X`, the equation is:

    .. math::

3851
        Out = \sigma (W \\ast X + b)
3852

3853
    Where:
3854 3855 3856

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3857 3858 3859 3860
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3861

3862 3863 3864 3865
    Example:

        - Input:

3866
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3867

3868
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3869 3870 3871

        - Output:

3872
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3873 3874

        Where
Y
Yu Yang 已提交
3875

3876 3877
        .. math::

3878 3879
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3880 3881 3882 3883 3884 3885 3886 3887 3888
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3889 3890

    Args:
3891 3892 3893 3894
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3895 3896 3897 3898
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3927
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3928 3929 3930
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3931
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3932
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3933 3934

    Returns:
3935
        Variable: The tensor variable storing the convolution transpose result.
3936 3937

    Raises:
3938 3939
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3940 3941 3942 3943

    Examples:
       .. code-block:: python

3944
          import paddle.fluid as fluid
3945 3946
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3947
    """
C
chengduo 已提交
3948
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3949 3950 3951 3952 3953 3954 3955 3956
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3957 3958 3959
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3960 3961 3962
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3963

C
chengduoZH 已提交
3964 3965
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3966

Y
Yu Yang 已提交
3967 3968 3969 3970 3971
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3972

Y
Yu Yang 已提交
3973 3974
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3975

C
chengduoZH 已提交
3976
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3977
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3978
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3979
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3980
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3981 3982 3983
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3984

3985 3986 3987 3988 3989 3990 3991
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3992
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3993
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3994

Y
Yu Yang 已提交
3995 3996 3997
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3998
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3999
    helper.append_op(
4000
        type=op_type,
Y
Yu Yang 已提交
4001 4002
        inputs={'Input': [input],
                'Filter': [img_filter]},
4003
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4004
        attrs={
4005
            'output_size': output_size,
4006 4007 4008 4009 4010
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4011 4012
        })

4013 4014 4015
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4016 4017


4018
def conv3d_transpose(input,
Y
Yu Yang 已提交
4019 4020 4021
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4022 4023 4024
                     padding=0,
                     stride=1,
                     dilation=1,
4025
                     groups=None,
C
caoying03 已提交
4026
                     param_attr=None,
4027
                     bias_attr=None,
C
chengduoZH 已提交
4028
                     use_cudnn=True,
4029
                     act=None,
C
caoying03 已提交
4030
                     name=None):
Y
Yu Yang 已提交
4031
    """
4032
    **Convlution3D transpose layer**
4033

4034
    The convolution3D transpose layer calculates the output based on the input,
4035
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4036 4037 4038 4039 4040
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4041
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4042 4043 4044
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4045 4046 4047 4048 4049

    For each input :math:`X`, the equation is:

    .. math::

4050
        Out = \sigma (W \\ast X + b)
4051 4052 4053

    In the above equation:

4054 4055
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4056 4057 4058 4059
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4060

4061 4062 4063 4064
    Example:

        - Input:

4065
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4066

4067
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4068 4069 4070

        - Output:

4071
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4072 4073

        Where
Y
Yu Yang 已提交
4074

4075 4076
        .. math::

4077 4078 4079
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4080 4081

    Args:
4082
        input(Variable): The input image with [N, C, D, H, W] format.
4083 4084 4085
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4086
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4087 4088
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4089
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4090 4091 4092
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4093 4094
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4095
        stride(int|tuple): The stride size. If stride is a tuple, it must
4096 4097
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4098
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4099 4100 4101
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4102 4103 4104 4105 4106
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4116 4117
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4118 4119
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4120 4121
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4122 4123

    Returns:
4124
        Variable: The tensor variable storing the convolution transpose result.
4125 4126

    Raises:
4127 4128
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4129 4130 4131 4132

    Examples:
       .. code-block:: python

4133
          import paddle.fluid as fluid
4134 4135
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4136
    """
C
chengduo 已提交
4137
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4138 4139
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4140
    if not isinstance(input, Variable):
4141
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4142 4143
    input_channel = input.shape[1]

4144 4145 4146
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4147

C
chengduoZH 已提交
4148 4149 4150
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4151 4152 4153 4154 4155 4156
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4157 4158 4159
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4160

4161
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4162
                         padding[0] - 1) // dilation[0] + 1
4163
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4164
                         padding[1] - 1) // dilation[1] + 1
4165
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4166
                         padding[2] - 1) // dilation[2] + 1
4167
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4168
    else:
4169 4170
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4171

4172
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4173
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4174 4175 4176
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4177
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4178
    helper.append_op(
4179
        type=l_type,
Y
Yu Yang 已提交
4180 4181
        inputs={'Input': [input],
                'Filter': [img_filter]},
4182
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4183 4184 4185 4186
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4187
            'groups': groups,
C
chengduoZH 已提交
4188 4189
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4190

4191 4192
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4193
    return out
Y
yangyaming 已提交
4194 4195


Y
yangyaming 已提交
4196
def sequence_expand(x, y, ref_level=-1, name=None):
4197
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4198 4199 4200 4201
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4202 4203 4204 4205 4206

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4207
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4208
                x.data = [[a], [b], [c], [d]]
4209 4210 4211
                x.dims = [4, 1]

            y is a LoDTensor:
4212 4213
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4214

Y
yangyaming 已提交
4215
            ref_level: 0
4216

Y
yangyaming 已提交
4217
            then output is a 1-level LoDTensor:
4218
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4219
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4220 4221 4222 4223
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4224
                x.data = [[a], [b], [c]]
4225 4226 4227
                x.dims = [3, 1]

            y is a LoDTensor:
4228
                y.lod = [[2, 0, 3]]
4229

Y
yangyaming 已提交
4230
            ref_level: -1
4231

Y
yangyaming 已提交
4232 4233 4234
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4235 4236 4237
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4238 4239
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4240
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4241
                        will be named automatically.
4242 4243 4244 4245 4246 4247

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4248
	
4249
            import paddle.fluid as fluid
4250
            import paddle.fluid.layers as layers
4251 4252 4253
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4254
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4255
    """
L
lujun 已提交
4256
    assert not in_dygraph_mode(), (
4257
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4258
    helper = LayerHelper('sequence_expand', input=x, **locals())
4259
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4260
    tmp = helper.create_variable_for_type_inference(dtype)
4261
    helper.append_op(
Y
yangyaming 已提交
4262 4263 4264 4265 4266
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4267
    return tmp
4268 4269


C
chengduo 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4318 4319
            
            import paddle.fluid as fluid
4320
            import paddle.fluid.layers as layers
C
chengduo 已提交
4321 4322 4323 4324 4325 4326

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4327
    assert not in_dygraph_mode(), (
4328
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4329 4330
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4331
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4332 4333 4334 4335 4336 4337 4338 4339
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4340
@templatedoc()
4341
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4342 4343 4344 4345 4346
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4347 4348 4349
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4350
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4351 4352 4353 4354
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4355 4356 4357
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4358

F
fengjiayi 已提交
4359
    Returns:
M
minqiyang 已提交
4360
        Variable: The padded sequence batch and the original lengths before
4361
                  padding. All sequences has the same length.
M
minqiyang 已提交
4362

F
fengjiayi 已提交
4363 4364 4365
    Examples:
        .. code-block:: python

4366
            import paddle.fluid as fluid
F
fengjiayi 已提交
4367 4368 4369 4370
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4371
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4372
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4373 4374 4375
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4376
    assert not in_dygraph_mode(), (
4377
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4378 4379
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4380 4381
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4382 4383 4384 4385

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4386 4387 4388 4389 4390 4391
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4392 4393
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4394
        attrs={'padded_length': maxlen})
4395
    return out, length
F
fengjiayi 已提交
4396 4397


4398
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4399
    """
4400
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4401

4402 4403
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4413 4414 4415
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4416
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4417 4418 4419 4420 4421 4422

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4423
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4424 4425 4426 4427 4428 4429

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4430 4431
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4432 4433 4434 4435 4436 4437 4438

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4439
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4440 4441 4442 4443 4444
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4445
    assert not in_dygraph_mode(), (
4446
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4447 4448
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4449
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4461 4462 4463 4464 4465 4466 4467
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4468
                is_accumulated=True,
4469 4470
                name=None,
                return_parent_idx=False):
4471
    """
4472 4473
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4474 4475 4476

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4477 4478

    This layer does the search in beams for one time step. Specifically, it
4479 4480 4481
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4493 4494 4495 4496

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4497

4498
    Args:
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4522 4523
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4524 4525
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4526 4527 4528 4529
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4530

4531
    Returns:
4532 4533 4534 4535
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4536 4537 4538 4539

    Examples:
        .. code-block:: python

4540 4541
            import paddle.fluid as fluid

4542 4543 4544
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4557
                axis=0)
4558
            selected_ids, selected_scores = fluid.layers.beam_search(
4559 4560 4561 4562 4563 4564 4565
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4566
    helper = LayerHelper('beam_search', **locals())
4567 4568 4569 4570 4571 4572
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4573

X
Xin Pan 已提交
4574 4575 4576
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4577 4578 4579 4580 4581
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4582 4583 4584

    helper.append_op(
        type='beam_search',
4585
        inputs=inputs,
Q
Qiao Longfei 已提交
4586 4587 4588
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4589
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4590 4591 4592 4593 4594 4595
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4596
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4597
        })
4598 4599 4600 4601
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4602 4603


4604 4605 4606 4607 4608 4609 4610
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4611

4612 4613 4614 4615 4616 4617 4618 4619 4620
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4621

4622 4623 4624 4625 4626 4627
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4628

4629 4630
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4631

4632 4633
            import paddle.fluid as fluid

4634 4635
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4636 4637 4638
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4639 4640 4641
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4642 4643
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4659 4660 4661 4662
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4663
              param_attr=None,
C
caoying03 已提交
4664 4665
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4666 4667 4668 4669
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4670
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4671

4672
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4673

4674
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4675

4676
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4677 4678 4679

            h_t & = o_t tanh(c_t)

4680 4681 4682 4683 4684 4685
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4686 4687 4688

        .. math::

4689
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4690 4691 4692 4693 4694 4695 4696 4697

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4698
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4699 4700

    Args:
Y
yangyaming 已提交
4701 4702 4703 4704 4705 4706
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4707
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4720 4721
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4722 4723

    Returns:
Y
yangyaming 已提交
4724
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4725 4726

    Raises:
4727 4728 4729 4730
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4731 4732 4733 4734 4735

    Examples:

        .. code-block:: python

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4763
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4764 4765 4766 4767
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4768 4769
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4770 4771 4772
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4773
    size = cell_t_prev.shape[1]
4774
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4775 4776
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4777
                param_attr=param_attr,
4778
                bias_attr=bias_attr)
Y
yangyaming 已提交
4779
    dtype = x_t.dtype
X
Xin Pan 已提交
4780 4781
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4782 4783 4784 4785 4786 4787 4788 4789 4790

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4791
    return h, c
G
guosheng 已提交
4792 4793


C
caoying03 已提交
4794
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4795
    """
Y
yangyaming 已提交
4796
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4797 4798 4799

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4800
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4801 4802
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4803 4804
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4805
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4806
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4807
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4808 4809
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4810 4811 4812

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4813

G
guosheng 已提交
4814 4815 4816
    Examples:
        .. code-block:: python

4817
            import paddle.fluid as fluid
G
guosheng 已提交
4818 4819 4820
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4821
            # Each example is followed by the corresponding output tensor.
4822
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4823 4824 4825 4826
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4827

4828
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4829 4830
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4831
            # Each example is followed by the corresponding output tensor.
4832 4833 4834
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4835

G
guosheng 已提交
4836 4837
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4838
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4839 4840
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4841 4842 4843 4844 4845
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4846
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4847 4848 4849 4850
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4851 4852


C
caoying03 已提交
4853
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4854
    """
Y
Yibing Liu 已提交
4855
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4856 4857 4858

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4859 4860 4861
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4862
            must be in the range :math:`[-rank(input), rank(input))`. If
4863
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4864
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4865 4866
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4867
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4868
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4869
                       will be named automatically.
G
guosheng 已提交
4870 4871

    Returns:
Y
Yibing Liu 已提交
4872
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4873

G
guosheng 已提交
4874 4875 4876
    Examples:
        .. code-block:: python

4877
            import paddle.fluid as fluid
G
guosheng 已提交
4878 4879 4880 4881
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4882
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4883 4884 4885
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4886
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4887

4888
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4889 4890 4891
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4892 4893 4894
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4895 4896
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4897
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4898 4899
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4900 4901 4902 4903 4904
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4905
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4906 4907 4908 4909
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4910 4911


C
caoying03 已提交
4912
def reduce_max(input, dim=None, keep_dim=False, name=None):
4913
    """
Y
yangyaming 已提交
4914
    Computes the maximum of tensor elements over the given dimension.
4915 4916 4917

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4918
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4919 4920 4921
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4922
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4923 4924
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4925
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4926 4927
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4928 4929 4930

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4931

4932 4933 4934
    Examples:
        .. code-block:: python

4935
            import paddle.fluid as fluid
4936 4937 4938 4939
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4940
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4941 4942 4943 4944
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4945

4946
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4947 4948 4949
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4950 4951 4952
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4953 4954
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4955
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4956 4957
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4958 4959 4960 4961 4962
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4963
            'dim': dim if dim != None else [0],
4964 4965 4966 4967 4968 4969
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4970
def reduce_min(input, dim=None, keep_dim=False, name=None):
4971
    """
Y
yangyaming 已提交
4972
    Computes the minimum of tensor elements over the given dimension.
4973 4974 4975

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4976
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4977 4978 4979
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4980
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4981 4982
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4983
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4984 4985
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4986 4987 4988

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4989

4990 4991 4992
    Examples:
        .. code-block:: python

4993
            import paddle.fluid as fluid
4994 4995 4996 4997
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4998
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4999 5000 5001 5002
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5003

5004
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5005 5006 5007
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5008 5009 5010
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5011 5012
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5013
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5014 5015
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5016 5017 5018 5019 5020
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5021
            'dim': dim if dim != None else [0],
5022 5023 5024 5025
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5026 5027


5028 5029 5030 5031 5032 5033
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5034
        dim (list|int|None): The dimensions along which the product is performed. If
5035 5036
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5037 5038
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5039 5040 5041
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5042
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5043
            layer will be named automatically.
5044 5045 5046 5047 5048 5049 5050

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5051
            import paddle.fluid as fluid
5052 5053 5054 5055
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5056
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5057 5058 5059
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5060
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5061
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5062

5063
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5064 5065 5066
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5067 5068 5069
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5070 5071
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5072
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5073 5074
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5075 5076 5077 5078 5079
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5080
            'dim': dim if dim != None else [0],
5081 5082 5083 5084 5085 5086
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5087 5088
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5089
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5109
        
5110
            import paddle.fluid as fluid
5111 5112 5113
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5114 5115 5116
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5117 5118 5119 5120 5121 5122 5123
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5144
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5164

5165
            import paddle.fluid as fluid
5166 5167 5168
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5169 5170 5171
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5172 5173 5174 5175 5176 5177 5178
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5193 5194 5195 5196 5197
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5198
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5199
    """
C
caoying03 已提交
5200
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5201 5202 5203

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5204 5205 5206 5207 5208
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5209
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5210
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5211
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5212 5213
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5214 5215

    Returns:
D
dzhwinter 已提交
5216
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5217 5218 5219 5220

    Examples:
        .. code-block:: python

5221 5222 5223 5224 5225 5226
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5227
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5228 5229 5230 5231 5232 5233 5234 5235
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5236 5237 5238 5239 5240 5241 5242 5243
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5244
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5245 5246 5247
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5248
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5262 5263 5264 5265 5266 5267 5268 5269 5270


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5271
    .. math::
5272 5273

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5274 5275 5276 5277 5278

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5279
        x(Variable|list): The input tensor to l2_normalize layer.
5280
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5281 5282
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5283
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5284
            the default value is 1e-12.
5285
        name(str|None): A name for this layer(optional). If set None, the layer \
5286
            will be named automatically.
C
caoying03 已提交
5287 5288

    Returns:
5289
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5290 5291

    Examples:
5292

C
caoying03 已提交
5293 5294
        .. code-block:: python

5295
            import paddle.fluid as fluid
5296 5297 5298 5299
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5300 5301
    """

F
fengjiayi 已提交
5302 5303
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5304 5305
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5306 5307
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5308
    helper.append_op(
5309 5310 5311 5312
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5313
        attrs={
5314 5315
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5316 5317
        })
    return out
5318 5319


S
sneaxiy 已提交
5320
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5321
    """
Y
ying 已提交
5322 5323 5324 5325
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5326

C
chengduoZH 已提交
5327
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5328
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5329

5330 5331 5332 5333 5334
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5335
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5336

C
chengduoZH 已提交
5337
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5338
      performs in the following way.
G
guosheng 已提交
5339

5340
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5341
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5342
        last two dimensions and a batched matrix multiply supporting broadcast
5343
        applies on the two tensors.
G
guosheng 已提交
5344

Y
ying 已提交
5345 5346
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5347
    removed after matrix multiplication.
G
guosheng 已提交
5348 5349 5350

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5351 5352 5353
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5354
        alpha (float): The scale of output. Default 1.0.
5355
        name(str|None): A name for this layer(optional). If set None, the layer
5356
            will be named automatically.
G
guosheng 已提交
5357 5358

    Returns:
石晓伟 已提交
5359
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5360

G
guosheng 已提交
5361 5362 5363
    Examples:
        .. code-block:: python

5364
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5365
            # x: [B, ..., M, K], y: [B, ..., K, N]
5366
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5367

5368
            # x: [B, M, K], y: [B, K, N]
5369
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5370

5371
            # x: [B, M, K], y: [K, N]
5372
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5373

5374
            # x: [M, K], y: [K, N]
5375
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5376 5377

            # x: [B, M, K], y: [K]
5378
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5379

5380
            # x: [K], y: [K]
5381
            # fluid.layers.matmul(x, y)  # out: [1]
5382

Y
ying 已提交
5383
            # x: [M], y: [N]
5384 5385
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5386
            import paddle.fluid as fluid
5387 5388 5389
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5390
    """
Y
ying 已提交
5391 5392 5393 5394 5395 5396 5397

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5398
            y_shape = y_shape + [1]
Y
ying 已提交
5399 5400 5401 5402 5403 5404 5405

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5406 5407
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5408

C
chengduo 已提交
5409
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5410
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5411 5412 5413
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5414
                if dim_x != y_shape[i]:
C
chengduo 已提交
5415 5416
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5417 5418 5419

    __check_input(x, y)

5420
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5421
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5422
    helper.append_op(
5423 5424 5425 5426
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5427 5428 5429
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5430
            'alpha': float(alpha),
S
sneaxiy 已提交
5431
        })
5432
    return out
5433 5434


5435
def topk(input, k, name=None):
Q
qingqing01 已提交
5436 5437 5438 5439
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5440
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5441 5442 5443 5444 5445 5446
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5468 5469 5470
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5471
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5472
                 of input.
5473
        name(str|None): A name for this layer(optional). If set None, the layer
5474
                       will be named automatically.
F
fengjiayi 已提交
5475
                       Default: None
Q
qingqing01 已提交
5476 5477

    Returns:
5478 5479 5480
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5481
        within the last dimension of input.
Q
qingqing01 已提交
5482

F
fengjiayi 已提交
5483 5484
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5485 5486 5487 5488

    Examples:
        .. code-block:: python

5489
            import paddle.fluid as fluid
5490 5491
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5492 5493 5494
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5495 5496
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5497 5498 5499 5500 5501 5502
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5503 5504
    helper.append_op(
        type="top_k",
W
whs 已提交
5505
        inputs=inputs,
Q
qingqing01 已提交
5506 5507
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5508
        attrs=attrs)
Q
qingqing01 已提交
5509 5510 5511 5512 5513
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5514 5515 5516 5517 5518 5519
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5520
    """
R
ruri 已提交
5521
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5522 5523 5524 5525 5526 5527 5528 5529
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5530

Y
ying 已提交
5531
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5532

5533
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5534
    the total number denoted by `batch_size`, and the separation is specified
5535 5536
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5537

5538
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5539 5540
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5541

5542
    Args:
5543 5544
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5545
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5546
                          the length of reference string.
5547
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5548
                                     calculating edit distance.
5549 5550
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5551

W
wanghaoshuang 已提交
5552
    Returns:
5553 5554 5555
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5556 5557 5558

    Examples:
        .. code-block:: python
5559
            
R
ruri 已提交
5560 5561
            import paddle.fluid as fluid

5562 5563 5564 5565
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5566

5567 5568 5569 5570 5571 5572 5573 5574
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5575

5576
    """
5577
    helper = LayerHelper("edit_distance", **locals())
5578

5579
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5580
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5581 5582
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5583 5584 5585 5586 5587

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5588
            attrs={"tokens": ignored_tokens})
5589 5590 5591 5592 5593
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5594
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5595
            attrs={"tokens": ignored_tokens})
5596 5597
        label = erased_label

5598 5599 5600 5601 5602
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5603
    # edit distance op
X
Xin Pan 已提交
5604 5605
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5606 5607
    helper.append_op(
        type="edit_distance",
5608
        inputs=this_inputs,
5609 5610
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5611 5612
        attrs={"normalized": normalized})

5613
    return edit_distance_out, sequence_num
5614 5615 5616 5617 5618


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5619

Y
ying 已提交
5620 5621 5622 5623
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5641
        input.lod = [[4, 4]]
M
minqiyang 已提交
5642

W
whs 已提交
5643
        Computation:
5644

W
whs 已提交
5645 5646 5647 5648 5649 5650
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5651 5652 5653 5654 5655

        output.data = [[2],
                       [1],
                       [3]]

5656
        output.lod = [[2, 1]]
5657

W
whs 已提交
5658

5659 5660
    Args:

Y
ying 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5670
        name (str): The name of this layer. It is optional.
5671 5672

    Returns:
H
haowang101779990 已提交
5673 5674 5675
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5676
                  LoD [[]] and dims [1, 1].
5677 5678 5679 5680

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5681
            import paddle.fluid as fluid
5682 5683
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5684
    """
5685
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5686
    _, topk_indices = topk(input, k=1)
5687 5688

    # ctc align op
X
Xin Pan 已提交
5689
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5690 5691 5692
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5693
        outputs={"Output": [ctc_out]},
5694 5695
        attrs={"merge_repeated": True,
               "blank": blank})
5696
    return ctc_out
5697 5698


5699 5700 5701 5702 5703 5704 5705
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            use_cudnn=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5706
    """
5707 5708
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5709
    to compute Connectionist Temporal Classification (CTC) loss.
5710 5711
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5712 5713 5714
    input tensor.

    Args:
5715
       input (Variable): The unscaled probabilities of variable-length sequences,
5716 5717 5718
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5719
         sequences' length and num_classes is the true number of classes.
5720 5721 5722 5723
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5724
       label (Variable): The ground truth of variable-length sequence,
5725 5726 5727
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5728
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5729 5730
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5731 5732 5733
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5734
         follewed by a mean_op.
W
Wu Yi 已提交
5735
       use_cudnn (bool, default false): Whether to use cudnn.
5736 5737 5738 5739
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5740 5741

    Returns:
5742 5743
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5744 5745 5746

    Examples:
        .. code-block:: python
5747

5748
            # using LoDTensor
B
Bai Yifan 已提交
5749
            import paddle.fluid as fluid
5750 5751 5752
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5753
                                      dtype='float32', lod_level=1)
5754 5755 5756
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5757
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5758

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
5777
    """
F
fengjiayi 已提交
5778
    helper = LayerHelper('warpctc', **locals())
5779 5780 5781 5782 5783
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
5784 5785
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
5786

W
wanghaoshuang 已提交
5787 5788
    helper.append_op(
        type='warpctc',
5789
        inputs=this_inputs,
W
wanghaoshuang 已提交
5790 5791
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5792 5793 5794 5795 5796
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5797
    return loss_out
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5813 5814 5815
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5816 5817 5818 5819 5820
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5821

5822
            out.lod  = [[0, 1, 3]]
5823 5824 5825 5826

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5827 5828 5829 5830 5831 5832 5833
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5834 5835 5836

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5837 5838

    Returns:
5839

5840 5841 5842 5843 5844
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5845 5846 5847
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5848
    """
L
lujun 已提交
5849
    assert not in_dygraph_mode(), (
5850
        "sequence layer is not supported in dygraph mode yet.")
5851
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5852
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5853 5854 5855 5856 5857 5858
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5859 5860


5861 5862 5863 5864
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5865 5866 5867 5868 5869 5870
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5871
        num_neg_samples=None,
5872 5873 5874
        name=None,
        sampler="uniform",
        custom_dist=None,
5875 5876
        seed=0,
        is_sparse=False):
5877 5878 5879 5880 5881 5882 5883
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5884 5885
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5886
            sample is 1.0.
C
chengduo 已提交
5887 5888 5889 5890 5891 5892 5893 5894 5895
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5896
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5897 5898
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5899 5900 5901
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5902
        custom_dist (float[]): A float[] with size=num_total_classes.
5903 5904 5905 5906
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5907
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5908

5909
    Returns:
Y
Yibing Liu 已提交
5910 5911 5912 5913 5914 5915
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5950
    """
Y
Yang Yu 已提交
5951 5952 5953
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5954 5955

    dim = input.shape[1]
Y
Yang Yu 已提交
5956 5957 5958 5959 5960 5961
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5962
    inputs = {}
C
chengduo 已提交
5963 5964 5965 5966 5967 5968 5969
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5970 5971 5972
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5973

5974 5975 5976 5977
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5978 5979 5980 5981 5982 5983 5984

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5985 5986
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5987
        custom_dist_len = num_total_classes
5988 5989 5990 5991 5992 5993
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5994
            if normal_prob - 1.0 > 0:
5995
                bigs.append((i, normal_prob))
5996
            elif 1.0 - normal_prob > 0:
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6012
            if big_left - 1.0 > 0:
6013
                bigs.append((big_idx, big_left))
6014
            elif 1.0 - big_left > 0:
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6044 6045 6046 6047
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6048 6049 6050 6051 6052
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6053 6054 6055 6056
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6057

Y
Yang Yu 已提交
6058 6059
    attrs = {
        'num_total_classes': int(num_total_classes),
6060 6061
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6062
        'sampler': sampler,
6063 6064
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6065
    }
Y
Yang Yu 已提交
6066 6067 6068

    helper.append_op(
        type='nce',
C
chengduo 已提交
6069
        inputs=inputs,
Y
Yang Yu 已提交
6070 6071 6072 6073 6074 6075
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6076
    return cost / (num_neg_samples + 1)
6077 6078


C
chengduo 已提交
6079 6080
def hsigmoid(input,
             label,
6081
             num_classes,
C
chengduo 已提交
6082 6083
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6084
             name=None,
6085 6086 6087
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6088
             is_sparse=False):
W
weixing02 已提交
6089 6090
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6091
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6092
    complete binary tree, or you can use is_custom to pass your own tree to
6093
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6094 6095 6096 6097 6098 6099
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6100
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6101
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6102

6103 6104
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6105 6106 6107 6108
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6109
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6110
       related to the same batch of inputs.
6111

W
weixing02 已提交
6112
    Args:
M
minqiyang 已提交
6113
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6114 6115 6116 6117
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6118 6119
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6120
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6132
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6133
            it should be in leaf -> root order
M
minqiyang 已提交
6134 6135 6136
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6137
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6138
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6139
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6140
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6141
             of W and input will be sparse.
W
weixing02 已提交
6142 6143

    Returns:
J
JiabinYang 已提交
6144
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6145 6146 6147 6148 6149

    Examples:

        .. code-block:: python

6150
            import paddle.fluid as fluid
G
guosheng 已提交
6151 6152 6153
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6154 6155 6156 6157
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6158 6159
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6160
    dim = input.shape[1]
6161
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6162 6163 6164
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6165 6166 6167 6168 6169 6170 6171 6172 6173
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6174
    if (is_custom) and (path_code is None):
6175
        raise ValueError("path_code should not be None with custom tree")
6176
    elif (is_custom) and (path_table is None):
6177
        raise ValueError("path_table should not be None with custom tree")
6178
    elif (is_custom) and (num_classes is None):
6179
        raise ValueError("num_classes should not be None with custom tree")
6180 6181 6182
    else:
        pass

J
JiabinYang 已提交
6183
    weights = None
6184 6185 6186 6187
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6188
    if not is_custom:
J
JiabinYang 已提交
6189 6190 6191 6192 6193 6194 6195 6196
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6197
            shape=[num_classes, dim],
J
JiabinYang 已提交
6198 6199
            is_bias=False,
            dtype=input.dtype)
6200 6201 6202
    inputs = {
        "X": input,
        "W": weights,
6203
        "PathTable": path_table,
6204
        "PathCode": path_code,
6205 6206
        "Label": label
    }
W
weixing02 已提交
6207
    if helper.bias_attr:
6208
        if not is_custom:
J
JiabinYang 已提交
6209 6210
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6211
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6212 6213 6214 6215 6216 6217
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6218
                shape=[num_classes, 1],
J
JiabinYang 已提交
6219 6220 6221
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6222 6223
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6224
        inputs=inputs,
W
weixing02 已提交
6225
        outputs={"Out": out,
6226 6227 6228 6229 6230 6231 6232
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6233 6234 6235
    return out


Y
fix ci.  
ying 已提交
6236
def transpose(x, perm, name=None):
Y
ying 已提交
6237 6238 6239 6240 6241 6242 6243
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6244 6245 6246
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6247 6248 6249 6250 6251 6252 6253

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6254
            # use append_batch_size=False to avoid prepending extra
6255
            # batch size in shape
6256
            import paddle.fluid as fluid
6257
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6258
                            dtype='float32', append_batch_size=False)
6259
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6260 6261
    """

Y
fix ci.  
ying 已提交
6262
    if len(perm) != len(x.shape):
Y
ying 已提交
6263 6264
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6265
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6266 6267 6268 6269 6270 6271
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6272 6273

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6274 6275
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6276
    helper.append_op(
6277
        type='transpose2',
Y
fix ci.  
ying 已提交
6278
        inputs={'X': [x]},
6279 6280
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6281 6282
        attrs={'axis': perm})
    return out
6283 6284


6285 6286 6287 6288 6289 6290 6291
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6292
    """
6293 6294 6295 6296 6297 6298 6299
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6328 6329 6330 6331 6332 6333 6334 6335 6336
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6337 6338 6339
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6340 6341 6342 6343 6344
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6372 6373 6374
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6387
            output.dims = {8, 8}
6388

6389
            output.lod = [[4, 4]]
6390

T
Tink_Y 已提交
6391
    Examples:
6392 6393 6394

        .. code-block:: python

B
Bai Yifan 已提交
6395 6396 6397
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6398
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6399 6400
                input=data, stride=[1, 1], filter_size=[2, 2])

6401 6402

    """
L
lujun 已提交
6403
    assert not in_dygraph_mode(), (
6404
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6415
    inputs = {"X": input}
6416
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6417 6418 6419 6420 6421
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6422
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6423
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6424
    helper.append_op(
6425
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6426
    return out
6427 6428


Y
yuyang18 已提交
6429
@templatedoc()
6430
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6431 6432
    """
    ${comment}
6433 6434

    Args:
Y
yuyang18 已提交
6435
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6436 6437
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6438 6439 6440 6441 6442
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6443
        ${out_comment}.
6444 6445

    Examples:
Y
yuyang18 已提交
6446 6447 6448 6449
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6450 6451 6452 6453 6454 6455
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6456
    out = helper.create_variable_for_type_inference(dtype)
6457 6458 6459 6460 6461
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6462
    return helper.append_activation(out)
6463 6464


Y
yuyang18 已提交
6465
@templatedoc()
6466 6467
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6468 6469
    ${comment}

L
lujun 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6513 6514

    Args:
Y
yuyang18 已提交
6515 6516
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6517 6518

    Returns:
Y
yuyang18 已提交
6519
        ${out_comment}.
6520 6521
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6522 6523 6524 6525 6526

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6527
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6528 6529 6530 6531 6532 6533
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6534 6535


6536 6537 6538
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6539
                               ignore_index=kIgnoreIndex,
6540
                               numeric_stable_mode=True,
6541 6542
                               return_softmax=False,
                               axis=-1):
6543 6544
    """
    **Softmax With Cross Entropy Operator.**
6545

6546
    Cross entropy loss with softmax is used as the output layer extensively. This
6547 6548 6549
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6550

6551 6552 6553
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6554

6555 6556 6557 6558
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6559

6560
    The equation is as follows:
6561

6562
    1) Hard label (one-hot label, so every sample has exactly one class)
6563

6564 6565 6566 6567
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6568

6569 6570 6571
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6572

6573 6574 6575 6576
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6577 6578
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6579 6580

    .. math::
6581

H
haowang101779990 已提交
6582
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6583

H
haowang101779990 已提交
6584
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6585

H
haowang101779990 已提交
6586
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6587 6588 6589

    and then cross entropy loss is calculated by softmax and label.

6590
    Args:
6591 6592 6593 6594 6595 6596
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6597
        soft_label (bool): A flag to indicate whether to interpretate the given
6598
            labels as soft labels. Default False.
M
minqiyang 已提交
6599 6600
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6601 6602
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6603 6604
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6605 6606 6607 6608
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6609
                                    Note that the speed may be slower when use
6610
                                    stable algorithm. Default: True
6611
        return_softmax (bool): A flag indicating whether to return the softmax
6612
                               along with the cross entropy loss. Default: False
6613 6614 6615
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6616

6617
    Returns:
H
haowang101779990 已提交
6618 6619
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6620 6621 6622 6623
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6624 6625 6626 6627

    Examples:
        .. code-block:: python

6628 6629
            import paddle.fluid as fluid

6630 6631 6632
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6633 6634
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6635 6636
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6637 6638
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6639 6640 6641 6642 6643 6644
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6645 6646 6647
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6648 6649
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6650
        })
6651 6652 6653 6654

    if return_softmax:
        return loss, softmax

6655 6656 6657
    return loss


6658 6659 6660
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6661
                                       num_true=1,
6662
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6663 6664 6665
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6666
                                       seed=0):
X
xuezhong 已提交
6667 6668 6669 6670 6671
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6672
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6673 6674 6675 6676 6677 6678 6679 6680
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6681
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6682 6683 6684 6685 6686 6687 6688 6689
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6690
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6702
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6703 6704 6705 6706 6707
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6708
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6709
            logits.
X
xuezhong 已提交
6710 6711 6712 6713 6714
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6715 6716 6717
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6718 6719 6720 6721 6722 6723 6724
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6725 6726 6727
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6728
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6729
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6730
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6731
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6732 6733 6734 6735 6736 6737 6738 6739
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6740 6741
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6742 6743
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6744 6745 6746 6747 6748

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6749
            'Labels': label,
X
xuezhong 已提交
6750 6751
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6752 6753 6754 6755
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6756
            'SampledLabels': sampled_label,
6757 6758 6759
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6760 6761
        },
        attrs={
X
xuezhong 已提交
6762
            'use_customized_samples': use_customized_samples,
6763
            'uniq': True,
X
xuezhong 已提交
6764 6765 6766 6767
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6768 6769
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6770 6771 6772 6773 6774 6775
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6776 6777
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6778
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6779
                'Label': sampled_softlabel},
X
xuezhong 已提交
6780 6781 6782
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6783
            'soft_label': True,
X
xuezhong 已提交
6784 6785 6786
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6787
    return loss / num_true
X
xuezhong 已提交
6788 6789


6790 6791
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6792 6793
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6794
    For each instance, it computes the smooth L1 loss element by element first
6795
    and then sums all the losses. So the shape of ouput Variable is
6796
    [batch_size, 1].
6797

6798 6799
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6800
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6801
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6802
            L1 loss op with same shape as :attr:`x`.
6803
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6804 6805
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6806
            by this tensor element by element.
6807
        outside_weight (Variable|None): A tensor with rank at least 2. This
6808 6809
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6810
            element by element.
6811
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6812 6813
           scalar with default value 1.0.

6814
    Returns:
6815
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6816 6817 6818 6819

    Examples:
        .. code-block:: python

6820
            import paddle.fluid as fluid
6821
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6822 6823
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6824
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6825
            out = fluid.layers.smooth_l1(x=fc, y=label)
6826
    """
6827

6828
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6829 6830
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6841
        attrs={'sigma': sigma if sigma is not None else 1.0})
6842
    return loss
6843 6844


6845
def one_hot(input, depth, allow_out_of_range=False):
6846
    """
Y
Yibing Liu 已提交
6847
    This layer creates the one-hot representations for input indices.
6848 6849

    Args:
Y
Yibing Liu 已提交
6850 6851
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6852 6853 6854 6855
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6856 6857

    Returns:
Y
Yibing Liu 已提交
6858
        Variable: The one-hot representations of input.
6859 6860

    Examples:
C
caoying03 已提交
6861
        .. code-block:: python
6862

6863
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6864 6865
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6866 6867
    """
    helper = LayerHelper("one_hot", **locals())
6868

X
Xin Pan 已提交
6869
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6880
            depth.stop_gradient = True
6881 6882
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6883 6884
    helper.append_op(
        type="one_hot",
6885 6886
        inputs=inputs,
        attrs=attrs,
6887 6888
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6889
    return one_hot_out
Y
Yu Yang 已提交
6890 6891


Y
Yu Yang 已提交
6892
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6893
    """
Y
yi.wu 已提交
6894 6895 6896
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6897 6898 6899 6900 6901 6902

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6903 6904
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6905 6906 6907 6908

    Examples:
        .. code-block:: python

6909
           import paddle.fluid as fluid
Y
yi.wu 已提交
6910
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6911
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6912 6913
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6914 6915
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6916 6917 6918 6919 6920
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6921
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6922
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6923 6924
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6925
            outputs={'Out': [counter]},
M
minqiyang 已提交
6926 6927
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6928 6929 6930
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6931 6932


6933
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6934
    """
C
caoying03 已提交
6935 6936
    Gives a new shape to the input Tensor without changing its data.

6937 6938 6939 6940 6941
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6942

6943
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6944

6945 6946 6947 6948
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6949
    2. 0 means the actual dimension value is going to be copied from the
6950 6951 6952 6953
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6954 6955

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6956
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6957
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6958

6959
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6960 6961
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6962 6963
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6964
    dimensions.
C
caoying03 已提交
6965

6966
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6967 6968 6969 6970
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6971 6972

    Args:
6973
        x(variable): The input tensor.
C
caoying03 已提交
6974 6975
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6976 6977 6978 6979 6980
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6981 6982
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6983 6984 6985
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6986
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6987
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6988

6989
    Returns:
G
guosheng 已提交
6990 6991 6992 6993
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6994

X
Xin Pan 已提交
6995 6996 6997
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6998 6999
    Examples:
        .. code-block:: python
G
guosheng 已提交
7000

7001
            import paddle.fluid as fluid
7002
            data = fluid.layers.data(
7003
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
7004
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
7005
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
7006 7007 7008
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
7009
        raise ValueError("Input shape must be a python list or tuple.")
7010

X
Xin Pan 已提交
7011 7012 7013 7014 7015
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
7016

7017 7018
    # Validate the shape
    unk_dim_idx = -1
7019
    contain_var = False
7020
    for dim_idx, dim_size in enumerate(shape):
7021 7022 7023 7024
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

7037
    helper = LayerHelper("reshape2", **locals())
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
7060 7061
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7062
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7063
    helper.append_op(
7064
        type="reshape2",
X
Xin Pan 已提交
7065
        inputs=inputs,
7066
        attrs=attrs,
7067 7068
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7069

D
dzhwinter 已提交
7070
    return helper.append_activation(out)
7071

7072

7073
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7074
    """
M
minqiyang 已提交
7075 7076 7077
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7078
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7079

H
haowang101779990 已提交
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7101

Y
Yibing Liu 已提交
7102
    Args:
7103
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7104
        axes (list): List of integers, indicating the dimensions to be squeezed.
7105
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7106 7107 7108 7109 7110 7111 7112

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7113
            import paddle.fluid as fluid
7114
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7115
            x = layers.data(name='x', shape=[5, 1, 10])
7116
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7117
    """
L
lujun 已提交
7118
    assert not in_dygraph_mode(), (
L
lujun 已提交
7119
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7120
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7121 7122
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7123
    helper.append_op(
7124
        type="squeeze2",
7125
        inputs={"X": input},
Y
Yibing Liu 已提交
7126
        attrs={"axes": axes},
7127 7128
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7129

7130 7131 7132
    return out


7133
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7134
    """
M
minqiyang 已提交
7135 7136 7137
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7138

M
minqiyang 已提交
7139
    For example:
H
haowang101779990 已提交
7140 7141 7142

    .. code-block:: text

M
minqiyang 已提交
7143
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7144
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7145

Y
Yibing Liu 已提交
7146
    Args:
7147
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7148
        axes (list): List of integers, indicating the dimensions to be inserted.
7149
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7150 7151 7152 7153 7154 7155 7156

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7157 7158 7159
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7160 7161
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7162 7163
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7164
    helper.append_op(
7165
        type="unsqueeze2",
7166
        inputs={"X": input},
Y
Yibing Liu 已提交
7167
        attrs={"axes": axes},
7168 7169
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7170

7171 7172
    return out

7173

Y
yangyaming 已提交
7174
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7175
    """
Y
Yibing Liu 已提交
7176
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7177 7178 7179 7180
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7181
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7182 7183 7184 7185 7186 7187

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7188
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7189 7190 7191
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7192
            target_lod: [4, 2]
Y
yangyaming 已提交
7193 7194

            then we get a 1-level LoDTensor:
7195
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7196 7197 7198 7199 7200 7201
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7202
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7203 7204 7205 7206
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7207
                y.data = [[2, 4]]
Y
yangyaming 已提交
7208 7209 7210
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7211
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7212 7213 7214 7215 7216 7217
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7218
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7219 7220 7221 7222
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7223
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7224 7225 7226 7227
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7228
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7229 7230 7231 7232
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7233
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7234
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7235
                           from :attr:`y`.
Y
yangyaming 已提交
7236
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7237
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7238 7239

    Returns:
Y
Yibing Liu 已提交
7240
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7241 7242

    Raises:
Y
Yibing Liu 已提交
7243
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7244 7245 7246 7247

    Examples:
        .. code-block:: python

7248
            import paddle.fluid as fluid
7249 7250 7251
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7252 7253
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7254
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7292
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7293 7294 7295 7296 7297 7298

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7299

7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7310 7311 7312
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7313 7314
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7315 7316 7317 7318 7319 7320 7321 7322

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7323
    helper.append_op(
7324
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7325
    return out
D
dragonwarrior 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7337
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7366
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7367 7368
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7381 7382 7383
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7397 7398 7399 7400


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7401
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7402
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7403

G
guosheng 已提交
7404
    Specifically, the number of values padded before the contents of :attr:`x`
7405
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7406
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7407
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7430
                         The length of :attr:paddings must be
G
guosheng 已提交
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7441

G
guosheng 已提交
7442
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7443 7444
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7445 7446 7447 7448 7449
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7450
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7451 7452 7453 7454 7455 7456 7457
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7458 7459


C
chengduo 已提交
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7491 7492
		And
            pad_value = -1,
C
chengduo 已提交
7493

T
Tink_Y 已提交
7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7524 7525 7526
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7527 7528 7529 7530 7531
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7532
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7533 7534 7535 7536 7537 7538 7539 7540 7541
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7542 7543 7544 7545 7546 7547 7548
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7549 7550
    called label-smoothing regularization (LSR).

7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7574
                              be :math:`(1, class\_num)`.
7575 7576
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7577
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7578 7579 7580 7581 7582 7583 7584 7585 7586
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7587
            
7588
            import paddle.fluid as fluid
7589
            import paddle.fluid.layers as layers
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7600
    smooth_label = helper.create_variable_for_type_inference(dtype)
7601 7602 7603 7604 7605 7606 7607
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7608 7609


W
wopeizl 已提交
7610 7611 7612 7613 7614 7615 7616
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7617 7618 7619 7620 7621
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7662 7663


J
jerrywgz 已提交
7664 7665 7666 7667 7668 7669
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7670 7671
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7672 7673 7674 7675 7676
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7677 7678 7679 7680 7681
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7692
            import paddle.fluid as fluid
J
jerrywgz 已提交
7693 7694 7695 7696
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7697 7698 7699
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7700 7701 7702 7703 7704 7705
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7706
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7747 7748
        .. code-block:: python

S
SunGaofeng 已提交
7749 7750 7751
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7752
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7753
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7754 7755
    """
    label = one_hot(label, depth=input.shape[-1])
7756
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7757 7758 7759 7760 7761 7762
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7763 7764


7765 7766 7767 7768
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7769
                 resample='BILINEAR',
7770 7771
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7772
                 align_mode=1):
7773
    """
Q
qiaolongfei 已提交
7774
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7775

K
Kaipeng Deng 已提交
7776 7777 7778
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7779 7780

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7781

7782
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7783

K
Kaipeng Deng 已提交
7784 7785
        'TRILINEAR' : Trilinear interpolation

7786
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7787

7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7798 7799 7800 7801 7802
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7803
    Align_corners and align_mode are optinal parameters,the calculation method 
7804 7805 7806 7807
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7808
    .. code-block:: text
7809

T
Tink_Y 已提交
7810
        For scale:
7811
          
T
Tink_Y 已提交
7812
            if align_corners = True && out_size > 1 :
7813

T
Tink_Y 已提交
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7825

T
Tink_Y 已提交
7826 7827
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7828

T
Tink_Y 已提交
7829 7830
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7831

T
Tink_Y 已提交
7832 7833
          else:
              align_corners = True
7834

T
Tink_Y 已提交
7835 7836
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7837

T
Tink_Y 已提交
7838 7839
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7840

T
Tink_Y 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7851

T
Tink_Y 已提交
7852 7853 7854 7855
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7856

T
Tink_Y 已提交
7857 7858
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7859

K
Kaipeng Deng 已提交
7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
7882 7883 7884 7885 7886 7887
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
7888 7889 7890
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

7891 7892


7893
    Args:
7894
        input (Variable): The input tensor of image resize layer,
7895
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7896 7897 7898
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
7899
        out_shape(list|tuple|Variable|None): Output shape of image resize
K
Kaipeng Deng 已提交
7900 7901 7902 7903
                                    layer, the shape is (out_h, out_w) when
                                    input is a 4-D tensor and is
                                    (out_d, out_h, out_w) when input is a
                                    5-D tensor. Default: None
D
dengkaipeng 已提交
7904
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7905
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7906
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7907
             Default: None.
7908 7909
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
7910 7911
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
7912 7913 7914
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7915
                                :attr:`out_shape` and :attr:`scale` specifying
7916 7917 7918 7919 7920 7921 7922
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7923 7924
                                constructing stage.
                                Default: None
7925 7926 7927 7928
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7929
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7930 7931
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7932 7933

    Returns:
Q
update  
qiaolongfei 已提交
7934
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7935 7936
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
7937

7938 7939 7940
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
7941 7942 7943 7944
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7945
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7946 7947
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7948
        ValueError: scale should be greater than zero.
7949 7950
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7951

7952 7953 7954
    Examples:
        .. code-block:: python

7955
            import paddle.fluid as fluid
R
ruri 已提交
7956
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7957
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7958
    """
7959 7960
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7961
        'TRILINEAR': 'trilinear',
7962 7963
        'NEAREST': 'nearest',
    }
7964 7965
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7966 7967
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7968
    resample_type = resample_methods[resample]
7969

K
Kaipeng Deng 已提交
7970 7971 7972 7973 7974
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7975 7976 7977 7978 7979
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7980
    if out_shape is None and scale is None:
7981
        raise ValueError("One of out_shape and scale must not be None.")
7982
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7983
    dtype = helper.input_dtype()
7984 7985 7986 7987

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7988
    inputs = {"X": input}
D
dengkaipeng 已提交
7989
    attrs = {
K
Kaipeng Deng 已提交
7990
        "out_d": 0,
D
dengkaipeng 已提交
7991 7992
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7993 7994 7995 7996 7997
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7998
    if out_shape is not None:
7999 8000 8001 8002
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
8003
            inputs['OutSize'] = out_shape
8004 8005
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8006 8007
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
K
Kaipeng Deng 已提交
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_h'] = out_shape[0]
                attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_d'] = out_shape[0]
                attrs['out_h'] = out_shape[1]
                attrs['out_w'] = out_shape[2]
8023

8024
    else:
D
dengkaipeng 已提交
8025 8026
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
8027
        attrs['scale'] = float(scale)
8028

8029 8030 8031 8032 8033
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8034
    out = helper.create_variable_for_type_inference(dtype)
8035
    helper.append_op(
8036
        type='{}_interp'.format(resample_type),
8037
        inputs=inputs,
8038
        outputs={"Out": out},
D
dengkaipeng 已提交
8039
        attrs=attrs)
8040
    return out
F
stash  
fengjiayi 已提交
8041 8042


8043
@templatedoc(op_type="bilinear_interp")
8044 8045 8046 8047
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8048 8049
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
8050
                    align_mode=1):
8051
    """
8052 8053
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8054 8055
    in priority order.

8056 8057 8058 8059
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8060 8061
    again in the other direction.

8062
    For details of bilinear interpolation, please refer to Wikipedia:
8063
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8064

T
tink2123 已提交
8065
    Align_corners and align_mode are optinal parameters,the calculation 
8066 8067 8068 8069
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8070
    .. code-block:: text
8071

T
Tink_Y 已提交
8072
        For scale:
8073
          
T
Tink_Y 已提交
8074
            if align_corners = True && out_size > 1 :
8075

T
Tink_Y 已提交
8076 8077 8078 8079 8080
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
8081

T
Tink_Y 已提交
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8092 8093


T
Tink_Y 已提交
8094
          else:
T
tink2123 已提交
8095

T
Tink_Y 已提交
8096 8097
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8098

T
Tink_Y 已提交
8099 8100
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8101 8102 8103



Y
yuyang18 已提交
8104
    Args:
K
Kaipeng Deng 已提交
8105
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8106

D
dengkaipeng 已提交
8107 8108 8109
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8110

Y
yuyang18 已提交
8111
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8112
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8113
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8114
             Default: None.
Y
yuyang18 已提交
8115 8116

        name(str|None): The output variable name.
8117 8118 8119
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8120
                                :attr:`out_shape` and :attr:`scale` specifying
8121 8122 8123 8124 8125 8126 8127
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8128 8129
                                constructing stage.
                                Default: None
8130 8131
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8132 8133

    Returns:
K
Kaipeng Deng 已提交
8134
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8135 8136 8137 8138

    Examples:
        .. code-block:: python

8139
            import paddle.fluid as fluid
R
ruri 已提交
8140
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8141
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
8142 8143
    """

8144 8145
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8146 8147


K
Kaipeng Deng 已提交
8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
        input(${x_type}): input should be a 4-D tensor.

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_d, out_h, out_w).
                                    Default: None

        scale(float|None): The multiplier for the input depth, height or width.
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
                                constructing stage.
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
            out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8254
@templatedoc(op_type="nearest_interp")
8255 8256 8257 8258
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8259 8260
                   actual_shape=None,
                   align_corners=True):
8261
    """
8262
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8263 8264
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8265 8266
    out_shape and scale in priority order.

8267 8268
    Example:

T
Tink_Y 已提交
8269 8270 8271 8272 8273
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8274

T
Tink_Y 已提交
8275 8276 8277 8278 8279 8280 8281 8282
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8283
          
T
Tink_Y 已提交
8284 8285
          if:
              align_corners = False
8286

T
Tink_Y 已提交
8287 8288
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8289

T
Tink_Y 已提交
8290 8291
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8292

T
Tink_Y 已提交
8293 8294
          else:
              align_corners = True
8295

T
Tink_Y 已提交
8296 8297
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8298

T
Tink_Y 已提交
8299 8300
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8301 8302


8303
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8304
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8305 8306

    Args:
K
Kaipeng Deng 已提交
8307
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8308

D
dengkaipeng 已提交
8309 8310 8311
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8312

Y
yuyang18 已提交
8313
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8314
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8315
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8316
             Default: None.
Y
yuyang18 已提交
8317 8318

        name(str|None): The output variable name.
8319 8320 8321
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8322
                                :attr:`out_shape` and :attr:`scale` specifying
8323 8324 8325 8326 8327 8328 8329
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8330 8331
                                constructing stage.
                                Default: None
8332
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8333 8334

    Returns:
K
Kaipeng Deng 已提交
8335
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8336 8337 8338 8339

    Examples:
        .. code-block:: python

8340
            import paddle.fluid as fluid
R
ruri 已提交
8341
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8342
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8343 8344
    """

8345 8346
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8347 8348 8349 8350


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8351 8352 8353
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8354 8355 8356 8357 8358 8359 8360
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8361
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8362

8363
    Returns:
Q
update  
qiaolongfei 已提交
8364
        Variable: The output is a 4-D tensor of the shape
8365
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8366 8367 8368 8369

    Examples:
        .. code-block:: python

8370
            import paddle.fluid as fluid
R
ruri 已提交
8371 8372
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8383 8384 8385
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8386 8387 8388
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8389
def gather(input, index, overwrite=True):
W
whs 已提交
8390
    """
Q
qiaolongfei 已提交
8391 8392
    **Gather Layer**

8393
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8394 8395 8396 8397
    of X indexed by `index` and concatenate them together.

    .. math::

8398
        Out = X[Index]
W
whs 已提交
8399 8400 8401 8402 8403 8404 8405


    .. code-block:: text


                Given:

8406 8407
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8408 8409 8410 8411 8412 8413 8414 8415 8416 8417
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8418
        input (Variable): The source input with rank>=1.
W
whs 已提交
8419
        index (Variable): The index input with rank=1.
8420 8421 8422 8423 8424 8425
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8426 8427 8428 8429 8430

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8431

W
whs 已提交
8432 8433
        .. code-block:: python

8434
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8435 8436
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8437 8438 8439 8440
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8441
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8442 8443 8444 8445
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8446 8447
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8448 8449 8450
    return out


8451
def scatter(input, index, updates, name=None, overwrite=True):
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8469 8470 8471 8472
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8473 8474 8475 8476 8477 8478 8479 8480

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8481 8482 8483 8484 8485
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8486

8487
            output = fluid.layers.scatter(input, index, updates)
8488 8489 8490
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8491
    out = helper.create_variable_for_type_inference(dtype)
8492 8493 8494 8495 8496
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8497
        attrs={'overwrite': overwrite},
8498 8499 8500 8501
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8502 8503 8504 8505 8506 8507 8508 8509 8510
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8511

Q
Qingsheng Li 已提交
8512
    Given the following input:
H
haowang101779990 已提交
8513

Q
Qingsheng Li 已提交
8514
    .. code-block:: text
H
haowang101779990 已提交
8515

Q
Qingsheng Li 已提交
8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8528

Q
Qingsheng Li 已提交
8529
    .. code-block:: text
H
haowang101779990 已提交
8530

Q
Qingsheng Li 已提交
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8546
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8547 8548 8549 8550

    Examples:

        .. code-block:: python
8551
	
8552
            import paddle.fluid as fluid
8553
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8554

8555 8556 8557
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8558 8559 8560
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8561
    assert not in_dygraph_mode(), (
8562
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8563 8564
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8565
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8566 8567 8568 8569 8570 8571 8572 8573 8574
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8588

8589
    Examples:
8590
        >>> import paddle.fluid as fluid
8591 8592
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8593
    """
F
stash  
fengjiayi 已提交
8594
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8595
    dtype = x.dtype
X
Xin Pan 已提交
8596
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8597
    if seed is None:
8598
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8599
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8600
    if isinstance(seed, int):
F
fengjiayi 已提交
8601 8602 8603 8604 8605
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8606 8607 8608 8609
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8610
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8611 8612
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8613 8614
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8615
    return out
W
whs 已提交
8616 8617


8618
def log(x, name=None):
W
wanghaoshuang 已提交
8619 8620 8621 8622 8623
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8624
        Out = \\ln(x)
W
wanghaoshuang 已提交
8625 8626

    Args:
8627
        x (Variable): Input tensor.
8628 8629
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8630 8631 8632 8633 8634 8635 8636 8637

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8638
            import paddle.fluid as fluid
8639
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8640
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8641 8642
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8643
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8644
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8645
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8646 8647 8648
    return out


8649
def relu(x, name=None):
W
wanghaoshuang 已提交
8650 8651
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8652
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8653 8654 8655 8656
    the tensor elementwise.

    .. math::

8657
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8658 8659

    Args:
8660
        x (Variable): The input tensor.
8661 8662
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8663 8664 8665 8666 8667 8668 8669 8670

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8671
            import paddle.fluid as fluid
8672
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8673
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8674 8675
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8676
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8677
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8678 8679
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8680
    return out
8681 8682


C
chengduo 已提交
8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8707 8708 8709 8710 8711 8712
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8728 8729 8730
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8731 8732 8733 8734
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8735
    .. math::
8736

H
haowang101779990 已提交
8737
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8738

8739
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8740 8741 8742 8743 8744
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8745
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8746
                           Its shape should be the same as input.
8747
        num_classes (int): The possible number of labels.
W
whs 已提交
8748 8749

    Returns:
M
minqiyang 已提交
8750 8751
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8752
                     Three variables:
M
minqiyang 已提交
8753

H
haowang101779990 已提交
8754 8755 8756
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8757 8758 8759 8760

    Examples:

        .. code-block:: python
8761

B
Bai Yifan 已提交
8762
            import paddle.fluid as fluid
8763 8764 8765 8766
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
8767
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
8768
                                                          num_classes)
W
whs 已提交
8769 8770 8771
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8772 8773 8774
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8775 8776
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8777 8778
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8779
        outputs={
W
whs 已提交
8780 8781 8782
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8783 8784 8785
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8828
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8829
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8830
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8848
            import paddle.fluid as fluid
8849 8850 8851 8852 8853 8854
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8855
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8856 8857 8858 8859 8860

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8861
            isinstance(shape, Variable)):
8862 8863 8864 8865 8866
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8867
    out = helper.create_variable_for_type_inference(x.dtype)
8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8885 8886


W
whs 已提交
8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8904

W
whs 已提交
8905
              out_shape = [2, 3, 5, 5]
8906

W
whs 已提交
8907
          Step 1:
8908

W
whs 已提交
8909 8910 8911
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8912

W
whs 已提交
8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8958
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8959
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8972

S
SunGaofeng 已提交
8973
            import paddle.fluid as fluid
W
whs 已提交
8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8985
            isinstance(out_shape, Variable)):
W
whs 已提交
8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9007 9008
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9009

9010 9011
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9012
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9013 9014 9015
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9016

9017 9018
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9019

H
haowang101779990 已提交
9020 9021
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9022 9023
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9024

H
haowang101779990 已提交
9025 9026 9027 9028 9029 9030 9031 9032
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9033 9034 9035

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9053
            import paddle.fluid as fluid
9054 9055 9056
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9071
    out = helper.create_variable_for_type_inference("float32")
9072 9073 9074 9075 9076 9077 9078 9079

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9080 9081


M
minqiyang 已提交
9082 9083
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9084
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9085
    which compares left score and right score passed in.
M
minqiyang 已提交
9086
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9087 9088 9089

    .. math::

H
haowang101779990 已提交
9090
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9091 9092

    Args:
M
minqiyang 已提交
9093
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9094 9095
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9096
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9097 9098
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9099

M
minqiyang 已提交
9100
    Returns:
M
minqiyang 已提交
9101
       Variable: The ranking loss.
H
haowang101779990 已提交
9102

M
minqiyang 已提交
9103
    Raises:
M
minqiyang 已提交
9104
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9105

M
minqiyang 已提交
9106
    Examples:
H
haowang101779990 已提交
9107

M
minqiyang 已提交
9108
        .. code-block:: python
H
haowang101779990 已提交
9109

9110
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9111 9112 9113
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9114 9115
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9116
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9117 9118 9119 9120 9121 9122
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9123 9124
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9148
        .. code-block:: text
W
whs 已提交
9149

T
Tink_Y 已提交
9150
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9151

T
Tink_Y 已提交
9152 9153
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9154

T
Tink_Y 已提交
9155
	      Case 0:
M
minqiyang 已提交
9156

T
Tink_Y 已提交
9157 9158 9159
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9160

T
Tink_Y 已提交
9161 9162 9163
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9164

T
Tink_Y 已提交
9165
	      Case 1:
M
minqiyang 已提交
9166

T
Tink_Y 已提交
9167 9168
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9169

T
Tink_Y 已提交
9170 9171 9172
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9173

T
Tink_Y 已提交
9174
	      Case 2:
M
minqiyang 已提交
9175

T
Tink_Y 已提交
9176 9177
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9178

T
Tink_Y 已提交
9179 9180 9181
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9182 9183


W
whs 已提交
9184 9185
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9186
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9204 9205 9206 9207 9208
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9209 9210 9211 9212
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9213
    out = helper.create_variable_for_type_inference(dtype)
9214 9215 9216 9217 9218 9219 9220 9221 9222
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9223
    helper.append_op(
9224
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9225 9226 9227 9228

    return out


9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9241 9242 9243 9244 9245

    Examples:

        .. code-block:: python

9246
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9247 9248
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9249 9250
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9251
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9272 9273 9274 9275 9276

    Examples:

        .. code-block:: python

9277
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9278 9279
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9280 9281
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9282
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9303 9304 9305 9306 9307

    Examples:

        .. code-block:: python

9308
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9309 9310
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9311 9312
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9313
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9335 9336 9337 9338 9339

    Examples:

        .. code-block:: python

9340
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9341
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9342
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9343 9344
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9345
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9368 9369 9370 9371 9372

    Examples:

        .. code-block:: python

9373
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9374 9375
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9376 9377
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9378
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9400 9401 9402 9403 9404

    Examples:

        .. code-block:: python

9405
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9406 9407
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9408 9409
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9410
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9411 9412 9413 9414 9415 9416 9417 9418
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9419 9420 9421 9422
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9423 9424
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9425

J
jerrywgz 已提交
9426 9427 9428 9429 9430 9431 9432 9433
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9434 9435
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9436
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9437
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9438
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9439
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9440
          will be named automatically.
J
jerrywgz 已提交
9441 9442 9443 9444 9445 9446 9447 9448

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9449 9450 9451
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9452
            mode = 'channel'
J
jerrywgz 已提交
9453 9454 9455
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9467
        attr=helper.param_attr,
J
jerrywgz 已提交
9468 9469 9470 9471
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9472
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9473 9474 9475 9476 9477 9478 9479 9480 9481
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9482 9483 9484 9485 9486 9487 9488 9489 9490 9491
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9492
    Returns:
9493
        output(${out_type}): ${out_comment}
9494 9495 9496

    Examples:

9497
    .. code-block:: python
9498

9499
            import paddle.fluid as fluid
H
haowang101779990 已提交
9500 9501
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9502 9503
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9504
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9523
    Returns:
9524
        output(${out_type}): ${out_comment}
9525 9526 9527 9528 9529

    Examples:

        .. code-block:: python

9530
            import paddle.fluid as fluid
H
haowang101779990 已提交
9531 9532
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9533 9534
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9535
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9553
    Returns:
9554
        output(${out_type}): ${out_comment}
9555 9556 9557

    Examples:

9558 9559 9560 9561 9562
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9563
            y = fluid.layers.soft_relu(x, threshold=20.0)
9564 9565
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9566
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9567 9568 9569 9570 9571 9572 9573 9574
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9575 9576 9577 9578
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9579

H
haowang101779990 已提交
9580
    For Example:
M
minqiyang 已提交
9581

H
haowang101779990 已提交
9582
    .. code-block:: text
9583

H
haowang101779990 已提交
9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9605 9606 9607

    Args:
        x (Variable): A tensor of rank >= axis.
9608 9609
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9610 9611 9612 9613 9614 9615 9616 9617
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9618 9619 9620
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9621 9622 9623 9624
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9625
        ValueError: If axis is not in range [0, rank(x)].
9626 9627 9628 9629 9630

    Examples:

        .. code-block:: python

9631
            import paddle.fluid as fluid
9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9643 9644
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9645
    helper.append_op(
9646
        type='flatten2',
9647
        inputs={"X": x},
9648 9649
        outputs={'Out': out,
                 'XShape': x_shape},
9650 9651
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9652 9653


C
chenweihang 已提交
9654
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9655
    """
C
chenweihang 已提交
9656
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9657
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9658 9659
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9660

H
haowang101779990 已提交
9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9678 9679

    Args:
C
chenweihang 已提交
9680 9681 9682
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9683 9684 9685 9686 9687 9688 9689

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9690 9691 9692
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9693 9694
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9695
    assert not in_dygraph_mode(), (
9696
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9697
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9698 9699
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9700 9701 9702 9703 9704 9705
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9706
    return out
9707

9708

S
sneaxiy 已提交
9709 9710 9711 9712 9713 9714 9715 9716 9717
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9718

S
sneaxiy 已提交
9719
    .. math::
9720

S
sneaxiy 已提交
9721 9722 9723
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9724
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9725 9726 9727 9728
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9729 9730 9731
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9732 9733
    Returns:
        Variable: The output sequence mask.
9734

9735 9736 9737
    Examples:
        .. code-block:: python
	
9738
            import paddle.fluid as fluid
9739 9740 9741 9742 9743
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9744
    """
Q
qingqing01 已提交
9745
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9746
    if name is None:
X
Xin Pan 已提交
9747
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9748
    else:
X
Xin Pan 已提交
9749
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9750

9751 9752 9753 9754 9755 9756 9757 9758
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9759
    helper.append_op(
9760 9761 9762
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9763
    return out
S
sneaxiy 已提交
9764 9765


X
Xin Pan 已提交
9766
def stack(x, axis=0):
S
sneaxiy 已提交
9767 9768 9769 9770
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9771 9772 9773 9774 9775 9776 9777

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9778
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9779
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9780

C
chengduozh 已提交
9781 9782
    For Example:

C
chengduozh 已提交
9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9821
    Args:
9822
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9823
        axis (int|None): The axis along which all inputs are stacked.
9824

S
sneaxiy 已提交
9825 9826
    Returns:
        Variable: The stacked variable.
9827

9828 9829 9830
    Examples:
        .. code-block:: python

9831
            import paddle.fluid as fluid
9832
            import paddle.fluid.layers as layers
9833 9834
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9835 9836
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9837 9838
    """

X
Xin Pan 已提交
9839 9840 9841 9842 9843 9844
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9845
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9846
    helper.append_op(
S
sneaxiy 已提交
9847 9848
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9849

X
Xin Pan 已提交
9850
    return out
D
dzhwinter 已提交
9851 9852


J
Jiawei Wang 已提交
9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
9923 9924 9925 9926 9927
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9928

D
dzhwinter 已提交
9929 9930 9931
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9932
    raised.
D
dzhwinter 已提交
9933 9934

    Args:
M
minqiyang 已提交
9935
        x (Variable): Input variable.
D
dzhwinter 已提交
9936 9937
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9938

D
dzhwinter 已提交
9939 9940
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9941

9942 9943 9944 9945 9946 9947
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9948 9949 9950 9951 9952 9953 9954 9955 9956 9957
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9958
    for _ in range(num):
X
Xin Pan 已提交
9959
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9960 9961 9962 9963 9964 9965 9966 9967

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9980

W
whs 已提交
9981 9982 9983 9984
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9985

W
whs 已提交
9986
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9987

W
whs 已提交
9988
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9989

W
whs 已提交
9990 9991 9992 9993
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9994

W
whs 已提交
9995 9996 9997 9998 9999 10000 10001 10002 10003 10004
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
10005 10006 10007
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
10008 10009 10010 10011
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
10012
    out = helper.create_variable_for_type_inference(dtype)
10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
10030
                    ele.stop_gradient = True
10031 10032 10033
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
10034 10035
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
10036 10037 10038 10039 10040 10041 10042 10043 10044
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
10045
    helper.append_op(
10046
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10047
    return out
S
sneaxiy 已提交
10048 10049


G
fix  
gongweibao 已提交
10050 10051 10052
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10053
@templatedoc()
G
fix  
gongweibao 已提交
10054 10055 10056 10057 10058 10059 10060 10061 10062
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10063
    ${comment}
G
fix  
gongweibao 已提交
10064 10065

    Args:
G
gongweibao 已提交
10066 10067 10068
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10069
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10070 10071 10072
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10073 10074
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10075
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10076

10077 10078 10079
    Examples:
        .. code-block:: python

10080
            import paddle.fluid as fluid
10081 10082
            import paddle.fluid.layers as layers 

10083 10084
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10085 10086 10087
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10088
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10105 10106


G
gongweibao 已提交
10107
@templatedoc()
X
Xin Pan 已提交
10108
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10109
    """
G
gongweibao 已提交
10110
    ${comment}
G
fix  
gongweibao 已提交
10111 10112

    Args:
G
gongweibao 已提交
10113 10114 10115 10116
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10117 10118 10119
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10120
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10121

10122 10123 10124
    Examples:
        .. code-block:: python

10125
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10126
            import paddle.fluid.layers as layers
10127
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10128 10129 10130
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10131
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10132 10133 10134 10135 10136 10137 10138 10139 10140 10141
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10142
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10143 10144 10145 10146 10147
        })

    return out


G
gongweibao 已提交
10148
@templatedoc()
G
fix  
gongweibao 已提交
10149
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10150
    """
G
gongweibao 已提交
10151
    ${comment}
G
fix  
gongweibao 已提交
10152 10153

    Args:
G
gongweibao 已提交
10154 10155 10156 10157
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10158
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10159 10160

    Returns:
G
gongweibao 已提交
10161
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10162

10163 10164 10165
    Examples:
        .. code-block:: python

10166
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10167
            x = fluid.layers.data(
10168 10169 10170 10171 10172
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10173
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10174 10175 10176
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10177
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10189
@templatedoc()
G
fix  
gongweibao 已提交
10190 10191 10192 10193 10194 10195 10196 10197 10198
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10199
    ${comment}
G
fix  
gongweibao 已提交
10200 10201

    Args:
G
gongweibao 已提交
10202 10203
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10204
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10205 10206 10207 10208
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10209
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10210 10211

    Returns:
G
gongweibao 已提交
10212
        out (Variable): ${out_comment}
10213 10214 10215 10216

    Examples:
        .. code-block:: python

10217
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10218
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10219

Y
Yibing Liu 已提交
10220
            out = fluid.layers.gaussian_random_batch_size_like(
10221
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10222 10223 10224
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10225
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10244
@templatedoc()
X
Xin Pan 已提交
10245
def sum(x):
G
fix  
gongweibao 已提交
10246
    """
G
gongweibao 已提交
10247
    ${comment}
G
fix  
gongweibao 已提交
10248 10249

    Args:
G
gongweibao 已提交
10250
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10251 10252

    Returns:
G
gongweibao 已提交
10253
        out (Variable): ${out_comment}
10254 10255 10256 10257

    Examples:
        .. code-block:: python

10258
            import paddle.fluid as fluid
10259 10260 10261 10262
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10263 10264 10265
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10266 10267
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10268 10269 10270 10271
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10272
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10273 10274 10275 10276

    return out


G
gongweibao 已提交
10277
@templatedoc()
G
fix  
gongweibao 已提交
10278 10279
def slice(input, axes, starts, ends):
    """
10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10295

10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
10313
    Args:
G
gongweibao 已提交
10314 10315 10316 10317
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
10318 10319

    Returns:
G
gongweibao 已提交
10320
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10321

10322 10323 10324
    Examples:
        .. code-block:: python

10325 10326
            import paddle.fluid as fluid
 
10327 10328 10329 10330
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

10331
            input = fluid.layers.data(
10332 10333
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10334
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
10335 10336 10337
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
10338 10339
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10353 10354
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10355
    Get the shape of the input.
G
fix  
gongweibao 已提交
10356 10357

    Args:
C
chengduozh 已提交
10358
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10359 10360

    Returns:
C
fix doc  
chengduozh 已提交
10361
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10362

10363 10364 10365
    Examples:
        .. code-block:: python

10366 10367 10368
            import paddle.fluid as fluid

            input = fluid.layers.data(
10369
                name="input", shape=[3, 100, 100], dtype="float32")
10370
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10371 10372 10373
    """

    helper = LayerHelper('shape', **locals())
10374
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10375
    helper.append_op(
G
fix  
gongweibao 已提交
10376
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10377 10378

    return out
G
merge  
gongweibao 已提交
10379 10380


Z
zhoukunsheng 已提交
10381 10382 10383 10384
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10385
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10386 10387 10388 10389 10390 10391 10392 10393 10394 10395

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10396 10397 10398 10399
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10400 10401 10402 10403 10404 10405 10406 10407
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10437 10438 10439 10440
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10441
    if in_dygraph_mode():
X
Xin Pan 已提交
10442 10443 10444
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10445 10446 10447 10448
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10449 10450
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10451
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10452 10453 10454
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10455

S
sneaxiy 已提交
10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10467
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10468 10469 10470 10471 10472 10473 10474 10475
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10476
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10477
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10478 10479 10480

    Returns:
        out(${out_type}): ${out_comment}
10481 10482 10483 10484 10485 10486 10487 10488

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10489 10490 10491
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10492
    if name is None:
X
Xin Pan 已提交
10493
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10494 10495 10496
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10497 10498 10499 10500 10501 10502 10503 10504 10505 10506

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10507
    return helper.append_activation(out)
S
sneaxiy 已提交
10508 10509


X
Xin Pan 已提交
10510
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10511 10512 10513
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10514
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10515 10516 10517
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10518
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10519 10520 10521
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10522
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10523 10524 10525
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10526
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10527 10528 10529
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10530
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10531 10532 10533
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10534
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10535 10536 10537
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10538 10539 10540 10541 10542 10543 10544 10545
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10546
for func in [
10547 10548 10549 10550 10551 10552 10553 10554 10555
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10556 10557 10558 10559 10560
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10561 10562
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10563
        ])
10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10601 10602


10603
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10604 10605
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10606 10607
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10608 10609 10610

    if out is None:
        if name is None:
X
Xin Pan 已提交
10611
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10627
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10639 10640 10641 10642

    Examples:
        .. code-block:: python

10643
            import paddle.fluid as fluid
10644
            left = fluid.layers.data(
石晓伟 已提交
10645
                name='left', shape=[1], dtype='bool')
10646
            right = fluid.layers.data(
石晓伟 已提交
10647
                name='right', shape=[1], dtype='bool')
10648
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10649 10650 10651 10652 10653 10654 10655
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10656
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10668 10669 10670 10671

    Examples:
        .. code-block:: python

10672
            import paddle.fluid as fluid
10673
            left = fluid.layers.data(
石晓伟 已提交
10674
                name='left', shape=[1], dtype='bool')
10675
            right = fluid.layers.data(
石晓伟 已提交
10676
                name='right', shape=[1], dtype='bool')
10677
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10678 10679 10680 10681 10682 10683 10684
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10685
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10697 10698 10699 10700

    Examples:
        .. code-block:: python

10701
            import paddle.fluid as fluid
10702
            left = fluid.layers.data(
石晓伟 已提交
10703
                name='left', shape=[1], dtype='bool')
10704
            right = fluid.layers.data(
石晓伟 已提交
10705
                name='right', shape=[1], dtype='bool')
10706
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10707 10708 10709 10710 10711 10712 10713
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10714
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10715 10716 10717 10718 10719 10720 10721 10722 10723 10724
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10725 10726 10727 10728

    Examples:
        .. code-block:: python

10729
            import paddle.fluid as fluid
10730
            left = fluid.layers.data(
石晓伟 已提交
10731
                name='left', shape=[1], dtype='bool')
10732
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10733 10734 10735 10736
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10752 10753 10754 10755

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10756
            import paddle.fluid as fluid
10757 10758 10759
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10760 10761 10762 10763 10764
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10765 10766
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10767 10768 10769

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10793 10794 10795 10796

    Examples:
        .. code-block:: python

10797
            import paddle.fluid as fluid
10798 10799 10800
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10801 10802 10803 10804 10805
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10806 10807
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10808 10809 10810

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10811 10812 10813 10814 10815 10816 10817 10818

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10832 10833 10834 10835

    Examples:
        .. code-block:: python

10836
            import paddle.fluid as fluid
10837 10838 10839
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10840 10841 10842 10843 10844
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10845
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10846 10847 10848 10849 10850 10851 10852 10853 10854 10855
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10867 10868 10869 10870

    Examples:
        .. code-block:: python

10871
            import paddle.fluid as fluid
10872 10873 10874 10875 10876
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10915 10916 10917 10918 10919
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10920
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10921 10922 10923 10924 10925 10926 10927 10928 10929
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10930 10931
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10932 10933 10934 10935 10936 10937
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10938 10939 10940
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10941 10942
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10943 10944 10945 10946 10947 10948
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10949
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10950
        name(basestring|None): Name of the output.
10951 10952
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10953 10954 10955

    Returns:
        out(${out_type}): ${out_comment}
10956 10957 10958 10959

    Examples:
        .. code-block:: python

10960
            import paddle.fluid as fluid
10961 10962 10963 10964 10965 10966 10967 10968 10969 10970
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10971 10972 10973 10974 10975
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10976
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10977 10978 10979 10980 10981 10982 10983 10984
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10985 10986
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
11003 11004 11005 11006

    Examples:
        .. code-block:: python

11007
            import paddle.fluid as fluid
J
jerrywgz 已提交
11008 11009 11010 11011 11012
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11013 11014 11015 11016
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
11017
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11018 11019 11020 11021 11022 11023 11024 11025 11026 11027
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
11028 11029


J
JiabinYang 已提交
11030
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11031
    """
J
JiabinYang 已提交
11032
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11033 11034 11035

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
11036
    The attr blocksize indicates the input block size.
11037 11038

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
11039
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
11040 11041

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
11042
    (but keeping all data)
J
JiabinYang 已提交
11043

J
JiabinYang 已提交
11044
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
11045
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
11046 11047 11048 11049 11050
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
11051
    Args:
J
JiabinYang 已提交
11052
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
11053
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
11054 11055

    Returns:
J
JiabinYang 已提交
11056
        Variable: The output LoDtensor.
J
JiabinYang 已提交
11057 11058

    Raises:
J
JiabinYang 已提交
11059
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
11060 11061 11062

    Examples:
        .. code-block:: python
11063 11064 11065
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11066 11067

            data = fluid.layers.data(
11068
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
11069
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11070
                x=data, blocksize=2)
11071

11072
            exe = fluid.Executor(fluid.CPUPlace())
11073 11074 11075 11076
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
11077

J
JiabinYang 已提交
11078 11079
    """

J
JiabinYang 已提交
11080
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11081

J
JiabinYang 已提交
11082 11083
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11084 11085

    if name is None:
J
JiabinYang 已提交
11086 11087
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11088 11089 11090 11091 11092
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11093
        type="space_to_depth",
J
JiabinYang 已提交
11094
        inputs={"X": x},
J
JiabinYang 已提交
11095
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11096
        outputs={"Out": out})
J
JiabinYang 已提交
11097 11098
    return out

J
JiabinYang 已提交
11099

S
sneaxiy 已提交
11100 11101
@templatedoc()
def sequence_reverse(x, name=None):
11102
    """
S
sneaxiy 已提交
11103 11104 11105 11106 11107 11108 11109 11110
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
11111 11112 11113 11114 11115 11116 11117

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
11118
    """
L
lujun 已提交
11119
    assert not in_dygraph_mode(), (
11120
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
11121 11122
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
11123
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11124 11125 11126 11127 11128 11129 11130 11131 11132 11133
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
11134 11135


11136 11137 11138 11139 11140 11141
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11142 11143 11144 11145 11146
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11147

11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
11160
        act (str, default None): Activation to be applied to the output of this layer.
11161 11162 11163

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

11178 11179 11180 11181
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11182
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11194
    return helper.append_activation(out)
11195 11196


B
barrierye 已提交
11197
def similarity_focus(input, axis, indexes, name=None):
11198
    """
B
barrierye 已提交
11199
    SimilarityFocus Operator
B
barrierye 已提交
11200 11201

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11202

11203 11204 11205
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11206
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11207 11208 11209 11210 11211 11212 11213
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11214
       each index.
B
barrierye 已提交
11215 11216 11217 11218
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11268
    Args:
11269
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
11270
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
11271
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11272
            1, 2 or 3.
B
barrierye 已提交
11273
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11274 11275

    Returns:
H
haowang101779990 已提交
11276 11277
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11278

B
barrierye 已提交
11279 11280
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11281

11282
            import paddle.fluid as fluid
B
barrierye 已提交
11283
            data = fluid.layers.data(
Y
Yibing Liu 已提交
11284 11285
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11298 11299 11300 11301 11302
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11303 11304 11305 11306 11307 11308 11309
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11310 11311


M
minqiyang 已提交
11312 11313
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
11314 11315
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
11316 11317
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11318 11319 11320 11321 11322 11323 11324 11325

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
11326
        input.data = 
11327
            [[1, 2],
11328
             [3, 4]]
M
minqiyang 已提交
11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11342 11343
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11344 11345 11346 11347
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11348
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11349 11350
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11351
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11352
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11353 11354

    Returns:
11355
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11356 11357 11358

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11359

11360 11361
            import paddle.fluid as fluid

11362 11363 11364 11365
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11366 11367


11368 11369 11370 11371
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11372 11373
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11374 11375
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11376 11377 11378 11379 11380 11381 11382
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11383 11384


D
dengkaipeng 已提交
11385
@templatedoc()
11386 11387
def grid_sampler(x, grid, name=None):
    """
11388
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11389
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11390 11391 11392 11393
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11394
    interpolation value of 4 nearest corner points.
11395

H
haowang101779990 已提交
11396
    .. code-block:: text
11397

H
haowang101779990 已提交
11398 11399
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11400

H
haowang101779990 已提交
11401 11402
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11403

H
haowang101779990 已提交
11404 11405 11406
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11407

H
haowang101779990 已提交
11408 11409 11410 11411 11412 11413 11414 11415 11416
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11417

H
haowang101779990 已提交
11418 11419 11420 11421
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11422

H
haowang101779990 已提交
11423 11424 11425 11426
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11427

H
haowang101779990 已提交
11428 11429 11430 11431
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11432

H
haowang101779990 已提交
11433 11434
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11435 11436

    Args:
11437 11438 11439
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11440 11441

    Returns:
H
haowang101779990 已提交
11442
        Variable: Output of shape [N, C, H, W] data samples input X
11443 11444
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11445 11446 11447 11448
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11449 11450 11451 11452 11453
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11454
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11455

D
dengkaipeng 已提交
11456 11457 11458 11459 11460 11461 11462 11463 11464
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11465
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11466 11467
    ipts = {'X': x, 'Grid': grid}

11468
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11469 11470 11471
    return out


G
gmcather 已提交
11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11499
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11500 11501
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11540
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11541 11542 11543 11544 11545 11546 11547
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11548 11549
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11550

11551 11552 11553 11554 11555
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11556
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11557

H
heqiaozhi 已提交
11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11571 11572 11573 11574
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11575
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11576 11577
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11578
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11579 11580

    .. math::
H
haowang101779990 已提交
11581 11582 11583
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11584 11585

    Where:
H
haowang101779990 已提交
11586 11587
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11601 11602 11603 11604 11605 11606 11607 11608 11609
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11610

G
gmcather 已提交
11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11627 11628 11629 11630 11631 11632 11633 11634 11635 11636


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11637
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11638

Q
Qiao Longfei 已提交
11639
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11640 11641 11642
    For example:

    .. math::
H
haowang101779990 已提交
11643
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11644

Q
Qiao Longfei 已提交
11645
    In this formula:
11646 11647
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11648
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11649
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11650 11651 11652
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11653 11654
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11655 11656 11657
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11658
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11659
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11660
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11661 11662 11663 11664
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11665
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11666 11667 11668 11669

    Examples:
        .. code-block:: python

11670
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11671 11672 11673
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11674 11675
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11676
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11677 11678 11679 11680

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11681
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11712 11713 11714 11715 11716 11717 11718 11719

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11720 11721 11722 11723 11724 11725 11726 11727 11728 11729
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11730 11731


S
shippingwang 已提交
11732
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11733 11734
    """
    **Shuffle Channel Operator**
11735

S
shippingwang 已提交
11736 11737 11738 11739 11740 11741
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11742
    
S
shippingwang 已提交
11743
    .. code-block:: text
11744

S
shippingwang 已提交
11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11773
    Args: 
S
shippingwang 已提交
11774 11775
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11776 11777

    Returns:
S
shippingwang 已提交
11778 11779
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11780 11781

    Raises:
S
shippingwang 已提交
11782
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11783 11784 11785

    Examples:
        .. code-block:: python
11786

11787
            import paddle.fluid as fluid
11788
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11789
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11790 11791 11792
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11793
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11794 11795 11796 11797 11798 11799 11800 11801 11802

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11803
    return out
S
Add  
shippingwang 已提交
11804 11805


11806
@templatedoc()
D
dengkaipeng 已提交
11807
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11808 11809 11810 11811 11812 11813 11814 11815
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11816
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11817
        name (str, default None): The name of this layer.
11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11829
            import paddle.fluid as fluid
11830
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11831
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11844 11845
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11846 11847 11848
    return out


S
sneaxiy 已提交
11849
class PyFuncRegistry(object):
S
sneaxiy 已提交
11850 11851 11852
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11853
        if func is None or not callable(func):
S
sneaxiy 已提交
11854 11855 11856
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11857
        # find named args using reflection
S
sneaxiy 已提交
11858 11859 11860 11861 11862 11863 11864
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11865 11866 11867
        '''
        Why record self here?

M
minqiyang 已提交
11868 11869
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11870
           to find the registered function corresponding
M
minqiyang 已提交
11871
           to :code:`idx`.
S
sneaxiy 已提交
11872

M
minqiyang 已提交
11873 11874
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11875
           whose reference count is 1 would cause
M
minqiyang 已提交
11876
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11877 11878
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11879
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11894 11895 11896 11897 11898 11899 11900 11901 11902
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11903

S
sneaxiy 已提交
11904 11905
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11906 11907

        ret = []
S
sneaxiy 已提交
11908 11909 11910
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11911 11912
                continue

S
sneaxiy 已提交
11913 11914
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11915

S
sneaxiy 已提交
11916 11917 11918
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11919

S
sneaxiy 已提交
11920
        return tuple(ret)
S
sneaxiy 已提交
11921 11922


S
sneaxiy 已提交
11923 11924 11925 11926
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11927

S
sneaxiy 已提交
11928 11929 11930 11931 11932 11933 11934 11935
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11936
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11937

S
sneaxiy 已提交
11938 11939
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11940 11941 11942 11943
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11944
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11945
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11946 11947
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11948 11949 11950 11951 11952
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11953
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11954
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11955
                                       None means no backward. Default None.
S
sneaxiy 已提交
11956
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11957
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11958 11959
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11960
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11961 11962 11963

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11964 11965

    Examples:
M
minqiyang 已提交
11966

S
sneaxiy 已提交
11967 11968 11969 11970 11971
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11972
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11973 11974
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11975
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11976 11977 11978
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11979
        >>>
S
sneaxiy 已提交
11980 11981 11982 11983 11984
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11985
        >>>     print(x)
S
sneaxiy 已提交
11986 11987 11988 11989 11990 11991
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11992
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11993 11994
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11995 11996
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11997 11998 11999 12000 12001 12002 12003 12004
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
12005
    """
S
sneaxiy 已提交
12006
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12007 12008 12009
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12010
        x = [x]
S
sneaxiy 已提交
12011 12012
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12013

S
sneaxiy 已提交
12014 12015 12016
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12017
        out_list = [out]
S
sneaxiy 已提交
12018
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
12019
        out_list = out
S
sneaxiy 已提交
12020 12021 12022
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12023

S
sneaxiy 已提交
12024 12025
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12026
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12027 12028

    for each_out in out_list:
S
sneaxiy 已提交
12029 12030
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12031 12032
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12033

S
sneaxiy 已提交
12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12049 12050 12051 12052

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12053 12054
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12055 12056 12057
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12058
        })
S
sneaxiy 已提交
12059
    return out
S
sneaxiy 已提交
12060 12061 12062


# For debug usage
S
sneaxiy 已提交
12063 12064 12065 12066
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12080 12081 12082 12083 12084
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12097 12098 12099 12100
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12126

M
minqiyang 已提交
12127

M
minqiyang 已提交
12128
def huber_loss(input, label, delta):
12129
    """
M
minqiyang 已提交
12130 12131 12132
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
12133 12134 12135 12136

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
12137
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
12138 12139 12140 12141

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
12142
        huber\_loss = 0.5 * (label - input) * (label - input)
12143 12144 12145 12146 12147 12148 12149


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
12150
        delta (float): The parameter of huber loss, which controls
12151 12152 12153
                       the range of outliers

    Returns:
M
minqiyang 已提交
12154
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
12155 12156 12157 12158

    Examples:
        .. code-block:: python

12159 12160 12161 12162 12163 12164 12165 12166 12167
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

12168
    """
M
minqiyang 已提交
12169
    helper = LayerHelper('huber_loss', **locals())
12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
12181 12182


D
dengkaipeng 已提交
12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

12200
            import paddle.fluid as fluid
D
dengkaipeng 已提交
12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

12246
          import paddle.fluid as fluid
T
Tao Luo 已提交
12247 12248 12249
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
12250
          # edges must be directional
T
Tao Luo 已提交
12251 12252 12253 12254
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
12255
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
12256 12257
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
12258
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
12259
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
12283 12284


C
ceci3 已提交
12285
from .ops import square
C
ceci3 已提交
12286
from .control_flow import equal
C
ceci3 已提交
12287 12288


C
ceci3 已提交
12289 12290 12291
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
12292

C
ceci3 已提交
12293
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
12294 12295

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
12296
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
12297 12298 12299 12300 12301
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
12302 12303
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
12304 12305 12306 12307 12308 12309 12310

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

12311
       import paddle.fluid as fluid
C
ceci3 已提交
12312 12313 12314 12315 12316 12317 12318 12319
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
12320 12321 12322 12323 12324 12325 12326
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
12327
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
12328 12329
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
12330 12331
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12332 12333 12334 12335
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12336 12337 12338
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12339 12340 12341
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12342 12343


R
ruri 已提交
12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12373
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12374 12375 12376 12377 12378 12379 12380 12381 12382

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12383
            import paddle.fluid as fluid
R
ruri 已提交
12384
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12435 12436 12437 12438 12439 12440
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12441 12442 12443 12444 12445 12446 12447 12448
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12449 12450 12451 12452


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12453

H
heqiaozhi 已提交
12454
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12455

H
fix doc  
heqiaozhi 已提交
12456
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12457 12458 12459
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12460
    
H
fix doc  
heqiaozhi 已提交
12461
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12462

H
heqiaozhi 已提交
12463
    Args:
H
fix doc  
heqiaozhi 已提交
12464 12465

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12466 12467
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12468
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12469
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12470

H
heqiaozhi 已提交
12471
    Returns:
H
fix doc  
heqiaozhi 已提交
12472 12473 12474

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12475
    Examples:
H
fix doc  
heqiaozhi 已提交
12476

H
heqiaozhi 已提交
12477
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12478

12479
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12480 12481 12482 12483 12484 12485 12486 12487 12488 12489
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12490

H
heqiaozhi 已提交
12491 12492 12493 12494 12495 12496 12497 12498 12499
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12500
    return out
Z
zhoukunsheng 已提交
12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12519
             import paddle.fluid as fluid
12520 12521 12522
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12523
             # condition is a tensor [True, False, True]
12524 12525 12526
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12527 12528

             # condition is a tensor [[True, False], [False, True]]
12529 12530 12531
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12532 12533

             # condition is a tensor [False, False, False]
12534 12535 12536 12537
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12538 12539 12540 12541 12542 12543 12544 12545 12546
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12564 12565 12566
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12567
          # [1, 0, -1]
12568 12569
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12582 12583


Z
zhoukunsheng 已提交
12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12777
          import paddle.fluid as fluid
12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

13009
        import paddle.fluid as fluid
C
cjt222 已提交
13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13071 13072


K
Kevin 已提交
13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


A
Aurelius84 已提交
13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269
def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = layers.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out