sched.c 220.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81

82
#define CREATE_TRACE_POINTS
83
#include <trace/events/sched.h>
84

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145
	/* nests inside the rq lock: */
146
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
147 148 149
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

183
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
184

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

205
	raw_spin_lock(&rt_b->rt_runtime_lock);
206
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221
	}
222
	raw_spin_unlock(&rt_b->rt_runtime_lock);
223 224 225 226 227 228 229 230 231
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
238
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
	struct cgroup_subsys_state css;
249

250
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251 252 253 254 255
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
256 257 258 259 260 261
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

262
	struct rt_bandwidth rt_bandwidth;
263
#endif
264

265
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
266
	struct list_head list;
P
Peter Zijlstra 已提交
267 268 269 270

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
271 272
};

273
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
274

275
/* task_group_lock serializes add/remove of task groups and also changes to
276 277
 * a task group's cpu shares.
 */
278
static DEFINE_SPINLOCK(task_group_lock);
279

280 281
#ifdef CONFIG_FAIR_GROUP_SCHED

282 283 284 285 286 287 288
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

289 290
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

291
/*
292 293 294 295
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
296 297 298
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
299
#define MIN_SHARES	2
300
#define MAX_SHARES	(1UL << 18)
301

302 303 304
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
305
/* Default task group.
I
Ingo Molnar 已提交
306
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
307
 */
308
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
309

D
Dhaval Giani 已提交
310
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
311

I
Ingo Molnar 已提交
312 313 314 315 316 317
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
318
	u64 min_vruntime;
I
Ingo Molnar 已提交
319 320 321

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
322 323 324 325 326 327

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
328 329
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
330
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
333

334
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
335 336
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
337 338
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
339 340 341 342 343 344
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
345 346
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
347 348 349

#ifdef CONFIG_SMP
	/*
350
	 * the part of load.weight contributed by tasks
351
	 */
352
	unsigned long task_weight;
353

354 355 356 357 358 359 360
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
361

362 363 364 365
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
366 367 368 369 370

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
371
#endif
I
Ingo Molnar 已提交
372 373
#endif
};
L
Linus Torvalds 已提交
374

I
Ingo Molnar 已提交
375 376 377
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
378
	unsigned long rt_nr_running;
379
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 381
	struct {
		int curr; /* highest queued rt task prio */
382
#ifdef CONFIG_SMP
383
		int next; /* next highest */
384
#endif
385
	} highest_prio;
P
Peter Zijlstra 已提交
386
#endif
P
Peter Zijlstra 已提交
387
#ifdef CONFIG_SMP
388
	unsigned long rt_nr_migratory;
389
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
390
	int overloaded;
391
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
392
#endif
P
Peter Zijlstra 已提交
393
	int rt_throttled;
P
Peter Zijlstra 已提交
394
	u64 rt_time;
P
Peter Zijlstra 已提交
395
	u64 rt_runtime;
I
Ingo Molnar 已提交
396
	/* Nests inside the rq lock: */
397
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
398

399
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
400 401
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
402 403 404 405
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
406 407
};

G
Gregory Haskins 已提交
408 409 410 411
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
412 413
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
414 415 416 417 418 419
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
420 421
	cpumask_var_t span;
	cpumask_var_t online;
422

I
Ingo Molnar 已提交
423
	/*
424 425 426
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
427
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
428
	atomic_t rto_count;
429 430 431
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
432 433
};

434 435 436 437
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
438 439 440 441
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
442 443 444 445 446 447 448
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
449
struct rq {
450
	/* runqueue lock: */
451
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
452 453 454 455 456 457

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
458 459
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
460
	unsigned long last_load_update_tick;
461
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
462
	u64 nohz_stamp;
463
	unsigned char nohz_balance_kick;
464
#endif
465 466
	unsigned int skip_clock_update;

467 468
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
469 470 471 472
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
473 474
	struct rt_rq rt;

I
Ingo Molnar 已提交
475
#ifdef CONFIG_FAIR_GROUP_SCHED
476 477
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
478 479
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
480
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

491
	struct task_struct *curr, *idle;
492
	unsigned long next_balance;
L
Linus Torvalds 已提交
493
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
494

495
	u64 clock;
I
Ingo Molnar 已提交
496

L
Linus Torvalds 已提交
497 498 499
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
500
	struct root_domain *rd;
L
Linus Torvalds 已提交
501 502
	struct sched_domain *sd;

503 504
	unsigned long cpu_power;

505
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
506
	/* For active balancing */
507
	int post_schedule;
L
Linus Torvalds 已提交
508 509
	int active_balance;
	int push_cpu;
510
	struct cpu_stop_work active_balance_work;
511 512
	/* cpu of this runqueue: */
	int cpu;
513
	int online;
L
Linus Torvalds 已提交
514

515
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
516

517 518
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
519 520
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
521 522
#endif

523 524 525 526
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
527
#ifdef CONFIG_SCHED_HRTICK
528 529 530 531
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
532 533 534
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
535 536 537
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
538 539
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
540 541

	/* sys_sched_yield() stats */
542
	unsigned int yld_count;
L
Linus Torvalds 已提交
543 544

	/* schedule() stats */
545 546 547
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
548 549

	/* try_to_wake_up() stats */
550 551
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
552 553

	/* BKL stats */
554
	unsigned int bkl_count;
L
Linus Torvalds 已提交
555 556 557
#endif
};

558
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
559

P
Peter Zijlstra 已提交
560 561
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
562
{
P
Peter Zijlstra 已提交
563
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564 565 566 567 568 569 570

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
571 572
}

573 574 575 576 577 578 579 580 581
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

582
#define rcu_dereference_check_sched_domain(p) \
583 584 585 586
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
587 588
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
590 591 592 593
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
594
#define for_each_domain(cpu, __sd) \
595
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
596 597 598 599 600

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
601
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
	return container_of(css, struct task_group, css);
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

I
Ingo Molnar 已提交
646
inline void update_rq_clock(struct rq *rq)
647
{
648 649
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
650 651
}

I
Ingo Molnar 已提交
652 653 654 655 656 657 658 659 660
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
661 662
/**
 * runqueue_is_locked
663
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
664 665 666 667 668
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
669
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
670
{
671
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
672 673
}

I
Ingo Molnar 已提交
674 675 676
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
677 678 679 680

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
681
enum {
P
Peter Zijlstra 已提交
682
#include "sched_features.h"
I
Ingo Molnar 已提交
683 684
};

P
Peter Zijlstra 已提交
685 686 687 688 689
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
690
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
691 692 693 694 695 696 697 698 699
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

700
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
701 702 703 704 705 706
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
707
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
708 709 710 711
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
712 713 714
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
715
	}
L
Li Zefan 已提交
716
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
717

L
Li Zefan 已提交
718
	return 0;
P
Peter Zijlstra 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
738
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

758
	*ppos += cnt;
P
Peter Zijlstra 已提交
759 760 761 762

	return cnt;
}

L
Li Zefan 已提交
763 764 765 766 767
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

768
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
769 770 771 772 773
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
788

789 790 791 792 793 794
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
795 796
/*
 * ratelimit for updating the group shares.
797
 * default: 0.25ms
P
Peter Zijlstra 已提交
798
 */
799
unsigned int sysctl_sched_shares_ratelimit = 250000;
800
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
801

802 803 804 805 806 807 808
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

809 810 811 812 813 814 815 816
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
817
/*
P
Peter Zijlstra 已提交
818
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
819 820
 * default: 1s
 */
P
Peter Zijlstra 已提交
821
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
822

823 824
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
825 826 827 828 829
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
830

831 832 833 834 835 836 837
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
838
	if (sysctl_sched_rt_runtime < 0)
839 840 841 842
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
843

L
Linus Torvalds 已提交
844
#ifndef prepare_arch_switch
845 846 847 848 849 850
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

851 852 853 854 855
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

856
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
857
static inline int task_running(struct rq *rq, struct task_struct *p)
858
{
859
	return task_current(rq, p);
860 861
}

862
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 864 865
{
}

866
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867
{
868 869 870 871
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
872 873 874 875 876 877 878
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

879
	raw_spin_unlock_irq(&rq->lock);
880 881 882
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
883
static inline int task_running(struct rq *rq, struct task_struct *p)
884 885 886 887
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
888
	return task_current(rq, p);
889 890 891
#endif
}

892
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 894 895 896 897 898 899 900 901 902
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903
	raw_spin_unlock_irq(&rq->lock);
904
#else
905
	raw_spin_unlock(&rq->lock);
906 907 908
#endif
}

909
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 911 912 913 914 915 916 917 918 919 920 921
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
922
#endif
923 924
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
925

926
/*
P
Peter Zijlstra 已提交
927 928
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
929 930 931
 */
static inline int task_is_waking(struct task_struct *p)
{
932
	return unlikely(p->state == TASK_WAKING);
933 934
}

935 936 937 938
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
939
static inline struct rq *__task_rq_lock(struct task_struct *p)
940 941
	__acquires(rq->lock)
{
942 943
	struct rq *rq;

944
	for (;;) {
945
		rq = task_rq(p);
946
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
947
		if (likely(rq == task_rq(p)))
948
			return rq;
949
		raw_spin_unlock(&rq->lock);
950 951 952
	}
}

L
Linus Torvalds 已提交
953 954
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
955
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
956 957
 * explicitly disabling preemption.
 */
958
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
959 960
	__acquires(rq->lock)
{
961
	struct rq *rq;
L
Linus Torvalds 已提交
962

963 964 965
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
966
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
967
		if (likely(rq == task_rq(p)))
968
			return rq;
969
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
970 971 972
	}
}

A
Alexey Dobriyan 已提交
973
static void __task_rq_unlock(struct rq *rq)
974 975
	__releases(rq->lock)
{
976
	raw_spin_unlock(&rq->lock);
977 978
}

979
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
983 984 985
}

/*
986
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
987
 */
A
Alexey Dobriyan 已提交
988
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
989 990
	__acquires(rq->lock)
{
991
	struct rq *rq;
L
Linus Torvalds 已提交
992 993 994

	local_irq_disable();
	rq = this_rq();
995
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
996 997 998 999

	return rq;
}

P
Peter Zijlstra 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1021
	if (!cpu_active(cpu_of(rq)))
1022
		return 0;
P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1042
	raw_spin_lock(&rq->lock);
1043
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1044
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1046 1047 1048 1049

	return HRTIMER_NORESTART;
}

1050
#ifdef CONFIG_SMP
1051 1052 1053 1054
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1055
{
1056
	struct rq *rq = arg;
1057

1058
	raw_spin_lock(&rq->lock);
1059 1060
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1061
	raw_spin_unlock(&rq->lock);
1062 1063
}

1064 1065 1066 1067 1068 1069
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1070
{
1071 1072
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073

1074
	hrtimer_set_expires(timer, time);
1075 1076 1077 1078

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1079
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 1081
		rq->hrtick_csd_pending = 1;
	}
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1096
		hrtick_clear(cpu_rq(cpu));
1097 1098 1099 1100 1101 1102
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1103
static __init void init_hrtick(void)
1104 1105 1106
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1107 1108 1109 1110 1111 1112 1113 1114
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1115
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116
			HRTIMER_MODE_REL_PINNED, 0);
1117
}
1118

A
Andrew Morton 已提交
1119
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1120 1121
{
}
1122
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1123

1124
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1125
{
1126 1127
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1128

1129 1130 1131 1132
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1133

1134 1135
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1136
}
A
Andrew Morton 已提交
1137
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1138 1139 1140 1141 1142 1143 1144 1145
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1146 1147 1148
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1149
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1150

I
Ingo Molnar 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1164
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1165 1166 1167
{
	int cpu;

1168
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1169

1170
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1171 1172
		return;

1173
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1190
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1191 1192
		return;
	resched_task(cpu_curr(cpu));
1193
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1194
}
1195 1196

#ifdef CONFIG_NO_HZ
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1250
	set_tsk_need_resched(rq->idle);
1251 1252 1253 1254 1255 1256

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1268
#endif /* CONFIG_NO_HZ */
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1291
#else /* !CONFIG_SMP */
1292
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1293
{
1294
	assert_raw_spin_locked(&task_rq(p)->lock);
1295
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1296
}
1297 1298 1299 1300

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1301
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1302

1303 1304 1305 1306 1307 1308 1309 1310
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1311 1312 1313
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1314
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1315

1316 1317 1318
/*
 * delta *= weight / lw
 */
1319
static unsigned long
1320 1321 1322 1323 1324
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1325 1326 1327 1328 1329 1330 1331
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1332 1333 1334 1335 1336

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1337
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1338
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1339 1340
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1341
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1342

1343
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1344 1345
}

1346
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1347 1348
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1349
	lw->inv_weight = 0;
1350 1351
}

1352
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1353 1354
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1355
	lw->inv_weight = 0;
1356 1357
}

1358 1359 1360 1361
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1362
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1363 1364 1365 1366
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1367 1368
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1378 1379 1380
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1381 1382
 */
static const int prio_to_weight[40] = {
1383 1384 1385 1386 1387 1388 1389 1390
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1391 1392
};

1393 1394 1395 1396 1397 1398 1399
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1400
static const u32 prio_to_wmult[40] = {
1401 1402 1403 1404 1405 1406 1407 1408
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1409
};
1410

1411 1412 1413 1414 1415 1416 1417 1418
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1419 1420
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1421 1422
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1423 1424
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1425 1426
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1427 1428
#endif

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1439
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1440
typedef int (*tg_visitor)(struct task_group *, void *);
1441 1442 1443 1444 1445

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1446
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1447 1448
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1449
	int ret;
1450 1451 1452 1453

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1454 1455 1456
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1457 1458 1459 1460 1461 1462 1463
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1464 1465 1466
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1467 1468 1469 1470 1471

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1472
out_unlock:
1473
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1474 1475

	return ret;
1476 1477
}

P
Peter Zijlstra 已提交
1478 1479 1480
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1481
}
P
Peter Zijlstra 已提交
1482 1483 1484
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1524 1525
static unsigned long power_of(int cpu)
{
1526
	return cpu_rq(cpu)->cpu_power;
1527 1528
}

P
Peter Zijlstra 已提交
1529 1530 1531 1532 1533
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1534
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1535

1536 1537
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1538 1539
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1540 1541 1542 1543 1544

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1545

1546
static __read_mostly unsigned long __percpu *update_shares_data;
1547

1548 1549 1550 1551 1552
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1553 1554 1555
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1556
				    unsigned long *usd_rq_weight)
1557
{
1558
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1559
	int boost = 0;
1560

1561
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1562 1563 1564 1565
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1566

1567
	/*
P
Peter Zijlstra 已提交
1568 1569 1570
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1571
	 */
1572
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1573
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574

1575 1576 1577 1578
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1579

1580
		raw_spin_lock_irqsave(&rq->lock, flags);
1581
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1582
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583
		__set_se_shares(tg->se[cpu], shares);
1584
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1585
	}
1586
}
1587 1588

/*
1589 1590 1591
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1592
 */
P
Peter Zijlstra 已提交
1593
static int tg_shares_up(struct task_group *tg, void *data)
1594
{
1595
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1597
	struct sched_domain *sd = data;
1598
	unsigned long flags;
1599
	int i;
1600

1601 1602 1603 1604
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1605
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606

1607
	for_each_cpu(i, sched_domain_span(sd)) {
1608
		weight = tg->cfs_rq[i]->load.weight;
1609
		usd_rq_weight[i] = weight;
1610

1611
		rq_weight += weight;
1612 1613 1614 1615 1616 1617 1618 1619
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1620
		sum_weight += weight;
1621
		shares += tg->cfs_rq[i]->shares;
1622 1623
	}

1624 1625 1626
	if (!rq_weight)
		rq_weight = sum_weight;

1627 1628 1629 1630 1631
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1632

1633
	for_each_cpu(i, sched_domain_span(sd))
1634
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635 1636

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1637 1638

	return 0;
1639 1640 1641
}

/*
1642 1643 1644
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1645
 */
P
Peter Zijlstra 已提交
1646
static int tg_load_down(struct task_group *tg, void *data)
1647
{
1648
	unsigned long load;
P
Peter Zijlstra 已提交
1649
	long cpu = (long)data;
1650

1651 1652 1653 1654 1655 1656 1657
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1658

1659
	tg->cfs_rq[cpu]->h_load = load;
1660

P
Peter Zijlstra 已提交
1661
	return 0;
1662 1663
}

1664
static void update_shares(struct sched_domain *sd)
1665
{
1666 1667 1668 1669 1670 1671
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

1672
	now = local_clock();
1673
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1674 1675 1676

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1677
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1678
	}
1679 1680
}

P
Peter Zijlstra 已提交
1681
static void update_h_load(long cpu)
1682
{
1683 1684 1685
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1686
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1687 1688 1689 1690
}

#else

1691
static inline void update_shares(struct sched_domain *sd)
1692 1693 1694
{
}

1695 1696
#endif

1697 1698
#ifdef CONFIG_PREEMPT

1699 1700
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1701
/*
1702 1703 1704 1705 1706 1707
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1708
 */
1709 1710 1711 1712 1713
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1714
	raw_spin_unlock(&this_rq->lock);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 1730 1731 1732 1733 1734
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1735
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736
		if (busiest < this_rq) {
1737 1738 1739 1740
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1741 1742
			ret = 1;
		} else
1743 1744
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1745 1746 1747 1748
	}
	return ret;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1758
		raw_spin_unlock(&this_rq->lock);
1759 1760 1761 1762 1763 1764
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1765 1766 1767
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1768
	raw_spin_unlock(&busiest->lock);
1769 1770
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1814 1815
#endif

V
Vegard Nossum 已提交
1816
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1817 1818
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1819
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1820 1821 1822
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1823
#endif
1824

1825
static void calc_load_account_idle(struct rq *this_rq);
1826
static void update_sysctl(void);
1827
static int get_update_sysctl_factor(void);
1828
static void update_cpu_load(struct rq *this_rq);
1829

P
Peter Zijlstra 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1843

1844
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1845 1846

#define sched_class_highest (&rt_sched_class)
1847 1848
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1849

1850 1851
#include "sched_stats.h"

1852
static void inc_nr_running(struct rq *rq)
1853 1854 1855 1856
{
	rq->nr_running++;
}

1857
static void dec_nr_running(struct rq *rq)
1858 1859 1860 1861
{
	rq->nr_running--;
}

1862 1863 1864
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
1865 1866
		p->se.load.weight = 0;
		p->se.load.inv_weight = WMULT_CONST;
I
Ingo Molnar 已提交
1867 1868
		return;
	}
1869

I
Ingo Molnar 已提交
1870 1871 1872 1873 1874 1875 1876 1877
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1878

I
Ingo Molnar 已提交
1879 1880
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1881 1882
}

1883
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1884
{
1885
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1886
	sched_info_queued(p);
1887
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1888
	p->se.on_rq = 1;
1889 1890
}

1891
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1892
{
1893
	update_rq_clock(rq);
1894
	sched_info_dequeued(p);
1895
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1896
	p->se.on_rq = 0;
1897 1898
}

1899 1900 1901
/*
 * activate_task - move a task to the runqueue.
 */
1902
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1903 1904 1905 1906
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1907
	enqueue_task(rq, p, flags);
1908 1909 1910 1911 1912 1913
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1914
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1915 1916 1917 1918
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1919
	dequeue_task(rq, p, flags);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1930
/*
I
Ingo Molnar 已提交
1931
 * __normal_prio - return the priority that is based on the static prio
1932 1933 1934
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1935
	return p->static_prio;
1936 1937
}

1938 1939 1940 1941 1942 1943 1944
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1945
static inline int normal_prio(struct task_struct *p)
1946 1947 1948
{
	int prio;

1949
	if (task_has_rt_policy(p))
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1963
static int effective_prio(struct task_struct *p)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1976 1977 1978 1979
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1980
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1981 1982 1983 1984
{
	return cpu_curr(task_cpu(p)) == p;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1997
#ifdef CONFIG_SMP
1998 1999 2000
/*
 * Is this task likely cache-hot:
 */
2001
static int
2002 2003 2004 2005
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2006 2007 2008
	if (p->sched_class != &fair_sched_class)
		return 0;

2009 2010 2011
	/*
	 * Buddy candidates are cache hot:
	 */
2012
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2013 2014
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2015 2016
		return 1;

2017 2018 2019 2020 2021
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2022 2023 2024 2025 2026
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2027
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2028
{
2029 2030 2031 2032 2033
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2034 2035
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2036 2037
#endif

2038
	trace_sched_migrate_task(p, new_cpu);
2039

2040 2041 2042 2043
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2044 2045

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2046 2047
}

2048
struct migration_arg {
2049
	struct task_struct *task;
L
Linus Torvalds 已提交
2050
	int dest_cpu;
2051
};
L
Linus Torvalds 已提交
2052

2053 2054
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2055 2056 2057 2058
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2059
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2060
{
2061
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2062 2063 2064

	/*
	 * If the task is not on a runqueue (and not running), then
2065
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2066
	 */
2067
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2073 2074 2075 2076 2077 2078 2079
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2086
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2087 2088
{
	unsigned long flags;
I
Ingo Molnar 已提交
2089
	int running, on_rq;
R
Roland McGrath 已提交
2090
	unsigned long ncsw;
2091
	struct rq *rq;
L
Linus Torvalds 已提交
2092

2093 2094 2095 2096 2097 2098 2099 2100
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2101

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2113 2114 2115
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2116
			cpu_relax();
R
Roland McGrath 已提交
2117
		}
2118

2119 2120 2121 2122 2123 2124
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2125
		trace_sched_wait_task(p);
2126 2127
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2128
		ncsw = 0;
2129
		if (!match_state || p->state == match_state)
2130
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2131
		task_rq_unlock(rq, &flags);
2132

R
Roland McGrath 已提交
2133 2134 2135 2136 2137 2138
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2149

2150 2151 2152 2153 2154
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2155
		 * So if it was still runnable (but just not actively
2156 2157 2158 2159 2160 2161 2162
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2163

2164 2165 2166 2167 2168 2169 2170
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2171 2172

	return ncsw;
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2188
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2198
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2199
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2200

T
Thomas Gleixner 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2222
#ifdef CONFIG_SMP
2223 2224 2225
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2242
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2243
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2259
/*
2260
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2261
 */
2262
static inline
2263
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2264
{
2265
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2278
		     !cpu_online(cpu)))
2279
		cpu = select_fallback_rq(task_cpu(p), p);
2280 2281

	return cpu;
2282
}
2283 2284 2285 2286 2287 2288

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2289 2290
#endif

T
Tejun Heo 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2330 2331 2332
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2333 2334 2335
}

/**
L
Linus Torvalds 已提交
2336
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2337
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2338
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2339
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345 2346
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2347 2348
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2349
 */
P
Peter Zijlstra 已提交
2350 2351
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2352
{
2353
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2354
	unsigned long flags;
2355
	unsigned long en_flags = ENQUEUE_WAKEUP;
2356
	struct rq *rq;
L
Linus Torvalds 已提交
2357

P
Peter Zijlstra 已提交
2358
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2359

2360
	smp_wmb();
2361
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2362
	if (!(p->state & state))
L
Linus Torvalds 已提交
2363 2364
		goto out;

I
Ingo Molnar 已提交
2365
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2366 2367 2368
		goto out_running;

	cpu = task_cpu(p);
2369
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2375 2376 2377
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2378 2379
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2380
	 */
2381 2382 2383 2384 2385 2386
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2387
	p->state = TASK_WAKING;
2388

2389
	if (p->sched_class->task_waking) {
2390
		p->sched_class->task_waking(rq, p);
2391 2392
		en_flags |= ENQUEUE_WAKING;
	}
2393

2394 2395
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2396
		set_task_cpu(p, cpu);
2397
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2398

2399 2400
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2401

2402 2403 2404 2405 2406 2407 2408
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2409
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2410

2411 2412 2413 2414 2415 2416 2417
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2418
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2419 2420 2421 2422 2423
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2424
#endif /* CONFIG_SCHEDSTATS */
2425

L
Linus Torvalds 已提交
2426 2427
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2428 2429
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2430 2431
	success = 1;
out_running:
T
Tejun Heo 已提交
2432
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2433 2434
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2435
	put_cpu();
L
Linus Torvalds 已提交
2436 2437 2438 2439

	return success;
}

T
Tejun Heo 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2482
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2483
{
2484
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2485 2486 2487
}
EXPORT_SYMBOL(wake_up_process);

2488
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2489 2490 2491 2492 2493 2494 2495
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2496 2497 2498 2499 2500 2501 2502
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2503
	p->se.prev_sum_exec_runtime	= 0;
2504
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2505 2506

#ifdef CONFIG_SCHEDSTATS
2507
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2508
#endif
N
Nick Piggin 已提交
2509

P
Peter Zijlstra 已提交
2510
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2511
	p->se.on_rq = 0;
2512
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2513

2514 2515 2516
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2527
	/*
2528
	 * We mark the process as running here. This guarantees that
2529 2530 2531
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2532
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2533

2534 2535 2536 2537
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2538
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2539
			p->policy = SCHED_NORMAL;
2540 2541
			p->normal_prio = p->static_prio;
		}
2542

2543 2544
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2545
			p->normal_prio = p->static_prio;
2546 2547 2548
			set_load_weight(p);
		}

2549 2550 2551 2552 2553 2554
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2555

2556 2557 2558 2559 2560
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2561 2562
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2563

P
Peter Zijlstra 已提交
2564 2565 2566
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2567 2568
	set_task_cpu(p, cpu);

2569
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2570
	if (likely(sched_info_on()))
2571
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2572
#endif
2573
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2574 2575
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2576
#ifdef CONFIG_PREEMPT
2577
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2578
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2579
#endif
2580 2581
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2582
	put_cpu();
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2592
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2593 2594
{
	unsigned long flags;
I
Ingo Molnar 已提交
2595
	struct rq *rq;
2596
	int cpu __maybe_unused = get_cpu();
2597 2598

#ifdef CONFIG_SMP
2599 2600 2601
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2602 2603 2604 2605 2606
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2607 2608
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2609
	 */
2610
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2611
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2612

2613
	p->state = TASK_RUNNING;
2614 2615 2616 2617
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2618
	activate_task(rq, p, 0);
2619
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2620
	check_preempt_curr(rq, p, WF_FORK);
2621
#ifdef CONFIG_SMP
2622 2623
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2624
#endif
I
Ingo Molnar 已提交
2625
	task_rq_unlock(rq, &flags);
2626
	put_cpu();
L
Linus Torvalds 已提交
2627 2628
}

2629 2630 2631
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2632
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2633
 * @notifier: notifier struct to register
2634 2635 2636 2637 2638 2639 2640 2641 2642
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2643
 * @notifier: notifier struct to unregister
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2673
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2685
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2686

2687 2688 2689
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2690
 * @prev: the current task that is being switched out
2691 2692 2693 2694 2695 2696 2697 2698 2699
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2700 2701 2702
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2703
{
2704
	fire_sched_out_preempt_notifiers(prev, next);
2705 2706 2707 2708
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2709 2710
/**
 * finish_task_switch - clean up after a task-switch
2711
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2712 2713
 * @prev: the thread we just switched away from.
 *
2714 2715 2716 2717
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2718 2719
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2720
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2721 2722 2723
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2724
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2725 2726 2727
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2728
	long prev_state;
L
Linus Torvalds 已提交
2729 2730 2731 2732 2733

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2734
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2735 2736
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2737
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2738 2739 2740 2741 2742
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2743
	prev_state = prev->state;
2744
	finish_arch_switch(prev);
2745 2746 2747
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2748
	perf_event_task_sched_in(current);
2749 2750 2751
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2752
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2753

2754
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2755 2756
	if (mm)
		mmdrop(mm);
2757
	if (unlikely(prev_state == TASK_DEAD)) {
2758 2759 2760
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2761
		 */
2762
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2763
		put_task_struct(prev);
2764
	}
L
Linus Torvalds 已提交
2765 2766
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2782
		raw_spin_lock_irqsave(&rq->lock, flags);
2783 2784
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2785
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2786 2787 2788 2789 2790 2791

		rq->post_schedule = 0;
	}
}

#else
2792

2793 2794 2795 2796 2797 2798
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2799 2800
}

2801 2802
#endif

L
Linus Torvalds 已提交
2803 2804 2805 2806
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2807
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2808 2809
	__releases(rq->lock)
{
2810 2811
	struct rq *rq = this_rq();

2812
	finish_task_switch(rq, prev);
2813

2814 2815 2816 2817 2818
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2819

2820 2821 2822 2823
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2824
	if (current->set_child_tid)
2825
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2832
static inline void
2833
context_switch(struct rq *rq, struct task_struct *prev,
2834
	       struct task_struct *next)
L
Linus Torvalds 已提交
2835
{
I
Ingo Molnar 已提交
2836
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2837

2838
	prepare_task_switch(rq, prev, next);
2839
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2840 2841
	mm = next->mm;
	oldmm = prev->active_mm;
2842 2843 2844 2845 2846
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2847
	arch_start_context_switch(prev);
2848

2849
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2856
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2857 2858 2859
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2860 2861 2862 2863 2864 2865 2866
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2867
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2868
#endif
L
Linus Torvalds 已提交
2869 2870 2871 2872

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2873 2874 2875 2876 2877 2878 2879
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2897
}
L
Linus Torvalds 已提交
2898 2899

unsigned long nr_uninterruptible(void)
2900
{
L
Linus Torvalds 已提交
2901
	unsigned long i, sum = 0;
2902

2903
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2904
		sum += cpu_rq(i)->nr_uninterruptible;
2905 2906

	/*
L
Linus Torvalds 已提交
2907 2908
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2909
	 */
L
Linus Torvalds 已提交
2910 2911
	if (unlikely((long)sum < 0))
		sum = 0;
2912

L
Linus Torvalds 已提交
2913
	return sum;
2914 2915
}

L
Linus Torvalds 已提交
2916
unsigned long long nr_context_switches(void)
2917
{
2918 2919
	int i;
	unsigned long long sum = 0;
2920

2921
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2922
		sum += cpu_rq(i)->nr_switches;
2923

L
Linus Torvalds 已提交
2924 2925
	return sum;
}
2926

L
Linus Torvalds 已提交
2927 2928 2929
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2930

2931
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2932
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2933

L
Linus Torvalds 已提交
2934 2935
	return sum;
}
2936

2937 2938 2939 2940 2941
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2942

2943 2944 2945 2946 2947
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2948

2949

2950 2951 2952 2953 2954
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2955

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3024 3025
}

3026 3027
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3028
{
3029 3030 3031 3032
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3033 3034

/*
3035 3036
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3037
 */
3038
void calc_global_load(void)
3039
{
3040 3041
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3042

3043 3044
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3045

3046 3047
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3048

3049 3050 3051
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3052

3053 3054
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3055

3056
/*
3057 3058
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3059 3060 3061
 */
static void calc_load_account_active(struct rq *this_rq)
{
3062
	long delta;
3063

3064 3065
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3066

3067 3068 3069
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3070
		atomic_long_add(delta, &calc_load_tasks);
3071 3072

	this_rq->calc_load_update += LOAD_FREQ;
3073 3074
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3142
/*
I
Ingo Molnar 已提交
3143
 * Update rq->cpu_load[] statistics. This function is usually called every
3144 3145
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3146
 */
I
Ingo Molnar 已提交
3147
static void update_cpu_load(struct rq *this_rq)
3148
{
3149
	unsigned long this_load = this_rq->load.weight;
3150 3151
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3152
	int i, scale;
3153

I
Ingo Molnar 已提交
3154
	this_rq->nr_load_updates++;
3155

3156 3157 3158 3159 3160 3161 3162
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3163
	/* Update our load: */
3164 3165
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3166
		unsigned long old_load, new_load;
3167

I
Ingo Molnar 已提交
3168
		/* scale is effectively 1 << i now, and >> i divides by scale */
3169

I
Ingo Molnar 已提交
3170
		old_load = this_rq->cpu_load[i];
3171
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3172
		new_load = this_load;
I
Ingo Molnar 已提交
3173 3174 3175 3176 3177 3178
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3179 3180 3181
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3182
	}
3183 3184 3185 3186 3187
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3188

3189
	calc_load_account_active(this_rq);
3190 3191
}

I
Ingo Molnar 已提交
3192
#ifdef CONFIG_SMP
3193

3194
/*
P
Peter Zijlstra 已提交
3195 3196
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3197
 */
P
Peter Zijlstra 已提交
3198
void sched_exec(void)
3199
{
P
Peter Zijlstra 已提交
3200
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3201
	unsigned long flags;
3202
	struct rq *rq;
3203
	int dest_cpu;
3204

L
Linus Torvalds 已提交
3205
	rq = task_rq_lock(p, &flags);
3206 3207 3208
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3209

3210
	/*
P
Peter Zijlstra 已提交
3211
	 * select_task_rq() can race against ->cpus_allowed
3212
	 */
3213
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3214 3215
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3216

L
Linus Torvalds 已提交
3217
		task_rq_unlock(rq, &flags);
3218
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3219 3220
		return;
	}
3221
unlock:
L
Linus Torvalds 已提交
3222 3223
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3224

L
Linus Torvalds 已提交
3225 3226 3227 3228 3229 3230 3231
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3232
 * Return any ns on the sched_clock that have not yet been accounted in
3233
 * @p in case that task is currently running.
3234 3235
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3236
 */
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3251
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3252 3253
{
	unsigned long flags;
3254
	struct rq *rq;
3255
	u64 ns = 0;
3256

3257
	rq = task_rq_lock(p, &flags);
3258 3259
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3260

3261 3262
	return ns;
}
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3281

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3301
	task_rq_unlock(rq, &flags);
3302

L
Linus Torvalds 已提交
3303 3304 3305 3306 3307 3308 3309
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3310
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3311
 */
3312 3313
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3314 3315 3316 3317
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3318
	/* Add user time to process. */
L
Linus Torvalds 已提交
3319
	p->utime = cputime_add(p->utime, cputime);
3320
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3321
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3322 3323 3324 3325 3326 3327 3328

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3329 3330

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3331 3332
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3333 3334
}

3335 3336 3337 3338
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3339
 * @cputime_scaled: cputime scaled by cpu frequency
3340
 */
3341 3342
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3343 3344 3345 3346 3347 3348
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3349
	/* Add guest time to process. */
3350
	p->utime = cputime_add(p->utime, cputime);
3351
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3352
	account_group_user_time(p, cputime);
3353 3354
	p->gtime = cputime_add(p->gtime, cputime);

3355
	/* Add guest time to cpustat. */
3356 3357 3358 3359 3360 3361 3362
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3363 3364
}

L
Linus Torvalds 已提交
3365 3366 3367 3368 3369
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3370
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3371 3372
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3373
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3374 3375 3376 3377
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3378
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3379
		account_guest_time(p, cputime, cputime_scaled);
3380 3381
		return;
	}
3382

3383
	/* Add system time to process. */
L
Linus Torvalds 已提交
3384
	p->stime = cputime_add(p->stime, cputime);
3385
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3386
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391 3392 3393 3394

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3395 3396
		cpustat->system = cputime64_add(cpustat->system, tmp);

3397 3398
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3399 3400 3401 3402
	/* Account for system time used */
	acct_update_integrals(p);
}

3403
/*
L
Linus Torvalds 已提交
3404 3405
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3406
 */
3407
void account_steal_time(cputime_t cputime)
3408
{
3409 3410 3411 3412
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3413 3414
}

L
Linus Torvalds 已提交
3415
/*
3416 3417
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3418
 */
3419
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3420 3421
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3422
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3423
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3424

3425 3426 3427 3428
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3429 3430
}

3431 3432 3433 3434 3435 3436 3437 3438 3439
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3440
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3441 3442 3443
	struct rq *rq = this_rq();

	if (user_tick)
3444
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3445
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3446
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3447 3448
				    one_jiffy_scaled);
	else
3449
		account_idle_time(cputime_one_jiffy);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3469 3470
}

3471 3472
#endif

3473 3474 3475 3476
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3477
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3478
{
3479 3480
	*ut = p->utime;
	*st = p->stime;
3481 3482
}

3483
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3484
{
3485 3486 3487 3488 3489 3490
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3491 3492
}
#else
3493 3494

#ifndef nsecs_to_cputime
3495
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3496 3497
#endif

3498
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3499
{
3500
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3501 3502 3503 3504

	/*
	 * Use CFS's precise accounting:
	 */
3505
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3506 3507

	if (total) {
3508 3509 3510
		u64 temp;

		temp = (u64)(rtime * utime);
3511
		do_div(temp, total);
3512 3513 3514
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3515

3516 3517 3518
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3519
	p->prev_utime = max(p->prev_utime, utime);
3520
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3521

3522 3523
	*ut = p->prev_utime;
	*st = p->prev_stime;
3524 3525
}

3526 3527 3528 3529
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3530
{
3531 3532 3533
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3534

3535
	thread_group_cputime(p, &cputime);
3536

3537 3538
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3539

3540 3541
	if (total) {
		u64 temp;
3542

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3555 3556 3557
}
#endif

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3569
	struct task_struct *curr = rq->curr;
3570 3571

	sched_clock_tick();
I
Ingo Molnar 已提交
3572

3573
	raw_spin_lock(&rq->lock);
3574
	update_rq_clock(rq);
3575
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3576
	curr->sched_class->task_tick(rq, curr, 0);
3577
	raw_spin_unlock(&rq->lock);
3578

3579
	perf_event_task_tick(curr);
3580

3581
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3582 3583
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3584
#endif
L
Linus Torvalds 已提交
3585 3586
}

3587
notrace unsigned long get_parent_ip(unsigned long addr)
3588 3589 3590 3591 3592 3593 3594 3595
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3596

3597 3598 3599
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3600
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3601
{
3602
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3603 3604 3605
	/*
	 * Underflow?
	 */
3606 3607
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3608
#endif
L
Linus Torvalds 已提交
3609
	preempt_count() += val;
3610
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3611 3612 3613
	/*
	 * Spinlock count overflowing soon?
	 */
3614 3615
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3616 3617 3618
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3619 3620 3621
}
EXPORT_SYMBOL(add_preempt_count);

3622
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3623
{
3624
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3625 3626 3627
	/*
	 * Underflow?
	 */
3628
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3629
		return;
L
Linus Torvalds 已提交
3630 3631 3632
	/*
	 * Is the spinlock portion underflowing?
	 */
3633 3634 3635
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3636
#endif
3637

3638 3639
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3640 3641 3642 3643 3644 3645 3646
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3647
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3648
 */
I
Ingo Molnar 已提交
3649
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3650
{
3651 3652
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3653 3654
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3655

I
Ingo Molnar 已提交
3656
	debug_show_held_locks(prev);
3657
	print_modules();
I
Ingo Molnar 已提交
3658 3659
	if (irqs_disabled())
		print_irqtrace_events(prev);
3660 3661 3662 3663 3664

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3665
}
L
Linus Torvalds 已提交
3666

I
Ingo Molnar 已提交
3667 3668 3669 3670 3671
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3672
	/*
I
Ingo Molnar 已提交
3673
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3674 3675 3676
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3677
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3678 3679
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3680 3681
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3682
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3683 3684
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3685 3686
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3687 3688
	}
#endif
I
Ingo Molnar 已提交
3689 3690
}

P
Peter Zijlstra 已提交
3691
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3692
{
3693 3694 3695
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3696
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3697 3698
}

I
Ingo Molnar 已提交
3699 3700 3701 3702
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3703
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3704
{
3705
	const struct sched_class *class;
I
Ingo Molnar 已提交
3706
	struct task_struct *p;
L
Linus Torvalds 已提交
3707 3708

	/*
I
Ingo Molnar 已提交
3709 3710
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3711
	 */
I
Ingo Molnar 已提交
3712
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3713
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3714 3715
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3716 3717
	}

I
Ingo Molnar 已提交
3718 3719
	class = sched_class_highest;
	for ( ; ; ) {
3720
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3730

I
Ingo Molnar 已提交
3731 3732 3733
/*
 * schedule() is the main scheduler function.
 */
3734
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3735 3736
{
	struct task_struct *prev, *next;
3737
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3738
	struct rq *rq;
3739
	int cpu;
I
Ingo Molnar 已提交
3740

3741 3742
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3743 3744
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3745
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3746 3747 3748 3749 3750 3751
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3752

3753
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3754
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3755

3756
	raw_spin_lock_irq(&rq->lock);
3757
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3758

3759
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3760
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3761
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3762
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3777
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3778
		}
I
Ingo Molnar 已提交
3779
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3780 3781
	}

3782
	pre_schedule(rq, prev);
3783

I
Ingo Molnar 已提交
3784
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3785 3786
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3787
	put_prev_task(rq, prev);
3788
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3789 3790

	if (likely(prev != next)) {
3791
		sched_info_switch(prev, next);
3792
		perf_event_task_sched_out(prev, next);
3793

L
Linus Torvalds 已提交
3794 3795 3796 3797
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3798
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3799
		/*
3800 3801 3802 3803
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3804 3805 3806
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3807
	} else
3808
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3809

3810
	post_schedule(rq);
L
Linus Torvalds 已提交
3811

3812
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
3813
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3814

L
Linus Torvalds 已提交
3815
	preempt_enable_no_resched();
3816
	if (need_resched())
L
Linus Torvalds 已提交
3817 3818 3819 3820
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3821
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3841
		return 0;
3842 3843 3844 3845 3846 3847 3848 3849 3850
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3851
		return 0;
3852 3853 3854 3855 3856 3857

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3858
		return 0;
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3877

3878 3879 3880 3881
	return 1;
}
#endif

L
Linus Torvalds 已提交
3882 3883
#ifdef CONFIG_PREEMPT
/*
3884
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3885
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3886 3887 3888 3889 3890
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3891

L
Linus Torvalds 已提交
3892 3893
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3894
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3895
	 */
N
Nick Piggin 已提交
3896
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3897 3898
		return;

3899 3900 3901 3902
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3903

3904 3905 3906 3907 3908
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3909
	} while (need_resched());
L
Linus Torvalds 已提交
3910 3911 3912 3913
}
EXPORT_SYMBOL(preempt_schedule);

/*
3914
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3915 3916 3917 3918 3919 3920 3921
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3922

3923
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3924 3925
	BUG_ON(ti->preempt_count || !irqs_disabled());

3926 3927 3928 3929 3930 3931
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3932

3933 3934 3935 3936 3937
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3938
	} while (need_resched());
L
Linus Torvalds 已提交
3939 3940 3941 3942
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3943
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3944
			  void *key)
L
Linus Torvalds 已提交
3945
{
P
Peter Zijlstra 已提交
3946
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3947 3948 3949 3950
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3951 3952
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3953 3954 3955
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3956
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3957 3958
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3959
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3960
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3961
{
3962
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3963

3964
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3965 3966
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3967
		if (curr->func(curr, mode, wake_flags, key) &&
3968
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3978
 * @key: is directly passed to the wakeup function
3979 3980 3981
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3982
 */
3983
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3984
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3997
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3998 3999 4000
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4001
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4002

4003 4004 4005 4006 4007
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4008
/**
4009
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4010 4011 4012
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4013
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018 4019 4020
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4021 4022 4023
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4024
 */
4025 4026
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4027 4028
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4029
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4035
		wake_flags = 0;
L
Linus Torvalds 已提交
4036 4037

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4038
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4039 4040
	spin_unlock_irqrestore(&q->lock, flags);
}
4041 4042 4043 4044 4045 4046 4047 4048 4049
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4050 4051
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4052 4053 4054 4055 4056 4057 4058 4059
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4060 4061 4062
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4063
 */
4064
void complete(struct completion *x)
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4070
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4071 4072 4073 4074
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4075 4076 4077 4078 4079
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4080 4081 4082
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4083
 */
4084
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4085 4086 4087 4088 4089
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4090
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4091 4092 4093 4094
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4095 4096
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4097 4098 4099 4100
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4101
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4102
		do {
4103
			if (signal_pending_state(state, current)) {
4104 4105
				timeout = -ERESTARTSYS;
				break;
4106 4107
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4108 4109 4110
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4111
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4112
		__remove_wait_queue(&x->wait, &wait);
4113 4114
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4115 4116
	}
	x->done--;
4117
	return timeout ?: 1;
L
Linus Torvalds 已提交
4118 4119
}

4120 4121
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4122 4123 4124 4125
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4126
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4127
	spin_unlock_irq(&x->wait.lock);
4128 4129
	return timeout;
}
L
Linus Torvalds 已提交
4130

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4141
void __sched wait_for_completion(struct completion *x)
4142 4143
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4144
}
4145
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4146

4147 4148 4149 4150 4151 4152 4153 4154 4155
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4156
unsigned long __sched
4157
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4158
{
4159
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4160
}
4161
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4162

4163 4164 4165 4166 4167 4168 4169
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4170
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4171
{
4172 4173 4174 4175
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4176
}
4177
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4178

4179 4180 4181 4182 4183 4184 4185 4186
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4187
unsigned long __sched
4188 4189
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4190
{
4191
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4192
}
4193
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4194

4195 4196 4197 4198 4199 4200 4201
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
unsigned long __sched
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4242
	unsigned long flags;
4243 4244
	int ret = 1;

4245
	spin_lock_irqsave(&x->wait.lock, flags);
4246 4247 4248 4249
	if (!x->done)
		ret = 0;
	else
		x->done--;
4250
	spin_unlock_irqrestore(&x->wait.lock, flags);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4265
	unsigned long flags;
4266 4267
	int ret = 1;

4268
	spin_lock_irqsave(&x->wait.lock, flags);
4269 4270
	if (!x->done)
		ret = 0;
4271
	spin_unlock_irqrestore(&x->wait.lock, flags);
4272 4273 4274 4275
	return ret;
}
EXPORT_SYMBOL(completion_done);

4276 4277
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4278
{
I
Ingo Molnar 已提交
4279 4280 4281 4282
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4283

4284
	__set_current_state(state);
L
Linus Torvalds 已提交
4285

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4300 4301 4302
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4303
long __sched
I
Ingo Molnar 已提交
4304
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4305
{
4306
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4307 4308 4309
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4310
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4311
{
4312
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4313 4314 4315
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4316
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4317
{
4318
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4319 4320 4321
}
EXPORT_SYMBOL(sleep_on_timeout);

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4334
void rt_mutex_setprio(struct task_struct *p, int prio)
4335 4336
{
	unsigned long flags;
4337
	int oldprio, on_rq, running;
4338
	struct rq *rq;
4339
	const struct sched_class *prev_class;
4340 4341 4342 4343 4344

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4345
	oldprio = p->prio;
4346
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4347
	on_rq = p->se.on_rq;
4348
	running = task_current(rq, p);
4349
	if (on_rq)
4350
		dequeue_task(rq, p, 0);
4351 4352
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4353 4354 4355 4356 4357 4358

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4359 4360
	p->prio = prio;

4361 4362
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4363
	if (on_rq) {
4364
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4365 4366

		check_class_changed(rq, p, prev_class, oldprio, running);
4367 4368 4369 4370 4371 4372
	}
	task_rq_unlock(rq, &flags);
}

#endif

4373
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4374
{
I
Ingo Molnar 已提交
4375
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4376
	unsigned long flags;
4377
	struct rq *rq;
L
Linus Torvalds 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4390
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4391
	 */
4392
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4393 4394 4395
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4396
	on_rq = p->se.on_rq;
4397
	if (on_rq)
4398
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4399 4400

	p->static_prio = NICE_TO_PRIO(nice);
4401
	set_load_weight(p);
4402 4403 4404
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4405

I
Ingo Molnar 已提交
4406
	if (on_rq) {
4407
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4408
		/*
4409 4410
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4411
		 */
4412
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4420 4421 4422 4423 4424
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4425
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4426
{
4427 4428
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4429

4430
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4431 4432 4433
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4443
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4444
{
4445
	long nice, retval;
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450 4451

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4452 4453
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4454 4455 4456
	if (increment > 40)
		increment = 40;

4457
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4458 4459 4460 4461 4462
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4463 4464 4465
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4484
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491 4492
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4493
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4494 4495 4496
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4497
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4512
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4513 4514 4515 4516 4517 4518 4519 4520
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4521
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4522
{
4523
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4524 4525 4526
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4527 4528
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4529
{
I
Ingo Molnar 已提交
4530
	BUG_ON(p->se.on_rq);
4531

L
Linus Torvalds 已提交
4532 4533
	p->policy = policy;
	p->rt_priority = prio;
4534 4535 4536
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4537 4538 4539 4540
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4541
	set_load_weight(p);
L
Linus Torvalds 已提交
4542 4543
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4560 4561
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4562
{
4563
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4564
	unsigned long flags;
4565
	const struct sched_class *prev_class;
4566
	struct rq *rq;
4567
	int reset_on_fork;
L
Linus Torvalds 已提交
4568

4569 4570
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4571 4572
recheck:
	/* double check policy once rq lock held */
4573 4574
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4575
		policy = oldpolicy = p->policy;
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4586 4587
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4588 4589
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4590 4591
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4592
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4593
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4594
		return -EINVAL;
4595
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4596 4597
		return -EINVAL;

4598 4599 4600
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4601
	if (user && !capable(CAP_SYS_NICE)) {
4602
		if (rt_policy(policy)) {
4603 4604 4605 4606
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4607
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4619 4620 4621 4622 4623 4624
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4625

4626
		/* can't change other user's priorities */
4627
		if (!check_same_owner(p))
4628
			return -EPERM;
4629 4630 4631 4632

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4633
	}
L
Linus Torvalds 已提交
4634

4635 4636 4637 4638 4639 4640
	if (user) {
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4641 4642 4643 4644
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4645
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4646 4647 4648 4649
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4650
	rq = __task_rq_lock(p);
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666

#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0) {
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4667 4668 4669
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4670
		__task_rq_unlock(rq);
4671
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4672 4673
		goto recheck;
	}
I
Ingo Molnar 已提交
4674
	on_rq = p->se.on_rq;
4675
	running = task_current(rq, p);
4676
	if (on_rq)
4677
		deactivate_task(rq, p, 0);
4678 4679
	if (running)
		p->sched_class->put_prev_task(rq, p);
4680

4681 4682
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4683
	oldprio = p->prio;
4684
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4685
	__setscheduler(rq, p, policy, param->sched_priority);
4686

4687 4688
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4689 4690
	if (on_rq) {
		activate_task(rq, p, 0);
4691 4692

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4693
	}
4694
	__task_rq_unlock(rq);
4695
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4696

4697 4698
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4699 4700
	return 0;
}
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4715 4716
EXPORT_SYMBOL_GPL(sched_setscheduler);

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4734 4735
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4736 4737 4738
{
	struct sched_param lparam;
	struct task_struct *p;
4739
	int retval;
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4745 4746 4747

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4748
	p = find_process_by_pid(pid);
4749 4750 4751
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4752

L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4762 4763
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4764
{
4765 4766 4767 4768
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4769 4770 4771 4772 4773 4774 4775 4776
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4777
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4778 4779 4780 4781 4782 4783 4784 4785
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4786
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4787
{
4788
	struct task_struct *p;
4789
	int retval;
L
Linus Torvalds 已提交
4790 4791

	if (pid < 0)
4792
		return -EINVAL;
L
Linus Torvalds 已提交
4793 4794

	retval = -ESRCH;
4795
	rcu_read_lock();
L
Linus Torvalds 已提交
4796 4797 4798 4799
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4800 4801
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4802
	}
4803
	rcu_read_unlock();
L
Linus Torvalds 已提交
4804 4805 4806 4807
	return retval;
}

/**
4808
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4809 4810 4811
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4812
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4813 4814
{
	struct sched_param lp;
4815
	struct task_struct *p;
4816
	int retval;
L
Linus Torvalds 已提交
4817 4818

	if (!param || pid < 0)
4819
		return -EINVAL;
L
Linus Torvalds 已提交
4820

4821
	rcu_read_lock();
L
Linus Torvalds 已提交
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4832
	rcu_read_unlock();
L
Linus Torvalds 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4842
	rcu_read_unlock();
L
Linus Torvalds 已提交
4843 4844 4845
	return retval;
}

4846
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4847
{
4848
	cpumask_var_t cpus_allowed, new_mask;
4849 4850
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4851

4852
	get_online_cpus();
4853
	rcu_read_lock();
L
Linus Torvalds 已提交
4854 4855 4856

	p = find_process_by_pid(pid);
	if (!p) {
4857
		rcu_read_unlock();
4858
		put_online_cpus();
L
Linus Torvalds 已提交
4859 4860 4861
		return -ESRCH;
	}

4862
	/* Prevent p going away */
L
Linus Torvalds 已提交
4863
	get_task_struct(p);
4864
	rcu_read_unlock();
L
Linus Torvalds 已提交
4865

4866 4867 4868 4869 4870 4871 4872 4873
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4874
	retval = -EPERM;
4875
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4876 4877
		goto out_unlock;

4878 4879 4880 4881
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4882 4883
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4884
 again:
4885
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4886

P
Paul Menage 已提交
4887
	if (!retval) {
4888 4889
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4890 4891 4892 4893 4894
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4895
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4896 4897 4898
			goto again;
		}
	}
L
Linus Torvalds 已提交
4899
out_unlock:
4900 4901 4902 4903
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4904
	put_task_struct(p);
4905
	put_online_cpus();
L
Linus Torvalds 已提交
4906 4907 4908 4909
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4910
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4911
{
4912 4913 4914 4915 4916
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4926 4927
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4928
{
4929
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4930 4931
	int retval;

4932 4933
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4934

4935 4936 4937 4938 4939
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4940 4941
}

4942
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4943
{
4944
	struct task_struct *p;
4945 4946
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4947 4948
	int retval;

4949
	get_online_cpus();
4950
	rcu_read_lock();
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955 4956

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4957 4958 4959 4960
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4961
	rq = task_rq_lock(p, &flags);
4962
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4963
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4964 4965

out_unlock:
4966
	rcu_read_unlock();
4967
	put_online_cpus();
L
Linus Torvalds 已提交
4968

4969
	return retval;
L
Linus Torvalds 已提交
4970 4971 4972 4973 4974 4975 4976 4977
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4978 4979
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4980 4981
{
	int ret;
4982
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4983

A
Anton Blanchard 已提交
4984
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4985 4986
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4987 4988
		return -EINVAL;

4989 4990
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4991

4992 4993
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4994
		size_t retlen = min_t(size_t, len, cpumask_size());
4995 4996

		if (copy_to_user(user_mask_ptr, mask, retlen))
4997 4998
			ret = -EFAULT;
		else
4999
			ret = retlen;
5000 5001
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5002

5003
	return ret;
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5009 5010
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5011
 */
5012
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5013
{
5014
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5015

5016
	schedstat_inc(rq, yld_count);
5017
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5024
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5025
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5033 5034 5035 5036 5037
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5038
static void __cond_resched(void)
L
Linus Torvalds 已提交
5039
{
5040 5041 5042
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5043 5044
}

5045
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5046
{
P
Peter Zijlstra 已提交
5047
	if (should_resched()) {
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052
		__cond_resched();
		return 1;
	}
	return 0;
}
5053
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5054 5055

/*
5056
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5057 5058
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5059
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5060 5061 5062
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5063
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5064
{
P
Peter Zijlstra 已提交
5065
	int resched = should_resched();
J
Jan Kara 已提交
5066 5067
	int ret = 0;

5068 5069
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5070
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5071
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5072
		if (resched)
N
Nick Piggin 已提交
5073 5074 5075
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5076
		ret = 1;
L
Linus Torvalds 已提交
5077 5078
		spin_lock(lock);
	}
J
Jan Kara 已提交
5079
	return ret;
L
Linus Torvalds 已提交
5080
}
5081
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5082

5083
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5084 5085 5086
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5087
	if (should_resched()) {
5088
		local_bh_enable();
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093 5094
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5095
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5096 5097 5098 5099

/**
 * yield - yield the current processor to other threads.
 *
5100
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5111
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5112 5113 5114 5115
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5116
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5117

5118
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5119
	atomic_inc(&rq->nr_iowait);
5120
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5121
	schedule();
5122
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5123
	atomic_dec(&rq->nr_iowait);
5124
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5130
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5131 5132
	long ret;

5133
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5134
	atomic_inc(&rq->nr_iowait);
5135
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5136
	ret = schedule_timeout(timeout);
5137
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5138
	atomic_dec(&rq->nr_iowait);
5139
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5150
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5151 5152 5153 5154 5155 5156 5157 5158 5159
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5160
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5161
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5175
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5185
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5186
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5200
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5201
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5202
{
5203
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5204
	unsigned int time_slice;
5205 5206
	unsigned long flags;
	struct rq *rq;
5207
	int retval;
L
Linus Torvalds 已提交
5208 5209 5210
	struct timespec t;

	if (pid < 0)
5211
		return -EINVAL;
L
Linus Torvalds 已提交
5212 5213

	retval = -ESRCH;
5214
	rcu_read_lock();
L
Linus Torvalds 已提交
5215 5216 5217 5218 5219 5220 5221 5222
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5223 5224 5225
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5226

5227
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5228
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5229 5230
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5231

L
Linus Torvalds 已提交
5232
out_unlock:
5233
	rcu_read_unlock();
L
Linus Torvalds 已提交
5234 5235 5236
	return retval;
}

5237
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5238

5239
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5240 5241
{
	unsigned long free = 0;
5242
	unsigned state;
L
Linus Torvalds 已提交
5243 5244

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5245
	printk(KERN_INFO "%-13.13s %c", p->comm,
5246
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5247
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5248
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5249
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5250
	else
P
Peter Zijlstra 已提交
5251
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5252 5253
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5254
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5255
	else
P
Peter Zijlstra 已提交
5256
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5257 5258
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5259
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5260
#endif
P
Peter Zijlstra 已提交
5261
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5262 5263
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5264

5265
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5266 5267
}

I
Ingo Molnar 已提交
5268
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5269
{
5270
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5271

5272
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5273 5274
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5275
#else
P
Peter Zijlstra 已提交
5276 5277
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282 5283 5284 5285
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5286
		if (!state_filter || (p->state & state_filter))
5287
			sched_show_task(p);
L
Linus Torvalds 已提交
5288 5289
	} while_each_thread(g, p);

5290 5291
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5292 5293 5294
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5295
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5296 5297 5298
	/*
	 * Only show locks if all tasks are dumped:
	 */
5299
	if (!state_filter)
I
Ingo Molnar 已提交
5300
		debug_show_all_locks();
L
Linus Torvalds 已提交
5301 5302
}

I
Ingo Molnar 已提交
5303 5304
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5305
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5306 5307
}

5308 5309 5310 5311 5312 5313 5314 5315
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5316
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5317
{
5318
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5319 5320
	unsigned long flags;

5321
	raw_spin_lock_irqsave(&rq->lock, flags);
5322

I
Ingo Molnar 已提交
5323
	__sched_fork(idle);
5324
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5325 5326
	idle->se.exec_start = sched_clock();

5327
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5328
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5329 5330

	rq->curr = rq->idle = idle;
5331 5332 5333
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5334
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5335 5336

	/* Set the preempt count _outside_ the spinlocks! */
5337 5338 5339
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5340
	task_thread_info(idle)->preempt_count = 0;
5341
#endif
I
Ingo Molnar 已提交
5342 5343 5344 5345
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5346
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5347 5348 5349 5350 5351 5352 5353
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5354
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5355
 */
5356
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5357

I
Ingo Molnar 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5367
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5368
{
5369
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5384

5385 5386
	return factor;
}
I
Ingo Molnar 已提交
5387

5388 5389 5390
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5391

5392 5393 5394 5395 5396 5397 5398 5399
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5400

5401 5402 5403
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5404 5405
}

L
Linus Torvalds 已提交
5406 5407 5408 5409
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5410 5411 5412 5413 5414 5415
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5416
 *    it and puts it into the right queue.
5417 5418
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5419 5420 5421 5422 5423 5424 5425 5426
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5427
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5428 5429
 * call is not atomic; no spinlocks may be held.
 */
5430
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5431 5432
{
	unsigned long flags;
5433
	struct rq *rq;
5434
	unsigned int dest_cpu;
5435
	int ret = 0;
L
Linus Torvalds 已提交
5436

P
Peter Zijlstra 已提交
5437 5438 5439 5440 5441 5442 5443
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5444
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5445 5446 5447 5448
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5449

5450
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5451 5452 5453 5454
		ret = -EINVAL;
		goto out;
	}

5455
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5456
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5457 5458 5459 5460
		ret = -EINVAL;
		goto out;
	}

5461
	if (p->sched_class->set_cpus_allowed)
5462
		p->sched_class->set_cpus_allowed(p, new_mask);
5463
	else {
5464 5465
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5466 5467
	}

L
Linus Torvalds 已提交
5468
	/* Can the task run on the task's current CPU? If so, we're done */
5469
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5470 5471
		goto out;

5472 5473 5474
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5475 5476
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5477
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5478 5479 5480 5481 5482
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5483

L
Linus Torvalds 已提交
5484 5485
	return ret;
}
5486
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5487 5488

/*
I
Ingo Molnar 已提交
5489
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5496 5497
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5498
 */
5499
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5500
{
5501
	struct rq *rq_dest, *rq_src;
5502
	int ret = 0;
L
Linus Torvalds 已提交
5503

5504
	if (unlikely(!cpu_active(dest_cpu)))
5505
		return ret;
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511 5512

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5513
		goto done;
L
Linus Torvalds 已提交
5514
	/* Affinity changed (again). */
5515
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5516
		goto fail;
L
Linus Torvalds 已提交
5517

5518 5519 5520 5521 5522
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5523
		deactivate_task(rq_src, p, 0);
5524
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5525
		activate_task(rq_dest, p, 0);
5526
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5527
	}
L
Linus Torvalds 已提交
5528
done:
5529
	ret = 1;
L
Linus Torvalds 已提交
5530
fail:
L
Linus Torvalds 已提交
5531
	double_rq_unlock(rq_src, rq_dest);
5532
	return ret;
L
Linus Torvalds 已提交
5533 5534 5535
}

/*
5536 5537 5538
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5539
 */
5540
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5541
{
5542
	struct migration_arg *arg = data;
5543

5544 5545 5546 5547
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5548
	local_irq_disable();
5549
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5550
	local_irq_enable();
L
Linus Torvalds 已提交
5551
	return 0;
5552 5553
}

L
Linus Torvalds 已提交
5554
#ifdef CONFIG_HOTPLUG_CPU
5555
/*
5556
 * Figure out where task on dead CPU should go, use force if necessary.
5557
 */
5558
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5559
{
5560 5561 5562
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5563

5564
	local_irq_save(flags);
5565

5566 5567 5568 5569 5570
	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5571 5572 5573 5574
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5575
	if (needs_cpu)
5576
		__migrate_task(p, dead_cpu, dest_cpu);
5577
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5587
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5588
{
5589
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5603
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5604

5605
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5606

5607 5608
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5609 5610
			continue;

5611 5612 5613
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5614

5615
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5616 5617
}

I
Ingo Molnar 已提交
5618 5619
/*
 * Schedules idle task to be the next runnable task on current CPU.
5620 5621
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5622 5623 5624
 */
void sched_idle_next(void)
{
5625
	int this_cpu = smp_processor_id();
5626
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5627 5628 5629 5630
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5631
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5632

5633 5634 5635
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5636
	 */
5637
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5638

I
Ingo Molnar 已提交
5639
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5640

5641
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5642

5643
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5644 5645
}

5646 5647
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5661
/* called under rq->lock with disabled interrupts */
5662
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5663
{
5664
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5665 5666

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5667
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5668 5669

	/* Cannot have done final schedule yet: would have vanished. */
5670
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5671

5672
	get_task_struct(p);
L
Linus Torvalds 已提交
5673 5674 5675

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5676
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5677 5678
	 * fine.
	 */
5679
	raw_spin_unlock_irq(&rq->lock);
5680
	move_task_off_dead_cpu(dead_cpu, p);
5681
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5682

5683
	put_task_struct(p);
L
Linus Torvalds 已提交
5684 5685 5686 5687 5688
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5689
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5690
	struct task_struct *next;
5691

I
Ingo Molnar 已提交
5692 5693 5694
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5695
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5696 5697
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5698
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5699
		migrate_dead(dead_cpu, next);
5700

L
Linus Torvalds 已提交
5701 5702
	}
}
5703 5704 5705 5706 5707 5708 5709

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5710
	rq->calc_load_active = 0;
5711
}
L
Linus Torvalds 已提交
5712 5713
#endif /* CONFIG_HOTPLUG_CPU */

5714 5715 5716
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5717 5718
	{
		.procname	= "sched_domain",
5719
		.mode		= 0555,
5720
	},
5721
	{}
5722 5723 5724
};

static struct ctl_table sd_ctl_root[] = {
5725 5726
	{
		.procname	= "kernel",
5727
		.mode		= 0555,
5728 5729
		.child		= sd_ctl_dir,
	},
5730
	{}
5731 5732 5733 5734 5735
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5736
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5737 5738 5739 5740

	return entry;
}

5741 5742
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5743
	struct ctl_table *entry;
5744

5745 5746 5747
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5748
	 * will always be set. In the lowest directory the names are
5749 5750 5751
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5752 5753
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5754 5755 5756
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5757 5758 5759 5760 5761

	kfree(*tablep);
	*tablep = NULL;
}

5762
static void
5763
set_table_entry(struct ctl_table *entry,
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5777
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5778

5779 5780 5781
	if (table == NULL)
		return NULL;

5782
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5783
		sizeof(long), 0644, proc_doulongvec_minmax);
5784
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5785
		sizeof(long), 0644, proc_doulongvec_minmax);
5786
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5787
		sizeof(int), 0644, proc_dointvec_minmax);
5788
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5789
		sizeof(int), 0644, proc_dointvec_minmax);
5790
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5791
		sizeof(int), 0644, proc_dointvec_minmax);
5792
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5793
		sizeof(int), 0644, proc_dointvec_minmax);
5794
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5795
		sizeof(int), 0644, proc_dointvec_minmax);
5796
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5797
		sizeof(int), 0644, proc_dointvec_minmax);
5798
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5799
		sizeof(int), 0644, proc_dointvec_minmax);
5800
	set_table_entry(&table[9], "cache_nice_tries",
5801 5802
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5803
	set_table_entry(&table[10], "flags", &sd->flags,
5804
		sizeof(int), 0644, proc_dointvec_minmax);
5805 5806 5807
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5808 5809 5810 5811

	return table;
}

5812
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5813 5814 5815 5816 5817 5818 5819 5820 5821
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5822 5823
	if (table == NULL)
		return NULL;
5824 5825 5826 5827 5828

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5829
		entry->mode = 0555;
5830 5831 5832 5833 5834 5835 5836 5837
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5838
static void register_sched_domain_sysctl(void)
5839
{
5840
	int i, cpu_num = num_possible_cpus();
5841 5842 5843
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5844 5845 5846
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5847 5848 5849
	if (entry == NULL)
		return;

5850
	for_each_possible_cpu(i) {
5851 5852
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5853
		entry->mode = 0555;
5854
		entry->child = sd_alloc_ctl_cpu_table(i);
5855
		entry++;
5856
	}
5857 5858

	WARN_ON(sd_sysctl_header);
5859 5860
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5861

5862
/* may be called multiple times per register */
5863 5864
static void unregister_sched_domain_sysctl(void)
{
5865 5866
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5867
	sd_sysctl_header = NULL;
5868 5869
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5870
}
5871
#else
5872 5873 5874 5875
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5876 5877 5878 5879
{
}
#endif

5880 5881 5882 5883 5884
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5885
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5905
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5906 5907 5908 5909
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5910 5911 5912 5913
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5914 5915
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5916
{
5917
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5918
	unsigned long flags;
5919
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5920 5921

	switch (action) {
5922

L
Linus Torvalds 已提交
5923
	case CPU_UP_PREPARE:
5924
	case CPU_UP_PREPARE_FROZEN:
5925
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5926
		break;
5927

L
Linus Torvalds 已提交
5928
	case CPU_ONLINE:
5929
	case CPU_ONLINE_FROZEN:
5930
		/* Update our root-domain */
5931
		raw_spin_lock_irqsave(&rq->lock, flags);
5932
		if (rq->rd) {
5933
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5934 5935

			set_rq_online(rq);
5936
		}
5937
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5938
		break;
5939

L
Linus Torvalds 已提交
5940 5941
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5942
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5943 5944
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5945
		raw_spin_lock_irq(&rq->lock);
5946
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5947 5948
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5949
		migrate_dead_tasks(cpu);
5950
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5951 5952
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5953
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5954
		break;
G
Gregory Haskins 已提交
5955

5956 5957
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5958
		/* Update our root-domain */
5959
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5960
		if (rq->rd) {
5961
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5962
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5963
		}
5964
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5965
		break;
L
Linus Torvalds 已提交
5966 5967 5968 5969 5970
#endif
	}
	return NOTIFY_OK;
}

5971 5972 5973
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5974
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5975
 */
5976
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5977
	.notifier_call = migration_call,
5978
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5979 5980
};

5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6006
static int __init migration_init(void)
L
Linus Torvalds 已提交
6007 6008
{
	void *cpu = (void *)(long)smp_processor_id();
6009
	int err;
6010

6011
	/* Initialize migration for the boot CPU */
6012 6013
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6014 6015
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6016

6017 6018 6019 6020
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6021
	return 0;
L
Linus Torvalds 已提交
6022
}
6023
early_initcall(migration_init);
L
Linus Torvalds 已提交
6024 6025 6026
#endif

#ifdef CONFIG_SMP
6027

6028
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6029

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6040
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6041
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6042
{
I
Ingo Molnar 已提交
6043
	struct sched_group *group = sd->groups;
6044
	char str[256];
L
Linus Torvalds 已提交
6045

R
Rusty Russell 已提交
6046
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6047
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6048 6049 6050 6051

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6052
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6053
		if (sd->parent)
P
Peter Zijlstra 已提交
6054 6055
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6056
		return -1;
N
Nick Piggin 已提交
6057 6058
	}

P
Peter Zijlstra 已提交
6059
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6060

6061
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6062 6063
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6064
	}
6065
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6066 6067
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6068
	}
L
Linus Torvalds 已提交
6069

I
Ingo Molnar 已提交
6070
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6071
	do {
I
Ingo Molnar 已提交
6072
		if (!group) {
P
Peter Zijlstra 已提交
6073 6074
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6075 6076 6077
			break;
		}

6078
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6079 6080 6081
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6082 6083
			break;
		}
L
Linus Torvalds 已提交
6084

6085
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6086 6087
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6088 6089
			break;
		}
L
Linus Torvalds 已提交
6090

6091
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6092 6093
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6094 6095
			break;
		}
L
Linus Torvalds 已提交
6096

6097
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6098

R
Rusty Russell 已提交
6099
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6100

P
Peter Zijlstra 已提交
6101
		printk(KERN_CONT " %s", str);
6102
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6103 6104
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6105
		}
L
Linus Torvalds 已提交
6106

I
Ingo Molnar 已提交
6107 6108
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6109
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6110

6111
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6112
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6113

6114 6115
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6116 6117
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6118 6119
	return 0;
}
L
Linus Torvalds 已提交
6120

I
Ingo Molnar 已提交
6121 6122
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6123
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6124
	int level = 0;
L
Linus Torvalds 已提交
6125

6126 6127 6128
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6129 6130 6131 6132
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6133

I
Ingo Molnar 已提交
6134 6135
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6136
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6137 6138 6139 6140
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6141
	for (;;) {
6142
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6143
			break;
L
Linus Torvalds 已提交
6144 6145
		level++;
		sd = sd->parent;
6146
		if (!sd)
I
Ingo Molnar 已提交
6147 6148
			break;
	}
6149
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6150
}
6151
#else /* !CONFIG_SCHED_DEBUG */
6152
# define sched_domain_debug(sd, cpu) do { } while (0)
6153
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6154

6155
static int sd_degenerate(struct sched_domain *sd)
6156
{
6157
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6158 6159 6160 6161 6162 6163
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6164 6165 6166
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6167 6168 6169 6170 6171
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6172
	if (sd->flags & (SD_WAKE_AFFINE))
6173 6174 6175 6176 6177
		return 0;

	return 1;
}

6178 6179
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6180 6181 6182 6183 6184 6185
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6186
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6187 6188 6189 6190 6191 6192 6193
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6194 6195 6196
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6197 6198
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6199 6200 6201 6202 6203 6204 6205
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6206 6207
static void free_rootdomain(struct root_domain *rd)
{
6208 6209
	synchronize_sched();

6210 6211
	cpupri_cleanup(&rd->cpupri);

6212 6213 6214 6215 6216 6217
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6218 6219
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6220
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6221 6222
	unsigned long flags;

6223
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6224 6225

	if (rq->rd) {
I
Ingo Molnar 已提交
6226
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6227

6228
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6229
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6230

6231
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6232

I
Ingo Molnar 已提交
6233 6234 6235 6236 6237 6238 6239
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6240 6241 6242 6243 6244
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6245
	cpumask_set_cpu(rq->cpu, rd->span);
6246
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6247
		set_rq_online(rq);
G
Gregory Haskins 已提交
6248

6249
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6250 6251 6252

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6253 6254
}

L
Li Zefan 已提交
6255
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6256
{
6257 6258
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6259 6260
	memset(rd, 0, sizeof(*rd));

6261 6262
	if (bootmem)
		gfp = GFP_NOWAIT;
6263

6264
	if (!alloc_cpumask_var(&rd->span, gfp))
6265
		goto out;
6266
	if (!alloc_cpumask_var(&rd->online, gfp))
6267
		goto free_span;
6268
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6269
		goto free_online;
6270

P
Pekka Enberg 已提交
6271
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6272
		goto free_rto_mask;
6273
	return 0;
6274

6275 6276
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6277 6278 6279 6280
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6281
out:
6282
	return -ENOMEM;
G
Gregory Haskins 已提交
6283 6284 6285 6286
}

static void init_defrootdomain(void)
{
6287 6288
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6289 6290 6291
	atomic_set(&def_root_domain.refcount, 1);
}

6292
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6293 6294 6295 6296 6297 6298 6299
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6300 6301 6302 6303
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6304 6305 6306 6307

	return rd;
}

L
Linus Torvalds 已提交
6308
/*
I
Ingo Molnar 已提交
6309
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6310 6311
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6312 6313
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6314
{
6315
	struct rq *rq = cpu_rq(cpu);
6316 6317
	struct sched_domain *tmp;

6318 6319 6320
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6321
	/* Remove the sched domains which do not contribute to scheduling. */
6322
	for (tmp = sd; tmp; ) {
6323 6324 6325
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6326

6327
		if (sd_parent_degenerate(tmp, parent)) {
6328
			tmp->parent = parent->parent;
6329 6330
			if (parent->parent)
				parent->parent->child = tmp;
6331 6332
		} else
			tmp = tmp->parent;
6333 6334
	}

6335
	if (sd && sd_degenerate(sd)) {
6336
		sd = sd->parent;
6337 6338 6339
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6340 6341 6342

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6343
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6344
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6345 6346 6347
}

/* cpus with isolated domains */
6348
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6349 6350 6351 6352

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6353
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6354
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6355 6356 6357
	return 1;
}

I
Ingo Molnar 已提交
6358
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6359 6360

/*
6361 6362
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6363 6364
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6365 6366 6367 6368 6369
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6370
static void
6371 6372 6373
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6374
					struct sched_group **sg,
6375 6376
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6377 6378 6379 6380
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6381
	cpumask_clear(covered);
6382

6383
	for_each_cpu(i, span) {
6384
		struct sched_group *sg;
6385
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6386 6387
		int j;

6388
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6389 6390
			continue;

6391
		cpumask_clear(sched_group_cpus(sg));
6392
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6393

6394
		for_each_cpu(j, span) {
6395
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6396 6397
				continue;

6398
			cpumask_set_cpu(j, covered);
6399
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6410
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6411

6412
#ifdef CONFIG_NUMA
6413

6414 6415 6416 6417 6418
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6419
 * Find the next node to include in a given scheduling domain. Simply
6420 6421 6422 6423
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6424
static int find_next_best_node(int node, nodemask_t *used_nodes)
6425 6426 6427 6428 6429
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6430
	for (i = 0; i < nr_node_ids; i++) {
6431
		/* Start at @node */
6432
		n = (node + i) % nr_node_ids;
6433 6434 6435 6436 6437

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6438
		if (node_isset(n, *used_nodes))
6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6450
	node_set(best_node, *used_nodes);
6451 6452 6453 6454 6455 6456
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6457
 * @span: resulting cpumask
6458
 *
I
Ingo Molnar 已提交
6459
 * Given a node, construct a good cpumask for its sched_domain to span. It
6460 6461 6462
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6463
static void sched_domain_node_span(int node, struct cpumask *span)
6464
{
6465
	nodemask_t used_nodes;
6466
	int i;
6467

6468
	cpumask_clear(span);
6469
	nodes_clear(used_nodes);
6470

6471
	cpumask_or(span, span, cpumask_of_node(node));
6472
	node_set(node, used_nodes);
6473 6474

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6475
		int next_node = find_next_best_node(node, &used_nodes);
6476

6477
		cpumask_or(span, span, cpumask_of_node(next_node));
6478 6479
	}
}
6480
#endif /* CONFIG_NUMA */
6481

6482
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6483

6484 6485
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6486 6487 6488
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6533
/*
6534
 * SMT sched-domains:
6535
 */
L
Linus Torvalds 已提交
6536
#ifdef CONFIG_SCHED_SMT
6537
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6538
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6539

I
Ingo Molnar 已提交
6540
static int
6541 6542
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6543
{
6544
	if (sg)
6545
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6546 6547
	return cpu;
}
6548
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6549

6550 6551 6552
/*
 * multi-core sched-domains:
 */
6553
#ifdef CONFIG_SCHED_MC
6554 6555
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6556
#endif /* CONFIG_SCHED_MC */
6557 6558

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6559
static int
6560 6561
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6562
{
6563
	int group;
6564

6565
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6566
	group = cpumask_first(mask);
6567
	if (sg)
6568
		*sg = &per_cpu(sched_group_core, group).sg;
6569
	return group;
6570 6571
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6572
static int
6573 6574
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6575
{
6576
	if (sg)
6577
		*sg = &per_cpu(sched_group_core, cpu).sg;
6578 6579 6580 6581
	return cpu;
}
#endif

6582 6583
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6584

I
Ingo Molnar 已提交
6585
static int
6586 6587
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6588
{
6589
	int group;
6590
#ifdef CONFIG_SCHED_MC
6591
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6592
	group = cpumask_first(mask);
6593
#elif defined(CONFIG_SCHED_SMT)
6594
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6595
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6596
#else
6597
	group = cpu;
L
Linus Torvalds 已提交
6598
#endif
6599
	if (sg)
6600
		*sg = &per_cpu(sched_group_phys, group).sg;
6601
	return group;
L
Linus Torvalds 已提交
6602 6603 6604 6605
}

#ifdef CONFIG_NUMA
/*
6606 6607 6608
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6609
 */
6610
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6611
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6612

6613
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6614
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6615

6616 6617 6618
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6619
{
6620 6621
	int group;

6622
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6623
	group = cpumask_first(nodemask);
6624 6625

	if (sg)
6626
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6627
	return group;
L
Linus Torvalds 已提交
6628
}
6629

6630 6631 6632 6633 6634 6635 6636
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6637
	do {
6638
		for_each_cpu(j, sched_group_cpus(sg)) {
6639
			struct sched_domain *sd;
6640

6641
			sd = &per_cpu(phys_domains, j).sd;
6642
			if (j != group_first_cpu(sd->groups)) {
6643 6644 6645 6646 6647 6648
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6649

6650
			sg->cpu_power += sd->groups->cpu_power;
6651 6652 6653
		}
		sg = sg->next;
	} while (sg != group_head);
6654
}
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6676 6677
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6678 6679 6680 6681 6682 6683 6684 6685 6686
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6687
	sg->cpu_power = 0;
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6706 6707
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6708 6709
			return -ENOMEM;
		}
6710
		sg->cpu_power = 0;
6711 6712 6713 6714 6715 6716 6717 6718 6719
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6720
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6721

6722
#ifdef CONFIG_NUMA
6723
/* Free memory allocated for various sched_group structures */
6724 6725
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6726
{
6727
	int cpu, i;
6728

6729
	for_each_cpu(cpu, cpu_map) {
6730 6731 6732 6733 6734 6735
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6736
		for (i = 0; i < nr_node_ids; i++) {
6737 6738
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6739
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6740
			if (cpumask_empty(nodemask))
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6757
#else /* !CONFIG_NUMA */
6758 6759
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6760 6761
{
}
6762
#endif /* CONFIG_NUMA */
6763

6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6778 6779
	long power;
	int weight;
6780 6781 6782

	WARN_ON(!sd || !sd->groups);

6783
	if (cpu != group_first_cpu(sd->groups))
6784 6785 6786 6787
		return;

	child = sd->child;

6788
	sd->groups->cpu_power = 0;
6789

6790 6791 6792 6793 6794
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6795 6796 6797
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6798
		 */
P
Peter Zijlstra 已提交
6799 6800
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6801
			power /= weight;
P
Peter Zijlstra 已提交
6802 6803
			power >>= SCHED_LOAD_SHIFT;
		}
6804
		sd->groups->cpu_power += power;
6805 6806 6807 6808
		return;
	}

	/*
6809
	 * Add cpu_power of each child group to this groups cpu_power.
6810 6811 6812
	 */
	group = child->groups;
	do {
6813
		sd->groups->cpu_power += group->cpu_power;
6814 6815 6816 6817
		group = group->next;
	} while (group != child->groups);
}

6818 6819 6820 6821 6822
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6823 6824 6825 6826 6827 6828
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6829
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6830

6831 6832 6833 6834 6835
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6836
	sd->level = SD_LV_##type;				\
6837
	SD_INIT_NAME(sd, type);					\
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6852 6853 6854 6855
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6856 6857 6858 6859 6860 6861
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6880
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6881 6882
	} else {
		/* turn on idle balance on this domain */
6883
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6884 6885 6886
	}
}

6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6907
#ifdef CONFIG_NUMA
6908 6909 6910 6911 6912 6913 6914
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6915
#endif
6916 6917 6918 6919
	case sa_none:
		break;
	}
}
6920

6921 6922 6923
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6924
#ifdef CONFIG_NUMA
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6935
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6936
		return sa_notcovered;
6937
	}
6938
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6939
#endif
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6952
		printk(KERN_WARNING "Cannot alloc root domain\n");
6953
		return sa_tmpmask;
G
Gregory Haskins 已提交
6954
	}
6955 6956
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6957

6958 6959 6960 6961
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6962
#ifdef CONFIG_NUMA
6963
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6964

6965 6966 6967 6968 6969
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6970
		set_domain_attribute(sd, attr);
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6985
#endif
6986 6987
	return sd;
}
L
Linus Torvalds 已提交
6988

6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7004

7005 7006 7007 7008 7009
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7010
#ifdef CONFIG_SCHED_MC
7011 7012 7013 7014 7015 7016 7017
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7018
#endif
7019 7020
	return sd;
}
7021

7022 7023 7024 7025 7026
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7027
#ifdef CONFIG_SCHED_SMT
7028 7029 7030 7031 7032 7033 7034
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7035
#endif
7036 7037
	return sd;
}
L
Linus Torvalds 已提交
7038

7039 7040 7041 7042
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7043
#ifdef CONFIG_SCHED_SMT
7044 7045 7046 7047 7048 7049 7050 7051
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7052
#endif
7053
#ifdef CONFIG_SCHED_MC
7054 7055 7056 7057 7058 7059 7060
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7061
#endif
7062 7063 7064 7065 7066 7067 7068
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7069
#ifdef CONFIG_NUMA
7070 7071 7072 7073 7074
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7075 7076
	default:
		break;
7077
	}
7078
}
7079

7080 7081 7082 7083 7084 7085 7086 7087 7088
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7089
	struct sched_domain *sd;
7090
	int i;
7091
#ifdef CONFIG_NUMA
7092
	d.sd_allnodes = 0;
7093
#endif
7094

7095 7096 7097 7098
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7099

L
Linus Torvalds 已提交
7100
	/*
7101
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7102
	 */
7103
	for_each_cpu(i, cpu_map) {
7104 7105
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7106

7107
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7108
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7109
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7110
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7111
	}
7112

7113
	for_each_cpu(i, cpu_map) {
7114
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7115
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7116
	}
7117

L
Linus Torvalds 已提交
7118
	/* Set up physical groups */
7119 7120
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7121

L
Linus Torvalds 已提交
7122 7123
#ifdef CONFIG_NUMA
	/* Set up node groups */
7124 7125
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7126

7127 7128
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7129
			goto error;
L
Linus Torvalds 已提交
7130 7131 7132
#endif

	/* Calculate CPU power for physical packages and nodes */
7133
#ifdef CONFIG_SCHED_SMT
7134
	for_each_cpu(i, cpu_map) {
7135
		sd = &per_cpu(cpu_domains, i).sd;
7136
		init_sched_groups_power(i, sd);
7137
	}
L
Linus Torvalds 已提交
7138
#endif
7139
#ifdef CONFIG_SCHED_MC
7140
	for_each_cpu(i, cpu_map) {
7141
		sd = &per_cpu(core_domains, i).sd;
7142
		init_sched_groups_power(i, sd);
7143 7144
	}
#endif
7145

7146
	for_each_cpu(i, cpu_map) {
7147
		sd = &per_cpu(phys_domains, i).sd;
7148
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7149 7150
	}

7151
#ifdef CONFIG_NUMA
7152
	for (i = 0; i < nr_node_ids; i++)
7153
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7154

7155
	if (d.sd_allnodes) {
7156
		struct sched_group *sg;
7157

7158
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7159
								d.tmpmask);
7160 7161
		init_numa_sched_groups_power(sg);
	}
7162 7163
#endif

L
Linus Torvalds 已提交
7164
	/* Attach the domains */
7165
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7166
#ifdef CONFIG_SCHED_SMT
7167
		sd = &per_cpu(cpu_domains, i).sd;
7168
#elif defined(CONFIG_SCHED_MC)
7169
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7170
#else
7171
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7172
#endif
7173
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7174
	}
7175

7176 7177 7178
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7179 7180

error:
7181 7182
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7183
}
P
Paul Jackson 已提交
7184

7185
static int build_sched_domains(const struct cpumask *cpu_map)
7186 7187 7188 7189
{
	return __build_sched_domains(cpu_map, NULL);
}

7190
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7191
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7192 7193
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7194 7195 7196

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7197 7198
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7199
 */
7200
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7201

7202 7203 7204 7205 7206 7207
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7208
{
7209
	return 0;
7210 7211
}

7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7237
/*
I
Ingo Molnar 已提交
7238
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7239 7240
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7241
 */
7242
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7243
{
7244 7245
	int err;

7246
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7247
	ndoms_cur = 1;
7248
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7249
	if (!doms_cur)
7250 7251
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7252
	dattr_cur = NULL;
7253
	err = build_sched_domains(doms_cur[0]);
7254
	register_sched_domain_sysctl();
7255 7256

	return err;
7257 7258
}

7259 7260
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7261
{
7262
	free_sched_groups(cpu_map, tmpmask);
7263
}
L
Linus Torvalds 已提交
7264

7265 7266 7267 7268
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7269
static void detach_destroy_domains(const struct cpumask *cpu_map)
7270
{
7271 7272
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7273 7274
	int i;

7275
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7276
		cpu_attach_domain(NULL, &def_root_domain, i);
7277
	synchronize_sched();
7278
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7279 7280
}

7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7297 7298
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7299
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7300 7301 7302
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7303
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7304 7305 7306
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7307 7308 7309
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7310 7311 7312 7313 7314 7315
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7316
 *
7317
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7318 7319
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7320
 *
P
Paul Jackson 已提交
7321 7322
 * Call with hotplug lock held
 */
7323
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7324
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7325
{
7326
	int i, j, n;
7327
	int new_topology;
P
Paul Jackson 已提交
7328

7329
	mutex_lock(&sched_domains_mutex);
7330

7331 7332 7333
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7334 7335 7336
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7337
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7338 7339 7340

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7341
		for (j = 0; j < n && !new_topology; j++) {
7342
			if (cpumask_equal(doms_cur[i], doms_new[j])
7343
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7344 7345 7346
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7347
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7348 7349 7350 7351
match1:
		;
	}

7352 7353
	if (doms_new == NULL) {
		ndoms_cur = 0;
7354
		doms_new = &fallback_doms;
7355
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7356
		WARN_ON_ONCE(dattr_new);
7357 7358
	}

P
Paul Jackson 已提交
7359 7360
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7361
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7362
			if (cpumask_equal(doms_new[i], doms_cur[j])
7363
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7364 7365 7366
				goto match2;
		}
		/* no match - add a new doms_new */
7367
		__build_sched_domains(doms_new[i],
7368
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7369 7370 7371 7372 7373
match2:
		;
	}

	/* Remember the new sched domains */
7374 7375
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7376
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7377
	doms_cur = doms_new;
7378
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7379
	ndoms_cur = ndoms_new;
7380 7381

	register_sched_domain_sysctl();
7382

7383
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7384 7385
}

7386
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7387
static void arch_reinit_sched_domains(void)
7388
{
7389
	get_online_cpus();
7390 7391 7392 7393

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7394
	rebuild_sched_domains();
7395
	put_online_cpus();
7396 7397 7398 7399
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7400
	unsigned int level = 0;
7401

7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7413 7414 7415
		return -EINVAL;

	if (smt)
7416
		sched_smt_power_savings = level;
7417
	else
7418
		sched_mc_power_savings = level;
7419

7420
	arch_reinit_sched_domains();
7421

7422
	return count;
7423 7424 7425
}

#ifdef CONFIG_SCHED_MC
7426
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7427
					   struct sysdev_class_attribute *attr,
7428
					   char *page)
7429 7430 7431
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7432
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7433
					    struct sysdev_class_attribute *attr,
7434
					    const char *buf, size_t count)
7435 7436 7437
{
	return sched_power_savings_store(buf, count, 0);
}
7438 7439 7440
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7441 7442 7443
#endif

#ifdef CONFIG_SCHED_SMT
7444
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7445
					    struct sysdev_class_attribute *attr,
7446
					    char *page)
7447 7448 7449
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7450
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7451
					     struct sysdev_class_attribute *attr,
7452
					     const char *buf, size_t count)
7453 7454 7455
{
	return sched_power_savings_store(buf, count, 1);
}
7456 7457
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7458 7459 7460
		   sched_smt_power_savings_store);
#endif

7461
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7477
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7478

L
Linus Torvalds 已提交
7479
/*
7480 7481 7482
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7483
 */
7484 7485
static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
				       unsigned long action, void *hcpu)
7486
{
7487
	switch (action & ~CPU_TASKS_FROZEN) {
7488
	case CPU_ONLINE:
7489
	case CPU_DOWN_FAILED:
7490
		cpuset_update_active_cpus();
7491
		return NOTIFY_OK;
7492 7493 7494 7495
	default:
		return NOTIFY_DONE;
	}
}
7496

7497 7498 7499 7500 7501 7502 7503
static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
					 unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7504 7505 7506 7507 7508 7509 7510
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7511
{
P
Peter Zijlstra 已提交
7512 7513
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7514 7515
	switch (action) {
	case CPU_DOWN_PREPARE:
7516
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7517
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7518 7519 7520
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7521
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7522
	case CPU_ONLINE:
7523
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7524
		enable_runtime(cpu_rq(cpu));
7525 7526
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7527 7528 7529 7530 7531 7532 7533
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7534 7535 7536
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7537
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7538

7539 7540 7541 7542 7543
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7544
	get_online_cpus();
7545
	mutex_lock(&sched_domains_mutex);
7546
	arch_init_sched_domains(cpu_active_mask);
7547 7548 7549
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7550
	mutex_unlock(&sched_domains_mutex);
7551
	put_online_cpus();
7552

7553 7554
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7555 7556 7557 7558

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7559
	init_hrtick();
7560 7561

	/* Move init over to a non-isolated CPU */
7562
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7563
		BUG();
I
Ingo Molnar 已提交
7564
	sched_init_granularity();
7565
	free_cpumask_var(non_isolated_cpus);
7566

7567
	init_sched_rt_class();
L
Linus Torvalds 已提交
7568 7569 7570 7571
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7572
	sched_init_granularity();
L
Linus Torvalds 已提交
7573 7574 7575
}
#endif /* CONFIG_SMP */

7576 7577
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7578 7579 7580 7581 7582 7583 7584
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7585
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7586 7587
{
	cfs_rq->tasks_timeline = RB_ROOT;
7588
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7589 7590 7591
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7592
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7593 7594
}

P
Peter Zijlstra 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7608
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7609
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7610
#ifdef CONFIG_SMP
7611
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7612 7613
#endif
#endif
P
Peter Zijlstra 已提交
7614 7615 7616
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7617
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7618 7619 7620 7621
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7622
	rt_rq->rt_runtime = 0;
7623
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7624

7625
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7626
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7627 7628
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7629 7630
}

P
Peter Zijlstra 已提交
7631
#ifdef CONFIG_FAIR_GROUP_SCHED
7632 7633 7634
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7635
{
7636
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7637 7638 7639 7640 7641 7642 7643
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7644 7645 7646 7647
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7648 7649 7650 7651 7652
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7653 7654
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7655
	se->load.inv_weight = 0;
7656
	se->parent = parent;
P
Peter Zijlstra 已提交
7657
}
7658
#endif
P
Peter Zijlstra 已提交
7659

7660
#ifdef CONFIG_RT_GROUP_SCHED
7661 7662 7663
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7664
{
7665 7666
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7667 7668 7669
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7670
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7671 7672 7673 7674
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7675 7676 7677
	if (!rt_se)
		return;

7678 7679 7680 7681 7682
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7683
	rt_se->my_q = rt_rq;
7684
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7685 7686 7687 7688
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7689 7690
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7691
	int i, j;
7692 7693 7694 7695 7696 7697 7698
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7699
#endif
7700
#ifdef CONFIG_CPUMASK_OFFSTACK
7701
	alloc_size += num_possible_cpus() * cpumask_size();
7702 7703
#endif
	if (alloc_size) {
7704
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7705 7706 7707 7708 7709 7710 7711

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7712

7713
#endif /* CONFIG_FAIR_GROUP_SCHED */
7714 7715 7716 7717 7718
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7719 7720
		ptr += nr_cpu_ids * sizeof(void **);

7721
#endif /* CONFIG_RT_GROUP_SCHED */
7722 7723 7724 7725 7726 7727
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7728
	}
I
Ingo Molnar 已提交
7729

G
Gregory Haskins 已提交
7730 7731 7732 7733
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7734 7735 7736 7737 7738 7739
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7740
#endif /* CONFIG_RT_GROUP_SCHED */
7741

D
Dhaval Giani 已提交
7742
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7743
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7744 7745
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7746
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7747

7748 7749 7750 7751
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7752
	for_each_possible_cpu(i) {
7753
		struct rq *rq;
L
Linus Torvalds 已提交
7754 7755

		rq = cpu_rq(i);
7756
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7757
		rq->nr_running = 0;
7758 7759
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7760
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7761
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7762
#ifdef CONFIG_FAIR_GROUP_SCHED
7763
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7764
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7780
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7781 7782 7783 7784
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7785
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7786
#endif
D
Dhaval Giani 已提交
7787 7788 7789
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7790
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7791
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7792
#ifdef CONFIG_CGROUP_SCHED
7793
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7794
#endif
I
Ingo Molnar 已提交
7795
#endif
L
Linus Torvalds 已提交
7796

I
Ingo Molnar 已提交
7797 7798
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7799 7800 7801

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7802
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7803
		rq->sd = NULL;
G
Gregory Haskins 已提交
7804
		rq->rd = NULL;
7805
		rq->cpu_power = SCHED_LOAD_SCALE;
7806
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7807
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7808
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7809
		rq->push_cpu = 0;
7810
		rq->cpu = i;
7811
		rq->online = 0;
7812 7813
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7814
		rq_attach_root(rq, &def_root_domain);
7815 7816 7817 7818
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7819
#endif
P
Peter Zijlstra 已提交
7820
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7821 7822 7823
		atomic_set(&rq->nr_iowait, 0);
	}

7824
	set_load_weight(&init_task);
7825

7826 7827 7828 7829
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7830
#ifdef CONFIG_SMP
7831
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7832 7833
#endif

7834
#ifdef CONFIG_RT_MUTEXES
7835
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7836 7837
#endif

L
Linus Torvalds 已提交
7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7851 7852 7853

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7854 7855 7856 7857
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7858

7859
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7860
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7861
#ifdef CONFIG_SMP
7862
#ifdef CONFIG_NO_HZ
7863 7864 7865 7866 7867
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7868
#endif
R
Rusty Russell 已提交
7869 7870 7871
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7872
#endif /* SMP */
7873

7874
	perf_event_init();
7875

7876
	scheduler_running = 1;
L
Linus Torvalds 已提交
7877 7878 7879
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7880 7881
static inline int preempt_count_equals(int preempt_offset)
{
7882
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7883 7884 7885 7886

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7887
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7888
{
7889
#ifdef in_atomic
L
Linus Torvalds 已提交
7890 7891
	static unsigned long prev_jiffy;	/* ratelimiting */

7892 7893
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7894 7895 7896 7897 7898
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7899 7900 7901 7902 7903 7904 7905
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7906 7907 7908 7909 7910

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7911 7912 7913 7914 7915 7916
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7917 7918 7919
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7920

7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7931 7932
void normalize_rt_tasks(void)
{
7933
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7934
	unsigned long flags;
7935
	struct rq *rq;
L
Linus Torvalds 已提交
7936

7937
	read_lock_irqsave(&tasklist_lock, flags);
7938
	do_each_thread(g, p) {
7939 7940 7941 7942 7943 7944
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7945 7946
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7947 7948 7949
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7950
#endif
I
Ingo Molnar 已提交
7951 7952 7953 7954 7955 7956 7957 7958

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7959
			continue;
I
Ingo Molnar 已提交
7960
		}
L
Linus Torvalds 已提交
7961

7962
		raw_spin_lock(&p->pi_lock);
7963
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7964

7965
		normalize_task(rq, p);
7966

7967
		__task_rq_unlock(rq);
7968
		raw_spin_unlock(&p->pi_lock);
7969 7970
	} while_each_thread(g, p);

7971
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7972 7973 7974
}

#endif /* CONFIG_MAGIC_SYSRQ */
7975

7976
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7977
/*
7978
 * These functions are only useful for the IA64 MCA handling, or kdb.
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7993
struct task_struct *curr_task(int cpu)
7994 7995 7996 7997
{
	return cpu_curr(cpu);
}

7998 7999 8000
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8001 8002 8003 8004 8005 8006
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8007 8008
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8009 8010 8011 8012 8013 8014 8015
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8016
void set_curr_task(int cpu, struct task_struct *p)
8017 8018 8019 8020 8021
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8022

8023 8024
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8039 8040
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8041 8042
{
	struct cfs_rq *cfs_rq;
8043
	struct sched_entity *se;
8044
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8045 8046
	int i;

8047
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8048 8049
	if (!tg->cfs_rq)
		goto err;
8050
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8051 8052
	if (!tg->se)
		goto err;
8053 8054

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8055 8056

	for_each_possible_cpu(i) {
8057
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8058

8059 8060
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8061 8062 8063
		if (!cfs_rq)
			goto err;

8064 8065
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8066
		if (!se)
8067
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8068

8069
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8070 8071 8072 8073
	}

	return 1;

8074 8075
 err_free_rq:
	kfree(cfs_rq);
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8090
#else /* !CONFG_FAIR_GROUP_SCHED */
8091 8092 8093 8094
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8095 8096
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8108
#endif /* CONFIG_FAIR_GROUP_SCHED */
8109 8110

#ifdef CONFIG_RT_GROUP_SCHED
8111 8112 8113 8114
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8115 8116
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8128 8129
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8130 8131
{
	struct rt_rq *rt_rq;
8132
	struct sched_rt_entity *rt_se;
8133 8134 8135
	struct rq *rq;
	int i;

8136
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8137 8138
	if (!tg->rt_rq)
		goto err;
8139
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8140 8141 8142
	if (!tg->rt_se)
		goto err;

8143 8144
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8145 8146 8147 8148

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8149 8150
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8151 8152
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8153

8154 8155
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8156
		if (!rt_se)
8157
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8158

8159
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8160 8161
	}

8162 8163
	return 1;

8164 8165
 err_free_rq:
	kfree(rt_rq);
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8180
#else /* !CONFIG_RT_GROUP_SCHED */
8181 8182 8183 8184
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8185 8186
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8198
#endif /* CONFIG_RT_GROUP_SCHED */
8199

D
Dhaval Giani 已提交
8200
#ifdef CONFIG_CGROUP_SCHED
8201 8202 8203 8204 8205 8206 8207 8208
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8209
struct task_group *sched_create_group(struct task_group *parent)
8210 8211 8212 8213 8214 8215 8216 8217 8218
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8219
	if (!alloc_fair_sched_group(tg, parent))
8220 8221
		goto err;

8222
	if (!alloc_rt_sched_group(tg, parent))
8223 8224
		goto err;

8225
	spin_lock_irqsave(&task_group_lock, flags);
8226
	for_each_possible_cpu(i) {
8227 8228
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8229
	}
P
Peter Zijlstra 已提交
8230
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8231 8232 8233 8234 8235

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8236
	list_add_rcu(&tg->siblings, &parent->children);
8237
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8238

8239
	return tg;
S
Srivatsa Vaddagiri 已提交
8240 8241

err:
P
Peter Zijlstra 已提交
8242
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8243 8244 8245
	return ERR_PTR(-ENOMEM);
}

8246
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8247
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8248 8249
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8250
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8251 8252
}

8253
/* Destroy runqueue etc associated with a task group */
8254
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8255
{
8256
	unsigned long flags;
8257
	int i;
S
Srivatsa Vaddagiri 已提交
8258

8259
	spin_lock_irqsave(&task_group_lock, flags);
8260
	for_each_possible_cpu(i) {
8261 8262
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8263
	}
P
Peter Zijlstra 已提交
8264
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8265
	list_del_rcu(&tg->siblings);
8266
	spin_unlock_irqrestore(&task_group_lock, flags);
8267 8268

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8269
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8270 8271
}

8272
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8273 8274 8275
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8276 8277
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8278 8279 8280 8281 8282 8283 8284
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8285
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8286 8287
	on_rq = tsk->se.on_rq;

8288
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8289
		dequeue_task(rq, tsk, 0);
8290 8291
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8292

P
Peter Zijlstra 已提交
8293
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8294

P
Peter Zijlstra 已提交
8295 8296
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8297
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8298 8299
#endif

8300 8301 8302
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8303
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8304 8305 8306

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8307
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8308

8309
#ifdef CONFIG_FAIR_GROUP_SCHED
8310
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8311 8312 8313 8314 8315
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8316
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8317 8318 8319
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8320
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8321

8322
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8323
		enqueue_entity(cfs_rq, se, 0);
8324
}
8325

8326 8327 8328 8329 8330 8331
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8332
	raw_spin_lock_irqsave(&rq->lock, flags);
8333
	__set_se_shares(se, shares);
8334
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8335 8336
}

8337 8338
static DEFINE_MUTEX(shares_mutex);

8339
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8340 8341
{
	int i;
8342
	unsigned long flags;
8343

8344 8345 8346 8347 8348 8349
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8350 8351
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8352 8353
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8354

8355
	mutex_lock(&shares_mutex);
8356
	if (tg->shares == shares)
8357
		goto done;
S
Srivatsa Vaddagiri 已提交
8358

8359
	spin_lock_irqsave(&task_group_lock, flags);
8360 8361
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8362
	list_del_rcu(&tg->siblings);
8363
	spin_unlock_irqrestore(&task_group_lock, flags);
8364 8365 8366 8367 8368 8369 8370 8371

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8372
	tg->shares = shares;
8373 8374 8375 8376 8377
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8378
		set_se_shares(tg->se[i], shares);
8379
	}
S
Srivatsa Vaddagiri 已提交
8380

8381 8382 8383 8384
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8385
	spin_lock_irqsave(&task_group_lock, flags);
8386 8387
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8388
	list_add_rcu(&tg->siblings, &tg->parent->children);
8389
	spin_unlock_irqrestore(&task_group_lock, flags);
8390
done:
8391
	mutex_unlock(&shares_mutex);
8392
	return 0;
S
Srivatsa Vaddagiri 已提交
8393 8394
}

8395 8396 8397 8398
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8399
#endif
8400

8401
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8402
/*
P
Peter Zijlstra 已提交
8403
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8404
 */
P
Peter Zijlstra 已提交
8405 8406 8407 8408 8409
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8410
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8411

P
Peter Zijlstra 已提交
8412
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8413 8414
}

P
Peter Zijlstra 已提交
8415 8416
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8417
{
P
Peter Zijlstra 已提交
8418
	struct task_struct *g, *p;
8419

P
Peter Zijlstra 已提交
8420 8421 8422 8423
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8424

P
Peter Zijlstra 已提交
8425 8426
	return 0;
}
8427

P
Peter Zijlstra 已提交
8428 8429 8430 8431 8432
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8433

P
Peter Zijlstra 已提交
8434 8435 8436 8437 8438 8439
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8440

P
Peter Zijlstra 已提交
8441 8442
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8443

P
Peter Zijlstra 已提交
8444 8445 8446
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8447 8448
	}

8449 8450 8451 8452 8453
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8454

8455 8456 8457
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8458 8459
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8460

P
Peter Zijlstra 已提交
8461
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8462

8463 8464 8465 8466 8467
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8468

8469 8470 8471
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8472 8473 8474
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8475

P
Peter Zijlstra 已提交
8476 8477 8478 8479
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8480

P
Peter Zijlstra 已提交
8481
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8482
	}
P
Peter Zijlstra 已提交
8483

P
Peter Zijlstra 已提交
8484 8485 8486 8487
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8488 8489
}

P
Peter Zijlstra 已提交
8490
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8491
{
P
Peter Zijlstra 已提交
8492 8493 8494 8495 8496 8497 8498
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8499 8500
}

8501 8502
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8503
{
P
Peter Zijlstra 已提交
8504
	int i, err = 0;
P
Peter Zijlstra 已提交
8505 8506

	mutex_lock(&rt_constraints_mutex);
8507
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8508 8509
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8510
		goto unlock;
P
Peter Zijlstra 已提交
8511

8512
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8513 8514
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8515 8516 8517 8518

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8519
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8520
		rt_rq->rt_runtime = rt_runtime;
8521
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8522
	}
8523
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8524
 unlock:
8525
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8526 8527 8528
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8529 8530
}

8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8543 8544 8545 8546
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8547
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8548 8549
		return -1;

8550
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8551 8552 8553
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8554 8555 8556 8557 8558 8559 8560 8561

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8562 8563 8564
	if (rt_period == 0)
		return -EINVAL;

8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8579
	u64 runtime, period;
8580 8581
	int ret = 0;

8582 8583 8584
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8585 8586 8587 8588 8589 8590 8591 8592
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8593

8594
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8595
	read_lock(&tasklist_lock);
8596
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8597
	read_unlock(&tasklist_lock);
8598 8599 8600 8601
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8612
#else /* !CONFIG_RT_GROUP_SCHED */
8613 8614
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8615 8616 8617
	unsigned long flags;
	int i;

8618 8619 8620
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8621 8622 8623 8624 8625 8626 8627
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8628
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8629 8630 8631
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8632
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8633
		rt_rq->rt_runtime = global_rt_runtime();
8634
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8635
	}
8636
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8637

8638 8639
	return 0;
}
8640
#endif /* CONFIG_RT_GROUP_SCHED */
8641 8642

int sched_rt_handler(struct ctl_table *table, int write,
8643
		void __user *buffer, size_t *lenp,
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8654
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8671

8672
#ifdef CONFIG_CGROUP_SCHED
8673 8674

/* return corresponding task_group object of a cgroup */
8675
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8676
{
8677 8678
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8679 8680 8681
}

static struct cgroup_subsys_state *
8682
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8683
{
8684
	struct task_group *tg, *parent;
8685

8686
	if (!cgrp->parent) {
8687 8688 8689 8690
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8691 8692
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8693 8694 8695 8696 8697 8698
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8699 8700
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8701
{
8702
	struct task_group *tg = cgroup_tg(cgrp);
8703 8704 8705 8706

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8707
static int
8708
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8709
{
8710
#ifdef CONFIG_RT_GROUP_SCHED
8711
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8712 8713
		return -EINVAL;
#else
8714 8715 8716
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8717
#endif
8718 8719
	return 0;
}
8720

8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8740 8741 8742 8743
	return 0;
}

static void
8744
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8745 8746
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8747 8748
{
	sched_move_task(tsk);
8749 8750 8751 8752 8753 8754 8755 8756
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8757 8758
}

8759
#ifdef CONFIG_FAIR_GROUP_SCHED
8760
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8761
				u64 shareval)
8762
{
8763
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8764 8765
}

8766
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8767
{
8768
	struct task_group *tg = cgroup_tg(cgrp);
8769 8770 8771

	return (u64) tg->shares;
}
8772
#endif /* CONFIG_FAIR_GROUP_SCHED */
8773

8774
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8775
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8776
				s64 val)
P
Peter Zijlstra 已提交
8777
{
8778
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8779 8780
}

8781
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8782
{
8783
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8784
}
8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8796
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8797

8798
static struct cftype cpu_files[] = {
8799
#ifdef CONFIG_FAIR_GROUP_SCHED
8800 8801
	{
		.name = "shares",
8802 8803
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8804
	},
8805 8806
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8807
	{
P
Peter Zijlstra 已提交
8808
		.name = "rt_runtime_us",
8809 8810
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8811
	},
8812 8813
	{
		.name = "rt_period_us",
8814 8815
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8816
	},
8817
#endif
8818 8819 8820 8821
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8822
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8823 8824 8825
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8826 8827 8828 8829 8830 8831 8832
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8833 8834 8835
	.early_init	= 1,
};

8836
#endif	/* CONFIG_CGROUP_SCHED */
8837 8838 8839 8840 8841 8842 8843 8844 8845 8846

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8847
/* track cpu usage of a group of tasks and its child groups */
8848 8849 8850
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8851
	u64 __percpu *cpuusage;
8852
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8853
	struct cpuacct *parent;
8854 8855 8856 8857 8858
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8859
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8860
{
8861
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8874
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8875 8876
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8877
	int i;
8878 8879

	if (!ca)
8880
		goto out;
8881 8882

	ca->cpuusage = alloc_percpu(u64);
8883 8884 8885 8886 8887 8888
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8889

8890 8891 8892
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8893
	return &ca->css;
8894 8895 8896 8897 8898 8899 8900 8901 8902

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8903 8904 8905
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8906
static void
8907
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8908
{
8909
	struct cpuacct *ca = cgroup_ca(cgrp);
8910
	int i;
8911

8912 8913
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8914 8915 8916 8917
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8918 8919
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8920
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8921 8922 8923 8924 8925 8926
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8927
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8928
	data = *cpuusage;
8929
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8930 8931 8932 8933 8934 8935 8936 8937 8938
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8939
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8940 8941 8942 8943 8944

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8945
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8946
	*cpuusage = val;
8947
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8948 8949 8950 8951 8952
#else
	*cpuusage = val;
#endif
}

8953
/* return total cpu usage (in nanoseconds) of a group */
8954
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8955
{
8956
	struct cpuacct *ca = cgroup_ca(cgrp);
8957 8958 8959
	u64 totalcpuusage = 0;
	int i;

8960 8961
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8962 8963 8964 8965

	return totalcpuusage;
}

8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8978 8979
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8980 8981 8982 8983 8984

out:
	return err;
}

8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9019 9020 9021
static struct cftype files[] = {
	{
		.name = "usage",
9022 9023
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9024
	},
9025 9026 9027 9028
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9029 9030 9031 9032
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9033 9034
};

9035
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9036
{
9037
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9048
	int cpu;
9049

L
Li Zefan 已提交
9050
	if (unlikely(!cpuacct_subsys.active))
9051 9052
		return;

9053
	cpu = task_cpu(tsk);
9054 9055 9056

	rcu_read_lock();

9057 9058
	ca = task_ca(tsk);

9059
	for (; ca; ca = ca->parent) {
9060
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9061 9062
		*cpuusage += cputime;
	}
9063 9064

	rcu_read_unlock();
9065 9066
}

9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9084 9085 9086 9087 9088 9089 9090
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9091
	int batch = CPUACCT_BATCH;
9092 9093 9094 9095 9096 9097 9098 9099

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9100
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9101 9102 9103 9104 9105
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9106 9107 9108 9109 9110 9111 9112 9113
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9114 9115 9116 9117 9118

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
9119
	barrier();
9120 9121 9122 9123 9124
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

9125
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9126

9127
static int synchronize_sched_expedited_cpu_stop(void *data)
9128
{
9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
9140
	smp_mb(); /* See above comment block. */
9141
	return 0;
9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
9156
	int snap, trycount = 0;
9157 9158

	smp_mb();  /* ensure prior mod happens before capturing snap. */
9159
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9160
	get_online_cpus();
9161 9162
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
9163
			     NULL) == -EAGAIN) {
9164 9165 9166 9167 9168 9169 9170
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
9171
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9172 9173 9174 9175 9176
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
9177
	atomic_inc(&synchronize_sched_expedited_count);
9178
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9179 9180 9181 9182 9183
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */