sched.c 247.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
234 235 236
		unsigned long delta;
		ktime_t soft, hard;

237 238 239 240 241
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
242 243 244 245 246 247

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
				HRTIMER_MODE_ABS, 0);
248 249 250 251 252 253 254 255 256 257 258
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

259 260 261 262 263 264
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

265
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
266

267 268
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
269 270
struct cfs_rq;

P
Peter Zijlstra 已提交
271 272
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
273
/* task group related information */
274
struct task_group {
275
#ifdef CONFIG_CGROUP_SCHED
276 277
	struct cgroup_subsys_state css;
#endif
278

279 280 281 282
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

283
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
284 285 286 287 288
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
289 290 291 292 293 294
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

295
	struct rt_bandwidth rt_bandwidth;
296
#endif
297

298
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
299
	struct list_head list;
P
Peter Zijlstra 已提交
300 301 302 303

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
304 305
};

D
Dhaval Giani 已提交
306
#ifdef CONFIG_USER_SCHED
307

308 309 310 311 312 313
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

314 315 316 317 318 319 320
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

321
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
322 323 324 325
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326
#endif /* CONFIG_FAIR_GROUP_SCHED */
327 328 329 330

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
332
#else /* !CONFIG_USER_SCHED */
333
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
334
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
335

336
/* task_group_lock serializes add/remove of task groups and also changes to
337 338
 * a task group's cpu shares.
 */
339
static DEFINE_SPINLOCK(task_group_lock);
340

341 342 343 344 345 346 347
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

348 349 350
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
351
#else /* !CONFIG_USER_SCHED */
352
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
353
#endif /* CONFIG_USER_SCHED */
354

355
/*
356 357 358 359
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
360 361 362
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
363
#define MIN_SHARES	2
364
#define MAX_SHARES	(1UL << 18)
365

366 367 368
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
369
/* Default task group.
I
Ingo Molnar 已提交
370
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
371
 */
372
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
373 374

/* return group to which a task belongs */
375
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
376
{
377
	struct task_group *tg;
378

379
#ifdef CONFIG_USER_SCHED
380 381 382
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
383
#elif defined(CONFIG_CGROUP_SCHED)
384 385
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
386
#else
I
Ingo Molnar 已提交
387
	tg = &init_task_group;
388
#endif
389
	return tg;
S
Srivatsa Vaddagiri 已提交
390 391 392
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
393
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
394
{
395
#ifdef CONFIG_FAIR_GROUP_SCHED
396 397
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
398
#endif
P
Peter Zijlstra 已提交
399

400
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
401 402
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
403
#endif
S
Srivatsa Vaddagiri 已提交
404 405 406 407
}

#else

408 409 410 411 412 413 414
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
415
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 417 418 419
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
420

421
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
422

I
Ingo Molnar 已提交
423 424 425 426 427 428
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
429
	u64 min_vruntime;
I
Ingo Molnar 已提交
430 431 432

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
433 434 435 436 437 438

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
439 440
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
441
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
442

P
Peter Zijlstra 已提交
443
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
444

445
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
446 447
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
448 449
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
450 451 452 453 454 455
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
456 457
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
458 459 460

#ifdef CONFIG_SMP
	/*
461
	 * the part of load.weight contributed by tasks
462
	 */
463
	unsigned long task_weight;
464

465 466 467 468 469 470 471
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
472

473 474 475 476
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
477 478 479 480 481

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
482
#endif
I
Ingo Molnar 已提交
483 484
#endif
};
L
Linus Torvalds 已提交
485

I
Ingo Molnar 已提交
486 487 488
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
489
	unsigned long rt_nr_running;
490
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 492
	struct {
		int curr; /* highest queued rt task prio */
493
#ifdef CONFIG_SMP
494
		int next; /* next highest */
495
#endif
496
	} highest_prio;
P
Peter Zijlstra 已提交
497
#endif
P
Peter Zijlstra 已提交
498
#ifdef CONFIG_SMP
499
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
500
	int overloaded;
501
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
502
#endif
P
Peter Zijlstra 已提交
503
	int rt_throttled;
P
Peter Zijlstra 已提交
504
	u64 rt_time;
P
Peter Zijlstra 已提交
505
	u64 rt_runtime;
I
Ingo Molnar 已提交
506
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
507
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
508

509
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
510 511
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
512 513 514 515 516
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
517 518
};

G
Gregory Haskins 已提交
519 520 521 522
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
523 524
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
525 526 527 528 529 530
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
531 532
	cpumask_var_t span;
	cpumask_var_t online;
533

I
Ingo Molnar 已提交
534
	/*
535 536 537
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
538
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
539
	atomic_t rto_count;
540 541 542
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
543 544 545 546 547 548 549 550
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
551 552
};

553 554 555 556
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
557 558 559 560
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
561 562 563 564 565 566 567
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
568
struct rq {
569 570
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
571 572 573 574 575 576

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
577 578
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579
#ifdef CONFIG_NO_HZ
580
	unsigned long last_tick_seen;
581 582
	unsigned char in_nohz_recently;
#endif
583 584
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
585 586 587 588
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
589 590
	struct rt_rq rt;

I
Ingo Molnar 已提交
591
#ifdef CONFIG_FAIR_GROUP_SCHED
592 593
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
594 595
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
596
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
597 598 599 600 601 602 603 604 605 606
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

607
	struct task_struct *curr, *idle;
608
	unsigned long next_balance;
L
Linus Torvalds 已提交
609
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
610

611
	u64 clock;
I
Ingo Molnar 已提交
612

L
Linus Torvalds 已提交
613 614 615
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
616
	struct root_domain *rd;
L
Linus Torvalds 已提交
617 618
	struct sched_domain *sd;

619
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
620 621 622
	/* For active balancing */
	int active_balance;
	int push_cpu;
623 624
	/* cpu of this runqueue: */
	int cpu;
625
	int online;
L
Linus Torvalds 已提交
626

627
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
628

629
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
630 631 632
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
633
#ifdef CONFIG_SCHED_HRTICK
634 635 636 637
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
638 639 640
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
641 642 643
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
644 645
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
646 647

	/* sys_sched_yield() stats */
648
	unsigned int yld_count;
L
Linus Torvalds 已提交
649 650

	/* schedule() stats */
651 652 653
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
654 655

	/* try_to_wake_up() stats */
656 657
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
658 659

	/* BKL stats */
660
	unsigned int bkl_count;
L
Linus Torvalds 已提交
661 662 663
#endif
};

664
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
665

666
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
667
{
668
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
669 670
}

671 672 673 674 675 676 677 678 679
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
680 681
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
683 684 685 686
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
687 688
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
689 690 691 692 693 694

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

695 696 697 698 699
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
700 701 702 703 704 705 706 707 708
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
727 728 729
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
730 731 732 733

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
734
enum {
P
Peter Zijlstra 已提交
735
#include "sched_features.h"
I
Ingo Molnar 已提交
736 737
};

P
Peter Zijlstra 已提交
738 739 740 741 742
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
743
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
744 745 746 747 748 749 750 751 752
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

753
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
754 755 756 757 758 759
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
760
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
761 762 763 764
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
765 766 767
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
768
	}
L
Li Zefan 已提交
769
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
770

L
Li Zefan 已提交
771
	return 0;
P
Peter Zijlstra 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
791
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
816 817 818 819 820
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
821
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
822 823 824 825 826
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
841

842 843 844 845 846 847
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
848 849
/*
 * ratelimit for updating the group shares.
850
 * default: 0.25ms
P
Peter Zijlstra 已提交
851
 */
852
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
853

854 855 856 857 858 859 860
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
861
/*
P
Peter Zijlstra 已提交
862
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
863 864
 * default: 1s
 */
P
Peter Zijlstra 已提交
865
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
866

867 868
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
869 870 871 872 873
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
874

875 876 877 878 879 880 881
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
882
	if (sysctl_sched_rt_runtime < 0)
883 884 885 886
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
887

L
Linus Torvalds 已提交
888
#ifndef prepare_arch_switch
889 890 891 892 893 894
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

895 896 897 898 899
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

900
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
901
static inline int task_running(struct rq *rq, struct task_struct *p)
902
{
903
	return task_current(rq, p);
904 905
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909
{
}

910
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911
{
912 913 914 915
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
916 917 918 919 920 921 922
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

923 924 925 926
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
927
static inline int task_running(struct rq *rq, struct task_struct *p)
928 929 930 931
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
932
	return task_current(rq, p);
933 934 935
#endif
}

936
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

953
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 955 956 957 958 959 960 961 962 963 964 965
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
966
#endif
967 968
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
969

970 971 972 973
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
974
static inline struct rq *__task_rq_lock(struct task_struct *p)
975 976
	__acquires(rq->lock)
{
977 978 979 980 981
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
982 983 984 985
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
986 987
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
988
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
989 990
 * explicitly disabling preemption.
 */
991
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
992 993
	__acquires(rq->lock)
{
994
	struct rq *rq;
L
Linus Torvalds 已提交
995

996 997 998 999 1000 1001
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1002 1003 1004 1005
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1006 1007 1008 1009 1010 1011 1012 1013
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1014
static void __task_rq_unlock(struct rq *rq)
1015 1016 1017 1018 1019
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1020
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1027
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1028
 */
A
Alexey Dobriyan 已提交
1029
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1030 1031
	__acquires(rq->lock)
{
1032
	struct rq *rq;
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038 1039 1040

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1062
	if (!cpu_active(cpu_of(rq)))
1063
		return 0;
P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1084
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1091
#ifdef CONFIG_SMP
1092 1093 1094 1095
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1096
{
1097
	struct rq *rq = arg;
1098

1099 1100 1101 1102
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1103 1104
}

1105 1106 1107 1108 1109 1110
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1111
{
1112 1113
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1114

1115
	hrtimer_set_expires(timer, time);
1116 1117 1118 1119

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1120
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 1122
		rq->hrtick_csd_pending = 1;
	}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1137
		hrtick_clear(cpu_rq(cpu));
1138 1139 1140 1141 1142 1143
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1144
static __init void init_hrtick(void)
1145 1146 1147
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1148 1149 1150 1151 1152 1153 1154 1155
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1156 1157
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
			HRTIMER_MODE_REL, 0);
1158
}
1159

A
Andrew Morton 已提交
1160
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1161 1162
{
}
1163
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1164

1165
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1166
{
1167 1168
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1169

1170 1171 1172 1173
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1174

1175 1176
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1177
}
A
Andrew Morton 已提交
1178
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1179 1180 1181 1182 1183 1184 1185 1186
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1187 1188 1189
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1190
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1191

I
Ingo Molnar 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1205
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1206 1207 1208 1209 1210
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1211
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1212 1213
		return;

1214
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1270
	set_tsk_need_resched(rq->idle);
1271 1272 1273 1274 1275 1276

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1277
#endif /* CONFIG_NO_HZ */
1278

1279
#else /* !CONFIG_SMP */
1280
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1281 1282
{
	assert_spin_locked(&task_rq(p)->lock);
1283
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1284
}
1285
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1295 1296 1297
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1298
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1299

1300 1301 1302
/*
 * delta *= weight / lw
 */
1303
static unsigned long
1304 1305 1306 1307 1308
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1309 1310 1311 1312 1313 1314 1315
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1316 1317 1318 1319 1320

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1321
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1322
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1323 1324
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1325
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326

1327
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 1329
}

1330
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 1332
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1333
	lw->inv_weight = 0;
1334 1335
}

1336
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 1338
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342 1343 1344 1345
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1346
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 1348 1349 1350
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1351 1352
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 1363 1364
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1365 1366
 */
static const int prio_to_weight[40] = {
1367 1368 1369 1370 1371 1372 1373 1374
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1375 1376
};

1377 1378 1379 1380 1381 1382 1383
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1384
static const u32 prio_to_wmult[40] = {
1385 1386 1387 1388 1389 1390 1391 1392
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1393
};
1394

I
Ingo Molnar 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1420

1421 1422 1423 1424 1425 1426
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1437
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1438
typedef int (*tg_visitor)(struct task_group *, void *);
1439 1440 1441 1442 1443

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1444
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1445 1446
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1447
	int ret;
1448 1449 1450 1451

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1452 1453 1454
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1455 1456 1457 1458 1459 1460 1461
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1462 1463 1464
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1465 1466 1467 1468 1469

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1470
out_unlock:
1471
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1472 1473

	return ret;
1474 1475
}

P
Peter Zijlstra 已提交
1476 1477 1478
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1479
}
P
Peter Zijlstra 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1490
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1491

1492 1493
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1494 1495
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1496 1497 1498 1499 1500

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1501 1502 1503 1504 1505 1506 1507

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1508 1509
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1510
{
1511 1512 1513
	unsigned long shares;
	unsigned long rq_weight;

1514
	if (!tg->se[cpu])
1515 1516
		return;

1517
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1518

1519 1520 1521 1522 1523 1524
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1525
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1526
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1527

1528 1529 1530 1531
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1532

1533
		spin_lock_irqsave(&rq->lock, flags);
1534
		tg->cfs_rq[cpu]->shares = shares;
1535

1536 1537 1538
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1539
}
1540 1541

/*
1542 1543 1544
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1545
 */
P
Peter Zijlstra 已提交
1546
static int tg_shares_up(struct task_group *tg, void *data)
1547
{
1548
	unsigned long weight, rq_weight = 0;
1549
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1550
	struct sched_domain *sd = data;
1551
	int i;
1552

1553
	for_each_cpu(i, sched_domain_span(sd)) {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1565
		shares += tg->cfs_rq[i]->shares;
1566 1567
	}

1568 1569 1570 1571 1572
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1573

1574
	for_each_cpu(i, sched_domain_span(sd))
1575
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1576 1577

	return 0;
1578 1579 1580
}

/*
1581 1582 1583
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1584
 */
P
Peter Zijlstra 已提交
1585
static int tg_load_down(struct task_group *tg, void *data)
1586
{
1587
	unsigned long load;
P
Peter Zijlstra 已提交
1588
	long cpu = (long)data;
1589

1590 1591 1592 1593 1594 1595 1596
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1597

1598
	tg->cfs_rq[cpu]->h_load = load;
1599

P
Peter Zijlstra 已提交
1600
	return 0;
1601 1602
}

1603
static void update_shares(struct sched_domain *sd)
1604
{
P
Peter Zijlstra 已提交
1605 1606 1607 1608 1609
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1610
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1611
	}
1612 1613
}

1614 1615 1616 1617 1618 1619 1620
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1621
static void update_h_load(long cpu)
1622
{
P
Peter Zijlstra 已提交
1623
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1624 1625 1626 1627
}

#else

1628
static inline void update_shares(struct sched_domain *sd)
1629 1630 1631
{
}

1632 1633 1634 1635
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1636 1637
#endif

1638 1639
#ifdef CONFIG_PREEMPT

1640
/*
1641 1642 1643 1644 1645 1646
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1647
 */
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1702 1703 1704 1705 1706 1707
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1708 1709
#endif

V
Vegard Nossum 已提交
1710
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1711 1712
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1713
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1714 1715 1716
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1717
#endif
1718

I
Ingo Molnar 已提交
1719 1720
#include "sched_stats.h"
#include "sched_idletask.c"
1721 1722
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1723 1724 1725 1726 1727
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1728 1729
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1730

1731
static void inc_nr_running(struct rq *rq)
1732 1733 1734 1735
{
	rq->nr_running++;
}

1736
static void dec_nr_running(struct rq *rq)
1737 1738 1739 1740
{
	rq->nr_running--;
}

1741 1742 1743
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1744 1745 1746 1747
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1748

I
Ingo Molnar 已提交
1749 1750 1751 1752 1753 1754 1755 1756
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1757

I
Ingo Molnar 已提交
1758 1759
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1760 1761
}

1762 1763 1764 1765 1766 1767
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1768
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1769
{
P
Peter Zijlstra 已提交
1770 1771 1772
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1773
	sched_info_queued(p);
1774
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1775
	p->se.on_rq = 1;
1776 1777
}

1778
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1779
{
P
Peter Zijlstra 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1789 1790
	}

1791
	sched_info_dequeued(p);
1792
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1793
	p->se.on_rq = 0;
1794 1795
}

1796
/*
I
Ingo Molnar 已提交
1797
 * __normal_prio - return the priority that is based on the static prio
1798 1799 1800
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1801
	return p->static_prio;
1802 1803
}

1804 1805 1806 1807 1808 1809 1810
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1811
static inline int normal_prio(struct task_struct *p)
1812 1813 1814
{
	int prio;

1815
	if (task_has_rt_policy(p))
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1829
static int effective_prio(struct task_struct *p)
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1842
/*
I
Ingo Molnar 已提交
1843
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1844
 */
I
Ingo Molnar 已提交
1845
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1846
{
1847
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1848
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1849

1850
	enqueue_task(rq, p, wakeup);
1851
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1857
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1858
{
1859
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1860 1861
		rq->nr_uninterruptible++;

1862
	dequeue_task(rq, p, sleep);
1863
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868 1869
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1870
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1871 1872 1873 1874
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1875 1876
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1877
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1878
#ifdef CONFIG_SMP
1879 1880 1881 1882 1883 1884
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1885 1886
	task_thread_info(p)->cpu = cpu;
#endif
1887 1888
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1901
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1902

1903 1904 1905 1906 1907 1908
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1909 1910 1911
/*
 * Is this task likely cache-hot:
 */
1912
static int
1913 1914 1915 1916
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1917 1918 1919
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1920 1921 1922
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1923 1924
		return 1;

1925 1926 1927
	if (p->sched_class != &fair_sched_class)
		return 0;

1928 1929 1930 1931 1932
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1933 1934 1935 1936 1937 1938
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1939
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1940
{
I
Ingo Molnar 已提交
1941 1942
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1943 1944
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1945
	u64 clock_offset;
I
Ingo Molnar 已提交
1946 1947

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1948

1949 1950
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1951 1952 1953
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1954 1955 1956 1957
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1958 1959 1960 1961 1962
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1963
#endif
1964 1965
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1966 1967

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1968 1969
}

1970
struct migration_req {
L
Linus Torvalds 已提交
1971 1972
	struct list_head list;

1973
	struct task_struct *task;
L
Linus Torvalds 已提交
1974 1975 1976
	int dest_cpu;

	struct completion done;
1977
};
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1983
static int
1984
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1985
{
1986
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1992
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998 1999 2000
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2001

L
Linus Torvalds 已提交
2002 2003 2004
	return 1;
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2048 2049 2050
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2051 2052 2053 2054 2055 2056 2057
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2064
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2065 2066
{
	unsigned long flags;
I
Ingo Molnar 已提交
2067
	int running, on_rq;
R
Roland McGrath 已提交
2068
	unsigned long ncsw;
2069
	struct rq *rq;
L
Linus Torvalds 已提交
2070

2071 2072 2073 2074 2075 2076 2077 2078
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2091 2092 2093
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2094
			cpu_relax();
R
Roland McGrath 已提交
2095
		}
2096

2097 2098 2099 2100 2101 2102
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2103
		trace_sched_wait_task(rq, p);
2104 2105
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2106
		ncsw = 0;
2107
		if (!match_state || p->state == match_state)
2108
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2109
		task_rq_unlock(rq, &flags);
2110

R
Roland McGrath 已提交
2111 2112 2113 2114 2115 2116
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2127

2128 2129 2130 2131 2132
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2133
		 * So if it was still runnable (but just not actively
2134 2135 2136 2137 2138 2139 2140
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2141

2142 2143 2144 2145 2146 2147 2148
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2149 2150

	return ncsw;
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2166
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2178 2179
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2180 2181 2182 2183
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2184
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2185
{
2186
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2187
	unsigned long total = weighted_cpuload(cpu);
2188

2189
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2190
		return total;
2191

I
Ingo Molnar 已提交
2192
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2193 2194 2195
}

/*
2196 2197
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2198
 */
A
Alexey Dobriyan 已提交
2199
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2200
{
2201
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2202
	unsigned long total = weighted_cpuload(cpu);
2203

2204
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2205
		return total;
2206

I
Ingo Molnar 已提交
2207
	return max(rq->cpu_load[type-1], total);
2208 2209
}

N
Nick Piggin 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2227
		/* Skip over this group if it has no CPUs allowed */
2228 2229
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2230
			continue;
2231

2232 2233
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2234 2235 2236 2237

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2238
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2249 2250
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2251 2252 2253 2254 2255 2256 2257 2258

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2259
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2260 2261 2262 2263 2264 2265 2266

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2267
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2268
 */
I
Ingo Molnar 已提交
2269
static int
2270
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2271 2272 2273 2274 2275
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2276
	/* Traverse only the allowed CPUs */
2277
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2278
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2304

2305
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2306 2307 2308
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2309 2310
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2311 2312
		if (tmp->flags & flag)
			sd = tmp;
2313
	}
N
Nick Piggin 已提交
2314

2315 2316 2317
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2318 2319
	while (sd) {
		struct sched_group *group;
2320 2321 2322 2323 2324 2325
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2326 2327

		group = find_idlest_group(sd, t, cpu);
2328 2329 2330 2331
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2332

2333
		new_cpu = find_idlest_cpu(group, t, cpu);
2334 2335 2336 2337 2338
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2339

2340
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2341
		cpu = new_cpu;
2342
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2343 2344
		sd = NULL;
		for_each_domain(cpu, tmp) {
2345
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2372
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2373
{
2374
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2375 2376
	unsigned long flags;
	long old_state;
2377
	struct rq *rq;
L
Linus Torvalds 已提交
2378

2379 2380 2381
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2382
#ifdef CONFIG_SMP
2383
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2384 2385 2386 2387 2388 2389
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2390
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2391 2392 2393 2394 2395 2396 2397
				update_shares(sd);
				break;
			}
		}
	}
#endif

2398
	smp_wmb();
L
Linus Torvalds 已提交
2399
	rq = task_rq_lock(p, &flags);
2400
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2401 2402 2403 2404
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2405
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2406 2407 2408
		goto out_running;

	cpu = task_cpu(p);
2409
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2410 2411 2412 2413 2414 2415
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2416 2417 2418
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423 2424
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2425
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2432 2433 2434 2435 2436 2437 2438
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2439
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2440 2441 2442 2443 2444
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2445
#endif /* CONFIG_SCHEDSTATS */
2446

L
Linus Torvalds 已提交
2447 2448
out_activate:
#endif /* CONFIG_SMP */
2449 2450 2451 2452 2453 2454 2455 2456 2457
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2458
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2459 2460
	success = 1;

P
Peter Zijlstra 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2477
out_running:
2478
	trace_sched_wakeup(rq, p, success);
2479
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2480

L
Linus Torvalds 已提交
2481
	p->state = TASK_RUNNING;
2482 2483 2484 2485
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2486 2487 2488 2489 2490 2491
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2492
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2493
{
2494
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2495 2496 2497
}
EXPORT_SYMBOL(wake_up_process);

2498
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503 2504 2505
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2506 2507 2508 2509 2510 2511 2512
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2513
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2514 2515
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2516 2517
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2518 2519 2520

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2521 2522 2523 2524 2525 2526
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2527
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2528
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2529
#endif
N
Nick Piggin 已提交
2530

P
Peter Zijlstra 已提交
2531
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2532
	p->se.on_rq = 0;
2533
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2534

2535 2536 2537 2538
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544 2545
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2560
	set_task_cpu(p, cpu);
2561 2562 2563 2564 2565

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2566 2567
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2568

2569
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2570
	if (likely(sched_info_on()))
2571
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2572
#endif
2573
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2574 2575
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2576
#ifdef CONFIG_PREEMPT
2577
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2578
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2579
#endif
2580 2581
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2582
	put_cpu();
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2592
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2593 2594
{
	unsigned long flags;
I
Ingo Molnar 已提交
2595
	struct rq *rq;
L
Linus Torvalds 已提交
2596 2597

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2598
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2599
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2600 2601 2602

	p->prio = effective_prio(p);

2603
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2604
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2605 2606
	} else {
		/*
I
Ingo Molnar 已提交
2607 2608
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2609
		 */
2610
		p->sched_class->task_new(rq, p);
2611
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2612
	}
2613
	trace_sched_wakeup_new(rq, p, 1);
2614
	check_preempt_curr(rq, p, 0);
2615 2616 2617 2618
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2619
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2620 2621
}

2622 2623 2624
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2625
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2626
 * @notifier: notifier struct to register
2627 2628 2629 2630 2631 2632 2633 2634 2635
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2636
 * @notifier: notifier struct to unregister
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2666
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2678
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2679

2680 2681 2682
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2683
 * @prev: the current task that is being switched out
2684 2685 2686 2687 2688 2689 2690 2691 2692
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2693 2694 2695
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2696
{
2697
	fire_sched_out_preempt_notifiers(prev, next);
2698 2699 2700 2701
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2702 2703
/**
 * finish_task_switch - clean up after a task-switch
2704
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2705 2706
 * @prev: the thread we just switched away from.
 *
2707 2708 2709 2710
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2711 2712
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2713
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2714 2715 2716
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2717
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2718 2719 2720
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2721
	long prev_state;
2722 2723 2724 2725 2726 2727
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2733
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2734 2735
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2736
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2742
	prev_state = prev->state;
2743 2744
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2745
#ifdef CONFIG_SMP
2746
	if (post_schedule)
2747 2748
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2749

2750
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2751 2752
	if (mm)
		mmdrop(mm);
2753
	if (unlikely(prev_state == TASK_DEAD)) {
2754 2755 2756
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2757
		 */
2758
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2759
		put_task_struct(prev);
2760
	}
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765 2766
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2767
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2768 2769
	__releases(rq->lock)
{
2770 2771
	struct rq *rq = this_rq();

2772 2773 2774 2775 2776
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2777
	if (current->set_child_tid)
2778
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2785
static inline void
2786
context_switch(struct rq *rq, struct task_struct *prev,
2787
	       struct task_struct *next)
L
Linus Torvalds 已提交
2788
{
I
Ingo Molnar 已提交
2789
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2790

2791
	prepare_task_switch(rq, prev, next);
2792
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2793 2794
	mm = next->mm;
	oldmm = prev->active_mm;
2795 2796 2797 2798 2799 2800 2801
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2802
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2809
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2810 2811 2812
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2813 2814 2815 2816 2817 2818 2819
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2820
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2821
#endif
L
Linus Torvalds 已提交
2822 2823 2824 2825

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2826 2827 2828 2829 2830 2831 2832
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2856
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2871 2872
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2873

2874
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2884
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2905
/*
I
Ingo Molnar 已提交
2906 2907
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2908
 */
I
Ingo Molnar 已提交
2909
static void update_cpu_load(struct rq *this_rq)
2910
{
2911
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2924 2925 2926 2927 2928 2929 2930
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2931 2932
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2933 2934
}

I
Ingo Molnar 已提交
2935 2936
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2937 2938 2939 2940 2941 2942
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2943
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2944 2945 2946
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2947
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2948 2949 2950 2951
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2952
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2953
			spin_lock(&rq1->lock);
2954
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2955 2956
		} else {
			spin_lock(&rq2->lock);
2957
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2958 2959
		}
	}
2960 2961
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2962 2963 2964 2965 2966 2967 2968 2969
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2970
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2984
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2985 2986
 * the cpu_allowed mask is restored.
 */
2987
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2988
{
2989
	struct migration_req req;
L
Linus Torvalds 已提交
2990
	unsigned long flags;
2991
	struct rq *rq;
L
Linus Torvalds 已提交
2992 2993

	rq = task_rq_lock(p, &flags);
2994
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2995
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2996 2997 2998 2999 3000 3001
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3002

L
Linus Torvalds 已提交
3003 3004 3005 3006 3007
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3008

L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3016 3017
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3018 3019 3020 3021
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3022
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3023
	put_cpu();
N
Nick Piggin 已提交
3024 3025
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030 3031
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3032 3033
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3034
{
3035
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3036
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3037
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3038 3039 3040 3041
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3042
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3048
static
3049
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3050
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3051
		     int *all_pinned)
L
Linus Torvalds 已提交
3052
{
3053
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3054 3055 3056 3057 3058 3059
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3060
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3061
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3062
		return 0;
3063
	}
3064 3065
	*all_pinned = 0;

3066 3067
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3068
		return 0;
3069
	}
L
Linus Torvalds 已提交
3070

3071 3072 3073 3074 3075 3076
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3077 3078 3079
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3080
#ifdef CONFIG_SCHEDSTATS
3081
		if (tsk_cache_hot) {
3082
			schedstat_inc(sd, lb_hot_gained[idle]);
3083 3084
			schedstat_inc(p, se.nr_forced_migrations);
		}
3085 3086 3087 3088
#endif
		return 1;
	}

3089
	if (tsk_cache_hot) {
3090
		schedstat_inc(p, se.nr_failed_migrations_hot);
3091
		return 0;
3092
	}
L
Linus Torvalds 已提交
3093 3094 3095
	return 1;
}

3096 3097 3098 3099 3100
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3101
{
3102
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3103 3104
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3105

3106
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3107 3108
		goto out;

3109 3110
	pinned = 1;

L
Linus Torvalds 已提交
3111
	/*
I
Ingo Molnar 已提交
3112
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3113
	 */
I
Ingo Molnar 已提交
3114 3115
	p = iterator->start(iterator->arg);
next:
3116
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3117
		goto out;
3118 3119

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3120 3121 3122
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3123 3124
	}

I
Ingo Molnar 已提交
3125
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3126
	pulled++;
I
Ingo Molnar 已提交
3127
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3139
	/*
3140
	 * We only want to steal up to the prescribed amount of weighted load.
3141
	 */
3142
	if (rem_load_move > 0) {
3143 3144
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3145 3146
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3147 3148 3149
	}
out:
	/*
3150
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3151 3152 3153 3154
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3155 3156 3157

	if (all_pinned)
		*all_pinned = pinned;
3158 3159

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3160 3161
}

I
Ingo Molnar 已提交
3162
/*
P
Peter Williams 已提交
3163 3164 3165
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3166 3167 3168 3169
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3170
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3171 3172 3173
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3174
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3175
	unsigned long total_load_moved = 0;
3176
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3177 3178

	do {
P
Peter Williams 已提交
3179 3180
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3181
				max_load_move - total_load_moved,
3182
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3183
		class = class->next;
3184

3185 3186 3187 3188 3189 3190
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3191 3192
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3193
#endif
P
Peter Williams 已提交
3194
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3195

P
Peter Williams 已提交
3196 3197 3198
	return total_load_moved > 0;
}

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3235
	const struct sched_class *class;
P
Peter Williams 已提交
3236 3237

	for (class = sched_class_highest; class; class = class->next)
3238
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3239 3240 3241
			return 1;

	return 0;
I
Ingo Molnar 已提交
3242
}
3243
/********** Helpers for find_busiest_group ************************/
3244
/*
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};
3275

3276
/*
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}
3322 3323


3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}

/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{

	if (!sds->power_savings_balance)
		return;

	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;

	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;

	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}

	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;

	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}

/**
3414
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3415 3416 3417 3418 3419
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3420 3421 3422 3423 3424
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;

	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;

	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;

}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}

static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);

		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}

	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);


	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3565

3566 3567 3568 3569 3570 3571 3572 3573 3574
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3575
 */
3576 3577 3578 3579
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3580
{
3581
	struct sched_group *group = sd->groups;
3582
	struct sg_lb_stats sgs;
3583 3584
	int load_idx;

3585
	init_sd_power_savings_stats(sd, sds, idle);
3586
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3587 3588 3589 3590

	do {
		int local_group;

3591 3592
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3593
		memset(&sgs, 0, sizeof(sgs));
3594 3595
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3596

3597 3598
		if (local_group && balance && !(*balance))
			return;
3599

3600 3601
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3602 3603

		if (local_group) {
3604 3605 3606 3607 3608
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3609 3610
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3611 3612 3613 3614 3615
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
L
Linus Torvalds 已提交
3616
		}
3617

3618
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3619 3620 3621
		group = group->next;
	} while (group != sd->groups);

3622
}
3623 3624 3625

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3626 3627
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);

	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		*imbalance = 0;
		return fix_small_imbalance(sds, this_cpu, imbalance);
	}

	/* Don't want to pull so many tasks that a group would go idle */
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);

	/* How much load to actually move to equalise the imbalance */
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
			/ SCHED_LOAD_SCALE;

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);

}
3729 3730
/******* find_busiest_group() helpers end here *********************/

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3782 3783 3784
	if (balance && !(*balance))
		goto ret;

3785 3786 3787 3788
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3789 3790
		goto out_balanced;

3791
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3792

3793 3794 3795 3796
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3797 3798
		goto out_balanced;

3799 3800 3801 3802
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3803

L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810 3811
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3812
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3813 3814
	 * appear as very large values with unsigned longs.
	 */
3815
	if (sds.max_load <= sds.busiest_load_per_task)
3816 3817
		goto out_balanced;

3818 3819
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3820
	return sds.busiest;
L
Linus Torvalds 已提交
3821 3822

out_balanced:
3823 3824 3825 3826 3827 3828
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3829
ret:
L
Linus Torvalds 已提交
3830 3831 3832 3833 3834 3835 3836
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3837
static struct rq *
I
Ingo Molnar 已提交
3838
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3839
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3840
{
3841
	struct rq *busiest = NULL, *rq;
3842
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3843 3844
	int i;

3845
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3846
		unsigned long wl;
3847

3848
		if (!cpumask_test_cpu(i, cpus))
3849 3850
			continue;

3851
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3852
		wl = weighted_cpuload(i);
3853

I
Ingo Molnar 已提交
3854
		if (rq->nr_running == 1 && wl > imbalance)
3855
			continue;
L
Linus Torvalds 已提交
3856

I
Ingo Molnar 已提交
3857 3858
		if (wl > max_load) {
			max_load = wl;
3859
			busiest = rq;
L
Linus Torvalds 已提交
3860 3861 3862 3863 3864 3865
		}
	}

	return busiest;
}

3866 3867 3868 3869 3870 3871
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

3872 3873 3874
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
3875 3876 3877 3878
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3879
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3880
			struct sched_domain *sd, enum cpu_idle_type idle,
3881
			int *balance)
L
Linus Torvalds 已提交
3882
{
P
Peter Williams 已提交
3883
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3884 3885
	struct sched_group *group;
	unsigned long imbalance;
3886
	struct rq *busiest;
3887
	unsigned long flags;
3888
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
3889

3890
	cpumask_setall(cpus);
3891

3892 3893 3894
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3895
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3896
	 * portraying it as CPU_NOT_IDLE.
3897
	 */
I
Ingo Molnar 已提交
3898
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3899
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3900
		sd_idle = 1;
L
Linus Torvalds 已提交
3901

3902
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3903

3904
redo:
3905
	update_shares(sd);
3906
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3907
				   cpus, balance);
3908

3909
	if (*balance == 0)
3910 3911
		goto out_balanced;

L
Linus Torvalds 已提交
3912 3913 3914 3915 3916
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3917
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3918 3919 3920 3921 3922
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3923
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3924 3925 3926

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3927
	ld_moved = 0;
L
Linus Torvalds 已提交
3928 3929 3930 3931
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3932
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3933 3934
		 * correctly treated as an imbalance.
		 */
3935
		local_irq_save(flags);
N
Nick Piggin 已提交
3936
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3937
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3938
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3939
		double_rq_unlock(this_rq, busiest);
3940
		local_irq_restore(flags);
3941

3942 3943 3944
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3945
		if (ld_moved && this_cpu != smp_processor_id())
3946 3947
			resched_cpu(this_cpu);

3948
		/* All tasks on this runqueue were pinned by CPU affinity */
3949
		if (unlikely(all_pinned)) {
3950 3951
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3952
				goto redo;
3953
			goto out_balanced;
3954
		}
L
Linus Torvalds 已提交
3955
	}
3956

P
Peter Williams 已提交
3957
	if (!ld_moved) {
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3963
			spin_lock_irqsave(&busiest->lock, flags);
3964 3965 3966 3967

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3968 3969
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3970
				spin_unlock_irqrestore(&busiest->lock, flags);
3971 3972 3973 3974
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3975 3976 3977
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3978
				active_balance = 1;
L
Linus Torvalds 已提交
3979
			}
3980
			spin_unlock_irqrestore(&busiest->lock, flags);
3981
			if (active_balance)
L
Linus Torvalds 已提交
3982 3983 3984 3985 3986 3987
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3988
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3989
		}
3990
	} else
L
Linus Torvalds 已提交
3991 3992
		sd->nr_balance_failed = 0;

3993
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3994 3995
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3996 3997 3998 3999 4000 4001 4002 4003 4004
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4005 4006
	}

P
Peter Williams 已提交
4007
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4008
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4009 4010 4011
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4012 4013 4014 4015

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4016
	sd->nr_balance_failed = 0;
4017 4018

out_one_pinned:
L
Linus Torvalds 已提交
4019
	/* tune up the balancing interval */
4020 4021
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4022 4023
		sd->balance_interval *= 2;

4024
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4025
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4026 4027 4028 4029
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4030 4031
	if (ld_moved)
		update_shares(sd);
4032
	return ld_moved;
L
Linus Torvalds 已提交
4033 4034 4035 4036 4037 4038
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4039
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4040 4041
 * this_rq is locked.
 */
4042
static int
4043
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4044 4045
{
	struct sched_group *group;
4046
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4047
	unsigned long imbalance;
P
Peter Williams 已提交
4048
	int ld_moved = 0;
N
Nick Piggin 已提交
4049
	int sd_idle = 0;
4050
	int all_pinned = 0;
4051
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4052

4053
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4054

4055 4056 4057 4058
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4059
	 * portraying it as CPU_NOT_IDLE.
4060 4061 4062
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4063
		sd_idle = 1;
L
Linus Torvalds 已提交
4064

4065
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4066
redo:
4067
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4068
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4069
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4070
	if (!group) {
I
Ingo Molnar 已提交
4071
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4072
		goto out_balanced;
L
Linus Torvalds 已提交
4073 4074
	}

4075
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4076
	if (!busiest) {
I
Ingo Molnar 已提交
4077
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4078
		goto out_balanced;
L
Linus Torvalds 已提交
4079 4080
	}

N
Nick Piggin 已提交
4081 4082
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4083
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4084

P
Peter Williams 已提交
4085
	ld_moved = 0;
4086 4087 4088
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4089 4090
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4091
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4092 4093
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4094
		double_unlock_balance(this_rq, busiest);
4095

4096
		if (unlikely(all_pinned)) {
4097 4098
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4099 4100
				goto redo;
		}
4101 4102
	}

P
Peter Williams 已提交
4103
	if (!ld_moved) {
4104
		int active_balance = 0;
4105

I
Ingo Molnar 已提交
4106
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4107 4108
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4109
			return -1;
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4146
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4159 4160 4161 4162
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4163 4164
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4165
		spin_lock(&this_rq->lock);
4166

N
Nick Piggin 已提交
4167
	} else
4168
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4169

4170
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4171
	return ld_moved;
4172 4173

out_balanced:
I
Ingo Molnar 已提交
4174
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4175
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4176
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4177
		return -1;
4178
	sd->nr_balance_failed = 0;
4179

4180
	return 0;
L
Linus Torvalds 已提交
4181 4182 4183 4184 4185 4186
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4187
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4188 4189
{
	struct sched_domain *sd;
4190
	int pulled_task = 0;
I
Ingo Molnar 已提交
4191
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4192 4193

	for_each_domain(this_cpu, sd) {
4194 4195 4196 4197 4198 4199
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4200
			/* If we've pulled tasks over stop searching: */
4201
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4202
							   sd);
4203 4204 4205 4206 4207 4208

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4209
	}
I
Ingo Molnar 已提交
4210
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4211 4212 4213 4214 4215
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4216
	}
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4227
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4228
{
4229
	int target_cpu = busiest_rq->push_cpu;
4230 4231
	struct sched_domain *sd;
	struct rq *target_rq;
4232

4233
	/* Is there any task to move? */
4234 4235 4236 4237
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4238 4239

	/*
4240
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4241
	 * we need to fix it. Originally reported by
4242
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4243
	 */
4244
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4245

4246 4247
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4248 4249
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4250 4251

	/* Search for an sd spanning us and the target CPU. */
4252
	for_each_domain(target_cpu, sd) {
4253
		if ((sd->flags & SD_LOAD_BALANCE) &&
4254
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4255
				break;
4256
	}
4257

4258
	if (likely(sd)) {
4259
		schedstat_inc(sd, alb_count);
4260

P
Peter Williams 已提交
4261 4262
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4263 4264 4265 4266
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4267
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4268 4269
}

4270 4271 4272
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4273
	cpumask_var_t cpu_mask;
4274 4275 4276 4277
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4278
/*
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4289
 *
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4305 4306 4307 4308 4309 4310 4311 4312
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4313 4314
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4315

4316 4317 4318
			return 0;
		}

4319 4320
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4321
		/* time for ilb owner also to sleep */
4322
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4335
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4336 4337
			return 0;

4338
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4351 4352 4353 4354 4355
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4356
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4357
{
4358 4359
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4360 4361
	unsigned long interval;
	struct sched_domain *sd;
4362
	/* Earliest time when we have to do rebalance again */
4363
	unsigned long next_balance = jiffies + 60*HZ;
4364
	int update_next_balance = 0;
4365
	int need_serialize;
L
Linus Torvalds 已提交
4366

4367
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4368 4369 4370 4371
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4372
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4373 4374 4375 4376 4377 4378
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4379 4380 4381
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4382
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4383

4384
		if (need_serialize) {
4385 4386 4387 4388
			if (!spin_trylock(&balancing))
				goto out;
		}

4389
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4390
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4391 4392
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4393 4394 4395
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4396
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4397
			}
4398
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4399
		}
4400
		if (need_serialize)
4401 4402
			spin_unlock(&balancing);
out:
4403
		if (time_after(next_balance, sd->last_balance + interval)) {
4404
			next_balance = sd->last_balance + interval;
4405 4406
			update_next_balance = 1;
		}
4407 4408 4409 4410 4411 4412 4413 4414

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4415
	}
4416 4417 4418 4419 4420 4421 4422 4423

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4424 4425 4426 4427 4428 4429 4430 4431 4432
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4433 4434 4435 4436
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4437

I
Ingo Molnar 已提交
4438
	rebalance_domains(this_cpu, idle);
4439 4440 4441 4442 4443 4444 4445

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4446 4447
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4448 4449 4450
		struct rq *rq;
		int balance_cpu;

4451 4452 4453 4454
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4455 4456 4457 4458 4459 4460 4461 4462
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4463
			rebalance_domains(balance_cpu, CPU_IDLE);
4464 4465

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4466 4467
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4468 4469 4470 4471 4472
		}
	}
#endif
}

4473 4474 4475 4476 4477
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4478 4479 4480 4481 4482 4483 4484
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4485
static inline void trigger_load_balance(struct rq *rq, int cpu)
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4497
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4510
			int ilb = cpumask_first(nohz.cpu_mask);
4511

4512
			if (ilb < nr_cpu_ids)
4513 4514 4515 4516 4517 4518 4519 4520 4521
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4522
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4523 4524 4525 4526 4527 4528 4529 4530 4531
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4532
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4533 4534
		return;
#endif
4535 4536 4537
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4538
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4539
}
I
Ingo Molnar 已提交
4540 4541 4542

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4543 4544 4545
/*
 * on UP we do not need to balance between CPUs:
 */
4546
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4547 4548
{
}
I
Ingo Molnar 已提交
4549

L
Linus Torvalds 已提交
4550 4551 4552 4553 4554 4555 4556
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4557 4558
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4559
 */
4560
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4561 4562
{
	unsigned long flags;
4563
	struct rq *rq;
4564
	u64 ns = 0;
4565

4566
	rq = task_rq_lock(p, &flags);
4567

4568
	if (task_current(rq, p)) {
4569 4570
		u64 delta_exec;

I
Ingo Molnar 已提交
4571 4572
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4573
		if ((s64)delta_exec > 0)
4574
			ns = delta_exec;
4575
	}
4576

4577
	task_rq_unlock(rq, &flags);
4578

L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4586
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4587
 */
4588 4589
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4590 4591 4592 4593
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4594
	/* Add user time to process. */
L
Linus Torvalds 已提交
4595
	p->utime = cputime_add(p->utime, cputime);
4596
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4597
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4605 4606
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4607 4608
}

4609 4610 4611 4612
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4613
 * @cputime_scaled: cputime scaled by cpu frequency
4614
 */
4615 4616
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4617 4618 4619 4620 4621 4622
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4623
	/* Add guest time to process. */
4624
	p->utime = cputime_add(p->utime, cputime);
4625
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4626
	account_group_user_time(p, cputime);
4627 4628
	p->gtime = cputime_add(p->gtime, cputime);

4629
	/* Add guest time to cpustat. */
4630 4631 4632 4633
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4634 4635 4636 4637 4638
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4639
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4640 4641
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4642
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4643 4644 4645 4646
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4647
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4648
		account_guest_time(p, cputime, cputime_scaled);
4649 4650
		return;
	}
4651

4652
	/* Add system time to process. */
L
Linus Torvalds 已提交
4653
	p->stime = cputime_add(p->stime, cputime);
4654
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4655
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4656 4657 4658 4659 4660 4661 4662 4663

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4664 4665
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4666 4667 4668 4669
	/* Account for system time used */
	acct_update_integrals(p);
}

4670
/*
L
Linus Torvalds 已提交
4671 4672
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4673
 */
4674
void account_steal_time(cputime_t cputime)
4675
{
4676 4677 4678 4679
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4680 4681
}

L
Linus Torvalds 已提交
4682
/*
4683 4684
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4685
 */
4686
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4687 4688
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4689
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4690
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4691

4692 4693 4694 4695
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4696 4697
}

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4737 4738
}

4739 4740
#endif

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4811
	struct task_struct *curr = rq->curr;
4812 4813

	sched_clock_tick();
I
Ingo Molnar 已提交
4814 4815

	spin_lock(&rq->lock);
4816
	update_rq_clock(rq);
4817
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4818
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4819
	spin_unlock(&rq->lock);
4820

4821
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4822 4823
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4824
#endif
L
Linus Torvalds 已提交
4825 4826
}

4827
unsigned long get_parent_ip(unsigned long addr)
4828 4829 4830 4831 4832 4833 4834 4835
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4836

4837 4838 4839
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4840
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4841
{
4842
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4843 4844 4845
	/*
	 * Underflow?
	 */
4846 4847
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4848
#endif
L
Linus Torvalds 已提交
4849
	preempt_count() += val;
4850
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4851 4852 4853
	/*
	 * Spinlock count overflowing soon?
	 */
4854 4855
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4856 4857 4858
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4859 4860 4861
}
EXPORT_SYMBOL(add_preempt_count);

4862
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4863
{
4864
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4865 4866 4867
	/*
	 * Underflow?
	 */
4868
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4869
		return;
L
Linus Torvalds 已提交
4870 4871 4872
	/*
	 * Is the spinlock portion underflowing?
	 */
4873 4874 4875
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4876
#endif
4877

4878 4879
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4880 4881 4882 4883 4884 4885 4886
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4887
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4888
 */
I
Ingo Molnar 已提交
4889
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4890
{
4891 4892 4893 4894 4895
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4896
	debug_show_held_locks(prev);
4897
	print_modules();
I
Ingo Molnar 已提交
4898 4899
	if (irqs_disabled())
		print_irqtrace_events(prev);
4900 4901 4902 4903 4904

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4905
}
L
Linus Torvalds 已提交
4906

I
Ingo Molnar 已提交
4907 4908 4909 4910 4911
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4912
	/*
I
Ingo Molnar 已提交
4913
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4914 4915 4916
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4917
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4918 4919
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4920 4921
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4922
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4923 4924
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4925 4926
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4927 4928
	}
#endif
I
Ingo Molnar 已提交
4929 4930
}

M
Mike Galbraith 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
4953 4954 4955 4956
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4957
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4958
{
4959
	const struct sched_class *class;
I
Ingo Molnar 已提交
4960
	struct task_struct *p;
L
Linus Torvalds 已提交
4961 4962

	/*
I
Ingo Molnar 已提交
4963 4964
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4965
	 */
I
Ingo Molnar 已提交
4966
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4967
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4968 4969
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4970 4971
	}

I
Ingo Molnar 已提交
4972 4973
	class = sched_class_highest;
	for ( ; ; ) {
4974
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4975 4976 4977 4978 4979 4980 4981 4982 4983
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4984

I
Ingo Molnar 已提交
4985 4986 4987
/*
 * schedule() is the main scheduler function.
 */
P
Peter Zijlstra 已提交
4988
asmlinkage void __sched __schedule(void)
I
Ingo Molnar 已提交
4989 4990
{
	struct task_struct *prev, *next;
4991
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4992
	struct rq *rq;
4993
	int cpu;
I
Ingo Molnar 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5005

5006
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5007
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5008

5009
	spin_lock_irq(&rq->lock);
5010
	update_rq_clock(rq);
5011
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5012 5013

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5014
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5015
			prev->state = TASK_RUNNING;
5016
		else
5017
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5018
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5019 5020
	}

5021 5022 5023 5024
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5025

I
Ingo Molnar 已提交
5026
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5027 5028
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5029
	put_prev_task(rq, prev);
5030
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5031 5032

	if (likely(prev != next)) {
5033 5034
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
5035 5036 5037 5038
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5039
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5040 5041 5042 5043 5044 5045
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5046 5047 5048
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5049
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5050
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5051
}
P
Peter Zijlstra 已提交
5052

P
Peter Zijlstra 已提交
5053 5054 5055 5056 5057
asmlinkage void __sched schedule(void)
{
need_resched:
	preempt_disable();
	__schedule();
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5125 5126
#ifdef CONFIG_PREEMPT
/*
5127
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5128
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5134

L
Linus Torvalds 已提交
5135 5136
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5137
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5138
	 */
N
Nick Piggin 已提交
5139
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5140 5141
		return;

5142 5143 5144 5145
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5146

5147 5148 5149 5150 5151
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5152
	} while (need_resched());
L
Linus Torvalds 已提交
5153 5154 5155 5156
}
EXPORT_SYMBOL(preempt_schedule);

/*
5157
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5158 5159 5160 5161 5162 5163 5164
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5165

5166
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5167 5168
	BUG_ON(ti->preempt_count || !irqs_disabled());

5169 5170 5171 5172 5173 5174
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5175

5176 5177 5178 5179 5180
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5181
	} while (need_resched());
L
Linus Torvalds 已提交
5182 5183 5184 5185
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5186 5187
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5188
{
5189
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5190 5191 5192 5193
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5194 5195
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5196 5197 5198
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5199
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5200 5201
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5202 5203
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5204
{
5205
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5206

5207
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5208 5209
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5210
		if (curr->func(curr, mode, sync, key) &&
5211
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5221
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
5222
 */
5223
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5224
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5237
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5238 5239 5240 5241
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5242 5243 5244 5245 5246
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5247
/**
5248
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5249 5250 5251
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5252
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5253 5254 5255 5256 5257 5258 5259 5260
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
5261 5262
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5274
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5275 5276
	spin_unlock_irqrestore(&q->lock, flags);
}
5277 5278 5279 5280 5281 5282 5283 5284 5285
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5286 5287
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5288 5289 5290 5291 5292 5293 5294 5295 5296
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
5297
void complete(struct completion *x)
L
Linus Torvalds 已提交
5298 5299 5300 5301 5302
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5303
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5304 5305 5306 5307
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5308 5309 5310 5311 5312 5313
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
5314
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5315 5316 5317 5318 5319
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5320
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5321 5322 5323 5324
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5325 5326
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5327 5328 5329 5330 5331 5332 5333
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5334
			if (signal_pending_state(state, current)) {
5335 5336
				timeout = -ERESTARTSYS;
				break;
5337 5338
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5339 5340 5341
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5342
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5343
		__remove_wait_queue(&x->wait, &wait);
5344 5345
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5346 5347
	}
	x->done--;
5348
	return timeout ?: 1;
L
Linus Torvalds 已提交
5349 5350
}

5351 5352
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5353 5354 5355 5356
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5357
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5358
	spin_unlock_irq(&x->wait.lock);
5359 5360
	return timeout;
}
L
Linus Torvalds 已提交
5361

5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5372
void __sched wait_for_completion(struct completion *x)
5373 5374
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5375
}
5376
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5377

5378 5379 5380 5381 5382 5383 5384 5385 5386
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5387
unsigned long __sched
5388
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5389
{
5390
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5391
}
5392
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5393

5394 5395 5396 5397 5398 5399 5400
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5401
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5402
{
5403 5404 5405 5406
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5407
}
5408
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5409

5410 5411 5412 5413 5414 5415 5416 5417
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5418
unsigned long __sched
5419 5420
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5421
{
5422
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5423
}
5424
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5425

5426 5427 5428 5429 5430 5431 5432
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5488 5489
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5490
{
I
Ingo Molnar 已提交
5491 5492 5493 5494
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5495

5496
	__set_current_state(state);
L
Linus Torvalds 已提交
5497

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5512 5513 5514
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5515
long __sched
I
Ingo Molnar 已提交
5516
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5517
{
5518
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5519 5520 5521
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5522
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5523
{
5524
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5525 5526 5527
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5528
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5529
{
5530
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5531 5532 5533
}
EXPORT_SYMBOL(sleep_on_timeout);

5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5546
void rt_mutex_setprio(struct task_struct *p, int prio)
5547 5548
{
	unsigned long flags;
5549
	int oldprio, on_rq, running;
5550
	struct rq *rq;
5551
	const struct sched_class *prev_class = p->sched_class;
5552 5553 5554 5555

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5556
	update_rq_clock(rq);
5557

5558
	oldprio = p->prio;
I
Ingo Molnar 已提交
5559
	on_rq = p->se.on_rq;
5560
	running = task_current(rq, p);
5561
	if (on_rq)
5562
		dequeue_task(rq, p, 0);
5563 5564
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5565 5566 5567 5568 5569 5570

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5571 5572
	p->prio = prio;

5573 5574
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5575
	if (on_rq) {
5576
		enqueue_task(rq, p, 0);
5577 5578

		check_class_changed(rq, p, prev_class, oldprio, running);
5579 5580 5581 5582 5583 5584
	}
	task_rq_unlock(rq, &flags);
}

#endif

5585
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5586
{
I
Ingo Molnar 已提交
5587
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5588
	unsigned long flags;
5589
	struct rq *rq;
L
Linus Torvalds 已提交
5590 5591 5592 5593 5594 5595 5596 5597

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5598
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5599 5600 5601 5602
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5603
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5604
	 */
5605
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5606 5607 5608
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5609
	on_rq = p->se.on_rq;
5610
	if (on_rq)
5611
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5612 5613

	p->static_prio = NICE_TO_PRIO(nice);
5614
	set_load_weight(p);
5615 5616 5617
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5618

I
Ingo Molnar 已提交
5619
	if (on_rq) {
5620
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5621
		/*
5622 5623
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5624
		 */
5625
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5626 5627 5628 5629 5630 5631 5632
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5633 5634 5635 5636 5637
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5638
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5639
{
5640 5641
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5642

M
Matt Mackall 已提交
5643 5644 5645 5646
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5656
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5657
{
5658
	long nice, retval;
L
Linus Torvalds 已提交
5659 5660 5661 5662 5663 5664

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5665 5666
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5667 5668 5669
	if (increment > 40)
		increment = 40;

5670
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5671 5672 5673 5674 5675
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5676 5677 5678
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5697
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5698 5699 5700 5701 5702 5703 5704 5705
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5706
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5707 5708 5709
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5710
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5725
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731 5732 5733
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5734
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5735
{
5736
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5737 5738 5739
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5740 5741
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5742
{
I
Ingo Molnar 已提交
5743
	BUG_ON(p->se.on_rq);
5744

L
Linus Torvalds 已提交
5745
	p->policy = policy;
I
Ingo Molnar 已提交
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5758
	p->rt_priority = prio;
5759 5760 5761
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5762
	set_load_weight(p);
L
Linus Torvalds 已提交
5763 5764
}

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5781 5782
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5783
{
5784
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5785
	unsigned long flags;
5786
	const struct sched_class *prev_class = p->sched_class;
5787
	struct rq *rq;
L
Linus Torvalds 已提交
5788

5789 5790
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5791 5792 5793 5794 5795
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5796 5797
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5798
		return -EINVAL;
L
Linus Torvalds 已提交
5799 5800
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5801 5802
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5803 5804
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5805
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5806
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5807
		return -EINVAL;
5808
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5809 5810
		return -EINVAL;

5811 5812 5813
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5814
	if (user && !capable(CAP_SYS_NICE)) {
5815
		if (rt_policy(policy)) {
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5832 5833 5834 5835 5836 5837
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5838

5839
		/* can't change other user's priorities */
5840
		if (!check_same_owner(p))
5841 5842
			return -EPERM;
	}
L
Linus Torvalds 已提交
5843

5844
	if (user) {
5845
#ifdef CONFIG_RT_GROUP_SCHED
5846 5847 5848 5849
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5850 5851
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5852
			return -EPERM;
5853 5854
#endif

5855 5856 5857 5858 5859
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5860 5861 5862 5863 5864
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5865 5866 5867 5868
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5869
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5870 5871 5872
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5873 5874
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5875 5876
		goto recheck;
	}
I
Ingo Molnar 已提交
5877
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5878
	on_rq = p->se.on_rq;
5879
	running = task_current(rq, p);
5880
	if (on_rq)
5881
		deactivate_task(rq, p, 0);
5882 5883
	if (running)
		p->sched_class->put_prev_task(rq, p);
5884

L
Linus Torvalds 已提交
5885
	oldprio = p->prio;
I
Ingo Molnar 已提交
5886
	__setscheduler(rq, p, policy, param->sched_priority);
5887

5888 5889
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5890 5891
	if (on_rq) {
		activate_task(rq, p, 0);
5892 5893

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5894
	}
5895 5896 5897
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5898 5899
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5900 5901
	return 0;
}
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5916 5917
EXPORT_SYMBOL_GPL(sched_setscheduler);

5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5935 5936
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5937 5938 5939
{
	struct sched_param lparam;
	struct task_struct *p;
5940
	int retval;
L
Linus Torvalds 已提交
5941 5942 5943 5944 5945

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5946 5947 5948

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5949
	p = find_process_by_pid(pid);
5950 5951 5952
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5953

L
Linus Torvalds 已提交
5954 5955 5956 5957 5958 5959 5960 5961 5962
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5963 5964
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5965
{
5966 5967 5968 5969
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5970 5971 5972 5973 5974 5975 5976 5977
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5978
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5979 5980 5981 5982 5983 5984 5985 5986
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5987
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5988
{
5989
	struct task_struct *p;
5990
	int retval;
L
Linus Torvalds 已提交
5991 5992

	if (pid < 0)
5993
		return -EINVAL;
L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6012
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6013 6014
{
	struct sched_param lp;
6015
	struct task_struct *p;
6016
	int retval;
L
Linus Torvalds 已提交
6017 6018

	if (!param || pid < 0)
6019
		return -EINVAL;
L
Linus Torvalds 已提交
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6046
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6047
{
6048
	cpumask_var_t cpus_allowed, new_mask;
6049 6050
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6051

6052
	get_online_cpus();
L
Linus Torvalds 已提交
6053 6054 6055 6056 6057
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6058
		put_online_cpus();
L
Linus Torvalds 已提交
6059 6060 6061 6062 6063
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6064
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6065 6066 6067 6068 6069
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6070 6071 6072 6073 6074 6075 6076 6077
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6078
	retval = -EPERM;
6079
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6080 6081
		goto out_unlock;

6082 6083 6084 6085
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6086 6087
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6088
 again:
6089
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6090

P
Paul Menage 已提交
6091
	if (!retval) {
6092 6093
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6094 6095 6096 6097 6098
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6099
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6100 6101 6102
			goto again;
		}
	}
L
Linus Torvalds 已提交
6103
out_unlock:
6104 6105 6106 6107
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6108
	put_task_struct(p);
6109
	put_online_cpus();
L
Linus Torvalds 已提交
6110 6111 6112 6113
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6114
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6115
{
6116 6117 6118 6119 6120
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6130 6131
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6132
{
6133
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6134 6135
	int retval;

6136 6137
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6138

6139 6140 6141 6142 6143
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6144 6145
}

6146
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6147
{
6148
	struct task_struct *p;
L
Linus Torvalds 已提交
6149 6150
	int retval;

6151
	get_online_cpus();
L
Linus Torvalds 已提交
6152 6153 6154 6155 6156 6157 6158
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6159 6160 6161 6162
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6163
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6164 6165 6166

out_unlock:
	read_unlock(&tasklist_lock);
6167
	put_online_cpus();
L
Linus Torvalds 已提交
6168

6169
	return retval;
L
Linus Torvalds 已提交
6170 6171 6172 6173 6174 6175 6176 6177
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6178 6179
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6180 6181
{
	int ret;
6182
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6183

6184
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6185 6186
		return -EINVAL;

6187 6188
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6189

6190 6191 6192 6193 6194 6195 6196 6197
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6198

6199
	return ret;
L
Linus Torvalds 已提交
6200 6201 6202 6203 6204
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6205 6206
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6207
 */
6208
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6209
{
6210
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6211

6212
	schedstat_inc(rq, yld_count);
6213
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6214 6215 6216 6217 6218 6219

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6220
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6221 6222 6223 6224 6225 6226 6227 6228
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6229
static void __cond_resched(void)
L
Linus Torvalds 已提交
6230
{
6231 6232 6233
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6234 6235 6236 6237 6238
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6239 6240 6241 6242 6243 6244 6245
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6246
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6247
{
6248 6249
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6250 6251 6252 6253 6254
		__cond_resched();
		return 1;
	}
	return 0;
}
6255
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6256 6257 6258 6259 6260

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6261
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6262 6263 6264
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6265
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6266
{
N
Nick Piggin 已提交
6267
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6268 6269
	int ret = 0;

N
Nick Piggin 已提交
6270
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6271
		spin_unlock(lock);
N
Nick Piggin 已提交
6272 6273 6274 6275
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6276
		ret = 1;
L
Linus Torvalds 已提交
6277 6278
		spin_lock(lock);
	}
J
Jan Kara 已提交
6279
	return ret;
L
Linus Torvalds 已提交
6280 6281 6282 6283 6284 6285 6286
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6287
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6288
		local_bh_enable();
L
Linus Torvalds 已提交
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6300
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6311
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6312 6313 6314 6315 6316 6317 6318
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6319
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6320

6321
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6322 6323 6324
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6325
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6326 6327 6328 6329 6330
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6331
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6332 6333
	long ret;

6334
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6335 6336 6337
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6338
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6349
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6350 6351 6352 6353 6354 6355 6356 6357 6358
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6359
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6360
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6374
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6375 6376 6377 6378 6379 6380 6381 6382 6383
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6384
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6385
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6399
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6400
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6401
{
6402
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6403
	unsigned int time_slice;
6404
	int retval;
L
Linus Torvalds 已提交
6405 6406 6407
	struct timespec t;

	if (pid < 0)
6408
		return -EINVAL;
L
Linus Torvalds 已提交
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6420 6421 6422 6423 6424 6425
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6426
		time_slice = DEF_TIMESLICE;
6427
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6428 6429 6430 6431 6432
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6433 6434
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6435 6436
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6437
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6438
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6439 6440
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6441

L
Linus Torvalds 已提交
6442 6443 6444 6445 6446
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6447
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6448

6449
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6450 6451
{
	unsigned long free = 0;
6452
	unsigned state;
L
Linus Torvalds 已提交
6453 6454

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6455
	printk(KERN_INFO "%-13.13s %c", p->comm,
6456
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6457
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6458
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6459
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6460
	else
I
Ingo Molnar 已提交
6461
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6462 6463
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6464
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6465
	else
I
Ingo Molnar 已提交
6466
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6467 6468
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6469
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6470
#endif
6471
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6472
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6473

6474
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6475 6476
}

I
Ingo Molnar 已提交
6477
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6478
{
6479
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6480

6481 6482 6483
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6484
#else
6485 6486
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6487 6488 6489 6490 6491 6492 6493 6494
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6495
		if (!state_filter || (p->state & state_filter))
6496
			sched_show_task(p);
L
Linus Torvalds 已提交
6497 6498
	} while_each_thread(g, p);

6499 6500
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6501 6502 6503
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6504
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6505 6506 6507 6508 6509
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6510 6511
}

I
Ingo Molnar 已提交
6512 6513
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6514
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6515 6516
}

6517 6518 6519 6520 6521 6522 6523 6524
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6525
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6526
{
6527
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6528 6529
	unsigned long flags;

6530 6531
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6532 6533 6534
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6535
	idle->prio = idle->normal_prio = MAX_PRIO;
6536
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6537
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6538 6539

	rq->curr = rq->idle = idle;
6540 6541 6542
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6543 6544 6545
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6546 6547 6548
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6549
	task_thread_info(idle)->preempt_count = 0;
6550
#endif
I
Ingo Molnar 已提交
6551 6552 6553 6554
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6555
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6556 6557 6558 6559 6560 6561 6562
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6563
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6564
 */
6565
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6566

I
Ingo Molnar 已提交
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6590 6591

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6592 6593
}

L
Linus Torvalds 已提交
6594 6595 6596 6597
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6598
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6617
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6618 6619
 * call is not atomic; no spinlocks may be held.
 */
6620
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6621
{
6622
	struct migration_req req;
L
Linus Torvalds 已提交
6623
	unsigned long flags;
6624
	struct rq *rq;
6625
	int ret = 0;
L
Linus Torvalds 已提交
6626 6627

	rq = task_rq_lock(p, &flags);
6628
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6629 6630 6631 6632
		ret = -EINVAL;
		goto out;
	}

6633
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6634
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6635 6636 6637 6638
		ret = -EINVAL;
		goto out;
	}

6639
	if (p->sched_class->set_cpus_allowed)
6640
		p->sched_class->set_cpus_allowed(p, new_mask);
6641
	else {
6642 6643
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6644 6645
	}

L
Linus Torvalds 已提交
6646
	/* Can the task run on the task's current CPU? If so, we're done */
6647
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6648 6649
		goto out;

R
Rusty Russell 已提交
6650
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6651 6652 6653 6654 6655 6656 6657 6658 6659
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6660

L
Linus Torvalds 已提交
6661 6662
	return ret;
}
6663
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6664 6665

/*
I
Ingo Molnar 已提交
6666
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6667 6668 6669 6670 6671 6672
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6673 6674
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6675
 */
6676
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6677
{
6678
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6679
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6680

6681
	if (unlikely(!cpu_active(dest_cpu)))
6682
		return ret;
L
Linus Torvalds 已提交
6683 6684 6685 6686 6687 6688 6689

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6690
		goto done;
L
Linus Torvalds 已提交
6691
	/* Affinity changed (again). */
6692
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6693
		goto fail;
L
Linus Torvalds 已提交
6694

I
Ingo Molnar 已提交
6695
	on_rq = p->se.on_rq;
6696
	if (on_rq)
6697
		deactivate_task(rq_src, p, 0);
6698

L
Linus Torvalds 已提交
6699
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6700 6701
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6702
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6703
	}
L
Linus Torvalds 已提交
6704
done:
6705
	ret = 1;
L
Linus Torvalds 已提交
6706
fail:
L
Linus Torvalds 已提交
6707
	double_rq_unlock(rq_src, rq_dest);
6708
	return ret;
L
Linus Torvalds 已提交
6709 6710 6711 6712 6713 6714 6715
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6716
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6717 6718
{
	int cpu = (long)data;
6719
	struct rq *rq;
L
Linus Torvalds 已提交
6720 6721 6722 6723 6724 6725

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6726
		struct migration_req *req;
L
Linus Torvalds 已提交
6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6749
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6750 6751
		list_del_init(head->next);

N
Nick Piggin 已提交
6752 6753 6754
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6784
/*
6785
 * Figure out where task on dead CPU should go, use force if necessary.
6786
 */
6787
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6788
{
6789
	int dest_cpu;
6790
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6807

6808 6809 6810 6811 6812 6813 6814 6815 6816
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6817
		}
6818 6819 6820 6821 6822 6823
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6833
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6834
{
R
Rusty Russell 已提交
6835
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6849
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6850

6851
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6852

6853 6854
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6855 6856
			continue;

6857 6858 6859
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6860

6861
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6862 6863
}

I
Ingo Molnar 已提交
6864 6865
/*
 * Schedules idle task to be the next runnable task on current CPU.
6866 6867
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6868 6869 6870
 */
void sched_idle_next(void)
{
6871
	int this_cpu = smp_processor_id();
6872
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6873 6874 6875 6876
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6877
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6878

6879 6880 6881
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6882 6883 6884
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6885
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6886

6887 6888
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6889 6890 6891 6892

	spin_unlock_irqrestore(&rq->lock, flags);
}

6893 6894
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6908
/* called under rq->lock with disabled interrupts */
6909
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6910
{
6911
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6912 6913

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6914
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6915 6916

	/* Cannot have done final schedule yet: would have vanished. */
6917
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6918

6919
	get_task_struct(p);
L
Linus Torvalds 已提交
6920 6921 6922

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6923
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6924 6925
	 * fine.
	 */
6926
	spin_unlock_irq(&rq->lock);
6927
	move_task_off_dead_cpu(dead_cpu, p);
6928
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6929

6930
	put_task_struct(p);
L
Linus Torvalds 已提交
6931 6932 6933 6934 6935
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6936
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6937
	struct task_struct *next;
6938

I
Ingo Molnar 已提交
6939 6940 6941
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6942
		update_rq_clock(rq);
6943
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
6944 6945
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6946
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6947
		migrate_dead(dead_cpu, next);
6948

L
Linus Torvalds 已提交
6949 6950 6951 6952
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6953 6954 6955
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6956 6957
	{
		.procname	= "sched_domain",
6958
		.mode		= 0555,
6959
	},
I
Ingo Molnar 已提交
6960
	{0, },
6961 6962 6963
};

static struct ctl_table sd_ctl_root[] = {
6964
	{
6965
		.ctl_name	= CTL_KERN,
6966
		.procname	= "kernel",
6967
		.mode		= 0555,
6968 6969
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6970
	{0, },
6971 6972 6973 6974 6975
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6976
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6977 6978 6979 6980

	return entry;
}

6981 6982
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6983
	struct ctl_table *entry;
6984

6985 6986 6987
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6988
	 * will always be set. In the lowest directory the names are
6989 6990 6991
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6992 6993
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6994 6995 6996
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6997 6998 6999 7000 7001

	kfree(*tablep);
	*tablep = NULL;
}

7002
static void
7003
set_table_entry(struct ctl_table *entry,
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7017
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7018

7019 7020 7021
	if (table == NULL)
		return NULL;

7022
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7023
		sizeof(long), 0644, proc_doulongvec_minmax);
7024
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7025
		sizeof(long), 0644, proc_doulongvec_minmax);
7026
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7027
		sizeof(int), 0644, proc_dointvec_minmax);
7028
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7029
		sizeof(int), 0644, proc_dointvec_minmax);
7030
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7031
		sizeof(int), 0644, proc_dointvec_minmax);
7032
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7033
		sizeof(int), 0644, proc_dointvec_minmax);
7034
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7035
		sizeof(int), 0644, proc_dointvec_minmax);
7036
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7037
		sizeof(int), 0644, proc_dointvec_minmax);
7038
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7039
		sizeof(int), 0644, proc_dointvec_minmax);
7040
	set_table_entry(&table[9], "cache_nice_tries",
7041 7042
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7043
	set_table_entry(&table[10], "flags", &sd->flags,
7044
		sizeof(int), 0644, proc_dointvec_minmax);
7045 7046 7047
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7048 7049 7050 7051

	return table;
}

7052
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7053 7054 7055 7056 7057 7058 7059 7060 7061
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7062 7063
	if (table == NULL)
		return NULL;
7064 7065 7066 7067 7068

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7069
		entry->mode = 0555;
7070 7071 7072 7073 7074 7075 7076 7077
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7078
static void register_sched_domain_sysctl(void)
7079 7080 7081 7082 7083
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7084 7085 7086
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7087 7088 7089
	if (entry == NULL)
		return;

7090
	for_each_online_cpu(i) {
7091 7092
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7093
		entry->mode = 0555;
7094
		entry->child = sd_alloc_ctl_cpu_table(i);
7095
		entry++;
7096
	}
7097 7098

	WARN_ON(sd_sysctl_header);
7099 7100
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7101

7102
/* may be called multiple times per register */
7103 7104
static void unregister_sched_domain_sysctl(void)
{
7105 7106
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7107
	sd_sysctl_header = NULL;
7108 7109
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7110
}
7111
#else
7112 7113 7114 7115
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7116 7117 7118 7119
{
}
#endif

7120 7121 7122 7123 7124
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7125
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7145
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7146 7147 7148 7149
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7150 7151 7152 7153
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7154 7155
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7156 7157
{
	struct task_struct *p;
7158
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7159
	unsigned long flags;
7160
	struct rq *rq;
L
Linus Torvalds 已提交
7161 7162

	switch (action) {
7163

L
Linus Torvalds 已提交
7164
	case CPU_UP_PREPARE:
7165
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7166
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7167 7168 7169 7170 7171
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7172
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7173 7174 7175
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
7176

L
Linus Torvalds 已提交
7177
	case CPU_ONLINE:
7178
	case CPU_ONLINE_FROZEN:
7179
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7180
		wake_up_process(cpu_rq(cpu)->migration_thread);
7181 7182 7183 7184 7185

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7186
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7187 7188

			set_rq_online(rq);
7189 7190
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7191
		break;
7192

L
Linus Torvalds 已提交
7193 7194
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7195
	case CPU_UP_CANCELED_FROZEN:
7196 7197
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7198
		/* Unbind it from offline cpu so it can run. Fall thru. */
7199
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7200
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7201 7202 7203
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7204

L
Linus Torvalds 已提交
7205
	case CPU_DEAD:
7206
	case CPU_DEAD_FROZEN:
7207
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7208 7209 7210 7211 7212
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7213
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7214
		update_rq_clock(rq);
7215
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7216
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7217 7218
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7219
		migrate_dead_tasks(cpu);
7220
		spin_unlock_irq(&rq->lock);
7221
		cpuset_unlock();
L
Linus Torvalds 已提交
7222 7223 7224
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
7225 7226 7227 7228 7229
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7230 7231
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7232 7233
			struct migration_req *req;

L
Linus Torvalds 已提交
7234
			req = list_entry(rq->migration_queue.next,
7235
					 struct migration_req, list);
L
Linus Torvalds 已提交
7236
			list_del_init(&req->list);
B
Brian King 已提交
7237
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7238
			complete(&req->done);
B
Brian King 已提交
7239
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7240 7241 7242
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7243

7244 7245
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7246 7247 7248 7249
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7250
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7251
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7252 7253 7254
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7255 7256 7257 7258 7259 7260 7261 7262
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
7263
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7264 7265 7266 7267
	.notifier_call = migration_call,
	.priority = 10
};

7268
static int __init migration_init(void)
L
Linus Torvalds 已提交
7269 7270
{
	void *cpu = (void *)(long)smp_processor_id();
7271
	int err;
7272 7273

	/* Start one for the boot CPU: */
7274 7275
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7276 7277
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7278 7279

	return err;
L
Linus Torvalds 已提交
7280
}
7281
early_initcall(migration_init);
L
Linus Torvalds 已提交
7282 7283 7284
#endif

#ifdef CONFIG_SMP
7285

7286
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7287

7288
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7289
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7290
{
I
Ingo Molnar 已提交
7291
	struct sched_group *group = sd->groups;
7292
	char str[256];
L
Linus Torvalds 已提交
7293

R
Rusty Russell 已提交
7294
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7295
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7296 7297 7298 7299 7300 7301 7302 7303 7304

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7305 7306
	}

7307
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7308

7309
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7310 7311 7312
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7313
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7314 7315 7316
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7317

I
Ingo Molnar 已提交
7318
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7319
	do {
I
Ingo Molnar 已提交
7320 7321 7322
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7323 7324 7325
			break;
		}

I
Ingo Molnar 已提交
7326 7327 7328 7329 7330 7331
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7332

7333
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7334 7335 7336 7337
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7338

7339
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7340 7341 7342 7343
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7344

7345
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7346

R
Rusty Russell 已提交
7347
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
7348
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
7349

I
Ingo Molnar 已提交
7350 7351 7352
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7353

7354
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7355
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7356

7357 7358
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7359 7360 7361 7362
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7363

I
Ingo Molnar 已提交
7364 7365
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7366
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7367
	int level = 0;
L
Linus Torvalds 已提交
7368

I
Ingo Molnar 已提交
7369 7370 7371 7372
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7373

I
Ingo Molnar 已提交
7374 7375
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7376
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7377 7378 7379 7380
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7381
	for (;;) {
7382
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7383
			break;
L
Linus Torvalds 已提交
7384 7385
		level++;
		sd = sd->parent;
7386
		if (!sd)
I
Ingo Molnar 已提交
7387 7388
			break;
	}
7389
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7390
}
7391
#else /* !CONFIG_SCHED_DEBUG */
7392
# define sched_domain_debug(sd, cpu) do { } while (0)
7393
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7394

7395
static int sd_degenerate(struct sched_domain *sd)
7396
{
7397
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7398 7399 7400 7401 7402 7403
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7404 7405 7406
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7420 7421
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7422 7423 7424 7425 7426 7427
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7428
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7440 7441 7442
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7443 7444
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7445 7446 7447 7448 7449 7450 7451
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7452 7453
static void free_rootdomain(struct root_domain *rd)
{
7454 7455
	cpupri_cleanup(&rd->cpupri);

7456 7457 7458 7459 7460 7461
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7462 7463
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7464
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7465 7466 7467 7468 7469
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7470
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7471

7472
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7473
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7474

7475
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7476

I
Ingo Molnar 已提交
7477 7478 7479 7480 7481 7482 7483
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7484 7485 7486 7487 7488
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7489 7490
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7491
		set_rq_online(rq);
G
Gregory Haskins 已提交
7492 7493

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7494 7495 7496

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7497 7498
}

L
Li Zefan 已提交
7499
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7500 7501 7502
{
	memset(rd, 0, sizeof(*rd));

7503 7504 7505 7506
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7507
		cpupri_init(&rd->cpupri, true);
7508 7509 7510 7511
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7512
		goto out;
7513 7514 7515 7516
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7517

7518 7519
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7520
	return 0;
7521

7522 7523
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7524 7525 7526 7527
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7528
out:
7529
	return -ENOMEM;
G
Gregory Haskins 已提交
7530 7531 7532 7533
}

static void init_defrootdomain(void)
{
7534 7535
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7536 7537 7538
	atomic_set(&def_root_domain.refcount, 1);
}

7539
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7540 7541 7542 7543 7544 7545 7546
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7547 7548 7549 7550
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7551 7552 7553 7554

	return rd;
}

L
Linus Torvalds 已提交
7555
/*
I
Ingo Molnar 已提交
7556
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7557 7558
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7559 7560
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7561
{
7562
	struct rq *rq = cpu_rq(cpu);
7563 7564 7565
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7566
	for (tmp = sd; tmp; ) {
7567 7568 7569
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7570

7571
		if (sd_parent_degenerate(tmp, parent)) {
7572
			tmp->parent = parent->parent;
7573 7574
			if (parent->parent)
				parent->parent->child = tmp;
7575 7576
		} else
			tmp = tmp->parent;
7577 7578
	}

7579
	if (sd && sd_degenerate(sd)) {
7580
		sd = sd->parent;
7581 7582 7583
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7584 7585 7586

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7587
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7588
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7589 7590 7591
}

/* cpus with isolated domains */
7592
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7593 7594 7595 7596

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7597
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7598 7599 7600
	return 1;
}

I
Ingo Molnar 已提交
7601
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7602 7603

/*
7604 7605
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7606 7607
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7608 7609 7610 7611 7612
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7613
static void
7614 7615 7616
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7617
					struct sched_group **sg,
7618 7619
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7620 7621 7622 7623
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7624
	cpumask_clear(covered);
7625

7626
	for_each_cpu(i, span) {
7627
		struct sched_group *sg;
7628
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7629 7630
		int j;

7631
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7632 7633
			continue;

7634
		cpumask_clear(sched_group_cpus(sg));
7635
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7636

7637
		for_each_cpu(j, span) {
7638
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7639 7640
				continue;

7641
			cpumask_set_cpu(j, covered);
7642
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7653
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7654

7655
#ifdef CONFIG_NUMA
7656

7657 7658 7659 7660 7661
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7662
 * Find the next node to include in a given scheduling domain. Simply
7663 7664 7665 7666
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7667
static int find_next_best_node(int node, nodemask_t *used_nodes)
7668 7669 7670 7671 7672
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7673
	for (i = 0; i < nr_node_ids; i++) {
7674
		/* Start at @node */
7675
		n = (node + i) % nr_node_ids;
7676 7677 7678 7679 7680

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7681
		if (node_isset(n, *used_nodes))
7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7693
	node_set(best_node, *used_nodes);
7694 7695 7696 7697 7698 7699
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7700
 * @span: resulting cpumask
7701
 *
I
Ingo Molnar 已提交
7702
 * Given a node, construct a good cpumask for its sched_domain to span. It
7703 7704 7705
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7706
static void sched_domain_node_span(int node, struct cpumask *span)
7707
{
7708
	nodemask_t used_nodes;
7709
	int i;
7710

7711
	cpumask_clear(span);
7712
	nodes_clear(used_nodes);
7713

7714
	cpumask_or(span, span, cpumask_of_node(node));
7715
	node_set(node, used_nodes);
7716 7717

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7718
		int next_node = find_next_best_node(node, &used_nodes);
7719

7720
		cpumask_or(span, span, cpumask_of_node(next_node));
7721 7722
	}
}
7723
#endif /* CONFIG_NUMA */
7724

7725
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7726

7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7742
/*
7743
 * SMT sched-domains:
7744
 */
L
Linus Torvalds 已提交
7745
#ifdef CONFIG_SCHED_SMT
7746 7747
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7748

I
Ingo Molnar 已提交
7749
static int
7750 7751
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7752
{
7753
	if (sg)
7754
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7755 7756
	return cpu;
}
7757
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7758

7759 7760 7761
/*
 * multi-core sched-domains:
 */
7762
#ifdef CONFIG_SCHED_MC
7763 7764
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7765
#endif /* CONFIG_SCHED_MC */
7766 7767

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7768
static int
7769 7770
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7771
{
7772
	int group;
7773

7774
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7775
	group = cpumask_first(mask);
7776
	if (sg)
7777
		*sg = &per_cpu(sched_group_core, group).sg;
7778
	return group;
7779 7780
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7781
static int
7782 7783
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7784
{
7785
	if (sg)
7786
		*sg = &per_cpu(sched_group_core, cpu).sg;
7787 7788 7789 7790
	return cpu;
}
#endif

7791 7792
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7793

I
Ingo Molnar 已提交
7794
static int
7795 7796
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7797
{
7798
	int group;
7799
#ifdef CONFIG_SCHED_MC
7800
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7801
	group = cpumask_first(mask);
7802
#elif defined(CONFIG_SCHED_SMT)
7803
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7804
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7805
#else
7806
	group = cpu;
L
Linus Torvalds 已提交
7807
#endif
7808
	if (sg)
7809
		*sg = &per_cpu(sched_group_phys, group).sg;
7810
	return group;
L
Linus Torvalds 已提交
7811 7812 7813 7814
}

#ifdef CONFIG_NUMA
/*
7815 7816 7817
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7818
 */
7819
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7820
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7821

7822
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7823
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7824

7825 7826 7827
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7828
{
7829 7830
	int group;

7831
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7832
	group = cpumask_first(nodemask);
7833 7834

	if (sg)
7835
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7836
	return group;
L
Linus Torvalds 已提交
7837
}
7838

7839 7840 7841 7842 7843 7844 7845
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7846
	do {
7847
		for_each_cpu(j, sched_group_cpus(sg)) {
7848
			struct sched_domain *sd;
7849

7850
			sd = &per_cpu(phys_domains, j).sd;
7851
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7852 7853 7854 7855 7856 7857
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7858

7859 7860 7861 7862
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7863
}
7864
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7865

7866
#ifdef CONFIG_NUMA
7867
/* Free memory allocated for various sched_group structures */
7868 7869
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7870
{
7871
	int cpu, i;
7872

7873
	for_each_cpu(cpu, cpu_map) {
7874 7875 7876 7877 7878 7879
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7880
		for (i = 0; i < nr_node_ids; i++) {
7881 7882
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7883
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7884
			if (cpumask_empty(nodemask))
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7901
#else /* !CONFIG_NUMA */
7902 7903
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7904 7905
{
}
7906
#endif /* CONFIG_NUMA */
7907

7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7929
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7930 7931 7932 7933
		return;

	child = sd->child;

7934 7935
	sd->groups->__cpu_power = 0;

7936 7937 7938 7939 7940 7941 7942 7943 7944 7945
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7946
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7947 7948 7949 7950 7951 7952 7953 7954
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7955
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7956 7957 7958 7959
		group = group->next;
	} while (group != child->groups);
}

7960 7961 7962 7963 7964
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7965 7966 7967 7968 7969 7970
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7971
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7972

7973 7974 7975 7976 7977
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7978
	sd->level = SD_LV_##type;				\
7979
	SD_INIT_NAME(sd, type);					\
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7994 7995 7996 7997
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7998 7999 8000 8001 8002 8003
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8029
/*
8030 8031
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8032
 */
8033
static int __build_sched_domains(const struct cpumask *cpu_map,
8034
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8035
{
8036
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8037
	struct root_domain *rd;
8038 8039
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8040
#ifdef CONFIG_NUMA
8041
	cpumask_var_t domainspan, covered, notcovered;
8042
	struct sched_group **sched_group_nodes = NULL;
8043
	int sd_allnodes = 0;
8044

8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8065 8066 8067
	/*
	 * Allocate the per-node list of sched groups
	 */
8068
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8069
				    GFP_KERNEL);
8070 8071
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8072
		goto free_tmpmask;
8073 8074
	}
#endif
L
Linus Torvalds 已提交
8075

8076
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8077 8078
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8079
		goto free_sched_groups;
G
Gregory Haskins 已提交
8080 8081
	}

8082
#ifdef CONFIG_NUMA
8083
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8084 8085
#endif

L
Linus Torvalds 已提交
8086
	/*
8087
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8088
	 */
8089
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8090 8091
		struct sched_domain *sd = NULL, *p;

8092
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8093 8094

#ifdef CONFIG_NUMA
8095 8096
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8097
			sd = &per_cpu(allnodes_domains, i).sd;
8098
			SD_INIT(sd, ALLNODES);
8099
			set_domain_attribute(sd, attr);
8100
			cpumask_copy(sched_domain_span(sd), cpu_map);
8101
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8102
			p = sd;
8103
			sd_allnodes = 1;
8104 8105 8106
		} else
			p = NULL;

8107
		sd = &per_cpu(node_domains, i).sd;
8108
		SD_INIT(sd, NODE);
8109
		set_domain_attribute(sd, attr);
8110
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8111
		sd->parent = p;
8112 8113
		if (p)
			p->child = sd;
8114 8115
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8116 8117 8118
#endif

		p = sd;
8119
		sd = &per_cpu(phys_domains, i).sd;
8120
		SD_INIT(sd, CPU);
8121
		set_domain_attribute(sd, attr);
8122
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8123
		sd->parent = p;
8124 8125
		if (p)
			p->child = sd;
8126
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8127

8128 8129
#ifdef CONFIG_SCHED_MC
		p = sd;
8130
		sd = &per_cpu(core_domains, i).sd;
8131
		SD_INIT(sd, MC);
8132
		set_domain_attribute(sd, attr);
8133 8134
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8135
		sd->parent = p;
8136
		p->child = sd;
8137
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8138 8139
#endif

L
Linus Torvalds 已提交
8140 8141
#ifdef CONFIG_SCHED_SMT
		p = sd;
8142
		sd = &per_cpu(cpu_domains, i).sd;
8143
		SD_INIT(sd, SIBLING);
8144
		set_domain_attribute(sd, attr);
8145
		cpumask_and(sched_domain_span(sd),
8146
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8147
		sd->parent = p;
8148
		p->child = sd;
8149
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8150 8151 8152 8153 8154
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8155
	for_each_cpu(i, cpu_map) {
8156
		cpumask_and(this_sibling_map,
8157
			    topology_thread_cpumask(i), cpu_map);
8158
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8159 8160
			continue;

I
Ingo Molnar 已提交
8161
		init_sched_build_groups(this_sibling_map, cpu_map,
8162 8163
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8164 8165 8166
	}
#endif

8167 8168
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8169
	for_each_cpu(i, cpu_map) {
8170
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8171
		if (i != cpumask_first(this_core_map))
8172
			continue;
8173

I
Ingo Molnar 已提交
8174
		init_sched_build_groups(this_core_map, cpu_map,
8175 8176
					&cpu_to_core_group,
					send_covered, tmpmask);
8177 8178 8179
	}
#endif

L
Linus Torvalds 已提交
8180
	/* Set up physical groups */
8181
	for (i = 0; i < nr_node_ids; i++) {
8182
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8183
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8184 8185
			continue;

8186 8187 8188
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8189 8190 8191 8192
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8193 8194 8195 8196 8197
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8198

8199
	for (i = 0; i < nr_node_ids; i++) {
8200 8201 8202 8203
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8204
		cpumask_clear(covered);
8205
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8206
		if (cpumask_empty(nodemask)) {
8207
			sched_group_nodes[i] = NULL;
8208
			continue;
8209
		}
8210

8211
		sched_domain_node_span(i, domainspan);
8212
		cpumask_and(domainspan, domainspan, cpu_map);
8213

8214 8215
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8216 8217 8218 8219 8220
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8221
		sched_group_nodes[i] = sg;
8222
		for_each_cpu(j, nodemask) {
8223
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8224

8225
			sd = &per_cpu(node_domains, j).sd;
8226 8227
			sd->groups = sg;
		}
8228
		sg->__cpu_power = 0;
8229
		cpumask_copy(sched_group_cpus(sg), nodemask);
8230
		sg->next = sg;
8231
		cpumask_or(covered, covered, nodemask);
8232 8233
		prev = sg;

8234 8235
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8236

8237 8238 8239 8240
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8241 8242
				break;

8243
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8244
			if (cpumask_empty(tmpmask))
8245 8246
				continue;

8247 8248
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8249
					  GFP_KERNEL, i);
8250 8251 8252
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8253
				goto error;
8254
			}
8255
			sg->__cpu_power = 0;
8256
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8257
			sg->next = prev->next;
8258
			cpumask_or(covered, covered, tmpmask);
8259 8260 8261 8262
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8263 8264 8265
#endif

	/* Calculate CPU power for physical packages and nodes */
8266
#ifdef CONFIG_SCHED_SMT
8267
	for_each_cpu(i, cpu_map) {
8268
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8269

8270
		init_sched_groups_power(i, sd);
8271
	}
L
Linus Torvalds 已提交
8272
#endif
8273
#ifdef CONFIG_SCHED_MC
8274
	for_each_cpu(i, cpu_map) {
8275
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8276

8277
		init_sched_groups_power(i, sd);
8278 8279
	}
#endif
8280

8281
	for_each_cpu(i, cpu_map) {
8282
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8283

8284
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8285 8286
	}

8287
#ifdef CONFIG_NUMA
8288
	for (i = 0; i < nr_node_ids; i++)
8289
		init_numa_sched_groups_power(sched_group_nodes[i]);
8290

8291 8292
	if (sd_allnodes) {
		struct sched_group *sg;
8293

8294
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8295
								tmpmask);
8296 8297
		init_numa_sched_groups_power(sg);
	}
8298 8299
#endif

L
Linus Torvalds 已提交
8300
	/* Attach the domains */
8301
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8302 8303
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8304
		sd = &per_cpu(cpu_domains, i).sd;
8305
#elif defined(CONFIG_SCHED_MC)
8306
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8307
#else
8308
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8309
#endif
G
Gregory Haskins 已提交
8310
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8311
	}
8312

8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8341

8342
#ifdef CONFIG_NUMA
8343
error:
8344
	free_sched_groups(cpu_map, tmpmask);
8345
	free_rootdomain(rd);
8346
	goto free_tmpmask;
8347
#endif
L
Linus Torvalds 已提交
8348
}
P
Paul Jackson 已提交
8349

8350
static int build_sched_domains(const struct cpumask *cpu_map)
8351 8352 8353 8354
{
	return __build_sched_domains(cpu_map, NULL);
}

8355
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8356
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8357 8358
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8359 8360 8361

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8362 8363
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8364
 */
8365
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8366

8367 8368 8369 8370 8371 8372
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8373
{
8374
	return 0;
8375 8376
}

8377
/*
I
Ingo Molnar 已提交
8378
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8379 8380
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8381
 */
8382
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8383
{
8384 8385
	int err;

8386
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8387
	ndoms_cur = 1;
8388
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8389
	if (!doms_cur)
8390
		doms_cur = fallback_doms;
8391
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8392
	dattr_cur = NULL;
8393
	err = build_sched_domains(doms_cur);
8394
	register_sched_domain_sysctl();
8395 8396

	return err;
8397 8398
}

8399 8400
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8401
{
8402
	free_sched_groups(cpu_map, tmpmask);
8403
}
L
Linus Torvalds 已提交
8404

8405 8406 8407 8408
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8409
static void detach_destroy_domains(const struct cpumask *cpu_map)
8410
{
8411 8412
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8413 8414
	int i;

8415
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8416
		cpu_attach_domain(NULL, &def_root_domain, i);
8417
	synchronize_sched();
8418
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8419 8420
}

8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8437 8438
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8439
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8440 8441 8442
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8443
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8444 8445 8446
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8447 8448 8449
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8450 8451
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8452 8453 8454 8455
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8456
 *
8457
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8458 8459
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8460
 *
P
Paul Jackson 已提交
8461 8462
 * Call with hotplug lock held
 */
8463 8464
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8465
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8466
{
8467
	int i, j, n;
8468
	int new_topology;
P
Paul Jackson 已提交
8469

8470
	mutex_lock(&sched_domains_mutex);
8471

8472 8473 8474
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8475 8476 8477
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8478
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8479 8480 8481

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8482
		for (j = 0; j < n && !new_topology; j++) {
8483
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8484
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8485 8486 8487 8488 8489 8490 8491 8492
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8493 8494
	if (doms_new == NULL) {
		ndoms_cur = 0;
8495
		doms_new = fallback_doms;
8496
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8497
		WARN_ON_ONCE(dattr_new);
8498 8499
	}

P
Paul Jackson 已提交
8500 8501
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8502
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8503
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8504
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8505 8506 8507
				goto match2;
		}
		/* no match - add a new doms_new */
8508 8509
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8510 8511 8512 8513 8514
match2:
		;
	}

	/* Remember the new sched domains */
8515
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8516
		kfree(doms_cur);
8517
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8518
	doms_cur = doms_new;
8519
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8520
	ndoms_cur = ndoms_new;
8521 8522

	register_sched_domain_sysctl();
8523

8524
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8525 8526
}

8527
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8528
static void arch_reinit_sched_domains(void)
8529
{
8530
	get_online_cpus();
8531 8532 8533 8534

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8535
	rebuild_sched_domains();
8536
	put_online_cpus();
8537 8538 8539 8540
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8541
	unsigned int level = 0;
8542

8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8554 8555 8556
		return -EINVAL;

	if (smt)
8557
		sched_smt_power_savings = level;
8558
	else
8559
		sched_mc_power_savings = level;
8560

8561
	arch_reinit_sched_domains();
8562

8563
	return count;
8564 8565 8566
}

#ifdef CONFIG_SCHED_MC
8567 8568
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8569 8570 8571
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8572
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8573
					    const char *buf, size_t count)
8574 8575 8576
{
	return sched_power_savings_store(buf, count, 0);
}
8577 8578 8579
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8580 8581 8582
#endif

#ifdef CONFIG_SCHED_SMT
8583 8584
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8585 8586 8587
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8588
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8589
					     const char *buf, size_t count)
8590 8591 8592
{
	return sched_power_savings_store(buf, count, 1);
}
8593 8594
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8595 8596 8597
		   sched_smt_power_savings_store);
#endif

8598
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8614
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8615

8616
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8617
/*
8618 8619
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8620 8621 8622
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8623 8624 8625 8626 8627 8628
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8629
		partition_sched_domains(1, NULL, NULL);
8630 8631 8632 8633 8634 8635 8636 8637 8638 8639
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8640
{
P
Peter Zijlstra 已提交
8641 8642
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8643 8644
	switch (action) {
	case CPU_DOWN_PREPARE:
8645
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8646
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8647 8648 8649
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8650
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8651
	case CPU_ONLINE:
8652
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8653
		enable_runtime(cpu_rq(cpu));
8654 8655
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8656 8657 8658 8659 8660 8661 8662
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8663 8664 8665
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8666

8667 8668 8669 8670 8671
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8672
	get_online_cpus();
8673
	mutex_lock(&sched_domains_mutex);
8674 8675 8676 8677
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8678
	mutex_unlock(&sched_domains_mutex);
8679
	put_online_cpus();
8680 8681

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8682 8683
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8684 8685 8686 8687 8688
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8689
	init_hrtick();
8690 8691

	/* Move init over to a non-isolated CPU */
8692
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8693
		BUG();
I
Ingo Molnar 已提交
8694
	sched_init_granularity();
8695
	free_cpumask_var(non_isolated_cpus);
8696 8697

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8698
	init_sched_rt_class();
L
Linus Torvalds 已提交
8699 8700 8701 8702
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8703
	sched_init_granularity();
L
Linus Torvalds 已提交
8704 8705 8706 8707 8708 8709 8710 8711 8712 8713
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8714
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8715 8716
{
	cfs_rq->tasks_timeline = RB_ROOT;
8717
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8718 8719 8720
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8721
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8722 8723
}

P
Peter Zijlstra 已提交
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8737
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8738
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8739
#ifdef CONFIG_SMP
8740
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8741 8742
#endif
#endif
P
Peter Zijlstra 已提交
8743 8744 8745
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8746
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8747 8748 8749 8750
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8751 8752
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8753

8754
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8755
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8756 8757
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8758 8759
}

P
Peter Zijlstra 已提交
8760
#ifdef CONFIG_FAIR_GROUP_SCHED
8761 8762 8763
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8764
{
8765
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8766 8767 8768 8769 8770 8771 8772
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8773 8774 8775 8776
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8777 8778 8779 8780 8781
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8782 8783
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8784
	se->load.inv_weight = 0;
8785
	se->parent = parent;
P
Peter Zijlstra 已提交
8786
}
8787
#endif
P
Peter Zijlstra 已提交
8788

8789
#ifdef CONFIG_RT_GROUP_SCHED
8790 8791 8792
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8793
{
8794 8795
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8796 8797 8798 8799
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8800
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8801 8802 8803 8804
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8805 8806 8807
	if (!rt_se)
		return;

8808 8809 8810 8811 8812
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8813
	rt_se->my_q = rt_rq;
8814
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8815 8816 8817 8818
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8819 8820
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8821
	int i, j;
8822 8823 8824 8825 8826 8827 8828
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8829 8830 8831
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8832 8833
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
8834
	alloc_size += num_possible_cpus() * cpumask_size();
8835 8836 8837 8838 8839 8840
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8841
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8842 8843 8844 8845 8846 8847 8848

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8849 8850 8851 8852 8853 8854 8855

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8856 8857
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8858 8859 8860 8861 8862
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8863 8864 8865 8866 8867 8868 8869 8870
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8871 8872
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8873 8874 8875 8876 8877 8878
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8879
	}
I
Ingo Molnar 已提交
8880

G
Gregory Haskins 已提交
8881 8882 8883 8884
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8885 8886 8887 8888 8889 8890
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8891 8892 8893
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8894 8895
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8896

8897
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8898
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8899 8900 8901 8902 8903 8904
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8905 8906
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8907

8908
	for_each_possible_cpu(i) {
8909
		struct rq *rq;
L
Linus Torvalds 已提交
8910 8911 8912

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8913
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8914
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8915
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8916
#ifdef CONFIG_FAIR_GROUP_SCHED
8917
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8918
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8939
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8940
#elif defined CONFIG_USER_SCHED
8941 8942
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8954
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8955
				&per_cpu(init_cfs_rq, i),
8956 8957
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8958

8959
#endif
D
Dhaval Giani 已提交
8960 8961 8962
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8963
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8964
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8965
#ifdef CONFIG_CGROUP_SCHED
8966
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8967
#elif defined CONFIG_USER_SCHED
8968
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8969
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8970
				&per_cpu(init_rt_rq, i),
8971 8972
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8973
#endif
I
Ingo Molnar 已提交
8974
#endif
L
Linus Torvalds 已提交
8975

I
Ingo Molnar 已提交
8976 8977
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8978
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8979
		rq->sd = NULL;
G
Gregory Haskins 已提交
8980
		rq->rd = NULL;
L
Linus Torvalds 已提交
8981
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8982
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8983
		rq->push_cpu = 0;
8984
		rq->cpu = i;
8985
		rq->online = 0;
L
Linus Torvalds 已提交
8986 8987
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8988
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8989
#endif
P
Peter Zijlstra 已提交
8990
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8991 8992 8993
		atomic_set(&rq->nr_iowait, 0);
	}

8994
	set_load_weight(&init_task);
8995

8996 8997 8998 8999
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9000
#ifdef CONFIG_SMP
9001
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9002 9003
#endif

9004 9005 9006 9007
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
9021 9022 9023 9024
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9025

9026 9027
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9028
#ifdef CONFIG_SMP
9029 9030 9031
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
9032
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
9033
#endif /* SMP */
9034

9035
	scheduler_running = 1;
L
Linus Torvalds 已提交
9036 9037 9038 9039 9040
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9041
#ifdef in_atomic
L
Linus Torvalds 已提交
9042 9043
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9063 9064 9065 9066 9067 9068
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9069 9070 9071
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9072

9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9084 9085
void normalize_rt_tasks(void)
{
9086
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9087
	unsigned long flags;
9088
	struct rq *rq;
L
Linus Torvalds 已提交
9089

9090
	read_lock_irqsave(&tasklist_lock, flags);
9091
	do_each_thread(g, p) {
9092 9093 9094 9095 9096 9097
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9098 9099
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9100 9101 9102
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9103
#endif
I
Ingo Molnar 已提交
9104 9105 9106 9107 9108 9109 9110 9111

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9112
			continue;
I
Ingo Molnar 已提交
9113
		}
L
Linus Torvalds 已提交
9114

9115
		spin_lock(&p->pi_lock);
9116
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9117

9118
		normalize_task(rq, p);
9119

9120
		__task_rq_unlock(rq);
9121
		spin_unlock(&p->pi_lock);
9122 9123
	} while_each_thread(g, p);

9124
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9125 9126 9127
}

#endif /* CONFIG_MAGIC_SYSRQ */
9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9146
struct task_struct *curr_task(int cpu)
9147 9148 9149 9150 9151 9152 9153 9154 9155 9156
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9157 9158
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9159 9160 9161 9162 9163 9164 9165
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9166
void set_curr_task(int cpu, struct task_struct *p)
9167 9168 9169 9170 9171
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9172

9173 9174
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9189 9190
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9191 9192
{
	struct cfs_rq *cfs_rq;
9193
	struct sched_entity *se;
9194
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9195 9196
	int i;

9197
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9198 9199
	if (!tg->cfs_rq)
		goto err;
9200
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9201 9202
	if (!tg->se)
		goto err;
9203 9204

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9205 9206

	for_each_possible_cpu(i) {
9207
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9208

9209 9210
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9211 9212 9213
		if (!cfs_rq)
			goto err;

9214 9215
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9216 9217 9218
		if (!se)
			goto err;

9219
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9238
#else /* !CONFG_FAIR_GROUP_SCHED */
9239 9240 9241 9242
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9243 9244
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9256
#endif /* CONFIG_FAIR_GROUP_SCHED */
9257 9258

#ifdef CONFIG_RT_GROUP_SCHED
9259 9260 9261 9262
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9263 9264
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9276 9277
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9278 9279
{
	struct rt_rq *rt_rq;
9280
	struct sched_rt_entity *rt_se;
9281 9282 9283
	struct rq *rq;
	int i;

9284
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9285 9286
	if (!tg->rt_rq)
		goto err;
9287
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9288 9289 9290
	if (!tg->rt_se)
		goto err;

9291 9292
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9293 9294 9295 9296

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9297 9298
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9299 9300
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9301

9302 9303
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9304 9305
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9306

9307
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9308 9309
	}

9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9326
#else /* !CONFIG_RT_GROUP_SCHED */
9327 9328 9329 9330
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9331 9332
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9344
#endif /* CONFIG_RT_GROUP_SCHED */
9345

9346
#ifdef CONFIG_GROUP_SCHED
9347 9348 9349 9350 9351 9352 9353 9354
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9355
struct task_group *sched_create_group(struct task_group *parent)
9356 9357 9358 9359 9360 9361 9362 9363 9364
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9365
	if (!alloc_fair_sched_group(tg, parent))
9366 9367
		goto err;

9368
	if (!alloc_rt_sched_group(tg, parent))
9369 9370
		goto err;

9371
	spin_lock_irqsave(&task_group_lock, flags);
9372
	for_each_possible_cpu(i) {
9373 9374
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9375
	}
P
Peter Zijlstra 已提交
9376
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9377 9378 9379 9380 9381

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9382
	list_add_rcu(&tg->siblings, &parent->children);
9383
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9384

9385
	return tg;
S
Srivatsa Vaddagiri 已提交
9386 9387

err:
P
Peter Zijlstra 已提交
9388
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9389 9390 9391
	return ERR_PTR(-ENOMEM);
}

9392
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9393
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9394 9395
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9396
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9397 9398
}

9399
/* Destroy runqueue etc associated with a task group */
9400
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9401
{
9402
	unsigned long flags;
9403
	int i;
S
Srivatsa Vaddagiri 已提交
9404

9405
	spin_lock_irqsave(&task_group_lock, flags);
9406
	for_each_possible_cpu(i) {
9407 9408
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9409
	}
P
Peter Zijlstra 已提交
9410
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9411
	list_del_rcu(&tg->siblings);
9412
	spin_unlock_irqrestore(&task_group_lock, flags);
9413 9414

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9415
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9416 9417
}

9418
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9419 9420 9421
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9422 9423
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9424 9425 9426 9427 9428 9429 9430 9431 9432
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9433
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9434 9435
	on_rq = tsk->se.on_rq;

9436
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9437
		dequeue_task(rq, tsk, 0);
9438 9439
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9440

P
Peter Zijlstra 已提交
9441
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9442

P
Peter Zijlstra 已提交
9443 9444 9445 9446 9447
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9448 9449 9450
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9451
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9452 9453 9454

	task_rq_unlock(rq, &flags);
}
9455
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9456

9457
#ifdef CONFIG_FAIR_GROUP_SCHED
9458
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9459 9460 9461 9462 9463
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9464
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9465 9466 9467
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9468
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9469

9470
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9471
		enqueue_entity(cfs_rq, se, 0);
9472
}
9473

9474 9475 9476 9477 9478 9479 9480 9481 9482
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9483 9484
}

9485 9486
static DEFINE_MUTEX(shares_mutex);

9487
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9488 9489
{
	int i;
9490
	unsigned long flags;
9491

9492 9493 9494 9495 9496 9497
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9498 9499
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9500 9501
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9502

9503
	mutex_lock(&shares_mutex);
9504
	if (tg->shares == shares)
9505
		goto done;
S
Srivatsa Vaddagiri 已提交
9506

9507
	spin_lock_irqsave(&task_group_lock, flags);
9508 9509
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9510
	list_del_rcu(&tg->siblings);
9511
	spin_unlock_irqrestore(&task_group_lock, flags);
9512 9513 9514 9515 9516 9517 9518 9519

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9520
	tg->shares = shares;
9521 9522 9523 9524 9525
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9526
		set_se_shares(tg->se[i], shares);
9527
	}
S
Srivatsa Vaddagiri 已提交
9528

9529 9530 9531 9532
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9533
	spin_lock_irqsave(&task_group_lock, flags);
9534 9535
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9536
	list_add_rcu(&tg->siblings, &tg->parent->children);
9537
	spin_unlock_irqrestore(&task_group_lock, flags);
9538
done:
9539
	mutex_unlock(&shares_mutex);
9540
	return 0;
S
Srivatsa Vaddagiri 已提交
9541 9542
}

9543 9544 9545 9546
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9547
#endif
9548

9549
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9550
/*
P
Peter Zijlstra 已提交
9551
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9552
 */
P
Peter Zijlstra 已提交
9553 9554 9555 9556 9557
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9558
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9559

P
Peter Zijlstra 已提交
9560
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9561 9562
}

P
Peter Zijlstra 已提交
9563 9564
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9565
{
P
Peter Zijlstra 已提交
9566
	struct task_struct *g, *p;
9567

P
Peter Zijlstra 已提交
9568 9569 9570 9571
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9572

P
Peter Zijlstra 已提交
9573 9574
	return 0;
}
9575

P
Peter Zijlstra 已提交
9576 9577 9578 9579 9580
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9581

P
Peter Zijlstra 已提交
9582 9583 9584 9585 9586 9587
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9588

P
Peter Zijlstra 已提交
9589 9590
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9591

P
Peter Zijlstra 已提交
9592 9593 9594
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9595 9596
	}

9597 9598 9599 9600 9601 9602 9603
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9604 9605 9606 9607 9608
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9609

9610 9611 9612
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9613 9614
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9615

P
Peter Zijlstra 已提交
9616
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9617

9618 9619 9620 9621 9622
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9623

9624 9625 9626
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9627 9628 9629
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9630

P
Peter Zijlstra 已提交
9631 9632 9633 9634
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9635

P
Peter Zijlstra 已提交
9636
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9637
	}
P
Peter Zijlstra 已提交
9638

P
Peter Zijlstra 已提交
9639 9640 9641 9642
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9643 9644
}

P
Peter Zijlstra 已提交
9645
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9646
{
P
Peter Zijlstra 已提交
9647 9648 9649 9650 9651 9652 9653
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9654 9655
}

9656 9657
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9658
{
P
Peter Zijlstra 已提交
9659
	int i, err = 0;
P
Peter Zijlstra 已提交
9660 9661

	mutex_lock(&rt_constraints_mutex);
9662
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9663 9664
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9665
		goto unlock;
P
Peter Zijlstra 已提交
9666 9667

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9668 9669
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9670 9671 9672 9673 9674 9675 9676 9677 9678

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9679
 unlock:
9680
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9681 9682 9683
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9684 9685
}

9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9698 9699 9700 9701
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9702
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9703 9704
		return -1;

9705
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9706 9707 9708
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9709 9710 9711 9712 9713 9714 9715 9716

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9717 9718 9719
	if (rt_period == 0)
		return -EINVAL;

9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9734
	u64 runtime, period;
9735 9736
	int ret = 0;

9737 9738 9739
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9740 9741 9742 9743 9744 9745 9746 9747
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9748

9749
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9750
	read_lock(&tasklist_lock);
9751
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9752
	read_unlock(&tasklist_lock);
9753 9754 9755 9756
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9757 9758 9759 9760 9761 9762 9763 9764 9765 9766

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9767
#else /* !CONFIG_RT_GROUP_SCHED */
9768 9769
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9770 9771 9772
	unsigned long flags;
	int i;

9773 9774 9775
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9776 9777 9778 9779 9780 9781 9782 9783 9784 9785
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9786 9787
	return 0;
}
9788
#endif /* CONFIG_RT_GROUP_SCHED */
9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9819

9820
#ifdef CONFIG_CGROUP_SCHED
9821 9822

/* return corresponding task_group object of a cgroup */
9823
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9824
{
9825 9826
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9827 9828 9829
}

static struct cgroup_subsys_state *
9830
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9831
{
9832
	struct task_group *tg, *parent;
9833

9834
	if (!cgrp->parent) {
9835 9836 9837 9838
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9839 9840
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9841 9842 9843 9844 9845 9846
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9847 9848
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9849
{
9850
	struct task_group *tg = cgroup_tg(cgrp);
9851 9852 9853 9854

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9855 9856 9857
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9858
{
9859
#ifdef CONFIG_RT_GROUP_SCHED
9860
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9861 9862
		return -EINVAL;
#else
9863 9864 9865
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9866
#endif
9867 9868 9869 9870 9871

	return 0;
}

static void
9872
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9873 9874 9875 9876 9877
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9878
#ifdef CONFIG_FAIR_GROUP_SCHED
9879
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9880
				u64 shareval)
9881
{
9882
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9883 9884
}

9885
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9886
{
9887
	struct task_group *tg = cgroup_tg(cgrp);
9888 9889 9890

	return (u64) tg->shares;
}
9891
#endif /* CONFIG_FAIR_GROUP_SCHED */
9892

9893
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9894
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9895
				s64 val)
P
Peter Zijlstra 已提交
9896
{
9897
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9898 9899
}

9900
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9901
{
9902
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9903
}
9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9915
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9916

9917
static struct cftype cpu_files[] = {
9918
#ifdef CONFIG_FAIR_GROUP_SCHED
9919 9920
	{
		.name = "shares",
9921 9922
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9923
	},
9924 9925
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9926
	{
P
Peter Zijlstra 已提交
9927
		.name = "rt_runtime_us",
9928 9929
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9930
	},
9931 9932
	{
		.name = "rt_period_us",
9933 9934
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9935
	},
9936
#endif
9937 9938 9939 9940
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9941
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9942 9943 9944
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9945 9946 9947 9948 9949 9950 9951
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9952 9953 9954
	.early_init	= 1,
};

9955
#endif	/* CONFIG_CGROUP_SCHED */
9956 9957 9958 9959 9960 9961 9962 9963 9964 9965

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9966
/* track cpu usage of a group of tasks and its child groups */
9967 9968 9969 9970
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9971
	struct cpuacct *parent;
9972 9973 9974 9975 9976
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9977
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9978
{
9979
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9992
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

10005 10006 10007
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10008 10009 10010 10011
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10012
static void
10013
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10014
{
10015
	struct cpuacct *ca = cgroup_ca(cgrp);
10016 10017 10018 10019 10020

	free_percpu(ca->cpuusage);
	kfree(ca);
}

10021 10022
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10023
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10042
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10056
/* return total cpu usage (in nanoseconds) of a group */
10057
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10058
{
10059
	struct cpuacct *ca = cgroup_ca(cgrp);
10060 10061 10062
	u64 totalcpuusage = 0;
	int i;

10063 10064
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10065 10066 10067 10068

	return totalcpuusage;
}

10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10081 10082
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10083 10084 10085 10086 10087

out:
	return err;
}

10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10103 10104 10105
static struct cftype files[] = {
	{
		.name = "usage",
10106 10107
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10108
	},
10109 10110 10111 10112 10113
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

10114 10115
};

10116
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10117
{
10118
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10119 10120 10121 10122 10123 10124 10125 10126 10127 10128
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10129
	int cpu;
10130

L
Li Zefan 已提交
10131
	if (unlikely(!cpuacct_subsys.active))
10132 10133
		return;

10134
	cpu = task_cpu(tsk);
10135 10136
	ca = task_ca(tsk);

10137
	for (; ca; ca = ca->parent) {
10138
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */