memcontrol.c 170.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

251 252 253 254 255 256 257 258 259 260 261 262 263
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

264
#ifdef CONFIG_MEMCG_KMEM
265
/*
266
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
267 268 269 270 271
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
272
 *
273 274
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
275
 */
276 277
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
278

279 280 281 282 283 284 285 286 287 288 289 290 291
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

292 293 294 295 296 297
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
298
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299 300
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
301
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
302 303 304
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
305
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
306

307 308 309 310 311 312
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
313
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314
EXPORT_SYMBOL(memcg_kmem_enabled_key);
315

316 317
struct workqueue_struct *memcg_kmem_cache_wq;

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
425 426 427 428 429 430 431 432

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 434
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
435 436 437 438 439
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

440 441 442 443 444 445
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446
#endif /* CONFIG_MEMCG_KMEM */
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

465
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 467 468 469 470
		memcg = root_mem_cgroup;

	return &memcg->css;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

499 500
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501
{
502
	int nid = page_to_nid(page);
503

504
	return memcg->nodeinfo[nid];
505 506
}

507 508
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
509
{
510
	return soft_limit_tree.rb_tree_per_node[nid];
511 512
}

513
static struct mem_cgroup_tree_per_node *
514 515 516 517
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

518
	return soft_limit_tree.rb_tree_per_node[nid];
519 520
}

521 522
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
523
					 unsigned long new_usage_in_excess)
524 525 526
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
527
	struct mem_cgroup_per_node *mz_node;
528
	bool rightmost = true;
529 530 531 532 533 534 535 536 537

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
538
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539
					tree_node);
540
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
541
			p = &(*p)->rb_left;
542 543 544
			rightmost = false;
		}

545 546 547 548 549 550 551
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
552 553 554 555

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

556 557 558 559 560
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

561 562
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
563 564 565
{
	if (!mz->on_tree)
		return;
566 567 568 569

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

570 571 572 573
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

574 575
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
576
{
577 578 579
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
580
	__mem_cgroup_remove_exceeded(mz, mctz);
581
	spin_unlock_irqrestore(&mctz->lock, flags);
582 583
}

584 585 586
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
587
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 589 590 591 592 593 594
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
595 596 597

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
598
	unsigned long excess;
599 600
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
601

602
	mctz = soft_limit_tree_from_page(page);
603 604
	if (!mctz)
		return;
605 606 607 608 609
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610
		mz = mem_cgroup_page_nodeinfo(memcg, page);
611
		excess = soft_limit_excess(memcg);
612 613 614 615 616
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
617 618 619
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
620 621
			/* if on-tree, remove it */
			if (mz->on_tree)
622
				__mem_cgroup_remove_exceeded(mz, mctz);
623 624 625 626
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
627
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
628
			spin_unlock_irqrestore(&mctz->lock, flags);
629 630 631 632 633 634
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
635 636 637
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
638

639
	for_each_node(nid) {
640 641
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
642 643
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
644 645 646
	}
}

647 648
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649
{
650
	struct mem_cgroup_per_node *mz;
651 652 653

retry:
	mz = NULL;
654
	if (!mctz->rb_rightmost)
655 656
		goto done;		/* Nothing to reclaim from */

657 658
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
659 660 661 662 663
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
664
	__mem_cgroup_remove_exceeded(mz, mctz);
665
	if (!soft_limit_excess(mz->memcg) ||
666
	    !css_tryget_online(&mz->memcg->css))
667 668 669 670 671
		goto retry;
done:
	return mz;
}

672 673
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674
{
675
	struct mem_cgroup_per_node *mz;
676

677
	spin_lock_irq(&mctz->lock);
678
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
679
	spin_unlock_irq(&mctz->lock);
680 681 682
	return mz;
}

683
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
684
				      int event)
685
{
686
	return atomic_long_read(&memcg->events[event]);
687 688
}

689
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690
					 struct page *page,
691
					 bool compound, int nr_pages)
692
{
693 694 695 696
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
697
	if (PageAnon(page))
698
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
699
	else {
700
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701
		if (PageSwapBacked(page))
702
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
703
	}
704

705 706
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
708
	}
709

710 711
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
712
		__count_memcg_events(memcg, PGPGIN, 1);
713
	else {
714
		__count_memcg_events(memcg, PGPGOUT, 1);
715 716
		nr_pages = -nr_pages; /* for event */
	}
717

718
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
719 720
}

721 722
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
723
{
724
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725
	unsigned long nr = 0;
726
	enum lru_list lru;
727

728
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
729

730 731 732
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
733
		nr += mem_cgroup_get_lru_size(lruvec, lru);
734 735
	}
	return nr;
736
}
737

738
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739
			unsigned int lru_mask)
740
{
741
	unsigned long nr = 0;
742
	int nid;
743

744
	for_each_node_state(nid, N_MEMORY)
745 746
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
747 748
}

749 750
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
751 752 753
{
	unsigned long val, next;

754 755
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756
	/* from time_after() in jiffies.h */
757
	if ((long)(next - val) < 0) {
758 759 760 761
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
762 763 764
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
765 766 767 768 769 770
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
771
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
772
		return true;
773
	}
774
	return false;
775 776 777 778 779 780
}

/*
 * Check events in order.
 *
 */
781
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
782 783
{
	/* threshold event is triggered in finer grain than soft limit */
784 785
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
786
		bool do_softlimit;
787
		bool do_numainfo __maybe_unused;
788

789 790
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
791 792 793 794
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
795
		mem_cgroup_threshold(memcg);
796 797
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
798
#if MAX_NUMNODES > 1
799
		if (unlikely(do_numainfo))
800
			atomic_inc(&memcg->numainfo_events);
801
#endif
802
	}
803 804
}

805
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
806
{
807 808 809 810 811 812 813 814
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

815
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
816
}
M
Michal Hocko 已提交
817
EXPORT_SYMBOL(mem_cgroup_from_task);
818

819 820 821 822 823 824 825 826 827
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
828
{
829 830 831 832
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
833

834 835
	rcu_read_lock();
	do {
836 837 838 839 840 841
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
842
			memcg = root_mem_cgroup;
843 844 845 846 847
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
848
	} while (!css_tryget_online(&memcg->css));
849
	rcu_read_unlock();
850
	return memcg;
851
}
852 853
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
892

893 894 895 896 897 898 899 900 901 902 903 904 905
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
906
 * Reclaimers can specify a node and a priority level in @reclaim to
907
 * divide up the memcgs in the hierarchy among all concurrent
908
 * reclaimers operating on the same node and priority.
909
 */
910
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911
				   struct mem_cgroup *prev,
912
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
913
{
M
Michal Hocko 已提交
914
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915
	struct cgroup_subsys_state *css = NULL;
916
	struct mem_cgroup *memcg = NULL;
917
	struct mem_cgroup *pos = NULL;
918

919 920
	if (mem_cgroup_disabled())
		return NULL;
921

922 923
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
924

925
	if (prev && !reclaim)
926
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
927

928 929
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
930
			goto out;
931
		return root;
932
	}
K
KAMEZAWA Hiroyuki 已提交
933

934
	rcu_read_lock();
M
Michal Hocko 已提交
935

936
	if (reclaim) {
937
		struct mem_cgroup_per_node *mz;
938

939
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 941 942 943 944
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

945
		while (1) {
946
			pos = READ_ONCE(iter->position);
947 948
			if (!pos || css_tryget(&pos->css))
				break;
949
			/*
950 951 952 953 954 955
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
956
			 */
957 958
			(void)cmpxchg(&iter->position, pos, NULL);
		}
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
976
		}
K
KAMEZAWA Hiroyuki 已提交
977

978 979 980 981 982 983
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
984

985 986
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
987

988 989
		if (css_tryget(css))
			break;
990

991
		memcg = NULL;
992
	}
993 994 995

	if (reclaim) {
		/*
996 997 998
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
999
		 */
1000 1001
		(void)cmpxchg(&iter->position, pos, memcg);

1002 1003 1004 1005 1006 1007 1008
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1009
	}
1010

1011 1012
out_unlock:
	rcu_read_unlock();
1013
out:
1014 1015 1016
	if (prev && prev != root)
		css_put(&prev->css);

1017
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1018
}
K
KAMEZAWA Hiroyuki 已提交
1019

1020 1021 1022 1023 1024 1025 1026
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1027 1028 1029 1030 1031 1032
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1033

1034 1035 1036 1037
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1038 1039
	struct mem_cgroup_per_node *mz;
	int nid;
1040 1041
	int i;

1042
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043
		for_each_node(nid) {
1044 1045 1046 1047 1048
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1049 1050 1051 1052 1053
			}
		}
	}
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1079
		css_task_iter_start(&iter->css, 0, &it);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1091
/**
1092
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093
 * @page: the page
1094
 * @pgdat: pgdat of the page
1095 1096 1097 1098
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1099
 */
M
Mel Gorman 已提交
1100
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1101
{
1102
	struct mem_cgroup_per_node *mz;
1103
	struct mem_cgroup *memcg;
1104
	struct lruvec *lruvec;
1105

1106
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1107
		lruvec = &pgdat->lruvec;
1108 1109
		goto out;
	}
1110

1111
	memcg = page->mem_cgroup;
1112
	/*
1113
	 * Swapcache readahead pages are added to the LRU - and
1114
	 * possibly migrated - before they are charged.
1115
	 */
1116 1117
	if (!memcg)
		memcg = root_mem_cgroup;
1118

1119
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 1121 1122 1123 1124 1125 1126
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1127 1128
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1129
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1130
}
1131

1132
/**
1133 1134 1135
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1136
 * @zid: zone id of the accounted pages
1137
 * @nr_pages: positive when adding or negative when removing
1138
 *
1139 1140 1141
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1142
 */
1143
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144
				int zid, int nr_pages)
1145
{
1146
	struct mem_cgroup_per_node *mz;
1147
	unsigned long *lru_size;
1148
	long size;
1149 1150 1151 1152

	if (mem_cgroup_disabled())
		return;

1153
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154
	lru_size = &mz->lru_zone_size[zid][lru];
1155 1156 1157 1158 1159

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1160 1161 1162
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1163 1164 1165 1166 1167 1168
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1169
}
1170

1171
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1172
{
1173
	struct mem_cgroup *task_memcg;
1174
	struct task_struct *p;
1175
	bool ret;
1176

1177
	p = find_lock_task_mm(task);
1178
	if (p) {
1179
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1180 1181 1182 1183 1184 1185 1186
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1187
		rcu_read_lock();
1188 1189
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1190
		rcu_read_unlock();
1191
	}
1192 1193
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1194 1195 1196
	return ret;
}

1197
/**
1198
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1199
 * @memcg: the memory cgroup
1200
 *
1201
 * Returns the maximum amount of memory @mem can be charged with, in
1202
 * pages.
1203
 */
1204
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1205
{
1206 1207 1208
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1209

1210
	count = page_counter_read(&memcg->memory);
1211
	limit = READ_ONCE(memcg->memory.max);
1212 1213 1214
	if (count < limit)
		margin = limit - count;

1215
	if (do_memsw_account()) {
1216
		count = page_counter_read(&memcg->memsw);
1217
		limit = READ_ONCE(memcg->memsw.max);
1218 1219
		if (count <= limit)
			margin = min(margin, limit - count);
1220 1221
		else
			margin = 0;
1222 1223 1224
	}

	return margin;
1225 1226
}

1227
/*
Q
Qiang Huang 已提交
1228
 * A routine for checking "mem" is under move_account() or not.
1229
 *
Q
Qiang Huang 已提交
1230 1231 1232
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1233
 */
1234
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1235
{
1236 1237
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1238
	bool ret = false;
1239 1240 1241 1242 1243 1244 1245 1246 1247
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1248

1249 1250
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1251 1252
unlock:
	spin_unlock(&mc.lock);
1253 1254 1255
	return ret;
}

1256
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1257 1258
{
	if (mc.moving_task && current != mc.moving_task) {
1259
		if (mem_cgroup_under_move(memcg)) {
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1272
static const unsigned int memcg1_stats[] = {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1294
#define K(x) ((x) << (PAGE_SHIFT-10))
1295
/**
1296
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 1298 1299 1300 1301 1302 1303 1304
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1305 1306
	struct mem_cgroup *iter;
	unsigned int i;
1307 1308 1309

	rcu_read_lock();

1310 1311 1312 1313 1314 1315 1316 1317
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1318
	pr_cont_cgroup_path(memcg->css.cgroup);
1319
	pr_cont("\n");
1320 1321 1322

	rcu_read_unlock();

1323 1324
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1325
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 1327
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1328
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 1330
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1331
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1332 1333

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1334 1335
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1336 1337
		pr_cont(":");

1338 1339
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340
				continue;
1341
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342
				K(memcg_page_state(iter, memcg1_stats[i])));
1343 1344 1345 1346 1347 1348 1349 1350
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1351 1352
}

D
David Rientjes 已提交
1353 1354 1355
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1356
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1357
{
1358
	unsigned long max;
1359

1360
	max = memcg->memory.max;
1361
	if (mem_cgroup_swappiness(memcg)) {
1362 1363
		unsigned long memsw_max;
		unsigned long swap_max;
1364

1365 1366 1367 1368
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1369
	}
1370
	return max;
D
David Rientjes 已提交
1371 1372
}

1373
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374
				     int order)
1375
{
1376 1377 1378
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1379
		.memcg = memcg,
1380 1381 1382
		.gfp_mask = gfp_mask,
		.order = order,
	};
1383
	bool ret;
1384

1385
	mutex_lock(&oom_lock);
1386
	ret = out_of_memory(&oc);
1387
	mutex_unlock(&oom_lock);
1388
	return ret;
1389 1390
}

1391 1392
#if MAX_NUMNODES > 1

1393 1394
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1395
 * @memcg: the target memcg
1396 1397 1398 1399 1400 1401 1402
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1403
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 1405
		int nid, bool noswap)
{
1406
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 1408 1409
		return true;
	if (noswap || !total_swap_pages)
		return false;
1410
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 1412 1413 1414
		return true;
	return false;

}
1415 1416 1417 1418 1419 1420 1421

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1422
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 1424
{
	int nid;
1425 1426 1427 1428
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1429
	if (!atomic_read(&memcg->numainfo_events))
1430
		return;
1431
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 1433 1434
		return;

	/* make a nodemask where this memcg uses memory from */
1435
	memcg->scan_nodes = node_states[N_MEMORY];
1436

1437
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1438

1439 1440
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1441
	}
1442

1443 1444
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1459
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 1461 1462
{
	int node;

1463 1464
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1465

1466
	node = next_node_in(node, memcg->scan_nodes);
1467
	/*
1468 1469 1470
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1471 1472 1473 1474
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1475
	memcg->last_scanned_node = node;
1476 1477 1478
	return node;
}
#else
1479
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1480 1481 1482 1483 1484
{
	return 0;
}
#endif

1485
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486
				   pg_data_t *pgdat,
1487 1488 1489 1490 1491 1492 1493 1494 1495
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1496
		.pgdat = pgdat,
1497 1498 1499
		.priority = 0,
	};

1500
	excess = soft_limit_excess(root_memcg);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1526
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527
					pgdat, &nr_scanned);
1528
		*total_scanned += nr_scanned;
1529
		if (!soft_limit_excess(root_memcg))
1530
			break;
1531
	}
1532 1533
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1534 1535
}

1536 1537 1538 1539 1540 1541
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1542 1543
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1544 1545 1546 1547
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1548
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1549
{
1550
	struct mem_cgroup *iter, *failed = NULL;
1551

1552 1553
	spin_lock(&memcg_oom_lock);

1554
	for_each_mem_cgroup_tree(iter, memcg) {
1555
		if (iter->oom_lock) {
1556 1557 1558 1559 1560
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1561 1562
			mem_cgroup_iter_break(memcg, iter);
			break;
1563 1564
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1565
	}
K
KAMEZAWA Hiroyuki 已提交
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1578
		}
1579 1580
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1581 1582 1583 1584

	spin_unlock(&memcg_oom_lock);

	return !failed;
1585
}
1586

1587
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1588
{
K
KAMEZAWA Hiroyuki 已提交
1589 1590
	struct mem_cgroup *iter;

1591
	spin_lock(&memcg_oom_lock);
1592
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593
	for_each_mem_cgroup_tree(iter, memcg)
1594
		iter->oom_lock = false;
1595
	spin_unlock(&memcg_oom_lock);
1596 1597
}

1598
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1599 1600 1601
{
	struct mem_cgroup *iter;

1602
	spin_lock(&memcg_oom_lock);
1603
	for_each_mem_cgroup_tree(iter, memcg)
1604 1605
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1606 1607
}

1608
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1609 1610 1611
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1612 1613
	/*
	 * When a new child is created while the hierarchy is under oom,
1614
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1615
	 */
1616
	spin_lock(&memcg_oom_lock);
1617
	for_each_mem_cgroup_tree(iter, memcg)
1618 1619 1620
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1621 1622
}

K
KAMEZAWA Hiroyuki 已提交
1623 1624
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1625
struct oom_wait_info {
1626
	struct mem_cgroup *memcg;
1627
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1628 1629
};

1630
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1631 1632
	unsigned mode, int sync, void *arg)
{
1633 1634
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1635 1636 1637
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1639

1640 1641
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1642 1643 1644 1645
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1646
static void memcg_oom_recover(struct mem_cgroup *memcg)
1647
{
1648 1649 1650 1651 1652 1653 1654 1655 1656
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1657
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1658 1659
}

1660 1661 1662 1663 1664 1665 1666 1667
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1668
{
1669 1670 1671
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

K
KAMEZAWA Hiroyuki 已提交
1672
	/*
1673 1674 1675 1676
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1677 1678 1679 1680
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1681
	 *
1682 1683 1684 1685 1686 1687 1688
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1689
	 */
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

	if (mem_cgroup_out_of_memory(memcg, mask, order))
		return OOM_SUCCESS;

	return OOM_FAILED;
1705 1706 1707 1708
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1709
 * @handle: actually kill/wait or just clean up the OOM state
1710
 *
1711 1712
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1713
 *
1714
 * Memcg supports userspace OOM handling where failed allocations must
1715 1716 1717 1718
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1719
 * the end of the page fault to complete the OOM handling.
1720 1721
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1722
 * completed, %false otherwise.
1723
 */
1724
bool mem_cgroup_oom_synchronize(bool handle)
1725
{
T
Tejun Heo 已提交
1726
	struct mem_cgroup *memcg = current->memcg_in_oom;
1727
	struct oom_wait_info owait;
1728
	bool locked;
1729 1730 1731

	/* OOM is global, do not handle */
	if (!memcg)
1732
		return false;
1733

1734
	if (!handle)
1735
		goto cleanup;
1736 1737 1738 1739 1740

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1741
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1742

1743
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1754 1755
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1756
	} else {
1757
		schedule();
1758 1759 1760 1761 1762
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1763 1764 1765 1766 1767 1768 1769 1770
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1771
cleanup:
T
Tejun Heo 已提交
1772
	current->memcg_in_oom = NULL;
1773
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1774
	return true;
1775 1776
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1833
/**
1834 1835
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1836
 *
1837
 * This function protects unlocked LRU pages from being moved to
1838 1839 1840 1841 1842
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1843
 */
1844
struct mem_cgroup *lock_page_memcg(struct page *page)
1845 1846
{
	struct mem_cgroup *memcg;
1847
	unsigned long flags;
1848

1849 1850 1851 1852
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1853 1854 1855 1856 1857 1858 1859
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1860 1861 1862
	rcu_read_lock();

	if (mem_cgroup_disabled())
1863
		return NULL;
1864
again:
1865
	memcg = page->mem_cgroup;
1866
	if (unlikely(!memcg))
1867
		return NULL;
1868

Q
Qiang Huang 已提交
1869
	if (atomic_read(&memcg->moving_account) <= 0)
1870
		return memcg;
1871

1872
	spin_lock_irqsave(&memcg->move_lock, flags);
1873
	if (memcg != page->mem_cgroup) {
1874
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1875 1876
		goto again;
	}
1877 1878 1879 1880

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1881
	 * the task who has the lock for unlock_page_memcg().
1882 1883 1884
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1885

1886
	return memcg;
1887
}
1888
EXPORT_SYMBOL(lock_page_memcg);
1889

1890
/**
1891 1892 1893 1894
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1895
 */
1896
void __unlock_page_memcg(struct mem_cgroup *memcg)
1897
{
1898 1899 1900 1901 1902 1903 1904 1905
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1906

1907
	rcu_read_unlock();
1908
}
1909 1910 1911 1912 1913 1914 1915 1916 1917

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1918
EXPORT_SYMBOL(unlock_page_memcg);
1919

1920 1921
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1922
	unsigned int nr_pages;
1923
	struct work_struct work;
1924
	unsigned long flags;
1925
#define FLUSHING_CACHED_CHARGE	0
1926 1927
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928
static DEFINE_MUTEX(percpu_charge_mutex);
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1940
 */
1941
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1942 1943
{
	struct memcg_stock_pcp *stock;
1944
	unsigned long flags;
1945
	bool ret = false;
1946

1947
	if (nr_pages > MEMCG_CHARGE_BATCH)
1948
		return ret;
1949

1950 1951 1952
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1953
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1954
		stock->nr_pages -= nr_pages;
1955 1956
		ret = true;
	}
1957 1958 1959

	local_irq_restore(flags);

1960 1961 1962 1963
	return ret;
}

/*
1964
 * Returns stocks cached in percpu and reset cached information.
1965 1966 1967 1968 1969
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1970
	if (stock->nr_pages) {
1971
		page_counter_uncharge(&old->memory, stock->nr_pages);
1972
		if (do_memsw_account())
1973
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1974
		css_put_many(&old->css, stock->nr_pages);
1975
		stock->nr_pages = 0;
1976 1977 1978 1979 1980 1981
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1982 1983 1984
	struct memcg_stock_pcp *stock;
	unsigned long flags;

1985 1986 1987 1988
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
1989 1990 1991
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1992
	drain_stock(stock);
1993
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1994 1995

	local_irq_restore(flags);
1996 1997 1998
}

/*
1999
 * Cache charges(val) to local per_cpu area.
2000
 * This will be consumed by consume_stock() function, later.
2001
 */
2002
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2003
{
2004 2005 2006 2007
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2008

2009
	stock = this_cpu_ptr(&memcg_stock);
2010
	if (stock->cached != memcg) { /* reset if necessary */
2011
		drain_stock(stock);
2012
		stock->cached = memcg;
2013
	}
2014
	stock->nr_pages += nr_pages;
2015

2016
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2017 2018
		drain_stock(stock);

2019
	local_irq_restore(flags);
2020 2021 2022
}

/*
2023
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2024
 * of the hierarchy under it.
2025
 */
2026
static void drain_all_stock(struct mem_cgroup *root_memcg)
2027
{
2028
	int cpu, curcpu;
2029

2030 2031 2032
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2033 2034 2035 2036 2037 2038
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2039
	curcpu = get_cpu();
2040 2041
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2042
		struct mem_cgroup *memcg;
2043

2044
		memcg = stock->cached;
2045
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2046
			continue;
2047 2048
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2049
			continue;
2050
		}
2051 2052 2053 2054 2055 2056
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2057
		css_put(&memcg->css);
2058
	}
2059
	put_cpu();
2060
	mutex_unlock(&percpu_charge_mutex);
2061 2062
}

2063
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2064 2065
{
	struct memcg_stock_pcp *stock;
2066
	struct mem_cgroup *memcg;
2067 2068 2069

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2095
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2096 2097 2098 2099 2100 2101 2102 2103
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2104
	return 0;
2105 2106
}

2107 2108 2109 2110 2111 2112 2113
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2114
		memcg_memory_event(memcg, MEMCG_HIGH);
2115 2116 2117 2118 2119 2120 2121 2122 2123
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2124
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2125 2126
}

2127 2128 2129 2130 2131 2132 2133
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2134
	struct mem_cgroup *memcg;
2135 2136 2137 2138

	if (likely(!nr_pages))
		return;

2139 2140
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2141 2142 2143 2144
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2145 2146
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2147
{
2148
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2149
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2150
	struct mem_cgroup *mem_over_limit;
2151
	struct page_counter *counter;
2152
	unsigned long nr_reclaimed;
2153 2154
	bool may_swap = true;
	bool drained = false;
2155 2156
	bool oomed = false;
	enum oom_status oom_status;
2157

2158
	if (mem_cgroup_is_root(memcg))
2159
		return 0;
2160
retry:
2161
	if (consume_stock(memcg, nr_pages))
2162
		return 0;
2163

2164
	if (!do_memsw_account() ||
2165 2166
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2167
			goto done_restock;
2168
		if (do_memsw_account())
2169 2170
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2171
	} else {
2172
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2173
		may_swap = false;
2174
	}
2175

2176 2177 2178 2179
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2180

2181 2182 2183 2184 2185 2186
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2187
	if (unlikely(tsk_is_oom_victim(current) ||
2188 2189
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2190
		goto force;
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2201 2202 2203
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2204
	if (!gfpflags_allow_blocking(gfp_mask))
2205
		goto nomem;
2206

2207
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2208

2209 2210
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2211

2212
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2213
		goto retry;
2214

2215
	if (!drained) {
2216
		drain_all_stock(mem_over_limit);
2217 2218 2219 2220
		drained = true;
		goto retry;
	}

2221 2222
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2223 2224 2225 2226 2227 2228 2229 2230 2231
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2232
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2233 2234 2235 2236 2237 2238 2239 2240
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2241 2242 2243
	if (nr_retries--)
		goto retry;

2244 2245 2246
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2247
	if (gfp_mask & __GFP_NOFAIL)
2248
		goto force;
2249

2250
	if (fatal_signal_pending(current))
2251
		goto force;
2252

2253
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2254

2255 2256 2257 2258 2259 2260
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2261
		       get_order(nr_pages * PAGE_SIZE));
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2272
nomem:
2273
	if (!(gfp_mask & __GFP_NOFAIL))
2274
		return -ENOMEM;
2275 2276 2277 2278 2279 2280 2281
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2282
	if (do_memsw_account())
2283 2284 2285 2286
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2287 2288

done_restock:
2289
	css_get_many(&memcg->css, batch);
2290 2291
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2292

2293
	/*
2294 2295
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2296
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297 2298 2299 2300
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2301 2302
	 */
	do {
2303
		if (page_counter_read(&memcg->memory) > memcg->high) {
2304 2305 2306 2307 2308
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2309
			current->memcg_nr_pages_over_high += batch;
2310 2311 2312
			set_notify_resume(current);
			break;
		}
2313
	} while ((memcg = parent_mem_cgroup(memcg)));
2314 2315

	return 0;
2316
}
2317

2318
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2319
{
2320 2321 2322
	if (mem_cgroup_is_root(memcg))
		return;

2323
	page_counter_uncharge(&memcg->memory, nr_pages);
2324
	if (do_memsw_account())
2325
		page_counter_uncharge(&memcg->memsw, nr_pages);
2326

2327
	css_put_many(&memcg->css, nr_pages);
2328 2329
}

2330 2331 2332 2333
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2334
	spin_lock_irq(zone_lru_lock(zone));
2335 2336 2337
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2338
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2353
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2354 2355 2356 2357
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2358
	spin_unlock_irq(zone_lru_lock(zone));
2359 2360
}

2361
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2362
			  bool lrucare)
2363
{
2364
	int isolated;
2365

2366
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2367 2368 2369 2370 2371

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2372 2373
	if (lrucare)
		lock_page_lru(page, &isolated);
2374

2375 2376
	/*
	 * Nobody should be changing or seriously looking at
2377
	 * page->mem_cgroup at this point:
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2389
	page->mem_cgroup = memcg;
2390

2391 2392
	if (lrucare)
		unlock_page_lru(page, isolated);
2393
}
2394

2395
#ifdef CONFIG_MEMCG_KMEM
2396
static int memcg_alloc_cache_id(void)
2397
{
2398 2399 2400
	int id, size;
	int err;

2401
	id = ida_simple_get(&memcg_cache_ida,
2402 2403 2404
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2405

2406
	if (id < memcg_nr_cache_ids)
2407 2408 2409 2410 2411 2412
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2413
	down_write(&memcg_cache_ids_sem);
2414 2415

	size = 2 * (id + 1);
2416 2417 2418 2419 2420
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2421
	err = memcg_update_all_caches(size);
2422 2423
	if (!err)
		err = memcg_update_all_list_lrus(size);
2424 2425 2426 2427 2428
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2429
	if (err) {
2430
		ida_simple_remove(&memcg_cache_ida, id);
2431 2432 2433 2434 2435 2436 2437
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2438
	ida_simple_remove(&memcg_cache_ida, id);
2439 2440
}

2441
struct memcg_kmem_cache_create_work {
2442 2443 2444 2445 2446
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2447
static void memcg_kmem_cache_create_func(struct work_struct *w)
2448
{
2449 2450
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2451 2452
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2453

2454
	memcg_create_kmem_cache(memcg, cachep);
2455

2456
	css_put(&memcg->css);
2457 2458 2459 2460 2461 2462
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2463 2464
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2465
{
2466
	struct memcg_kmem_cache_create_work *cw;
2467

2468
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2469
	if (!cw)
2470
		return;
2471 2472

	css_get(&memcg->css);
2473 2474 2475

	cw->memcg = memcg;
	cw->cachep = cachep;
2476
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2477

2478
	queue_work(memcg_kmem_cache_wq, &cw->work);
2479 2480
}

2481 2482
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2483 2484 2485 2486
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2487
	 * in __memcg_schedule_kmem_cache_create will recurse.
2488 2489 2490 2491 2492 2493 2494
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2495
	current->memcg_kmem_skip_account = 1;
2496
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2497
	current->memcg_kmem_skip_account = 0;
2498
}
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2511 2512 2513
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2514 2515 2516
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2517
 *
2518 2519 2520 2521
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2522
 */
2523
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2524 2525
{
	struct mem_cgroup *memcg;
2526
	struct kmem_cache *memcg_cachep;
2527
	int kmemcg_id;
2528

2529
	VM_BUG_ON(!is_root_cache(cachep));
2530

2531
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2532 2533
		return cachep;

2534
	if (current->memcg_kmem_skip_account)
2535 2536
		return cachep;

2537
	memcg = get_mem_cgroup_from_current();
2538
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2539
	if (kmemcg_id < 0)
2540
		goto out;
2541

2542
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2543 2544
	if (likely(memcg_cachep))
		return memcg_cachep;
2545 2546 2547 2548 2549 2550 2551 2552 2553

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2554 2555 2556
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2557
	 */
2558
	memcg_schedule_kmem_cache_create(memcg, cachep);
2559
out:
2560
	css_put(&memcg->css);
2561
	return cachep;
2562 2563
}

2564 2565 2566 2567 2568
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2569 2570
{
	if (!is_root_cache(cachep))
2571
		css_put(&cachep->memcg_params.memcg->css);
2572 2573
}

2574
/**
2575
 * memcg_kmem_charge_memcg: charge a kmem page
2576 2577 2578 2579 2580 2581 2582 2583 2584
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2585
{
2586 2587
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2588 2589
	int ret;

2590
	ret = try_charge(memcg, gfp, nr_pages);
2591
	if (ret)
2592
		return ret;
2593 2594 2595 2596 2597

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2598 2599
	}

2600
	page->mem_cgroup = memcg;
2601

2602
	return 0;
2603 2604
}

2605 2606 2607 2608 2609 2610 2611 2612 2613
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2614
{
2615
	struct mem_cgroup *memcg;
2616
	int ret = 0;
2617

2618 2619 2620
	if (memcg_kmem_bypass())
		return 0;

2621
	memcg = get_mem_cgroup_from_current();
2622
	if (!mem_cgroup_is_root(memcg)) {
2623
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2624 2625 2626
		if (!ret)
			__SetPageKmemcg(page);
	}
2627
	css_put(&memcg->css);
2628
	return ret;
2629
}
2630 2631 2632 2633 2634 2635
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2636
{
2637
	struct mem_cgroup *memcg = page->mem_cgroup;
2638
	unsigned int nr_pages = 1 << order;
2639 2640 2641 2642

	if (!memcg)
		return;

2643
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2644

2645 2646 2647
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2648
	page_counter_uncharge(&memcg->memory, nr_pages);
2649
	if (do_memsw_account())
2650
		page_counter_uncharge(&memcg->memsw, nr_pages);
2651

2652
	page->mem_cgroup = NULL;
2653 2654 2655 2656 2657

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2658
	css_put_many(&memcg->css, nr_pages);
2659
}
2660
#endif /* CONFIG_MEMCG_KMEM */
2661

2662 2663 2664 2665
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2666
 * zone_lru_lock and migration entries setup in all page mappings.
2667
 */
2668
void mem_cgroup_split_huge_fixup(struct page *head)
2669
{
2670
	int i;
2671

2672 2673
	if (mem_cgroup_disabled())
		return;
2674

2675
	for (i = 1; i < HPAGE_PMD_NR; i++)
2676
		head[i].mem_cgroup = head->mem_cgroup;
2677

2678
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2679
}
2680
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2681

A
Andrew Morton 已提交
2682
#ifdef CONFIG_MEMCG_SWAP
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2694
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2695 2696 2697
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2698
				struct mem_cgroup *from, struct mem_cgroup *to)
2699 2700 2701
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2702 2703
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2704 2705

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2706 2707
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2708 2709 2710 2711 2712 2713
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2714
				struct mem_cgroup *from, struct mem_cgroup *to)
2715 2716 2717
{
	return -EINVAL;
}
2718
#endif
K
KAMEZAWA Hiroyuki 已提交
2719

2720
static DEFINE_MUTEX(memcg_max_mutex);
2721

2722 2723
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2724
{
2725
	bool enlarge = false;
2726
	bool drained = false;
2727
	int ret;
2728 2729
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2730

2731
	do {
2732 2733 2734 2735
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2736

2737
		mutex_lock(&memcg_max_mutex);
2738 2739
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2740
		 * break our basic invariant rule memory.max <= memsw.max.
2741
		 */
2742 2743
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2744
		if (!limits_invariant) {
2745
			mutex_unlock(&memcg_max_mutex);
2746 2747 2748
			ret = -EINVAL;
			break;
		}
2749
		if (max > counter->max)
2750
			enlarge = true;
2751 2752
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2753 2754 2755 2756

		if (!ret)
			break;

2757 2758 2759 2760 2761 2762
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2763 2764 2765 2766 2767 2768
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2769

2770 2771
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2772

2773 2774 2775
	return ret;
}

2776
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2777 2778 2779 2780
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2781
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2782 2783
	unsigned long reclaimed;
	int loop = 0;
2784
	struct mem_cgroup_tree_per_node *mctz;
2785
	unsigned long excess;
2786 2787 2788 2789 2790
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2791
	mctz = soft_limit_tree_node(pgdat->node_id);
2792 2793 2794 2795 2796 2797

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2798
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2799 2800
		return 0;

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2815
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2816 2817 2818
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2819
		spin_lock_irq(&mctz->lock);
2820
		__mem_cgroup_remove_exceeded(mz, mctz);
2821 2822 2823 2824 2825 2826

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2827 2828 2829
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2830
		excess = soft_limit_excess(mz->memcg);
2831 2832 2833 2834 2835 2836 2837 2838 2839
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2840
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2841
		spin_unlock_irq(&mctz->lock);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2859 2860 2861 2862 2863 2864
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2865 2866
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2867 2868 2869 2870 2871 2872
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2873 2874
}

2875
/*
2876
 * Reclaims as many pages from the given memcg as possible.
2877 2878 2879 2880 2881 2882 2883
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2884 2885
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2886 2887 2888

	drain_all_stock(memcg);

2889
	/* try to free all pages in this cgroup */
2890
	while (nr_retries && page_counter_read(&memcg->memory)) {
2891
		int progress;
2892

2893 2894 2895
		if (signal_pending(current))
			return -EINTR;

2896 2897
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2898
		if (!progress) {
2899
			nr_retries--;
2900
			/* maybe some writeback is necessary */
2901
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2902
		}
2903 2904

	}
2905 2906

	return 0;
2907 2908
}

2909 2910 2911
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2912
{
2913
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2914

2915 2916
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2917
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2918 2919
}

2920 2921
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2922
{
2923
	return mem_cgroup_from_css(css)->use_hierarchy;
2924 2925
}

2926 2927
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2928 2929
{
	int retval = 0;
2930
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2931
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2932

2933
	if (memcg->use_hierarchy == val)
2934
		return 0;
2935

2936
	/*
2937
	 * If parent's use_hierarchy is set, we can't make any modifications
2938 2939 2940 2941 2942 2943
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2944
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2945
				(val == 1 || val == 0)) {
2946
		if (!memcg_has_children(memcg))
2947
			memcg->use_hierarchy = val;
2948 2949 2950 2951
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2952

2953 2954 2955
	return retval;
}

2956 2957 2958 2959 2960 2961 2962 2963 2964
struct accumulated_stats {
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[NR_VM_EVENT_ITEMS];
	unsigned long lru_pages[NR_LRU_LISTS];
	const unsigned int *stats_array;
	const unsigned int *events_array;
	int stats_size;
	int events_size;
};
2965

2966 2967
static void accumulate_memcg_tree(struct mem_cgroup *memcg,
				  struct accumulated_stats *acc)
2968
{
2969
	struct mem_cgroup *mi;
2970
	int i;
2971

2972 2973 2974 2975
	for_each_mem_cgroup_tree(mi, memcg) {
		for (i = 0; i < acc->stats_size; i++)
			acc->stat[i] += memcg_page_state(mi,
				acc->stats_array ? acc->stats_array[i] : i);
2976

2977 2978 2979 2980 2981 2982 2983
		for (i = 0; i < acc->events_size; i++)
			acc->events[i] += memcg_sum_events(mi,
				acc->events_array ? acc->events_array[i] : i);

		for (i = 0; i < NR_LRU_LISTS; i++)
			acc->lru_pages[i] +=
				mem_cgroup_nr_lru_pages(mi, BIT(i));
2984
	}
2985 2986
}

2987
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2988
{
2989
	unsigned long val = 0;
2990

2991
	if (mem_cgroup_is_root(memcg)) {
2992 2993 2994
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2995 2996
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2997
			if (swap)
2998
				val += memcg_page_state(iter, MEMCG_SWAP);
2999
		}
3000
	} else {
3001
		if (!swap)
3002
			val = page_counter_read(&memcg->memory);
3003
		else
3004
			val = page_counter_read(&memcg->memsw);
3005
	}
3006
	return val;
3007 3008
}

3009 3010 3011 3012 3013 3014 3015
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3016

3017
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3018
			       struct cftype *cft)
B
Balbir Singh 已提交
3019
{
3020
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3021
	struct page_counter *counter;
3022

3023
	switch (MEMFILE_TYPE(cft->private)) {
3024
	case _MEM:
3025 3026
		counter = &memcg->memory;
		break;
3027
	case _MEMSWAP:
3028 3029
		counter = &memcg->memsw;
		break;
3030
	case _KMEM:
3031
		counter = &memcg->kmem;
3032
		break;
V
Vladimir Davydov 已提交
3033
	case _TCP:
3034
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3035
		break;
3036 3037 3038
	default:
		BUG();
	}
3039 3040 3041 3042

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3043
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3044
		if (counter == &memcg->memsw)
3045
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3046 3047
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3048
		return (u64)counter->max * PAGE_SIZE;
3049 3050 3051 3052 3053 3054 3055 3056 3057
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3058
}
3059

3060
#ifdef CONFIG_MEMCG_KMEM
3061
static int memcg_online_kmem(struct mem_cgroup *memcg)
3062 3063 3064
{
	int memcg_id;

3065 3066 3067
	if (cgroup_memory_nokmem)
		return 0;

3068
	BUG_ON(memcg->kmemcg_id >= 0);
3069
	BUG_ON(memcg->kmem_state);
3070

3071
	memcg_id = memcg_alloc_cache_id();
3072 3073
	if (memcg_id < 0)
		return memcg_id;
3074

3075
	static_branch_inc(&memcg_kmem_enabled_key);
3076
	/*
3077
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3078
	 * kmemcg_id. Setting the id after enabling static branching will
3079 3080 3081
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3082
	memcg->kmemcg_id = memcg_id;
3083
	memcg->kmem_state = KMEM_ONLINE;
3084
	INIT_LIST_HEAD(&memcg->kmem_caches);
3085 3086

	return 0;
3087 3088
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3122
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3123 3124 3125 3126 3127 3128 3129
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3130 3131
	rcu_read_unlock();

3132
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3133 3134 3135 3136 3137 3138

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3139 3140 3141 3142
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3143 3144 3145 3146 3147 3148
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3149
#else
3150
static int memcg_online_kmem(struct mem_cgroup *memcg)
3151 3152 3153 3154 3155 3156 3157 3158 3159
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3160
#endif /* CONFIG_MEMCG_KMEM */
3161

3162 3163
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3164
{
3165
	int ret;
3166

3167 3168 3169
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3170
	return ret;
3171
}
3172

3173
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3174 3175 3176
{
	int ret;

3177
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3178

3179
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3180 3181 3182
	if (ret)
		goto out;

3183
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3184 3185 3186
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3187 3188 3189
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3190 3191 3192 3193 3194 3195
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3196
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3197 3198 3199 3200
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3201
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3202 3203
	}
out:
3204
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3205 3206 3207
	return ret;
}

3208 3209 3210 3211
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3212 3213
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3214
{
3215
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3216
	unsigned long nr_pages;
3217 3218
	int ret;

3219
	buf = strstrip(buf);
3220
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3221 3222
	if (ret)
		return ret;
3223

3224
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3225
	case RES_LIMIT:
3226 3227 3228 3229
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3230 3231
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3232
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3233
			break;
3234
		case _MEMSWAP:
3235
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3236
			break;
3237
		case _KMEM:
3238
			ret = memcg_update_kmem_max(memcg, nr_pages);
3239
			break;
V
Vladimir Davydov 已提交
3240
		case _TCP:
3241
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3242
			break;
3243
		}
3244
		break;
3245 3246 3247
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3248 3249
		break;
	}
3250
	return ret ?: nbytes;
B
Balbir Singh 已提交
3251 3252
}

3253 3254
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3255
{
3256
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3257
	struct page_counter *counter;
3258

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3269
	case _TCP:
3270
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3271
		break;
3272 3273 3274
	default:
		BUG();
	}
3275

3276
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3277
	case RES_MAX_USAGE:
3278
		page_counter_reset_watermark(counter);
3279 3280
		break;
	case RES_FAILCNT:
3281
		counter->failcnt = 0;
3282
		break;
3283 3284
	default:
		BUG();
3285
	}
3286

3287
	return nbytes;
3288 3289
}

3290
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3291 3292
					struct cftype *cft)
{
3293
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3294 3295
}

3296
#ifdef CONFIG_MMU
3297
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3298 3299
					struct cftype *cft, u64 val)
{
3300
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3301

3302
	if (val & ~MOVE_MASK)
3303
		return -EINVAL;
3304

3305
	/*
3306 3307 3308 3309
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3310
	 */
3311
	memcg->move_charge_at_immigrate = val;
3312 3313
	return 0;
}
3314
#else
3315
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3316 3317 3318 3319 3320
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3321

3322
#ifdef CONFIG_NUMA
3323
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3324
{
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3337
	int nid;
3338
	unsigned long nr;
3339
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3340

3341 3342 3343 3344 3345 3346 3347 3348 3349
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3350 3351
	}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3367 3368 3369 3370 3371 3372
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3373
/* Universal VM events cgroup1 shows, original sort order */
3374
static const unsigned int memcg1_events[] = {
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3388
static int memcg_stat_show(struct seq_file *m, void *v)
3389
{
3390
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3391
	unsigned long memory, memsw;
3392 3393
	struct mem_cgroup *mi;
	unsigned int i;
3394
	struct accumulated_stats acc;
3395

3396
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3397 3398
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3399 3400
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3401
			continue;
3402
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3403
			   memcg_page_state(memcg, memcg1_stats[i]) *
3404
			   PAGE_SIZE);
3405
	}
L
Lee Schermerhorn 已提交
3406

3407 3408
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3409
			   memcg_sum_events(memcg, memcg1_events[i]));
3410 3411 3412 3413 3414

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3415
	/* Hierarchical information */
3416 3417
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3418 3419
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3420
	}
3421 3422
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3423
	if (do_memsw_account())
3424 3425
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3426

3427 3428 3429 3430 3431 3432
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = ARRAY_SIZE(memcg1_stats);
	acc.stats_array = memcg1_stats;
	acc.events_size = ARRAY_SIZE(memcg1_events);
	acc.events_array = memcg1_events;
	accumulate_memcg_tree(memcg, &acc);
3433

3434
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3435
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3436
			continue;
3437 3438
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
			   (u64)acc.stat[i] * PAGE_SIZE);
3439 3440
	}

3441 3442 3443
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
			   (u64)acc.events[i]);
3444

3445 3446 3447
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3448

K
KOSAKI Motohiro 已提交
3449 3450
#ifdef CONFIG_DEBUG_VM
	{
3451 3452
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3453
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3454 3455 3456
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3457 3458 3459
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3460

3461 3462 3463 3464 3465
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3466 3467 3468 3469
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3470 3471 3472
	}
#endif

3473 3474 3475
	return 0;
}

3476 3477
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3478
{
3479
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3480

3481
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3482 3483
}

3484 3485
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3486
{
3487
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3488

3489
	if (val > 100)
K
KOSAKI Motohiro 已提交
3490 3491
		return -EINVAL;

3492
	if (css->parent)
3493 3494 3495
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3496

K
KOSAKI Motohiro 已提交
3497 3498 3499
	return 0;
}

3500 3501 3502
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3503
	unsigned long usage;
3504 3505 3506 3507
	int i;

	rcu_read_lock();
	if (!swap)
3508
		t = rcu_dereference(memcg->thresholds.primary);
3509
	else
3510
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3511 3512 3513 3514

	if (!t)
		goto unlock;

3515
	usage = mem_cgroup_usage(memcg, swap);
3516 3517

	/*
3518
	 * current_threshold points to threshold just below or equal to usage.
3519 3520 3521
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3522
	i = t->current_threshold;
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3546
	t->current_threshold = i - 1;
3547 3548 3549 3550 3551 3552
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3553 3554
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3555
		if (do_memsw_account())
3556 3557 3558 3559
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3560 3561 3562 3563 3564 3565 3566
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3567 3568 3569 3570 3571 3572 3573
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3574 3575
}

3576
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3577 3578 3579
{
	struct mem_cgroup_eventfd_list *ev;

3580 3581
	spin_lock(&memcg_oom_lock);

3582
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3583
		eventfd_signal(ev->eventfd, 1);
3584 3585

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3586 3587 3588
	return 0;
}

3589
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3590
{
K
KAMEZAWA Hiroyuki 已提交
3591 3592
	struct mem_cgroup *iter;

3593
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3594
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3595 3596
}

3597
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3598
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3599
{
3600 3601
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3602 3603
	unsigned long threshold;
	unsigned long usage;
3604
	int i, size, ret;
3605

3606
	ret = page_counter_memparse(args, "-1", &threshold);
3607 3608 3609 3610
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3611

3612
	if (type == _MEM) {
3613
		thresholds = &memcg->thresholds;
3614
		usage = mem_cgroup_usage(memcg, false);
3615
	} else if (type == _MEMSWAP) {
3616
		thresholds = &memcg->memsw_thresholds;
3617
		usage = mem_cgroup_usage(memcg, true);
3618
	} else
3619 3620 3621
		BUG();

	/* Check if a threshold crossed before adding a new one */
3622
	if (thresholds->primary)
3623 3624
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3625
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3626 3627

	/* Allocate memory for new array of thresholds */
3628
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3629
			GFP_KERNEL);
3630
	if (!new) {
3631 3632 3633
		ret = -ENOMEM;
		goto unlock;
	}
3634
	new->size = size;
3635 3636

	/* Copy thresholds (if any) to new array */
3637 3638
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3639
				sizeof(struct mem_cgroup_threshold));
3640 3641
	}

3642
	/* Add new threshold */
3643 3644
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3645 3646

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3647
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3648 3649 3650
			compare_thresholds, NULL);

	/* Find current threshold */
3651
	new->current_threshold = -1;
3652
	for (i = 0; i < size; i++) {
3653
		if (new->entries[i].threshold <= usage) {
3654
			/*
3655 3656
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3657 3658
			 * it here.
			 */
3659
			++new->current_threshold;
3660 3661
		} else
			break;
3662 3663
	}

3664 3665 3666 3667 3668
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3669

3670
	/* To be sure that nobody uses thresholds */
3671 3672 3673 3674 3675 3676 3677 3678
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3679
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3680 3681
	struct eventfd_ctx *eventfd, const char *args)
{
3682
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3683 3684
}

3685
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3686 3687
	struct eventfd_ctx *eventfd, const char *args)
{
3688
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3689 3690
}

3691
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3692
	struct eventfd_ctx *eventfd, enum res_type type)
3693
{
3694 3695
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3696
	unsigned long usage;
3697
	int i, j, size;
3698 3699

	mutex_lock(&memcg->thresholds_lock);
3700 3701

	if (type == _MEM) {
3702
		thresholds = &memcg->thresholds;
3703
		usage = mem_cgroup_usage(memcg, false);
3704
	} else if (type == _MEMSWAP) {
3705
		thresholds = &memcg->memsw_thresholds;
3706
		usage = mem_cgroup_usage(memcg, true);
3707
	} else
3708 3709
		BUG();

3710 3711 3712
	if (!thresholds->primary)
		goto unlock;

3713 3714 3715 3716
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3717 3718 3719
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3720 3721 3722
			size++;
	}

3723
	new = thresholds->spare;
3724

3725 3726
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3727 3728
		kfree(new);
		new = NULL;
3729
		goto swap_buffers;
3730 3731
	}

3732
	new->size = size;
3733 3734

	/* Copy thresholds and find current threshold */
3735 3736 3737
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3738 3739
			continue;

3740
		new->entries[j] = thresholds->primary->entries[i];
3741
		if (new->entries[j].threshold <= usage) {
3742
			/*
3743
			 * new->current_threshold will not be used
3744 3745 3746
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3747
			++new->current_threshold;
3748 3749 3750 3751
		}
		j++;
	}

3752
swap_buffers:
3753 3754
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3755

3756
	rcu_assign_pointer(thresholds->primary, new);
3757

3758
	/* To be sure that nobody uses thresholds */
3759
	synchronize_rcu();
3760 3761 3762 3763 3764 3765

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3766
unlock:
3767 3768
	mutex_unlock(&memcg->thresholds_lock);
}
3769

3770
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3771 3772
	struct eventfd_ctx *eventfd)
{
3773
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3774 3775
}

3776
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3777 3778
	struct eventfd_ctx *eventfd)
{
3779
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3780 3781
}

3782
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3783
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3784 3785 3786 3787 3788 3789 3790
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3791
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3792 3793 3794 3795 3796

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3797
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3798
		eventfd_signal(eventfd, 1);
3799
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3800 3801 3802 3803

	return 0;
}

3804
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3805
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3806 3807 3808
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3809
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3810

3811
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3812 3813 3814 3815 3816 3817
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3818
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3819 3820
}

3821
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3822
{
3823
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3824

3825
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3826
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3827 3828
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3829 3830 3831
	return 0;
}

3832
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3833 3834
	struct cftype *cft, u64 val)
{
3835
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3836 3837

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3838
	if (!css->parent || !((val == 0) || (val == 1)))
3839 3840
		return -EINVAL;

3841
	memcg->oom_kill_disable = val;
3842
	if (!val)
3843
		memcg_oom_recover(memcg);
3844

3845 3846 3847
	return 0;
}

3848 3849
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3860 3861 3862 3863 3864
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3875 3876 3877
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3878 3879
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3880 3881 3882
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3883 3884 3885
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3886
 *
3887 3888 3889 3890 3891
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3892
 */
3893 3894 3895
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3896 3897 3898 3899
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3900
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3901 3902

	/* this should eventually include NR_UNSTABLE_NFS */
3903
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3904 3905 3906
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3907 3908

	while ((parent = parent_mem_cgroup(memcg))) {
3909
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3910 3911
		unsigned long used = page_counter_read(&memcg->memory);

3912
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3913 3914 3915 3916
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3928 3929 3930 3931
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3932 3933
#endif	/* CONFIG_CGROUP_WRITEBACK */

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3947 3948 3949 3950 3951
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3952
static void memcg_event_remove(struct work_struct *work)
3953
{
3954 3955
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3956
	struct mem_cgroup *memcg = event->memcg;
3957 3958 3959

	remove_wait_queue(event->wqh, &event->wait);

3960
	event->unregister_event(memcg, event->eventfd);
3961 3962 3963 3964 3965 3966

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3967
	css_put(&memcg->css);
3968 3969 3970
}

/*
3971
 * Gets called on EPOLLHUP on eventfd when user closes it.
3972 3973 3974
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3975
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3976
			    int sync, void *key)
3977
{
3978 3979
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3980
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
3981
	__poll_t flags = key_to_poll(key);
3982

3983
	if (flags & EPOLLHUP) {
3984 3985 3986 3987 3988 3989 3990 3991 3992
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3993
		spin_lock(&memcg->event_list_lock);
3994 3995 3996 3997 3998 3999 4000 4001
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4002
		spin_unlock(&memcg->event_list_lock);
4003 4004 4005 4006 4007
	}

	return 0;
}

4008
static void memcg_event_ptable_queue_proc(struct file *file,
4009 4010
		wait_queue_head_t *wqh, poll_table *pt)
{
4011 4012
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4013 4014 4015 4016 4017 4018

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4019 4020
 * DO NOT USE IN NEW FILES.
 *
4021 4022 4023 4024 4025
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4026 4027
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4028
{
4029
	struct cgroup_subsys_state *css = of_css(of);
4030
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4031
	struct mem_cgroup_event *event;
4032 4033 4034 4035
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4036
	const char *name;
4037 4038 4039
	char *endp;
	int ret;

4040 4041 4042
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4043 4044
	if (*endp != ' ')
		return -EINVAL;
4045
	buf = endp + 1;
4046

4047
	cfd = simple_strtoul(buf, &endp, 10);
4048 4049
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4050
	buf = endp + 1;
4051 4052 4053 4054 4055

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4056
	event->memcg = memcg;
4057
	INIT_LIST_HEAD(&event->list);
4058 4059 4060
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4086 4087 4088 4089 4090
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4091 4092
	 *
	 * DO NOT ADD NEW FILES.
4093
	 */
A
Al Viro 已提交
4094
	name = cfile.file->f_path.dentry->d_name.name;
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4106 4107
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4108 4109 4110 4111 4112
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4113
	/*
4114 4115 4116
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4117
	 */
A
Al Viro 已提交
4118
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4119
					       &memory_cgrp_subsys);
4120
	ret = -EINVAL;
4121
	if (IS_ERR(cfile_css))
4122
		goto out_put_cfile;
4123 4124
	if (cfile_css != css) {
		css_put(cfile_css);
4125
		goto out_put_cfile;
4126
	}
4127

4128
	ret = event->register_event(memcg, event->eventfd, buf);
4129 4130 4131
	if (ret)
		goto out_put_css;

4132
	vfs_poll(efile.file, &event->pt);
4133

4134 4135 4136
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4137 4138 4139 4140

	fdput(cfile);
	fdput(efile);

4141
	return nbytes;
4142 4143

out_put_css:
4144
	css_put(css);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4157
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4158
	{
4159
		.name = "usage_in_bytes",
4160
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4161
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4162
	},
4163 4164
	{
		.name = "max_usage_in_bytes",
4165
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4166
		.write = mem_cgroup_reset,
4167
		.read_u64 = mem_cgroup_read_u64,
4168
	},
B
Balbir Singh 已提交
4169
	{
4170
		.name = "limit_in_bytes",
4171
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4172
		.write = mem_cgroup_write,
4173
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4174
	},
4175 4176 4177
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4178
		.write = mem_cgroup_write,
4179
		.read_u64 = mem_cgroup_read_u64,
4180
	},
B
Balbir Singh 已提交
4181 4182
	{
		.name = "failcnt",
4183
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4184
		.write = mem_cgroup_reset,
4185
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4186
	},
4187 4188
	{
		.name = "stat",
4189
		.seq_show = memcg_stat_show,
4190
	},
4191 4192
	{
		.name = "force_empty",
4193
		.write = mem_cgroup_force_empty_write,
4194
	},
4195 4196 4197 4198 4199
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4200
	{
4201
		.name = "cgroup.event_control",		/* XXX: for compat */
4202
		.write = memcg_write_event_control,
4203
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4204
	},
K
KOSAKI Motohiro 已提交
4205 4206 4207 4208 4209
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4210 4211 4212 4213 4214
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4215 4216
	{
		.name = "oom_control",
4217
		.seq_show = mem_cgroup_oom_control_read,
4218
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4219 4220
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4221 4222 4223
	{
		.name = "pressure_level",
	},
4224 4225 4226
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4227
		.seq_show = memcg_numa_stat_show,
4228 4229
	},
#endif
4230 4231 4232
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4233
		.write = mem_cgroup_write,
4234
		.read_u64 = mem_cgroup_read_u64,
4235 4236 4237 4238
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4239
		.read_u64 = mem_cgroup_read_u64,
4240 4241 4242 4243
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4244
		.write = mem_cgroup_reset,
4245
		.read_u64 = mem_cgroup_read_u64,
4246 4247 4248 4249
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4250
		.write = mem_cgroup_reset,
4251
		.read_u64 = mem_cgroup_read_u64,
4252
	},
Y
Yang Shi 已提交
4253
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4254 4255
	{
		.name = "kmem.slabinfo",
4256 4257 4258
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4259
		.seq_show = memcg_slab_show,
4260 4261
	},
#endif
V
Vladimir Davydov 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4285
	{ },	/* terminate */
4286
};
4287

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4314 4315 4316 4317 4318 4319 4320 4321
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4322
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4323
{
4324
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4325
	atomic_add(n, &memcg->id.ref);
4326 4327
}

4328
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4329
{
4330
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4331
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4332
		mem_cgroup_id_remove(memcg);
4333 4334 4335 4336 4337 4338

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4361
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4362 4363
{
	struct mem_cgroup_per_node *pn;
4364
	int tmp = node;
4365 4366 4367 4368 4369 4370 4371 4372
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4373 4374
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4375
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4376 4377
	if (!pn)
		return 1;
4378

4379 4380
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4381 4382 4383 4384
		kfree(pn);
		return 1;
	}

4385 4386 4387 4388 4389
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4390
	memcg->nodeinfo[node] = pn;
4391 4392 4393
	return 0;
}

4394
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4395
{
4396 4397
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4398 4399 4400
	if (!pn)
		return;

4401
	free_percpu(pn->lruvec_stat_cpu);
4402
	kfree(pn);
4403 4404
}

4405
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4406
{
4407
	int node;
4408

4409
	for_each_node(node)
4410
		free_mem_cgroup_per_node_info(memcg, node);
4411
	free_percpu(memcg->stat_cpu);
4412
	kfree(memcg);
4413
}
4414

4415 4416 4417 4418 4419 4420
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4421
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4422
{
4423
	struct mem_cgroup *memcg;
4424
	size_t size;
4425
	int node;
B
Balbir Singh 已提交
4426

4427 4428 4429 4430
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4431
	if (!memcg)
4432 4433
		return NULL;

4434 4435 4436 4437 4438 4439
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4440 4441
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4442
		goto fail;
4443

B
Bob Liu 已提交
4444
	for_each_node(node)
4445
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4446
			goto fail;
4447

4448 4449
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4450

4451
	INIT_WORK(&memcg->high_work, high_work_func);
4452 4453 4454 4455
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4456
	vmpressure_init(&memcg->vmpressure);
4457 4458
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4459
	memcg->socket_pressure = jiffies;
4460
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4461 4462
	memcg->kmemcg_id = -1;
#endif
4463 4464 4465
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4466
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4467 4468
	return memcg;
fail:
4469
	mem_cgroup_id_remove(memcg);
4470
	__mem_cgroup_free(memcg);
4471
	return NULL;
4472 4473
}

4474 4475
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4476
{
4477 4478 4479
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4480

4481 4482 4483
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4484

4485 4486 4487 4488 4489 4490 4491 4492
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4493
		page_counter_init(&memcg->memory, &parent->memory);
4494
		page_counter_init(&memcg->swap, &parent->swap);
4495 4496
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4497
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4498
	} else {
4499
		page_counter_init(&memcg->memory, NULL);
4500
		page_counter_init(&memcg->swap, NULL);
4501 4502
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4503
		page_counter_init(&memcg->tcpmem, NULL);
4504 4505 4506 4507 4508
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4509
		if (parent != root_mem_cgroup)
4510
			memory_cgrp_subsys.broken_hierarchy = true;
4511
	}
4512

4513 4514 4515 4516 4517 4518
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4519
	error = memcg_online_kmem(memcg);
4520 4521
	if (error)
		goto fail;
4522

4523
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4524
		static_branch_inc(&memcg_sockets_enabled_key);
4525

4526 4527
	return &memcg->css;
fail:
4528
	mem_cgroup_id_remove(memcg);
4529
	mem_cgroup_free(memcg);
4530
	return ERR_PTR(-ENOMEM);
4531 4532
}

4533
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4534
{
4535 4536
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4547
	/* Online state pins memcg ID, memcg ID pins CSS */
4548
	atomic_set(&memcg->id.ref, 1);
4549
	css_get(css);
4550
	return 0;
B
Balbir Singh 已提交
4551 4552
}

4553
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4554
{
4555
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4556
	struct mem_cgroup_event *event, *tmp;
4557 4558 4559 4560 4561 4562

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4563 4564
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4565 4566 4567
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4568
	spin_unlock(&memcg->event_list_lock);
4569

R
Roman Gushchin 已提交
4570
	page_counter_set_min(&memcg->memory, 0);
4571
	page_counter_set_low(&memcg->memory, 0);
4572

4573
	memcg_offline_kmem(memcg);
4574
	wb_memcg_offline(memcg);
4575

4576 4577
	drain_all_stock(memcg);

4578
	mem_cgroup_id_put(memcg);
4579 4580
}

4581 4582 4583 4584 4585 4586 4587
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4588
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4589
{
4590
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4591

4592
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4593
		static_branch_dec(&memcg_sockets_enabled_key);
4594

4595
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4596
		static_branch_dec(&memcg_sockets_enabled_key);
4597

4598 4599 4600
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4601
	memcg_free_shrinker_maps(memcg);
4602
	memcg_free_kmem(memcg);
4603
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4604 4605
}

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4623 4624 4625 4626 4627
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4628
	page_counter_set_min(&memcg->memory, 0);
4629
	page_counter_set_low(&memcg->memory, 0);
4630
	memcg->high = PAGE_COUNTER_MAX;
4631
	memcg->soft_limit = PAGE_COUNTER_MAX;
4632
	memcg_wb_domain_size_changed(memcg);
4633 4634
}

4635
#ifdef CONFIG_MMU
4636
/* Handlers for move charge at task migration. */
4637
static int mem_cgroup_do_precharge(unsigned long count)
4638
{
4639
	int ret;
4640

4641 4642
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4643
	if (!ret) {
4644 4645 4646
		mc.precharge += count;
		return ret;
	}
4647

4648
	/* Try charges one by one with reclaim, but do not retry */
4649
	while (count--) {
4650
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4651 4652
		if (ret)
			return ret;
4653
		mc.precharge++;
4654
		cond_resched();
4655
	}
4656
	return 0;
4657 4658 4659 4660
}

union mc_target {
	struct page	*page;
4661
	swp_entry_t	ent;
4662 4663 4664
};

enum mc_target_type {
4665
	MC_TARGET_NONE = 0,
4666
	MC_TARGET_PAGE,
4667
	MC_TARGET_SWAP,
4668
	MC_TARGET_DEVICE,
4669 4670
};

D
Daisuke Nishimura 已提交
4671 4672
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4673
{
4674
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4675

D
Daisuke Nishimura 已提交
4676 4677 4678
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4679
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4680
			return NULL;
4681 4682 4683 4684
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4685 4686 4687 4688 4689 4690
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4691
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4692
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4693
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4694 4695 4696 4697
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4698
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4699
		return NULL;
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4717 4718 4719 4720
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4721
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4722
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4723 4724 4725 4726
		entry->val = ent.val;

	return page;
}
4727 4728
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4729
			pte_t ptent, swp_entry_t *entry)
4730 4731 4732 4733
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4734

4735 4736 4737 4738 4739 4740 4741 4742 4743
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4744
	if (!(mc.flags & MOVE_FILE))
4745 4746 4747
		return NULL;

	mapping = vma->vm_file->f_mapping;
4748
	pgoff = linear_page_index(vma, addr);
4749 4750

	/* page is moved even if it's not RSS of this task(page-faulted). */
4751 4752
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4753 4754 4755 4756
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4757
			if (do_memsw_account())
4758
				*entry = swp;
4759 4760
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4761 4762 4763 4764 4765
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4766
#endif
4767 4768 4769
	return page;
}

4770 4771 4772
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4773
 * @compound: charge the page as compound or small page
4774 4775 4776
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4777
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4778 4779 4780 4781 4782
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4783
				   bool compound,
4784 4785 4786 4787
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4788
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4789
	int ret;
4790
	bool anon;
4791 4792 4793

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4794
	VM_BUG_ON(compound && !PageTransHuge(page));
4795 4796

	/*
4797
	 * Prevent mem_cgroup_migrate() from looking at
4798
	 * page->mem_cgroup of its source page while we change it.
4799
	 */
4800
	ret = -EBUSY;
4801 4802 4803 4804 4805 4806 4807
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4808 4809
	anon = PageAnon(page);

4810 4811
	spin_lock_irqsave(&from->move_lock, flags);

4812
	if (!anon && page_mapped(page)) {
4813 4814
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4815 4816
	}

4817 4818
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4819
	 * mod_memcg_page_state will serialize updates to PageDirty.
4820 4821 4822 4823 4824 4825
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4826 4827
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4828 4829 4830
		}
	}

4831
	if (PageWriteback(page)) {
4832 4833
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4849
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4850
	memcg_check_events(to, page);
4851
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4852 4853 4854 4855 4856 4857 4858 4859
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4875 4876 4877 4878 4879
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4880 4881
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4882 4883 4884 4885
 *
 * Called with pte lock held.
 */

4886
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4887 4888 4889
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4890
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4891 4892 4893 4894 4895
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4896
		page = mc_handle_swap_pte(vma, ptent, &ent);
4897
	else if (pte_none(ptent))
4898
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4899 4900

	if (!page && !ent.val)
4901
		return ret;
4902 4903
	if (page) {
		/*
4904
		 * Do only loose check w/o serialization.
4905
		 * mem_cgroup_move_account() checks the page is valid or
4906
		 * not under LRU exclusion.
4907
		 */
4908
		if (page->mem_cgroup == mc.from) {
4909
			ret = MC_TARGET_PAGE;
4910 4911
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4912
				ret = MC_TARGET_DEVICE;
4913 4914 4915 4916 4917 4918
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4919 4920 4921 4922 4923
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4924
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4925 4926 4927
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4928 4929 4930 4931
	}
	return ret;
}

4932 4933
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4934 4935
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4936 4937 4938 4939 4940 4941 4942 4943
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4944 4945 4946 4947 4948
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4949
	page = pmd_page(pmd);
4950
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4951
	if (!(mc.flags & MOVE_ANON))
4952
		return ret;
4953
	if (page->mem_cgroup == mc.from) {
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4970 4971 4972 4973
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4974
	struct vm_area_struct *vma = walk->vma;
4975 4976 4977
	pte_t *pte;
	spinlock_t *ptl;

4978 4979
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4980 4981 4982 4983 4984
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4985 4986
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4987
		spin_unlock(ptl);
4988
		return 0;
4989
	}
4990

4991 4992
	if (pmd_trans_unstable(pmd))
		return 0;
4993 4994
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4995
		if (get_mctgt_type(vma, addr, *pte, NULL))
4996 4997 4998 4999
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5000 5001 5002
	return 0;
}

5003 5004 5005 5006
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5007 5008 5009 5010
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5011
	down_read(&mm->mmap_sem);
5012 5013
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5014
	up_read(&mm->mmap_sem);
5015 5016 5017 5018 5019 5020 5021 5022 5023

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5024 5025 5026 5027 5028
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5029 5030
}

5031 5032
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5033
{
5034 5035 5036
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5037
	/* we must uncharge all the leftover precharges from mc.to */
5038
	if (mc.precharge) {
5039
		cancel_charge(mc.to, mc.precharge);
5040 5041 5042 5043 5044 5045 5046
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5047
		cancel_charge(mc.from, mc.moved_charge);
5048
		mc.moved_charge = 0;
5049
	}
5050 5051 5052
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5053
		if (!mem_cgroup_is_root(mc.from))
5054
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5055

5056 5057
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5058
		/*
5059 5060
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5061
		 */
5062
		if (!mem_cgroup_is_root(mc.to))
5063 5064
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5065 5066
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5067

5068 5069
		mc.moved_swap = 0;
	}
5070 5071 5072 5073 5074 5075 5076
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5077 5078
	struct mm_struct *mm = mc.mm;

5079 5080 5081 5082 5083 5084
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5085
	spin_lock(&mc.lock);
5086 5087
	mc.from = NULL;
	mc.to = NULL;
5088
	mc.mm = NULL;
5089
	spin_unlock(&mc.lock);
5090 5091

	mmput(mm);
5092 5093
}

5094
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5095
{
5096
	struct cgroup_subsys_state *css;
5097
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5098
	struct mem_cgroup *from;
5099
	struct task_struct *leader, *p;
5100
	struct mm_struct *mm;
5101
	unsigned long move_flags;
5102
	int ret = 0;
5103

5104 5105
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5106 5107
		return 0;

5108 5109 5110 5111 5112 5113 5114
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5115
	cgroup_taskset_for_each_leader(leader, css, tset) {
5116 5117
		WARN_ON_ONCE(p);
		p = leader;
5118
		memcg = mem_cgroup_from_css(css);
5119 5120 5121 5122
	}
	if (!p)
		return 0;

5123 5124 5125 5126 5127 5128 5129 5130 5131
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5148
		mc.mm = mm;
5149 5150 5151 5152 5153 5154 5155 5156 5157
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5158 5159
	} else {
		mmput(mm);
5160 5161 5162 5163
	}
	return ret;
}

5164
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5165
{
5166 5167
	if (mc.to)
		mem_cgroup_clear_mc();
5168 5169
}

5170 5171 5172
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5173
{
5174
	int ret = 0;
5175
	struct vm_area_struct *vma = walk->vma;
5176 5177
	pte_t *pte;
	spinlock_t *ptl;
5178 5179 5180
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5181

5182 5183
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5184
		if (mc.precharge < HPAGE_PMD_NR) {
5185
			spin_unlock(ptl);
5186 5187 5188 5189 5190 5191
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5192
				if (!mem_cgroup_move_account(page, true,
5193
							     mc.from, mc.to)) {
5194 5195 5196 5197 5198 5199
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5200 5201 5202 5203 5204 5205 5206 5207
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5208
		}
5209
		spin_unlock(ptl);
5210
		return 0;
5211 5212
	}

5213 5214
	if (pmd_trans_unstable(pmd))
		return 0;
5215 5216 5217 5218
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5219
		bool device = false;
5220
		swp_entry_t ent;
5221 5222 5223 5224

		if (!mc.precharge)
			break;

5225
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5226 5227 5228
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5229 5230
		case MC_TARGET_PAGE:
			page = target.page;
5231 5232 5233 5234 5235 5236 5237 5238
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5239
			if (!device && isolate_lru_page(page))
5240
				goto put;
5241 5242
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5243
				mc.precharge--;
5244 5245
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5246
			}
5247 5248
			if (!device)
				putback_lru_page(page);
5249
put:			/* get_mctgt_type() gets the page */
5250 5251
			put_page(page);
			break;
5252 5253
		case MC_TARGET_SWAP:
			ent = target.ent;
5254
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5255
				mc.precharge--;
5256 5257 5258
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5259
			break;
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5274
		ret = mem_cgroup_do_precharge(1);
5275 5276 5277 5278 5279 5280 5281
		if (!ret)
			goto retry;
	}

	return ret;
}

5282
static void mem_cgroup_move_charge(void)
5283
{
5284 5285
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5286
		.mm = mc.mm,
5287
	};
5288 5289

	lru_add_drain_all();
5290
	/*
5291 5292 5293
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5294 5295 5296
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5297
retry:
5298
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5310 5311 5312 5313
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5314 5315
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5316
	up_read(&mc.mm->mmap_sem);
5317
	atomic_dec(&mc.from->moving_account);
5318 5319
}

5320
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5321
{
5322 5323
	if (mc.to) {
		mem_cgroup_move_charge();
5324
		mem_cgroup_clear_mc();
5325
	}
B
Balbir Singh 已提交
5326
}
5327
#else	/* !CONFIG_MMU */
5328
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5329 5330 5331
{
	return 0;
}
5332
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5333 5334
{
}
5335
static void mem_cgroup_move_task(void)
5336 5337 5338
{
}
#endif
B
Balbir Singh 已提交
5339

5340 5341
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5342 5343
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5344
 */
5345
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5346 5347
{
	/*
5348
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5349 5350 5351
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5352
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5353 5354 5355
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5356 5357
}

5358 5359 5360
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5361 5362 5363
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5364 5365
}

R
Roman Gushchin 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
static int memory_min_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long min = READ_ONCE(memcg->memory.min);

	if (min == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);

	return 0;
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5396 5397 5398
static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5399
	unsigned long low = READ_ONCE(memcg->memory.low);
5400 5401

	if (low == PAGE_COUNTER_MAX)
5402
		seq_puts(m, "max\n");
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5417
	err = page_counter_memparse(buf, "max", &low);
5418 5419 5420
	if (err)
		return err;

5421
	page_counter_set_low(&memcg->memory, low);
5422 5423 5424 5425 5426 5427 5428

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5429
	unsigned long high = READ_ONCE(memcg->high);
5430 5431

	if (high == PAGE_COUNTER_MAX)
5432
		seq_puts(m, "max\n");
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5443
	unsigned long nr_pages;
5444 5445 5446 5447
	unsigned long high;
	int err;

	buf = strstrip(buf);
5448
	err = page_counter_memparse(buf, "max", &high);
5449 5450 5451 5452 5453
	if (err)
		return err;

	memcg->high = high;

5454 5455 5456 5457 5458
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5459
	memcg_wb_domain_size_changed(memcg);
5460 5461 5462 5463 5464 5465
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5466
	unsigned long max = READ_ONCE(memcg->memory.max);
5467 5468

	if (max == PAGE_COUNTER_MAX)
5469
		seq_puts(m, "max\n");
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5480 5481
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5482 5483 5484 5485
	unsigned long max;
	int err;

	buf = strstrip(buf);
5486
	err = page_counter_memparse(buf, "max", &max);
5487 5488 5489
	if (err)
		return err;

5490
	xchg(&memcg->memory.max, max);
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5516
		memcg_memory_event(memcg, MEMCG_OOM);
5517 5518 5519
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5520

5521
	memcg_wb_domain_size_changed(memcg);
5522 5523 5524 5525 5526 5527 5528
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5529 5530 5531 5532 5533 5534 5535 5536
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5537 5538
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5539 5540 5541 5542

	return 0;
}

5543 5544 5545
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5546
	struct accumulated_stats acc;
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5560 5561 5562 5563
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = MEMCG_NR_STAT;
	acc.events_size = NR_VM_EVENT_ITEMS;
	accumulate_memcg_tree(memcg, &acc);
5564

5565
	seq_printf(m, "anon %llu\n",
5566
		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5567
	seq_printf(m, "file %llu\n",
5568
		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5569
	seq_printf(m, "kernel_stack %llu\n",
5570
		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5571
	seq_printf(m, "slab %llu\n",
5572 5573
		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5574
	seq_printf(m, "sock %llu\n",
5575
		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5576

5577
	seq_printf(m, "shmem %llu\n",
5578
		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5579
	seq_printf(m, "file_mapped %llu\n",
5580
		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5581
	seq_printf(m, "file_dirty %llu\n",
5582
		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5583
	seq_printf(m, "file_writeback %llu\n",
5584
		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5585

5586 5587 5588
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5589

5590
	seq_printf(m, "slab_reclaimable %llu\n",
5591
		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5592
	seq_printf(m, "slab_unreclaimable %llu\n",
5593
		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5594

5595 5596
	/* Accumulated memory events */

5597 5598
	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5599

5600 5601 5602 5603 5604 5605 5606
	seq_printf(m, "workingset_refault %lu\n",
		   acc.stat[WORKINGSET_REFAULT]);
	seq_printf(m, "workingset_activate %lu\n",
		   acc.stat[WORKINGSET_ACTIVATE]);
	seq_printf(m, "workingset_nodereclaim %lu\n",
		   acc.stat[WORKINGSET_NODERECLAIM]);

5607 5608 5609 5610 5611 5612 5613 5614 5615
	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
		   acc.events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
		   acc.events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5616

5617 5618 5619
	return 0;
}

5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
static int memory_oom_group_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5651 5652 5653
static struct cftype memory_files[] = {
	{
		.name = "current",
5654
		.flags = CFTYPE_NOT_ON_ROOT,
5655 5656
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5657 5658 5659 5660 5661 5662
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5684
		.file_offset = offsetof(struct mem_cgroup, events_file),
5685 5686
		.seq_show = memory_events_show,
	},
5687 5688 5689 5690 5691
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5692 5693 5694 5695 5696 5697
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5698 5699 5700
	{ }	/* terminate */
};

5701
struct cgroup_subsys memory_cgrp_subsys = {
5702
	.css_alloc = mem_cgroup_css_alloc,
5703
	.css_online = mem_cgroup_css_online,
5704
	.css_offline = mem_cgroup_css_offline,
5705
	.css_released = mem_cgroup_css_released,
5706
	.css_free = mem_cgroup_css_free,
5707
	.css_reset = mem_cgroup_css_reset,
5708 5709
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5710
	.post_attach = mem_cgroup_move_task,
5711
	.bind = mem_cgroup_bind,
5712 5713
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5714
	.early_init = 0,
B
Balbir Singh 已提交
5715
};
5716

5717
/**
R
Roman Gushchin 已提交
5718
 * mem_cgroup_protected - check if memory consumption is in the normal range
5719
 * @root: the top ancestor of the sub-tree being checked
5720 5721
 * @memcg: the memory cgroup to check
 *
5722 5723
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5724
 *
R
Roman Gushchin 已提交
5725 5726 5727 5728 5729
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5730
 *
R
Roman Gushchin 已提交
5731
 * @root is exclusive; it is never protected when looked at directly
5732
 *
R
Roman Gushchin 已提交
5733 5734 5735
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5736
 *
5737 5738 5739 5740 5741 5742 5743
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5744
 *
5745 5746 5747
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5748
 *
5749 5750 5751
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5752
 *
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5780 5781
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5782 5783 5784 5785
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5786
 */
R
Roman Gushchin 已提交
5787 5788
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5789
{
5790
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5791 5792 5793
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5794

5795
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5796
		return MEMCG_PROT_NONE;
5797

5798 5799 5800
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5801
		return MEMCG_PROT_NONE;
5802

5803
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5804 5805 5806 5807 5808
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5809

R
Roman Gushchin 已提交
5810
	parent = parent_mem_cgroup(memcg);
5811 5812 5813 5814
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5815 5816 5817
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5832 5833
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5834 5835
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5836

R
Roman Gushchin 已提交
5837 5838 5839
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5840

R
Roman Gushchin 已提交
5841 5842 5843 5844
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5845 5846

exit:
R
Roman Gushchin 已提交
5847
	memcg->memory.emin = emin;
5848
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5849 5850 5851 5852 5853 5854 5855

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5856 5857
}

5858 5859 5860 5861 5862 5863
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5864
 * @compound: charge the page as compound or small page
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5877 5878
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5879 5880
{
	struct mem_cgroup *memcg = NULL;
5881
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5895
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5896
		if (compound_head(page)->mem_cgroup)
5897
			goto out;
5898

5899
		if (do_swap_account) {
5900 5901 5902 5903 5904 5905 5906 5907 5908
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5935 5936 5937 5938 5939
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5940
 * @compound: charge the page as compound or small page
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5953
			      bool lrucare, bool compound)
5954
{
5955
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5970 5971 5972
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5973
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5974 5975
	memcg_check_events(memcg, page);
	local_irq_enable();
5976

5977
	if (do_memsw_account() && PageSwapCache(page)) {
5978 5979 5980 5981 5982 5983
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5984
		mem_cgroup_uncharge_swap(entry, nr_pages);
5985 5986 5987 5988 5989 5990 5991
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5992
 * @compound: charge the page as compound or small page
5993 5994 5995
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5996 5997
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5998
{
5999
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6026
{
6027 6028 6029 6030 6031 6032
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6033 6034
	unsigned long flags;

6035 6036
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6037
		if (do_memsw_account())
6038 6039 6040 6041
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6042
	}
6043 6044

	local_irq_save(flags);
6045 6046 6047 6048 6049
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6050
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6051
	memcg_check_events(ug->memcg, ug->dummy_page);
6052
	local_irq_restore(flags);
6053

6054 6055 6056 6057 6058 6059 6060
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6061 6062
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6103 6104 6105 6106
}

static void uncharge_list(struct list_head *page_list)
{
6107
	struct uncharge_gather ug;
6108
	struct list_head *next;
6109 6110

	uncharge_gather_clear(&ug);
6111

6112 6113 6114 6115
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6116 6117
	next = page_list->next;
	do {
6118 6119
		struct page *page;

6120 6121 6122
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6123
		uncharge_page(page, &ug);
6124 6125
	} while (next != page_list);

6126 6127
	if (ug.memcg)
		uncharge_batch(&ug);
6128 6129
}

6130 6131 6132 6133 6134 6135 6136 6137 6138
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6139 6140
	struct uncharge_gather ug;

6141 6142 6143
	if (mem_cgroup_disabled())
		return;

6144
	/* Don't touch page->lru of any random page, pre-check: */
6145
	if (!page->mem_cgroup)
6146 6147
		return;

6148 6149 6150
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6151
}
6152

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6164

6165 6166
	if (!list_empty(page_list))
		uncharge_list(page_list);
6167 6168 6169
}

/**
6170 6171 6172
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6173
 *
6174 6175
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6176 6177 6178
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6179
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6180
{
6181
	struct mem_cgroup *memcg;
6182 6183
	unsigned int nr_pages;
	bool compound;
6184
	unsigned long flags;
6185 6186 6187 6188

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6189 6190
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6191 6192 6193 6194 6195

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6196
	if (newpage->mem_cgroup)
6197 6198
		return;

6199
	/* Swapcache readahead pages can get replaced before being charged */
6200
	memcg = oldpage->mem_cgroup;
6201
	if (!memcg)
6202 6203
		return;

6204 6205 6206 6207 6208 6209 6210 6211
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6212

6213
	commit_charge(newpage, memcg, false);
6214

6215
	local_irq_save(flags);
6216 6217
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6218
	local_irq_restore(flags);
6219 6220
}

6221
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6222 6223
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6224
void mem_cgroup_sk_alloc(struct sock *sk)
6225 6226 6227
{
	struct mem_cgroup *memcg;

6228 6229 6230
	if (!mem_cgroup_sockets_enabled)
		return;

6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6245 6246
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6247 6248
	if (memcg == root_mem_cgroup)
		goto out;
6249
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6250 6251
		goto out;
	if (css_tryget_online(&memcg->css))
6252
		sk->sk_memcg = memcg;
6253
out:
6254 6255 6256
	rcu_read_unlock();
}

6257
void mem_cgroup_sk_free(struct sock *sk)
6258
{
6259 6260
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6273
	gfp_t gfp_mask = GFP_KERNEL;
6274

6275
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6276
		struct page_counter *fail;
6277

6278 6279
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6280 6281
			return true;
		}
6282 6283
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6284
		return false;
6285
	}
6286

6287 6288 6289 6290
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6291
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6292

6293 6294 6295 6296
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6297 6298 6299 6300 6301
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6302 6303
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6304 6305 6306
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6307
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6308
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6309 6310
		return;
	}
6311

6312
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6313

6314
	refill_stock(memcg, nr_pages);
6315 6316
}

6317 6318 6319 6320 6321 6322 6323 6324 6325
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6326 6327
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6328 6329 6330 6331
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6332

6333
/*
6334 6335
 * subsys_initcall() for memory controller.
 *
6336 6337 6338 6339
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6340 6341 6342
 */
static int __init mem_cgroup_init(void)
{
6343 6344
	int cpu, node;

6345
#ifdef CONFIG_MEMCG_KMEM
6346 6347
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6348 6349 6350
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6351
	 */
6352 6353
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6354 6355
#endif

6356 6357
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6369
		rtpn->rb_root = RB_ROOT;
6370
		rtpn->rb_rightmost = NULL;
6371
		spin_lock_init(&rtpn->lock);
6372 6373 6374
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6375 6376 6377
	return 0;
}
subsys_initcall(mem_cgroup_init);
6378 6379

#ifdef CONFIG_MEMCG_SWAP
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6398 6399 6400 6401 6402 6403 6404 6405 6406
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6407
	struct mem_cgroup *memcg, *swap_memcg;
6408
	unsigned int nr_entries;
6409 6410 6411 6412 6413
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6414
	if (!do_memsw_account())
6415 6416 6417 6418 6419 6420 6421 6422
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6423 6424 6425 6426 6427 6428
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6429 6430 6431 6432 6433 6434
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6435
	VM_BUG_ON_PAGE(oldid, page);
6436
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6437 6438 6439 6440

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6441
		page_counter_uncharge(&memcg->memory, nr_entries);
6442

6443 6444
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6445 6446
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6447 6448
	}

6449 6450
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6451
	 * i_pages lock which is taken with interrupts-off. It is
6452
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6453
	 * only synchronisation we have for updating the per-CPU variables.
6454 6455
	 */
	VM_BUG_ON(!irqs_disabled());
6456 6457
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6458
	memcg_check_events(memcg, page);
6459 6460

	if (!mem_cgroup_is_root(memcg))
6461
		css_put_many(&memcg->css, nr_entries);
6462 6463
}

6464 6465
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6466 6467 6468
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6469
 * Try to charge @page's memcg for the swap space at @entry.
6470 6471 6472 6473 6474
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6475
	unsigned int nr_pages = hpage_nr_pages(page);
6476
	struct page_counter *counter;
6477
	struct mem_cgroup *memcg;
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6489 6490
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6491
		return 0;
6492
	}
6493

6494 6495
	memcg = mem_cgroup_id_get_online(memcg);

6496
	if (!mem_cgroup_is_root(memcg) &&
6497
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6498 6499
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6500
		mem_cgroup_id_put(memcg);
6501
		return -ENOMEM;
6502
	}
6503

6504 6505 6506 6507
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6508
	VM_BUG_ON_PAGE(oldid, page);
6509
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6510 6511 6512 6513

	return 0;
}

6514
/**
6515
 * mem_cgroup_uncharge_swap - uncharge swap space
6516
 * @entry: swap entry to uncharge
6517
 * @nr_pages: the amount of swap space to uncharge
6518
 */
6519
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6520 6521 6522 6523
{
	struct mem_cgroup *memcg;
	unsigned short id;

6524
	if (!do_swap_account)
6525 6526
		return;

6527
	id = swap_cgroup_record(entry, 0, nr_pages);
6528
	rcu_read_lock();
6529
	memcg = mem_cgroup_from_id(id);
6530
	if (memcg) {
6531 6532
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6533
				page_counter_uncharge(&memcg->swap, nr_pages);
6534
			else
6535
				page_counter_uncharge(&memcg->memsw, nr_pages);
6536
		}
6537
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6538
		mem_cgroup_id_put_many(memcg, nr_pages);
6539 6540 6541 6542
	}
	rcu_read_unlock();
}

6543 6544 6545 6546 6547 6548 6549 6550
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6551
				      READ_ONCE(memcg->swap.max) -
6552 6553 6554 6555
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6572
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6573 6574 6575 6576 6577
			return true;

	return false;
}

6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6606
	unsigned long max = READ_ONCE(memcg->swap.max);
6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6628
	xchg(&memcg->swap.max, max);
6629 6630 6631 6632

	return nbytes;
}

6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6657 6658 6659 6660 6661 6662
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6663 6664 6665
	{ }	/* terminate */
};

6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6697 6698
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6699 6700 6701 6702 6703 6704 6705 6706
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */