blk-mq.c 70.2 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
45

46 47 48 49
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
50
	ddir = rq_data_dir(rq);
51 52 53 54 55 56 57 58 59 60 61 62
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

63 64 65
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
66
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67
{
68 69 70
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
71 72
}

73 74 75 76 77 78
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
79 80
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 82 83 84 85
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
86
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 88
}

89
void blk_freeze_queue_start(struct request_queue *q)
90
{
91
	int freeze_depth;
92

93 94
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
95
		percpu_ref_kill(&q->q_usage_counter);
96
		blk_mq_run_hw_queues(q, false);
97
	}
98
}
99
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100

101
void blk_mq_freeze_queue_wait(struct request_queue *q)
102
{
103
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106

107 108 109 110 111 112 113 114
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115

116 117 118 119
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
120
void blk_freeze_queue(struct request_queue *q)
121
{
122 123 124 125 126 127 128
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
129
	blk_freeze_queue_start(q);
130 131
	blk_mq_freeze_queue_wait(q);
}
132 133 134 135 136 137 138 139 140

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
141
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142

143
void blk_mq_unfreeze_queue(struct request_queue *q)
144
{
145
	int freeze_depth;
146

147 148 149
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
150
		percpu_ref_reinit(&q->q_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

170
	__blk_mq_stop_hw_queues(q, true);
171 172 173 174 175 176 177 178 179 180 181 182

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

183 184 185 186 187 188 189 190
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
191 192 193 194 195 196 197

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
198 199
}

200 201 202 203 204 205
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

206 207
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
208
{
209 210 211
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
212
	rq->mq_ctx = ctx;
213
	rq->cmd_flags = op;
214 215
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
216 217 218 219 220 221
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
222
	rq->start_time = jiffies;
223 224
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
225
	set_start_time_ns(rq);
226 227 228 229 230 231 232 233 234 235 236
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
237 238
	rq->timeout = 0;

239 240 241 242
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

243
	ctx->rq_dispatched[op_is_sync(op)]++;
244
}
245
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
246

247 248
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
249 250 251 252
{
	struct request *rq;
	unsigned int tag;

253
	tag = blk_mq_get_tag(data);
254
	if (tag != BLK_MQ_TAG_FAIL) {
255 256 257
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
258

259 260 261 262
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
263 264 265 266
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
267 268
			rq->tag = tag;
			rq->internal_tag = -1;
269
			data->hctx->tags->rqs[rq->tag] = rq;
270 271
		}

272
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
273 274 275 276 277
		return rq;
	}

	return NULL;
}
278
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
279

280 281
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
282
{
283
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
284
	struct request *rq;
285
	int ret;
286

287
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
288 289
	if (ret)
		return ERR_PTR(ret);
290

291
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
292

293 294 295 296
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
297
		return ERR_PTR(-EWOULDBLOCK);
298 299 300 301

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
302 303
	return rq;
}
304
EXPORT_SYMBOL(blk_mq_alloc_request);
305

M
Ming Lin 已提交
306 307 308
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
309
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
310
	struct request *rq;
311
	unsigned int cpu;
M
Ming Lin 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

330 331 332 333
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
334 335 336 337
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
338
	}
339 340
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
341

342
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
343 344

	blk_queue_exit(q);
345 346 347 348 349

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
350 351 352
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

353 354
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
355
{
356
	const int sched_tag = rq->internal_tag;
357 358
	struct request_queue *q = rq->q;

359
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
360
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
361 362

	wbt_done(q->rq_wb, &rq->issue_stat);
363
	rq->rq_flags = 0;
364

365
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
366
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
367 368 369
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
370
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
371
	blk_mq_sched_restart(hctx);
372
	blk_queue_exit(q);
373 374
}

375
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
376
				     struct request *rq)
377 378 379 380
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
381 382 383 384 385 386
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
387
}
O
Omar Sandoval 已提交
388
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
389 390 391

void blk_mq_free_request(struct request *rq)
{
392
	blk_mq_sched_put_request(rq);
393
}
J
Jens Axboe 已提交
394
EXPORT_SYMBOL_GPL(blk_mq_free_request);
395

396
inline void __blk_mq_end_request(struct request *rq, int error)
397
{
M
Ming Lei 已提交
398 399
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
400
	if (rq->end_io) {
J
Jens Axboe 已提交
401
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
402
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
403 404 405
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
406
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
407
	}
408
}
409
EXPORT_SYMBOL(__blk_mq_end_request);
410

411
void blk_mq_end_request(struct request *rq, int error)
412 413 414
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
415
	__blk_mq_end_request(rq, error);
416
}
417
EXPORT_SYMBOL(blk_mq_end_request);
418

419
static void __blk_mq_complete_request_remote(void *data)
420
{
421
	struct request *rq = data;
422

423
	rq->q->softirq_done_fn(rq);
424 425
}

426
static void __blk_mq_complete_request(struct request *rq)
427 428
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
429
	bool shared = false;
430 431
	int cpu;

432 433 434 435 436 437 438
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
439
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
440 441 442
		rq->q->softirq_done_fn(rq);
		return;
	}
443 444

	cpu = get_cpu();
C
Christoph Hellwig 已提交
445 446 447 448
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
449
		rq->csd.func = __blk_mq_complete_request_remote;
450 451
		rq->csd.info = rq;
		rq->csd.flags = 0;
452
		smp_call_function_single_async(ctx->cpu, &rq->csd);
453
	} else {
454
		rq->q->softirq_done_fn(rq);
455
	}
456 457
	put_cpu();
}
458 459 460 461 462 463 464 465 466

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
467
void blk_mq_complete_request(struct request *rq)
468
{
469 470 471
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
472
		return;
473
	if (!blk_mark_rq_complete(rq))
474
		__blk_mq_complete_request(rq);
475 476
}
EXPORT_SYMBOL(blk_mq_complete_request);
477

478 479 480 481 482 483
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

484
void blk_mq_start_request(struct request *rq)
485 486 487
{
	struct request_queue *q = rq->q;

488 489
	blk_mq_sched_started_request(rq);

490 491
	trace_block_rq_issue(q, rq);

492
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
493
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
494
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
495
		wbt_issue(q->rq_wb, &rq->issue_stat);
496 497
	}

498
	blk_add_timer(rq);
499

500 501 502 503 504 505
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

506 507 508 509 510 511
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
512 513 514 515
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
516 517 518 519 520 521 522 523 524

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
525
}
526
EXPORT_SYMBOL(blk_mq_start_request);
527

528 529
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
530
 * flag isn't set yet, so there may be race with timeout handler,
531 532 533 534 535 536
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
537
static void __blk_mq_requeue_request(struct request *rq)
538 539 540 541
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
542
	wbt_requeue(q->rq_wb, &rq->issue_stat);
543
	blk_mq_sched_requeue_request(rq);
544

545 546 547 548
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
549 550
}

551
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
552 553 554 555
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
556
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
557 558 559
}
EXPORT_SYMBOL(blk_mq_requeue_request);

560 561 562
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
563
		container_of(work, struct request_queue, requeue_work.work);
564 565 566 567 568 569 570 571 572
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
573
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
574 575
			continue;

576
		rq->rq_flags &= ~RQF_SOFTBARRIER;
577
		list_del_init(&rq->queuelist);
578
		blk_mq_sched_insert_request(rq, true, false, false, true);
579 580 581 582 583
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
584
		blk_mq_sched_insert_request(rq, false, false, false, true);
585 586
	}

587
	blk_mq_run_hw_queues(q, false);
588 589
}

590 591
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
592 593 594 595 596 597 598 599
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
600
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
601 602 603

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
604
		rq->rq_flags |= RQF_SOFTBARRIER;
605 606 607 608 609
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
610 611 612

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
613 614 615 616 617
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
618
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
619 620 621
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

622 623 624 625 626 627 628 629
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

630 631 632 633 634 635 636 637 638 639 640 641 642 643
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
644
		blk_mq_end_request(rq, -EIO);
645 646 647 648
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

649 650
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
651 652
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
653
		return tags->rqs[tag];
654
	}
655 656

	return NULL;
657 658 659
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

660
struct blk_mq_timeout_data {
661 662
	unsigned long next;
	unsigned int next_set;
663 664
};

665
void blk_mq_rq_timed_out(struct request *req, bool reserved)
666
{
J
Jens Axboe 已提交
667
	const struct blk_mq_ops *ops = req->q->mq_ops;
668
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
669 670 671 672 673 674 675

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
676
	 * both flags will get cleared. So check here again, and ignore
677 678
	 * a timeout event with a request that isn't active.
	 */
679 680
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
681

682
	if (ops->timeout)
683
		ret = ops->timeout(req, reserved);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
699
}
700

701 702 703 704
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
705

706
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
707
		return;
708

709 710 711 712 713 714 715 716 717 718 719 720 721
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
722 723
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
724
			blk_mq_rq_timed_out(rq, reserved);
725 726 727 728
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
729 730
}

731
static void blk_mq_timeout_work(struct work_struct *work)
732
{
733 734
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
735 736 737 738 739
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
740

741 742 743 744 745 746 747 748 749
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
750
	 * blk_freeze_queue_start, and the moment the last request is
751 752 753 754
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
755 756
		return;

757
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
758

759 760 761
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
762
	} else {
763 764
		struct blk_mq_hw_ctx *hctx;

765 766 767 768 769
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
770
	}
771
	blk_queue_exit(q);
772 773 774 775 776 777 778 779 780 781 782 783 784 785
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
786
		bool merged = false;
787 788 789 790 791 792 793

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

794 795 796 797
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
798
			break;
799 800 801
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
802
			break;
803 804
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
805
			break;
806 807
		default:
			continue;
808
		}
809 810 811 812

		if (merged)
			ctx->rq_merged++;
		return merged;
813 814 815 816 817
	}

	return false;
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

836 837 838 839
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
840
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
841
{
842 843 844 845
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
846

847
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
848
}
849
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
850

851 852 853 854
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
855

856
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
857 858
}

859 860
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
861 862 863 864 865 866 867
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

868 869
	might_sleep_if(wait);

870 871
	if (rq->tag != -1)
		goto done;
872

873 874 875
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

876 877
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
878 879 880 881
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
882 883 884
		data.hctx->tags->rqs[rq->tag] = rq;
	}

885 886 887 888
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
889 890
}

891 892
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
893 894 895 896 897 898 899 900 901 902
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

985
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
986
{
987
	struct blk_mq_hw_ctx *hctx;
988
	struct request *rq;
989
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
990

991 992 993
	if (list_empty(list))
		return false;

994 995 996
	/*
	 * Now process all the entries, sending them to the driver.
	 */
997
	errors = queued = 0;
998
	do {
999
		struct blk_mq_queue_data bd;
1000

1001
		rq = list_first_entry(list, struct request, queuelist);
1002 1003 1004
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1005 1006

			/*
1007 1008
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1009
			 */
1010 1011 1012 1013 1014 1015 1016 1017 1018
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1019
				break;
1020
		}
1021

1022 1023
		list_del_init(&rq->queuelist);

1024
		bd.rq = rq;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1038 1039

		ret = q->mq_ops->queue_rq(hctx, &bd);
1040 1041 1042
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1043
			break;
1044
		case BLK_MQ_RQ_QUEUE_BUSY:
1045
			blk_mq_put_driver_tag_hctx(hctx, rq);
1046
			list_add(&rq->queuelist, list);
1047
			__blk_mq_requeue_request(rq);
1048 1049 1050 1051
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1052
			errors++;
1053
			blk_mq_end_request(rq, -EIO);
1054 1055 1056 1057 1058
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1059
	} while (!list_empty(list));
1060

1061
	hctx->dispatched[queued_to_index(queued)]++;
1062 1063 1064 1065 1066

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1067
	if (!list_empty(list)) {
1068
		/*
1069 1070
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1071 1072 1073 1074
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1075
		spin_lock(&hctx->lock);
1076
		list_splice_init(list, &hctx->dispatch);
1077
		spin_unlock(&hctx->lock);
1078

1079
		/*
1080 1081 1082
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1083
		 *
1084 1085 1086 1087
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1088
		 *
1089 1090 1091 1092 1093 1094 1095 1096 1097
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1098
		 */
1099 1100
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1101
			blk_mq_run_hw_queue(hctx, true);
1102
	}
1103

1104
	return (queued + errors) != 0;
1105 1106
}

1107 1108 1109 1110 1111 1112 1113 1114 1115
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1116
		blk_mq_sched_dispatch_requests(hctx);
1117 1118
		rcu_read_unlock();
	} else {
1119 1120
		might_sleep();

1121
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1122
		blk_mq_sched_dispatch_requests(hctx);
1123 1124 1125 1126
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1127 1128 1129 1130 1131 1132 1133 1134
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1135 1136
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1137 1138

	if (--hctx->next_cpu_batch <= 0) {
1139
		int next_cpu;
1140 1141 1142 1143 1144 1145 1146 1147 1148

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1149
	return hctx->next_cpu;
1150 1151
}

1152 1153
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1154
{
1155 1156
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1157 1158
		return;

1159
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1160 1161
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1162
			__blk_mq_run_hw_queue(hctx);
1163
			put_cpu();
1164 1165
			return;
		}
1166

1167
		put_cpu();
1168
	}
1169

1170 1171 1172
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1184
}
O
Omar Sandoval 已提交
1185
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1186

1187
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1188 1189 1190 1191 1192
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1193
		if (!blk_mq_hctx_has_pending(hctx) ||
1194
		    blk_mq_hctx_stopped(hctx))
1195 1196
			continue;

1197
		blk_mq_run_hw_queue(hctx, async);
1198 1199
	}
}
1200
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1222
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1223
{
1224 1225 1226 1227 1228
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1229 1230
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1231 1232 1233 1234 1235

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1236 1237
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1238
void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1239 1240 1241 1242 1243
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1244 1245 1246 1247 1248 1249
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1250 1251 1252
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1253 1254 1255
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1256

1257
	blk_mq_run_hw_queue(hctx, false);
1258 1259 1260
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1281
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1282 1283 1284 1285
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1286 1287
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1288 1289 1290
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1291
static void blk_mq_run_work_fn(struct work_struct *work)
1292 1293 1294
{
	struct blk_mq_hw_ctx *hctx;

1295
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1296

1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1305

1306 1307 1308
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1309 1310 1311 1312

	__blk_mq_run_hw_queue(hctx);
}

1313 1314 1315

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1316 1317
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1318

1319 1320 1321 1322 1323
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1324
	blk_mq_stop_hw_queue(hctx);
1325 1326 1327 1328
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1329 1330 1331
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1332 1333 1334
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1335
{
J
Jens Axboe 已提交
1336 1337
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1338 1339
	trace_block_rq_insert(hctx->queue, rq);

1340 1341 1342 1343
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1344
}
1345

1346 1347
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1348 1349 1350
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1351
	__blk_mq_insert_req_list(hctx, rq, at_head);
1352 1353 1354
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1355 1356
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1368
		BUG_ON(rq->mq_ctx != ctx);
1369
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1370
		__blk_mq_insert_req_list(hctx, rq, false);
1371
	}
1372
	blk_mq_hctx_mark_pending(hctx, ctx);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1409 1410 1411 1412
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1429 1430 1431
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1432 1433 1434 1435 1436
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1437
	blk_init_request_from_bio(rq, bio);
1438

1439
	blk_account_io_start(rq, true);
1440 1441
}

1442 1443 1444 1445 1446 1447
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1448 1449 1450
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1451
{
1452
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1453 1454 1455 1456 1457 1458 1459
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1460 1461
		struct request_queue *q = hctx->queue;

1462 1463 1464 1465 1466
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1467

1468
		spin_unlock(&ctx->lock);
1469
		__blk_mq_finish_request(hctx, ctx, rq);
1470
		return true;
1471
	}
1472
}
1473

1474 1475
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1476 1477 1478 1479
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1480 1481
}

1482
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1483
				      bool may_sleep)
1484 1485 1486 1487
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1488
		.last = true,
1489
	};
1490 1491 1492
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1493

1494
	if (q->elevator)
1495 1496
		goto insert;

1497 1498 1499 1500 1501
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1502 1503 1504 1505 1506 1507
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1508 1509
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1510
		return;
1511
	}
1512

1513 1514
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
1515
		blk_mq_end_request(rq, -EIO);
1516
		return;
1517
	}
1518

1519
	__blk_mq_requeue_request(rq);
1520
insert:
1521
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1532 1533 1534 1535 1536
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1537 1538 1539 1540 1541
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1542
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1543
{
1544
	const int is_sync = op_is_sync(bio->bi_opf);
1545
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1546
	struct blk_mq_alloc_data data = { .flags = 0 };
1547
	struct request *rq;
1548
	unsigned int request_count = 0;
1549
	struct blk_plug *plug;
1550
	struct request *same_queue_rq = NULL;
1551
	blk_qc_t cookie;
J
Jens Axboe 已提交
1552
	unsigned int wb_acct;
1553 1554 1555 1556

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1557
		bio_io_error(bio);
1558
		return BLK_QC_T_NONE;
1559 1560
	}

1561 1562
	blk_queue_split(q, &bio, q->bio_split);

1563 1564 1565
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1566

1567 1568 1569
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1570 1571
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1572 1573 1574
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1575 1576
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1577
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1578 1579 1580
	}

	wbt_track(&rq->issue_stat, wb_acct);
1581

1582
	cookie = request_to_qc_t(data.hctx, rq);
1583

1584
	plug = current->plug;
1585
	if (unlikely(is_flush_fua)) {
1586
		blk_mq_put_ctx(data.ctx);
1587
		blk_mq_bio_to_request(rq, bio);
1588 1589 1590
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1591
		} else {
1592 1593
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1594
		}
1595
	} else if (plug && q->nr_hw_queues == 1) {
1596 1597
		struct request *last = NULL;

1598
		blk_mq_put_ctx(data.ctx);
1599
		blk_mq_bio_to_request(rq, bio);
1600 1601 1602 1603 1604 1605 1606

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1607 1608 1609
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1610
		if (!request_count)
1611
			trace_block_plug(q);
1612 1613
		else
			last = list_entry_rq(plug->mq_list.prev);
1614

1615 1616
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1617 1618
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1619
		}
1620

1621
		list_add_tail(&rq->queuelist, &plug->mq_list);
1622
	} else if (plug && !blk_queue_nomerges(q)) {
1623
		blk_mq_bio_to_request(rq, bio);
1624 1625

		/*
1626
		 * We do limited plugging. If the bio can be merged, do that.
1627 1628
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1629 1630
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1631
		 */
1632 1633 1634 1635 1636 1637
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1638 1639
		blk_mq_put_ctx(data.ctx);

1640 1641 1642
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1643
	} else if (q->nr_hw_queues > 1 && is_sync) {
1644
		blk_mq_put_ctx(data.ctx);
1645 1646
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1647
	} else if (q->elevator) {
1648
		blk_mq_put_ctx(data.ctx);
1649
		blk_mq_bio_to_request(rq, bio);
1650
		blk_mq_sched_insert_request(rq, false, true, true, true);
1651 1652
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_put_ctx(data.ctx);
1653
		blk_mq_run_hw_queue(data.hctx, true);
1654 1655
	} else
		blk_mq_put_ctx(data.ctx);
1656

1657
	return cookie;
1658 1659
}

1660 1661
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1662
{
1663
	struct page *page;
1664

1665
	if (tags->rqs && set->ops->exit_request) {
1666
		int i;
1667

1668
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1669 1670 1671
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1672
				continue;
1673
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1674
			tags->static_rqs[i] = NULL;
1675
		}
1676 1677
	}

1678 1679
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1680
		list_del_init(&page->lru);
1681 1682 1683 1684 1685
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1686 1687
		__free_pages(page, page->private);
	}
1688
}
1689

1690 1691
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1692
	kfree(tags->rqs);
1693
	tags->rqs = NULL;
J
Jens Axboe 已提交
1694 1695
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1696

1697
	blk_mq_free_tags(tags);
1698 1699
}

1700 1701 1702 1703
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1704
{
1705
	struct blk_mq_tags *tags;
1706
	int node;
1707

1708 1709 1710 1711 1712
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1713
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1714 1715
	if (!tags)
		return NULL;
1716

1717
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1718
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1719
				 node);
1720 1721 1722 1723
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1724

J
Jens Axboe 已提交
1725 1726
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1727
				 node);
J
Jens Axboe 已提交
1728 1729 1730 1731 1732 1733
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1747 1748 1749 1750 1751
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1752 1753 1754

	INIT_LIST_HEAD(&tags->page_list);

1755 1756 1757 1758
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1759
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1760
				cache_line_size());
1761
	left = rq_size * depth;
1762

1763
	for (i = 0; i < depth; ) {
1764 1765 1766 1767 1768
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1769
		while (this_order && left < order_to_size(this_order - 1))
1770 1771 1772
			this_order--;

		do {
1773
			page = alloc_pages_node(node,
1774
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1775
				this_order);
1776 1777 1778 1779 1780 1781 1782 1783 1784
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1785
			goto fail;
1786 1787

		page->private = this_order;
1788
		list_add_tail(&page->lru, &tags->page_list);
1789 1790

		p = page_address(page);
1791 1792 1793 1794
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1795
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1796
		entries_per_page = order_to_size(this_order) / rq_size;
1797
		to_do = min(entries_per_page, depth - i);
1798 1799
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1800 1801 1802
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1803
			if (set->ops->init_request) {
1804
				if (set->ops->init_request(set, rq, hctx_idx,
1805
						node)) {
J
Jens Axboe 已提交
1806
					tags->static_rqs[i] = NULL;
1807
					goto fail;
1808
				}
1809 1810
			}

1811 1812 1813 1814
			p += rq_size;
			i++;
		}
	}
1815
	return 0;
1816

1817
fail:
1818 1819
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1820 1821
}

J
Jens Axboe 已提交
1822 1823 1824 1825 1826
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1827
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1828
{
1829
	struct blk_mq_hw_ctx *hctx;
1830 1831 1832
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1833
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1834
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1835 1836 1837 1838 1839 1840 1841 1842 1843

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1844
		return 0;
1845

J
Jens Axboe 已提交
1846 1847 1848
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1849 1850

	blk_mq_run_hw_queue(hctx, true);
1851
	return 0;
1852 1853
}

1854
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1855
{
1856 1857
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1858 1859
}

1860
/* hctx->ctxs will be freed in queue's release handler */
1861 1862 1863 1864 1865 1866
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
	blk_mq_tag_idle(hctx);

1867
	if (set->ops->exit_request)
1868
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1869

1870 1871
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1872 1873 1874
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1875 1876 1877
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1878
	blk_mq_remove_cpuhp(hctx);
1879
	blk_free_flush_queue(hctx->fq);
1880
	sbitmap_free(&hctx->ctx_map);
1881 1882
}

M
Ming Lei 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1892
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1893 1894 1895
	}
}

1896 1897 1898
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1899
{
1900 1901 1902 1903 1904 1905
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1906
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1907 1908 1909 1910
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1911
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1912

1913
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1914 1915

	hctx->tags = set->tags[hctx_idx];
1916 1917

	/*
1918 1919
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1920
	 */
1921 1922 1923 1924
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1925

1926 1927
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1928
		goto free_ctxs;
1929

1930
	hctx->nr_ctx = 0;
1931

1932 1933 1934
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1935

1936 1937 1938
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1939 1940
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1941
		goto sched_exit_hctx;
1942

1943
	if (set->ops->init_request &&
1944 1945
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1946
		goto free_fq;
1947

1948 1949 1950
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1951
	return 0;
1952

1953 1954
 free_fq:
	kfree(hctx->fq);
1955 1956
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1957 1958 1959
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1960
 free_bitmap:
1961
	sbitmap_free(&hctx->ctx_map);
1962 1963 1964
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1965
	blk_mq_remove_cpuhp(hctx);
1966 1967
	return -1;
}
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1987
		hctx = blk_mq_map_queue(q, i);
1988

1989 1990 1991 1992 1993
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1994
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1995 1996 1997
	}
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2020 2021 2022 2023 2024
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2025 2026
}

2027 2028
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2029
{
2030
	unsigned int i, hctx_idx;
2031 2032
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2033
	struct blk_mq_tag_set *set = q->tag_set;
2034

2035 2036 2037 2038 2039
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2040
	queue_for_each_hw_ctx(q, hctx, i) {
2041
		cpumask_clear(hctx->cpumask);
2042 2043 2044 2045 2046 2047
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2048
	for_each_possible_cpu(i) {
2049
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2050
		if (!cpumask_test_cpu(i, online_mask))
2051 2052
			continue;

2053 2054
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2055 2056
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2057 2058 2059 2060 2061 2062
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2063
			q->mq_map[i] = 0;
2064 2065
		}

2066
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2067
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2068

2069
		cpumask_set_cpu(i, hctx->cpumask);
2070 2071 2072
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2073

2074 2075
	mutex_unlock(&q->sysfs_lock);

2076
	queue_for_each_hw_ctx(q, hctx, i) {
2077
		/*
2078 2079
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2080 2081
		 */
		if (!hctx->nr_ctx) {
2082 2083 2084 2085
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2086 2087 2088
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2089
			hctx->tags = NULL;
2090 2091 2092
			continue;
		}

M
Ming Lei 已提交
2093 2094 2095
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2096 2097 2098 2099 2100
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2101
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2102

2103 2104 2105
		/*
		 * Initialize batch roundrobin counts
		 */
2106 2107 2108
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2109 2110
}

2111
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2112 2113 2114 2115
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2127

2128 2129
	lockdep_assert_held(&set->tag_list_lock);

2130 2131
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2132
		queue_set_hctx_shared(q, shared);
2133 2134 2135 2136 2137 2138 2139 2140 2141
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2142 2143
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2144 2145 2146 2147 2148 2149
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2150
	mutex_unlock(&set->tag_list_lock);
2151 2152

	synchronize_rcu();
2153 2154 2155 2156 2157 2158 2159 2160
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2161 2162 2163 2164 2165 2166 2167 2168 2169

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2170
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2171

2172 2173 2174
	mutex_unlock(&set->tag_list_lock);
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2187 2188 2189
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2190
		kobject_put(&hctx->kobj);
2191
	}
2192

2193 2194
	q->mq_map = NULL;

2195 2196
	kfree(q->queue_hw_ctx);

2197 2198 2199 2200 2201 2202
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2203 2204 2205
	free_percpu(q->queue_ctx);
}

2206
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2222 2223
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2224
{
K
Keith Busch 已提交
2225 2226
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2227

K
Keith Busch 已提交
2228
	blk_mq_sysfs_unregister(q);
2229
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2230
		int node;
2231

K
Keith Busch 已提交
2232 2233 2234 2235
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2236 2237
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2238
		if (!hctxs[i])
K
Keith Busch 已提交
2239
			break;
2240

2241
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2242 2243 2244 2245 2246
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2247

2248
		atomic_set(&hctxs[i]->nr_active, 0);
2249
		hctxs[i]->numa_node = node;
2250
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2251 2252 2253 2254 2255 2256 2257 2258

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2259
	}
K
Keith Busch 已提交
2260 2261 2262 2263
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2264 2265
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2279 2280 2281
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2282
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2283 2284
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2285 2286 2287
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2288 2289
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2290
		goto err_exit;
K
Keith Busch 已提交
2291

2292 2293 2294
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2295 2296 2297 2298 2299
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2300
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2301 2302 2303 2304

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2305

2306
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2307
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2308 2309 2310

	q->nr_queues = nr_cpu_ids;

2311
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2312

2313 2314 2315
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2316 2317
	q->sg_reserved_size = INT_MAX;

2318
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2319 2320 2321
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2322
	blk_queue_make_request(q, blk_mq_make_request);
2323

2324 2325 2326 2327 2328
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2329 2330 2331 2332 2333
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2334 2335
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2336

2337
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2338

2339
	get_online_cpus();
2340 2341
	mutex_lock(&all_q_mutex);

2342
	list_add_tail(&q->all_q_node, &all_q_list);
2343
	blk_mq_add_queue_tag_set(set, q);
2344
	blk_mq_map_swqueue(q, cpu_online_mask);
2345

2346
	mutex_unlock(&all_q_mutex);
2347
	put_online_cpus();
2348

2349 2350 2351 2352 2353 2354 2355 2356
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2357
	return q;
2358

2359
err_hctxs:
K
Keith Busch 已提交
2360
	kfree(q->queue_hw_ctx);
2361
err_percpu:
K
Keith Busch 已提交
2362
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2363 2364
err_exit:
	q->mq_ops = NULL;
2365 2366
	return ERR_PTR(-ENOMEM);
}
2367
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2368 2369 2370

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2371
	struct blk_mq_tag_set	*set = q->tag_set;
2372

2373 2374 2375 2376
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2377 2378
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2379
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2380 2381 2382
}

/* Basically redo blk_mq_init_queue with queue frozen */
2383 2384
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2385
{
2386
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2387

2388 2389
	blk_mq_sysfs_unregister(q);

2390 2391 2392 2393 2394 2395
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2396
	blk_mq_map_swqueue(q, online_mask);
2397

2398
	blk_mq_sysfs_register(q);
2399 2400
}

2401 2402 2403 2404 2405 2406 2407 2408
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2409 2410 2411 2412
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2413 2414 2415 2416 2417 2418 2419 2420
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2421
		blk_freeze_queue_start(q);
2422
	list_for_each_entry(q, &all_q_list, all_q_node)
2423 2424
		blk_mq_freeze_queue_wait(q);

2425
	list_for_each_entry(q, &all_q_list, all_q_node)
2426
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2427 2428 2429 2430

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2431
	mutex_unlock(&all_q_mutex);
2432 2433 2434 2435
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2436
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2452 2453 2454 2455
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2456 2457 2458 2459 2460 2461 2462
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2463 2464
}

2465 2466 2467 2468
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2469 2470
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2471 2472 2473 2474 2475 2476
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2477
		blk_mq_free_rq_map(set->tags[i]);
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2517 2518 2519 2520 2521 2522 2523 2524
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2525 2526 2527 2528 2529 2530
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2531 2532
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2533 2534
	int ret;

B
Bart Van Assche 已提交
2535 2536
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2537 2538
	if (!set->nr_hw_queues)
		return -EINVAL;
2539
	if (!set->queue_depth)
2540 2541 2542 2543
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2544
	if (!set->ops->queue_rq)
2545 2546
		return -EINVAL;

2547 2548 2549 2550 2551
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2562 2563 2564 2565 2566
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2567

K
Keith Busch 已提交
2568
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2569 2570
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2571
		return -ENOMEM;
2572

2573 2574 2575
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2576 2577 2578
	if (!set->mq_map)
		goto out_free_tags;

2579
	ret = blk_mq_update_queue_map(set);
2580 2581 2582 2583 2584
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2585
		goto out_free_mq_map;
2586

2587 2588 2589
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2590
	return 0;
2591 2592 2593 2594 2595

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2596 2597
	kfree(set->tags);
	set->tags = NULL;
2598
	return ret;
2599 2600 2601 2602 2603 2604 2605
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2606 2607
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2608

2609 2610 2611
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2612
	kfree(set->tags);
2613
	set->tags = NULL;
2614 2615 2616
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2617 2618 2619 2620 2621 2622
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2623
	if (!set)
2624 2625
		return -EINVAL;

2626 2627
	blk_mq_freeze_queue(q);

2628 2629
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2630 2631
		if (!hctx->tags)
			continue;
2632 2633 2634 2635
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2636 2637 2638 2639 2640 2641 2642 2643
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2644 2645 2646 2647 2648 2649 2650
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2651 2652
	blk_mq_unfreeze_queue(q);

2653 2654 2655
	return ret;
}

K
Keith Busch 已提交
2656 2657 2658 2659
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2660 2661
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2671
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2708
	int bucket;
2709

2710 2711 2712 2713
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2714 2715
}

2716 2717 2718 2719 2720
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2721
	int bucket;
2722 2723 2724 2725 2726

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2727
	if (!blk_poll_stats_enable(q))
2728 2729 2730 2731 2732 2733 2734 2735
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2736 2737
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2738
	 */
2739 2740 2741 2742 2743 2744
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2745 2746 2747 2748

	return ret;
}

2749
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2750
				     struct blk_mq_hw_ctx *hctx,
2751 2752 2753 2754
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2755
	unsigned int nsecs;
2756 2757
	ktime_t kt;

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2776 2777 2778 2779 2780 2781 2782 2783
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2784
	kt = nsecs;
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2807 2808 2809 2810 2811
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2812 2813 2814 2815 2816 2817 2818
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2819
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2820 2821
		return true;

J
Jens Axboe 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2865 2866
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2867
	else {
2868
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2869 2870 2871 2872 2873 2874 2875 2876 2877
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2878 2879 2880 2881 2882

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2893 2894
static int __init blk_mq_init(void)
{
2895 2896
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2897

2898 2899 2900
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2901 2902 2903
	return 0;
}
subsys_initcall(blk_mq_init);