blk-mq.c 70.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44 45
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

46 47 48 49
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
50
	ddir = rq_data_dir(rq);
51 52 53 54 55 56 57 58 59 60 61 62
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

63 64 65
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
66
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67
{
68 69 70
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
71 72
}

73 74 75 76 77 78
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
79 80
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 82 83 84 85
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
86
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 88
}

89
void blk_freeze_queue_start(struct request_queue *q)
90
{
91
	int freeze_depth;
92

93 94
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
95
		percpu_ref_kill(&q->q_usage_counter);
96
		blk_mq_run_hw_queues(q, false);
97
	}
98
}
99
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100

101
void blk_mq_freeze_queue_wait(struct request_queue *q)
102
{
103
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106

107 108 109 110 111 112 113 114
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115

116 117 118 119
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
120
void blk_freeze_queue(struct request_queue *q)
121
{
122 123 124 125 126 127 128
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
129
	blk_freeze_queue_start(q);
130 131
	blk_mq_freeze_queue_wait(q);
}
132 133 134 135 136 137 138 139 140

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
141
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142

143
void blk_mq_unfreeze_queue(struct request_queue *q)
144
{
145
	int freeze_depth;
146

147 148 149
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
150
		percpu_ref_reinit(&q->q_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156
/**
157
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158 159 160
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
161 162 163
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
164 165 166 167 168 169 170
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	blk_mq_quiesce_queue_nowait(q);
172

173 174
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
175
			synchronize_srcu(hctx->queue_rq_srcu);
176 177 178 179 180 181 182 183
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191 192
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
193 194 195 196
	spin_lock_irq(q->queue_lock);
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irq(q->queue_lock);

197 198
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
199 200 201
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

202 203 204 205 206 207 208 209
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
210 211 212 213 214 215 216

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
217 218
}

219 220 221 222 223 224
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

225 226
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
227
{
228 229 230
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

231 232
	rq->rq_flags = 0;

233 234 235 236 237 238 239 240 241 242 243 244 245
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

246 247
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
248 249
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
250
	rq->cmd_flags = op;
251
	if (blk_queue_io_stat(data->q))
252
		rq->rq_flags |= RQF_IO_STAT;
253 254 255 256 257 258
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
259
	rq->start_time = jiffies;
260 261
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
262
	set_start_time_ns(rq);
263 264 265 266 267 268 269 270 271 272 273
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
274 275
	rq->timeout = 0;

276 277 278 279
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

280 281
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
282 283
}

284 285 286 287 288 289
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
290
	unsigned int tag;
291 292 293 294 295 296 297

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
298 299
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
300 301 302 303 304 305 306 307

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
308 309
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
310 311
	}

312 313
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
314 315
		blk_queue_exit(q);
		return NULL;
316 317
	}

318
	rq = blk_mq_rq_ctx_init(data, tag, op);
319 320
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
321
		if (e && e->type->ops.mq.prepare_request) {
322 323 324
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

325 326
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
327
		}
328 329 330
	}
	data->hctx->queued++;
	return rq;
331 332
}

333
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
334
		unsigned int flags)
335
{
336
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
337
	struct request *rq;
338
	int ret;
339

340
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
341 342
	if (ret)
		return ERR_PTR(ret);
343

344
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
345

346 347 348 349
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
350
		return ERR_PTR(-EWOULDBLOCK);
351 352 353 354

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
355 356
	return rq;
}
357
EXPORT_SYMBOL(blk_mq_alloc_request);
358

359 360
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
361
{
362
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
363
	struct request *rq;
364
	unsigned int cpu;
M
Ming Lin 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

383 384 385 386
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
387 388 389 390
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
391
	}
392 393
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
394

395
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396 397

	blk_queue_exit(q);
398 399 400 401 402

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
403 404 405
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

406
void blk_mq_free_request(struct request *rq)
407 408
{
	struct request_queue *q = rq->q;
409 410 411 412 413
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

414
	if (rq->rq_flags & RQF_ELVPRIV) {
415 416 417 418 419 420 421
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
422

423
	ctx->rq_completed[rq_is_sync(rq)]++;
424
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
425
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
426 427

	wbt_done(q->rq_wb, &rq->issue_stat);
428

429
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
430
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
431 432 433
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
434
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
435
	blk_mq_sched_restart(hctx);
436
	blk_queue_exit(q);
437
}
J
Jens Axboe 已提交
438
EXPORT_SYMBOL_GPL(blk_mq_free_request);
439

440
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
441
{
M
Ming Lei 已提交
442 443
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
444
	if (rq->end_io) {
J
Jens Axboe 已提交
445
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
446
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
447 448 449
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
450
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
451
	}
452
}
453
EXPORT_SYMBOL(__blk_mq_end_request);
454

455
void blk_mq_end_request(struct request *rq, blk_status_t error)
456 457 458
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
459
	__blk_mq_end_request(rq, error);
460
}
461
EXPORT_SYMBOL(blk_mq_end_request);
462

463
static void __blk_mq_complete_request_remote(void *data)
464
{
465
	struct request *rq = data;
466

467
	rq->q->softirq_done_fn(rq);
468 469
}

470
static void __blk_mq_complete_request(struct request *rq)
471 472
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
473
	bool shared = false;
474 475
	int cpu;

476 477 478 479 480 481 482
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
483
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
484 485 486
		rq->q->softirq_done_fn(rq);
		return;
	}
487 488

	cpu = get_cpu();
C
Christoph Hellwig 已提交
489 490 491 492
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
493
		rq->csd.func = __blk_mq_complete_request_remote;
494 495
		rq->csd.info = rq;
		rq->csd.flags = 0;
496
		smp_call_function_single_async(ctx->cpu, &rq->csd);
497
	} else {
498
		rq->q->softirq_done_fn(rq);
499
	}
500 501
	put_cpu();
}
502 503 504 505 506 507 508 509 510

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
511
void blk_mq_complete_request(struct request *rq)
512
{
513 514 515
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
516
		return;
517
	if (!blk_mark_rq_complete(rq))
518
		__blk_mq_complete_request(rq);
519 520
}
EXPORT_SYMBOL(blk_mq_complete_request);
521

522 523 524 525 526 527
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

528
void blk_mq_start_request(struct request *rq)
529 530 531
{
	struct request_queue *q = rq->q;

532 533
	blk_mq_sched_started_request(rq);

534 535
	trace_block_rq_issue(q, rq);

536
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
537
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
538
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
539
		wbt_issue(q->rq_wb, &rq->issue_stat);
540 541
	}

542
	blk_add_timer(rq);
543

544 545 546 547 548 549
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

550 551 552 553 554 555
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
556 557 558 559
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
560 561 562 563 564 565 566 567 568

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
569
}
570
EXPORT_SYMBOL(blk_mq_start_request);
571

572 573
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
574
 * flag isn't set yet, so there may be race with timeout handler,
575 576 577 578 579 580
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
581
static void __blk_mq_requeue_request(struct request *rq)
582 583 584 585
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
586
	wbt_requeue(q->rq_wb, &rq->issue_stat);
587
	blk_mq_sched_requeue_request(rq);
588

589 590 591 592
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
593 594
}

595
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
596 597 598 599
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
600
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
601 602 603
}
EXPORT_SYMBOL(blk_mq_requeue_request);

604 605 606
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
607
		container_of(work, struct request_queue, requeue_work.work);
608 609 610 611 612 613 614 615 616
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
617
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
618 619
			continue;

620
		rq->rq_flags &= ~RQF_SOFTBARRIER;
621
		list_del_init(&rq->queuelist);
622
		blk_mq_sched_insert_request(rq, true, false, false, true);
623 624 625 626 627
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
628
		blk_mq_sched_insert_request(rq, false, false, false, true);
629 630
	}

631
	blk_mq_run_hw_queues(q, false);
632 633
}

634 635
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
636 637 638 639 640 641 642 643
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
644
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
645 646 647

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
648
		rq->rq_flags |= RQF_SOFTBARRIER;
649 650 651 652 653
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
654 655 656

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
657 658 659 660 661
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
662
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
663 664 665
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

666 667 668 669 670 671 672 673
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

674 675
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
676 677
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
678
		return tags->rqs[tag];
679
	}
680 681

	return NULL;
682 683 684
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

685
struct blk_mq_timeout_data {
686 687
	unsigned long next;
	unsigned int next_set;
688 689
};

690
void blk_mq_rq_timed_out(struct request *req, bool reserved)
691
{
J
Jens Axboe 已提交
692
	const struct blk_mq_ops *ops = req->q->mq_ops;
693
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
694 695 696 697 698 699 700

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
701
	 * both flags will get cleared. So check here again, and ignore
702 703
	 * a timeout event with a request that isn't active.
	 */
704 705
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
706

707
	if (ops->timeout)
708
		ret = ops->timeout(req, reserved);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
724
}
725

726 727 728 729
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
730

731
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
732
		return;
733

734 735 736 737 738 739 740 741 742 743 744 745 746
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
747 748
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
749
			blk_mq_rq_timed_out(rq, reserved);
750 751 752 753
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
754 755
}

756
static void blk_mq_timeout_work(struct work_struct *work)
757
{
758 759
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
760 761 762 763 764
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
765

766 767 768 769 770 771 772 773 774
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
775
	 * blk_freeze_queue_start, and the moment the last request is
776 777 778 779
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
780 781
		return;

782
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
783

784 785 786
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
787
	} else {
788 789
		struct blk_mq_hw_ctx *hctx;

790 791 792 793 794
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
795
	}
796
	blk_queue_exit(q);
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

817 818 819 820
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
821
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822
{
823 824 825 826
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
827

828
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829
}
830
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831

832 833 834 835
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
836

837
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 839
}

840 841
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
842 843 844 845 846 847 848
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

849 850
	might_sleep_if(wait);

851 852
	if (rq->tag != -1)
		goto done;
853

854 855 856
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

857 858
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
859 860 861 862
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
863 864 865
		data.hctx->tags->rqs[rq->tag] = rq;
	}

866 867 868 869
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
870 871
}

872 873
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
874 875 876 877 878 879 880 881 882 883
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

966
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
967
{
968
	struct blk_mq_hw_ctx *hctx;
969
	struct request *rq;
970
	int errors, queued;
971

972 973 974
	if (list_empty(list))
		return false;

975 976 977
	/*
	 * Now process all the entries, sending them to the driver.
	 */
978
	errors = queued = 0;
979
	do {
980
		struct blk_mq_queue_data bd;
981
		blk_status_t ret;
982

983
		rq = list_first_entry(list, struct request, queuelist);
984 985 986
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
987 988

			/*
989 990
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
991
			 */
992 993 994 995 996 997 998 999 1000
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1001
				break;
1002
		}
1003

1004 1005
		list_del_init(&rq->queuelist);

1006
		bd.rq = rq;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1020 1021

		ret = q->mq_ops->queue_rq(hctx, &bd);
1022
		if (ret == BLK_STS_RESOURCE) {
1023
			blk_mq_put_driver_tag_hctx(hctx, rq);
1024
			list_add(&rq->queuelist, list);
1025
			__blk_mq_requeue_request(rq);
1026
			break;
1027 1028 1029
		}

		if (unlikely(ret != BLK_STS_OK)) {
1030
			errors++;
1031
			blk_mq_end_request(rq, BLK_STS_IOERR);
1032
			continue;
1033 1034
		}

1035
		queued++;
1036
	} while (!list_empty(list));
1037

1038
	hctx->dispatched[queued_to_index(queued)]++;
1039 1040 1041 1042 1043

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1044
	if (!list_empty(list)) {
1045
		/*
1046 1047
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1048 1049 1050 1051
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1052
		spin_lock(&hctx->lock);
1053
		list_splice_init(list, &hctx->dispatch);
1054
		spin_unlock(&hctx->lock);
1055

1056
		/*
1057 1058 1059
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1060
		 *
1061 1062 1063 1064
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1065
		 *
1066 1067 1068 1069 1070 1071 1072
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1073
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1074
		 *   and dm-rq.
1075
		 */
1076 1077
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1078
			blk_mq_run_hw_queue(hctx, true);
1079
	}
1080

1081
	return (queued + errors) != 0;
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1093
		blk_mq_sched_dispatch_requests(hctx);
1094 1095
		rcu_read_unlock();
	} else {
1096 1097
		might_sleep();

1098
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1099
		blk_mq_sched_dispatch_requests(hctx);
1100
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1101 1102 1103
	}
}

1104 1105 1106 1107 1108 1109 1110 1111
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1112 1113
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1114 1115

	if (--hctx->next_cpu_batch <= 0) {
1116
		int next_cpu;
1117 1118 1119 1120 1121 1122 1123 1124 1125

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1126
	return hctx->next_cpu;
1127 1128
}

1129 1130
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1131
{
1132 1133
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1134 1135
		return;

1136
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1137 1138
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1139
			__blk_mq_run_hw_queue(hctx);
1140
			put_cpu();
1141 1142
			return;
		}
1143

1144
		put_cpu();
1145
	}
1146

1147 1148 1149
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1161
}
O
Omar Sandoval 已提交
1162
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1163

1164
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1165 1166 1167 1168 1169
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1170
		if (!blk_mq_hctx_has_pending(hctx) ||
1171
		    blk_mq_hctx_stopped(hctx))
1172 1173
			continue;

1174
		blk_mq_run_hw_queue(hctx, async);
1175 1176
	}
}
1177
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1208 1209
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1210
	cancel_delayed_work(&hctx->run_work);
1211

1212
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1213
}
1214
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1225 1226
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1227 1228 1229 1230 1231
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1232 1233 1234
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1235 1236 1237
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1238

1239
	blk_mq_run_hw_queue(hctx, false);
1240 1241 1242
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1263
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1264 1265 1266 1267
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1268 1269
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1270 1271 1272
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1273
static void blk_mq_run_work_fn(struct work_struct *work)
1274 1275 1276
{
	struct blk_mq_hw_ctx *hctx;

1277
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1278

1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1287

1288 1289 1290
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1291 1292 1293 1294

	__blk_mq_run_hw_queue(hctx);
}

1295 1296 1297

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1298 1299
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1300

1301 1302 1303 1304 1305
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1306
	blk_mq_stop_hw_queue(hctx);
1307 1308 1309 1310
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1311 1312 1313
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1314 1315 1316
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1317
{
J
Jens Axboe 已提交
1318 1319
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1320 1321
	trace_block_rq_insert(hctx->queue, rq);

1322 1323 1324 1325
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1326
}
1327

1328 1329
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1330 1331 1332
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1333
	__blk_mq_insert_req_list(hctx, rq, at_head);
1334 1335 1336
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1337 1338
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1350
		BUG_ON(rq->mq_ctx != ctx);
1351
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1352
		__blk_mq_insert_req_list(hctx, rq, false);
1353
	}
1354
	blk_mq_hctx_mark_pending(hctx, ctx);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1391 1392 1393 1394
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1411 1412 1413
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1414 1415 1416 1417 1418
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1419
	blk_init_request_from_bio(rq, bio);
1420

1421
	blk_account_io_start(rq, true);
1422 1423
}

1424 1425 1426 1427 1428 1429
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1430 1431 1432 1433 1434 1435 1436
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1437
}
1438

1439 1440
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1441 1442 1443 1444
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1445 1446
}

M
Ming Lei 已提交
1447 1448 1449
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1450 1451 1452 1453
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1454
		.last = true,
1455
	};
1456
	blk_qc_t new_cookie;
1457
	blk_status_t ret;
M
Ming Lei 已提交
1458 1459
	bool run_queue = true;

1460 1461
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1462 1463 1464
		run_queue = false;
		goto insert;
	}
1465

1466
	if (q->elevator)
1467 1468
		goto insert;

M
Ming Lei 已提交
1469
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1470 1471 1472 1473
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1474 1475 1476 1477 1478 1479
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1480 1481
	switch (ret) {
	case BLK_STS_OK:
1482
		*cookie = new_cookie;
1483
		return;
1484 1485 1486 1487
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1488
		*cookie = BLK_QC_T_NONE;
1489
		blk_mq_end_request(rq, ret);
1490
		return;
1491
	}
1492

1493
insert:
M
Ming Lei 已提交
1494
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1495 1496
}

1497 1498 1499 1500 1501
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1502
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1503 1504
		rcu_read_unlock();
	} else {
1505 1506 1507 1508
		unsigned int srcu_idx;

		might_sleep();

1509
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1510
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1511
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1512 1513 1514
	}
}

1515
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1516
{
1517
	const int is_sync = op_is_sync(bio->bi_opf);
1518
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1519
	struct blk_mq_alloc_data data = { .flags = 0 };
1520
	struct request *rq;
1521
	unsigned int request_count = 0;
1522
	struct blk_plug *plug;
1523
	struct request *same_queue_rq = NULL;
1524
	blk_qc_t cookie;
J
Jens Axboe 已提交
1525
	unsigned int wb_acct;
1526 1527 1528

	blk_queue_bounce(q, &bio);

1529
	blk_queue_split(q, &bio);
1530

1531
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1532
		bio_io_error(bio);
1533
		return BLK_QC_T_NONE;
1534 1535
	}

1536 1537 1538
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1539

1540 1541 1542
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1543 1544
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1545 1546
	trace_block_getrq(q, bio, bio->bi_opf);

1547
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1548 1549
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1550 1551
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1552
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1553 1554 1555
	}

	wbt_track(&rq->issue_stat, wb_acct);
1556

1557
	cookie = request_to_qc_t(data.hctx, rq);
1558

1559
	plug = current->plug;
1560
	if (unlikely(is_flush_fua)) {
1561
		blk_mq_put_ctx(data.ctx);
1562
		blk_mq_bio_to_request(rq, bio);
1563 1564 1565
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1566
		} else {
1567 1568
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1569
		}
1570
	} else if (plug && q->nr_hw_queues == 1) {
1571 1572
		struct request *last = NULL;

1573
		blk_mq_put_ctx(data.ctx);
1574
		blk_mq_bio_to_request(rq, bio);
1575 1576 1577 1578 1579 1580 1581

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1582 1583 1584
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1585
		if (!request_count)
1586
			trace_block_plug(q);
1587 1588
		else
			last = list_entry_rq(plug->mq_list.prev);
1589

1590 1591
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1592 1593
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1594
		}
1595

1596
		list_add_tail(&rq->queuelist, &plug->mq_list);
1597
	} else if (plug && !blk_queue_nomerges(q)) {
1598
		blk_mq_bio_to_request(rq, bio);
1599 1600

		/*
1601
		 * We do limited plugging. If the bio can be merged, do that.
1602 1603
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1604 1605
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1606
		 */
1607 1608 1609 1610 1611 1612
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1613 1614
		blk_mq_put_ctx(data.ctx);

1615 1616 1617
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1618 1619
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1620
		}
1621
	} else if (q->nr_hw_queues > 1 && is_sync) {
1622
		blk_mq_put_ctx(data.ctx);
1623 1624
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1625
	} else if (q->elevator) {
1626
		blk_mq_put_ctx(data.ctx);
1627
		blk_mq_bio_to_request(rq, bio);
1628
		blk_mq_sched_insert_request(rq, false, true, true, true);
1629
	} else {
1630
		blk_mq_put_ctx(data.ctx);
1631 1632
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1633
		blk_mq_run_hw_queue(data.hctx, true);
1634
	}
1635

1636
	return cookie;
1637 1638
}

1639 1640
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1641
{
1642
	struct page *page;
1643

1644
	if (tags->rqs && set->ops->exit_request) {
1645
		int i;
1646

1647
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1648 1649 1650
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1651
				continue;
1652
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1653
			tags->static_rqs[i] = NULL;
1654
		}
1655 1656
	}

1657 1658
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1659
		list_del_init(&page->lru);
1660 1661 1662 1663 1664
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1665 1666
		__free_pages(page, page->private);
	}
1667
}
1668

1669 1670
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1671
	kfree(tags->rqs);
1672
	tags->rqs = NULL;
J
Jens Axboe 已提交
1673 1674
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1675

1676
	blk_mq_free_tags(tags);
1677 1678
}

1679 1680 1681 1682
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1683
{
1684
	struct blk_mq_tags *tags;
1685
	int node;
1686

1687 1688 1689 1690 1691
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1692
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1693 1694
	if (!tags)
		return NULL;
1695

1696
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1697
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1698
				 node);
1699 1700 1701 1702
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1703

J
Jens Axboe 已提交
1704 1705
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1706
				 node);
J
Jens Axboe 已提交
1707 1708 1709 1710 1711 1712
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1726 1727 1728 1729 1730
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1731 1732 1733

	INIT_LIST_HEAD(&tags->page_list);

1734 1735 1736 1737
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1738
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1739
				cache_line_size());
1740
	left = rq_size * depth;
1741

1742
	for (i = 0; i < depth; ) {
1743 1744 1745 1746 1747
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1748
		while (this_order && left < order_to_size(this_order - 1))
1749 1750 1751
			this_order--;

		do {
1752
			page = alloc_pages_node(node,
1753
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1754
				this_order);
1755 1756 1757 1758 1759 1760 1761 1762 1763
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1764
			goto fail;
1765 1766

		page->private = this_order;
1767
		list_add_tail(&page->lru, &tags->page_list);
1768 1769

		p = page_address(page);
1770 1771 1772 1773
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1774
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1775
		entries_per_page = order_to_size(this_order) / rq_size;
1776
		to_do = min(entries_per_page, depth - i);
1777 1778
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1779 1780 1781
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1782
			if (set->ops->init_request) {
1783
				if (set->ops->init_request(set, rq, hctx_idx,
1784
						node)) {
J
Jens Axboe 已提交
1785
					tags->static_rqs[i] = NULL;
1786
					goto fail;
1787
				}
1788 1789
			}

1790 1791 1792 1793
			p += rq_size;
			i++;
		}
	}
1794
	return 0;
1795

1796
fail:
1797 1798
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1799 1800
}

J
Jens Axboe 已提交
1801 1802 1803 1804 1805
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1806
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1807
{
1808
	struct blk_mq_hw_ctx *hctx;
1809 1810 1811
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1812
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1813
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1814 1815 1816 1817 1818 1819 1820 1821 1822

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1823
		return 0;
1824

J
Jens Axboe 已提交
1825 1826 1827
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1828 1829

	blk_mq_run_hw_queue(hctx, true);
1830
	return 0;
1831 1832
}

1833
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1834
{
1835 1836
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1837 1838
}

1839
/* hctx->ctxs will be freed in queue's release handler */
1840 1841 1842 1843
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1844 1845
	blk_mq_debugfs_unregister_hctx(hctx);

1846 1847
	blk_mq_tag_idle(hctx);

1848
	if (set->ops->exit_request)
1849
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1850

1851 1852
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1853 1854 1855
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1856
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1857
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1858

1859
	blk_mq_remove_cpuhp(hctx);
1860
	blk_free_flush_queue(hctx->fq);
1861
	sbitmap_free(&hctx->ctx_map);
1862 1863
}

M
Ming Lei 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1873
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1874 1875 1876
	}
}

1877 1878 1879
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1880
{
1881 1882 1883 1884 1885 1886
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1887
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1888 1889 1890 1891
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1892
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1893

1894
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1895 1896

	hctx->tags = set->tags[hctx_idx];
1897 1898

	/*
1899 1900
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1901
	 */
1902 1903 1904 1905
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1906

1907 1908
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1909
		goto free_ctxs;
1910

1911
	hctx->nr_ctx = 0;
1912

1913 1914 1915
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1916

1917 1918 1919
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1920 1921
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1922
		goto sched_exit_hctx;
1923

1924
	if (set->ops->init_request &&
1925 1926
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1927
		goto free_fq;
1928

1929
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1930
		init_srcu_struct(hctx->queue_rq_srcu);
1931

1932 1933
	blk_mq_debugfs_register_hctx(q, hctx);

1934
	return 0;
1935

1936 1937
 free_fq:
	kfree(hctx->fq);
1938 1939
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1940 1941 1942
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1943
 free_bitmap:
1944
	sbitmap_free(&hctx->ctx_map);
1945 1946 1947
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1948
	blk_mq_remove_cpuhp(hctx);
1949 1950
	return -1;
}
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1970
		hctx = blk_mq_map_queue(q, i);
1971

1972 1973 1974 1975 1976
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1977
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1978 1979 1980
	}
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2003 2004 2005 2006 2007
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2008 2009
}

2010 2011
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2012
{
2013
	unsigned int i, hctx_idx;
2014 2015
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2016
	struct blk_mq_tag_set *set = q->tag_set;
2017

2018 2019 2020 2021 2022
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2023
	queue_for_each_hw_ctx(q, hctx, i) {
2024
		cpumask_clear(hctx->cpumask);
2025 2026 2027 2028 2029 2030
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2031
	for_each_possible_cpu(i) {
2032
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2033
		if (!cpumask_test_cpu(i, online_mask))
2034 2035
			continue;

2036 2037
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2038 2039
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2040 2041 2042 2043 2044 2045
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2046
			q->mq_map[i] = 0;
2047 2048
		}

2049
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2050
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2051

2052
		cpumask_set_cpu(i, hctx->cpumask);
2053 2054 2055
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2056

2057 2058
	mutex_unlock(&q->sysfs_lock);

2059
	queue_for_each_hw_ctx(q, hctx, i) {
2060
		/*
2061 2062
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2063 2064
		 */
		if (!hctx->nr_ctx) {
2065 2066 2067 2068
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2069 2070 2071
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2072
			hctx->tags = NULL;
2073 2074 2075
			continue;
		}

M
Ming Lei 已提交
2076 2077 2078
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2079 2080 2081 2082 2083
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2084
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2085

2086 2087 2088
		/*
		 * Initialize batch roundrobin counts
		 */
2089 2090 2091
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2092 2093
}

2094
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2095 2096 2097 2098
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2110

2111 2112
	lockdep_assert_held(&set->tag_list_lock);

2113 2114
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2115
		queue_set_hctx_shared(q, shared);
2116 2117 2118 2119 2120 2121 2122 2123 2124
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2125 2126
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2127 2128 2129 2130 2131 2132
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2133
	mutex_unlock(&set->tag_list_lock);
2134 2135

	synchronize_rcu();
2136 2137 2138 2139 2140 2141 2142 2143
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2144 2145 2146 2147 2148 2149 2150 2151 2152

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2153
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2154

2155 2156 2157
	mutex_unlock(&set->tag_list_lock);
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2170 2171 2172
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2173
		kobject_put(&hctx->kobj);
2174
	}
2175

2176 2177
	q->mq_map = NULL;

2178 2179
	kfree(q->queue_hw_ctx);

2180 2181 2182 2183 2184 2185
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2186 2187 2188
	free_percpu(q->queue_ctx);
}

2189
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2219 2220
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2221
{
K
Keith Busch 已提交
2222 2223
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2224

K
Keith Busch 已提交
2225
	blk_mq_sysfs_unregister(q);
2226
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2227
		int node;
2228

K
Keith Busch 已提交
2229 2230 2231 2232
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2233
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2234
					GFP_KERNEL, node);
2235
		if (!hctxs[i])
K
Keith Busch 已提交
2236
			break;
2237

2238
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2239 2240 2241 2242 2243
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2244

2245
		atomic_set(&hctxs[i]->nr_active, 0);
2246
		hctxs[i]->numa_node = node;
2247
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2248 2249 2250 2251 2252 2253 2254 2255

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2256
	}
K
Keith Busch 已提交
2257 2258 2259 2260
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2261 2262
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2276 2277 2278
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2279
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2280 2281
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2282 2283 2284
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2285 2286
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2287
		goto err_exit;
K
Keith Busch 已提交
2288

2289 2290 2291
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2292 2293 2294 2295 2296
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2297
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2298 2299 2300 2301

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2302

2303
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2304
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2305 2306 2307

	q->nr_queues = nr_cpu_ids;

2308
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2309

2310 2311 2312
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2313 2314
	q->sg_reserved_size = INT_MAX;

2315
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2316 2317 2318
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2319
	blk_queue_make_request(q, blk_mq_make_request);
2320

2321 2322 2323 2324 2325
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2326 2327 2328 2329 2330
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2331 2332
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2333

2334
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2335

2336
	get_online_cpus();
2337
	mutex_lock(&all_q_mutex);
2338

2339
	list_add_tail(&q->all_q_node, &all_q_list);
2340
	blk_mq_add_queue_tag_set(set, q);
2341
	blk_mq_map_swqueue(q, cpu_online_mask);
2342

2343
	mutex_unlock(&all_q_mutex);
2344
	put_online_cpus();
2345

2346 2347 2348 2349 2350 2351 2352 2353
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2354
	return q;
2355

2356
err_hctxs:
K
Keith Busch 已提交
2357
	kfree(q->queue_hw_ctx);
2358
err_percpu:
K
Keith Busch 已提交
2359
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2360 2361
err_exit:
	q->mq_ops = NULL;
2362 2363
	return ERR_PTR(-ENOMEM);
}
2364
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2365 2366 2367

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2368
	struct blk_mq_tag_set	*set = q->tag_set;
2369

2370 2371 2372 2373
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2374 2375
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2376
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2377 2378 2379
}

/* Basically redo blk_mq_init_queue with queue frozen */
2380 2381
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2382
{
2383
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2384

2385
	blk_mq_debugfs_unregister_hctxs(q);
2386 2387
	blk_mq_sysfs_unregister(q);

2388 2389 2390 2391 2392 2393
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2394
	blk_mq_map_swqueue(q, online_mask);
2395

2396
	blk_mq_sysfs_register(q);
2397
	blk_mq_debugfs_register_hctxs(q);
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2408 2409 2410 2411
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2412 2413 2414 2415 2416 2417 2418 2419
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2420
		blk_freeze_queue_start(q);
2421
	list_for_each_entry(q, &all_q_list, all_q_node)
2422 2423
		blk_mq_freeze_queue_wait(q);

2424
	list_for_each_entry(q, &all_q_list, all_q_node)
2425
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2426 2427 2428 2429

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2430
	mutex_unlock(&all_q_mutex);
2431 2432 2433 2434
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2435
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2451 2452 2453 2454
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2455 2456 2457 2458 2459 2460 2461
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2462 2463
}

2464 2465 2466 2467
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2468 2469
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2470 2471 2472 2473 2474 2475
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2476
		blk_mq_free_rq_map(set->tags[i]);
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2516 2517 2518 2519 2520 2521 2522 2523
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2524 2525 2526 2527 2528 2529
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2530 2531
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2532 2533
	int ret;

B
Bart Van Assche 已提交
2534 2535
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2536 2537
	if (!set->nr_hw_queues)
		return -EINVAL;
2538
	if (!set->queue_depth)
2539 2540 2541 2542
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2543
	if (!set->ops->queue_rq)
2544 2545
		return -EINVAL;

2546 2547 2548 2549 2550
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2551

2552 2553 2554 2555 2556 2557 2558 2559 2560
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2561 2562 2563 2564 2565
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2566

K
Keith Busch 已提交
2567
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2568 2569
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2570
		return -ENOMEM;
2571

2572 2573 2574
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2575 2576 2577
	if (!set->mq_map)
		goto out_free_tags;

2578
	ret = blk_mq_update_queue_map(set);
2579 2580 2581 2582 2583
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2584
		goto out_free_mq_map;
2585

2586 2587 2588
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2589
	return 0;
2590 2591 2592 2593 2594

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2595 2596
	kfree(set->tags);
	set->tags = NULL;
2597
	return ret;
2598 2599 2600 2601 2602 2603 2604
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2605 2606
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2607

2608 2609 2610
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2611
	kfree(set->tags);
2612
	set->tags = NULL;
2613 2614 2615
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2616 2617 2618 2619 2620 2621
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2622
	if (!set)
2623 2624
		return -EINVAL;

2625 2626
	blk_mq_freeze_queue(q);

2627 2628
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2629 2630
		if (!hctx->tags)
			continue;
2631 2632 2633 2634
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2635 2636 2637 2638 2639 2640 2641 2642
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2643 2644 2645 2646 2647 2648 2649
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2650 2651
	blk_mq_unfreeze_queue(q);

2652 2653 2654
	return ret;
}

2655 2656
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2657 2658 2659
{
	struct request_queue *q;

2660 2661
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2671
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2672 2673 2674 2675 2676 2677 2678 2679
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2680 2681 2682 2683 2684 2685 2686

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2687 2688
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2715
	int bucket;
2716

2717 2718 2719 2720
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2721 2722
}

2723 2724 2725 2726 2727
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2728
	int bucket;
2729 2730 2731 2732 2733

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2734
	if (!blk_poll_stats_enable(q))
2735 2736 2737 2738 2739 2740 2741 2742
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2743 2744
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2745
	 */
2746 2747 2748 2749 2750 2751
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2752 2753 2754 2755

	return ret;
}

2756
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2757
				     struct blk_mq_hw_ctx *hctx,
2758 2759 2760 2761
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2762
	unsigned int nsecs;
2763 2764
	ktime_t kt;

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2783 2784 2785 2786 2787 2788 2789 2790
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2791
	kt = nsecs;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2814 2815 2816 2817 2818
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2819 2820 2821 2822 2823 2824 2825
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2826
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2827 2828
		return true;

J
Jens Axboe 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2872 2873
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2874
	else {
2875
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2876 2877 2878 2879 2880 2881 2882 2883 2884
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2885 2886 2887 2888 2889

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2900 2901
static int __init blk_mq_init(void)
{
2902 2903
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2904

2905 2906 2907
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2908 2909 2910
	return 0;
}
subsys_initcall(blk_mq_init);