i915_gem.c 165.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

177 178 179 180 181
	if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) {
		i915_rc6_ctx_wa_check(i915);
		intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	}

182 183 184 185 186 187 188 189 190
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
191 192
	GEM_TRACE("\n");

193 194 195 196 197 198 199 200 201 202 203 204
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
205 206
	GEM_TRACE("\n");

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

228 229 230
	if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
		intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

250 251
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
252
			    struct drm_file *file)
253
{
254
	struct drm_i915_private *dev_priv = to_i915(dev);
255
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
256
	struct drm_i915_gem_get_aperture *args = data;
257
	struct i915_vma *vma;
258
	u64 pinned;
259

260
	pinned = ggtt->vm.reserved;
261
	mutex_lock(&dev->struct_mutex);
262
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
263
		if (i915_vma_is_pinned(vma))
264
			pinned += vma->node.size;
265
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
266
		if (i915_vma_is_pinned(vma))
267
			pinned += vma->node.size;
268
	mutex_unlock(&dev->struct_mutex);
269

270
	args->aper_size = ggtt->vm.total;
271
	args->aper_available_size = args->aper_size - pinned;
272

273 274 275
	return 0;
}

276
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
277
{
278
	struct address_space *mapping = obj->base.filp->f_mapping;
279
	drm_dma_handle_t *phys;
280 281
	struct sg_table *st;
	struct scatterlist *sg;
282
	char *vaddr;
283
	int i;
284
	int err;
285

286
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
287
		return -EINVAL;
288

289 290 291 292 293
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
294
			     roundup_pow_of_two(obj->base.size),
295 296
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
297
		return -ENOMEM;
298 299

	vaddr = phys->vaddr;
300 301 302 303 304
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
305
		if (IS_ERR(page)) {
306
			err = PTR_ERR(page);
307 308
			goto err_phys;
		}
309 310 311 312 313 314

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

315
		put_page(page);
316 317 318
		vaddr += PAGE_SIZE;
	}

319
	i915_gem_chipset_flush(to_i915(obj->base.dev));
320 321

	st = kmalloc(sizeof(*st), GFP_KERNEL);
322
	if (!st) {
323
		err = -ENOMEM;
324 325
		goto err_phys;
	}
326 327 328

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
329
		err = -ENOMEM;
330
		goto err_phys;
331 332 333 334 335
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
336

337
	sg_dma_address(sg) = phys->busaddr;
338 339
	sg_dma_len(sg) = obj->base.size;

340
	obj->phys_handle = phys;
341

342
	__i915_gem_object_set_pages(obj, st, sg->length);
343 344

	return 0;
345 346 347

err_phys:
	drm_pci_free(obj->base.dev, phys);
348 349

	return err;
350 351
}

352 353
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
354 355
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
356 357 358 359
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

360
static void
361
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
362 363
				struct sg_table *pages,
				bool needs_clflush)
364
{
C
Chris Wilson 已提交
365
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
366

C
Chris Wilson 已提交
367 368
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
369

370
	if (needs_clflush &&
371
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
372
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
373
		drm_clflush_sg(pages);
374

375
	__start_cpu_write(obj);
376 377 378 379 380 381
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
382
	__i915_gem_object_release_shmem(obj, pages, false);
383

C
Chris Wilson 已提交
384
	if (obj->mm.dirty) {
385
		struct address_space *mapping = obj->base.filp->f_mapping;
386
		char *vaddr = obj->phys_handle->vaddr;
387 388 389
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
390 391 392 393 394 395 396 397 398 399 400 401 402
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
403
			if (obj->mm.madv == I915_MADV_WILLNEED)
404
				mark_page_accessed(page);
405
			put_page(page);
406 407
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
408
		obj->mm.dirty = false;
409 410
	}

411 412
	sg_free_table(pages);
	kfree(pages);
413 414

	drm_pci_free(obj->base.dev, obj->phys_handle);
415 416 417 418 419
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
420
	i915_gem_object_unpin_pages(obj);
421 422 423 424 425 426 427 428
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

429 430
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

431
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
432 433 434
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
435 436 437
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
438

439 440 441 442
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
443
	 */
444
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
445 446 447
	if (ret)
		return ret;

448 449 450 451 452 453 454 455 456 457 458 459 460
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

461 462 463 464
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
465
			   struct intel_rps_client *rps_client)
466
{
467
	struct i915_request *rq;
468

469
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
470

471 472 473 474 475 476 477 478 479
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
480
	if (i915_request_completed(rq))
481 482
		goto out;

483 484
	/*
	 * This client is about to stall waiting for the GPU. In many cases
485 486 487 488 489 490 491 492 493 494 495 496 497 498
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
499
	if (rps_client && !i915_request_started(rq)) {
500
		if (INTEL_GEN(rq->i915) >= 6)
501
			gen6_rps_boost(rq, rps_client);
502 503
	}

504
	timeout = i915_request_wait(rq, flags, timeout);
505 506

out:
507 508
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
509 510 511 512 513 514 515 516

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
517
				 struct intel_rps_client *rps_client)
518
{
519
	unsigned int seq = __read_seqcount_begin(&resv->seq);
520
	struct dma_fence *excl;
521
	bool prune_fences = false;
522 523 524 525

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
526 527
		int ret;

528 529
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
530 531 532
		if (ret)
			return ret;

533 534 535
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
536
							     rps_client);
537
			if (timeout < 0)
538
				break;
539

540 541 542 543 544 545
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
546

547 548 549 550 551 552 553 554 555
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
556
		prune_fences = count && timeout >= 0;
557 558
	} else {
		excl = reservation_object_get_excl_rcu(resv);
559 560
	}

561
	if (excl && timeout >= 0)
562 563
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
564 565 566

	dma_fence_put(excl);

567 568
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
569 570 571
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
572
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
573 574 575 576 577
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
578 579
	}

580
	return timeout;
581 582
}

583 584
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
585
{
586
	struct i915_request *rq;
587 588
	struct intel_engine_cs *engine;

589
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
590 591 592 593 594
		return;

	rq = to_request(fence);
	engine = rq->engine;

595 596
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
597
	if (engine->schedule)
598
		engine->schedule(rq, attr);
599
	rcu_read_unlock();
600
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
601 602
}

603 604
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
605 606 607 608 609 610 611
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
612
			__fence_set_priority(array->fences[i], attr);
613
	} else {
614
		__fence_set_priority(fence, attr);
615 616 617 618 619 620
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
621
			      const struct i915_sched_attr *attr)
622 623 624 625 626 627 628 629 630 631 632 633 634 635
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
636
			fence_set_priority(shared[i], attr);
637 638 639 640 641 642 643 644 645
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
646
		fence_set_priority(excl, attr);
647 648 649 650 651
		dma_fence_put(excl);
	}
	return 0;
}

652 653 654 655 656
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
657
 * @rps_client: client (user process) to charge for any waitboosting
658
 */
659 660 661 662
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
663
		     struct intel_rps_client *rps_client)
664
{
665 666 667 668 669 670 671
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
672

673 674
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
675
						   rps_client);
676
	return timeout < 0 ? timeout : 0;
677 678 679 680 681 682
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

683
	return &fpriv->rps_client;
684 685
}

686 687 688
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
689
		     struct drm_file *file)
690 691
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
692
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
693 694 695 696

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
697
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
698 699
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
700

701
	drm_clflush_virt_range(vaddr, args->size);
702
	i915_gem_chipset_flush(to_i915(obj->base.dev));
703

704
	intel_fb_obj_flush(obj, ORIGIN_CPU);
705
	return 0;
706 707
}

708
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
709
{
710
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
711 712 713 714
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
715
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
716
	kmem_cache_free(dev_priv->objects, obj);
717 718
}

719 720
static int
i915_gem_create(struct drm_file *file,
721
		struct drm_i915_private *dev_priv,
722 723
		uint64_t size,
		uint32_t *handle_p)
724
{
725
	struct drm_i915_gem_object *obj;
726 727
	int ret;
	u32 handle;
728

729
	size = roundup(size, PAGE_SIZE);
730 731
	if (size == 0)
		return -EINVAL;
732 733

	/* Allocate the new object */
734
	obj = i915_gem_object_create(dev_priv, size);
735 736
	if (IS_ERR(obj))
		return PTR_ERR(obj);
737

738
	ret = drm_gem_handle_create(file, &obj->base, &handle);
739
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
740
	i915_gem_object_put(obj);
741 742
	if (ret)
		return ret;
743

744
	*handle_p = handle;
745 746 747
	return 0;
}

748 749 750 751 752 753
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
754
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
755
	args->size = args->pitch * args->height;
756
	return i915_gem_create(file, to_i915(dev),
757
			       args->size, &args->handle);
758 759
}

760 761 762 763 764 765
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

766 767
/**
 * Creates a new mm object and returns a handle to it.
768 769 770
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
771 772 773 774 775
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
776
	struct drm_i915_private *dev_priv = to_i915(dev);
777
	struct drm_i915_gem_create *args = data;
778

779
	i915_gem_flush_free_objects(dev_priv);
780

781
	return i915_gem_create(file, dev_priv,
782
			       args->size, &args->handle);
783 784
}

785 786 787 788 789 790 791
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

792
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
793
{
794 795 796 797 798
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
799 800 801 802 803 804 805 806 807 808
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
809 810
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
811
	 */
812

813
	i915_gem_chipset_flush(dev_priv);
814

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

830
	if (!(obj->write_domain & flush_domains))
831 832
		return;

833
	switch (obj->write_domain) {
834
	case I915_GEM_DOMAIN_GTT:
835
		i915_gem_flush_ggtt_writes(dev_priv);
836 837 838

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
839

840
		for_each_ggtt_vma(vma, obj) {
841 842 843 844 845
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
846 847
		break;

848 849 850 851
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

852 853 854
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
855 856 857 858 859

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
860 861
	}

862
	obj->write_domain = 0;
863 864
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

891
static inline int
892 893
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

917 918 919 920 921 922
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
923
				    unsigned int *needs_clflush)
924 925 926
{
	int ret;

927
	lockdep_assert_held(&obj->base.dev->struct_mutex);
928

929
	*needs_clflush = 0;
930 931
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
932

933 934 935 936 937
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
938 939 940
	if (ret)
		return ret;

C
Chris Wilson 已提交
941
	ret = i915_gem_object_pin_pages(obj);
942 943 944
	if (ret)
		return ret;

945 946
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
947 948 949 950 951 952 953
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

954
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
955

956 957 958 959 960
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
961
	if (!obj->cache_dirty &&
962
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
963
		*needs_clflush = CLFLUSH_BEFORE;
964

965
out:
966
	/* return with the pages pinned */
967
	return 0;
968 969 970 971

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
972 973 974 975 976 977 978
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

979 980
	lockdep_assert_held(&obj->base.dev->struct_mutex);

981 982 983 984
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

985 986 987 988 989 990
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
991 992 993
	if (ret)
		return ret;

C
Chris Wilson 已提交
994
	ret = i915_gem_object_pin_pages(obj);
995 996 997
	if (ret)
		return ret;

998 999
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
1000 1001 1002 1003 1004 1005 1006
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

1007
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1008

1009 1010 1011 1012 1013
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1014
	if (!obj->cache_dirty) {
1015
		*needs_clflush |= CLFLUSH_AFTER;
1016

1017 1018 1019 1020
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1021
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1022 1023
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1024

1025
out:
1026
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1027
	obj->mm.dirty = true;
1028
	/* return with the pages pinned */
1029
	return 0;
1030 1031 1032 1033

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1034 1035
}

1036 1037 1038 1039
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1040
	if (unlikely(swizzled)) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1058 1059 1060
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1061
shmem_pread_slow(struct page *page, int offset, int length,
1062 1063 1064 1065 1066 1067 1068 1069
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1070
		shmem_clflush_swizzled_range(vaddr + offset, length,
1071
					     page_do_bit17_swizzling);
1072 1073

	if (page_do_bit17_swizzling)
1074
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1075
	else
1076
		ret = __copy_to_user(user_data, vaddr + offset, length);
1077 1078
	kunmap(page);

1079
	return ret ? - EFAULT : 0;
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1133
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1154
{
1155
	void __iomem *vaddr;
1156
	unsigned long unwritten;
1157 1158

	/* We can use the cpu mem copy function because this is X86. */
1159 1160 1161 1162
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1163 1164
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1165 1166 1167 1168
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1169 1170
		io_mapping_unmap(vaddr);
	}
1171 1172 1173 1174
	return unwritten;
}

static int
1175 1176
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1177
{
1178 1179
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1180
	struct drm_mm_node node;
1181 1182 1183
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1184 1185
	int ret;

1186 1187 1188 1189 1190 1191
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1192 1193 1194
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1195 1196 1197
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1198
		ret = i915_vma_put_fence(vma);
1199 1200 1201 1202 1203
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1204
	if (IS_ERR(vma)) {
1205
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1206
		if (ret)
1207 1208
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1209 1210 1211 1212 1213 1214
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1215
	mutex_unlock(&i915->drm.struct_mutex);
1216

1217 1218 1219
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1234 1235 1236
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1237 1238 1239 1240
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1241

1242
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1243
				  user_data, page_length)) {
1244 1245 1246 1247 1248 1249 1250 1251 1252
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1253
	mutex_lock(&i915->drm.struct_mutex);
1254 1255 1256
out_unpin:
	if (node.allocated) {
		wmb();
1257
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1258 1259
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1260
		i915_vma_unpin(vma);
1261
	}
1262 1263 1264
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1265

1266 1267 1268
	return ret;
}

1269 1270
/**
 * Reads data from the object referenced by handle.
1271 1272 1273
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1274 1275 1276 1277 1278
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1279
		     struct drm_file *file)
1280 1281
{
	struct drm_i915_gem_pread *args = data;
1282
	struct drm_i915_gem_object *obj;
1283
	int ret;
1284

1285 1286 1287 1288
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1289
		       u64_to_user_ptr(args->data_ptr),
1290 1291 1292
		       args->size))
		return -EFAULT;

1293
	obj = i915_gem_object_lookup(file, args->handle);
1294 1295
	if (!obj)
		return -ENOENT;
1296

1297
	/* Bounds check source.  */
1298
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1299
		ret = -EINVAL;
1300
		goto out;
C
Chris Wilson 已提交
1301 1302
	}

C
Chris Wilson 已提交
1303 1304
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1305 1306 1307 1308
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1309
	if (ret)
1310
		goto out;
1311

1312
	ret = i915_gem_object_pin_pages(obj);
1313
	if (ret)
1314
		goto out;
1315

1316
	ret = i915_gem_shmem_pread(obj, args);
1317
	if (ret == -EFAULT || ret == -ENODEV)
1318
		ret = i915_gem_gtt_pread(obj, args);
1319

1320 1321
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1322
	i915_gem_object_put(obj);
1323
	return ret;
1324 1325
}

1326 1327
/* This is the fast write path which cannot handle
 * page faults in the source data
1328
 */
1329

1330 1331 1332 1333
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1334
{
1335
	void __iomem *vaddr;
1336
	unsigned long unwritten;
1337

1338
	/* We can use the cpu mem copy function because this is X86. */
1339 1340
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1341
						      user_data, length);
1342 1343
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1344 1345 1346
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1347 1348
		io_mapping_unmap(vaddr);
	}
1349 1350 1351 1352

	return unwritten;
}

1353 1354 1355
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1356
 * @obj: i915 GEM object
1357
 * @args: pwrite arguments structure
1358
 */
1359
static int
1360 1361
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1362
{
1363
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1364 1365
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1366 1367 1368
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1369
	int ret;
1370

1371 1372 1373
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1392
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1393 1394 1395
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1396 1397 1398
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1399
		ret = i915_vma_put_fence(vma);
1400 1401 1402 1403 1404
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1405
	if (IS_ERR(vma)) {
1406
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1407
		if (ret)
1408
			goto out_rpm;
1409
		GEM_BUG_ON(!node.allocated);
1410
	}
D
Daniel Vetter 已提交
1411 1412 1413 1414 1415

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1416 1417
	mutex_unlock(&i915->drm.struct_mutex);

1418
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1419

1420 1421 1422 1423
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1424 1425
		/* Operation in this page
		 *
1426 1427 1428
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1429
		 */
1430
		u32 page_base = node.start;
1431 1432
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1433 1434 1435
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1436 1437 1438
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1439 1440 1441 1442
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1443
		/* If we get a fault while copying data, then (presumably) our
1444 1445
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1446 1447
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1448
		 */
1449
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1450 1451 1452
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1453
		}
1454

1455 1456 1457
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1458
	}
1459
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1460 1461

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1462
out_unpin:
1463 1464
	if (node.allocated) {
		wmb();
1465
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1466 1467
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1468
		i915_vma_unpin(vma);
1469
	}
1470
out_rpm:
1471
	intel_runtime_pm_put(i915);
1472
out_unlock:
1473
	mutex_unlock(&i915->drm.struct_mutex);
1474
	return ret;
1475 1476
}

1477
static int
1478
shmem_pwrite_slow(struct page *page, int offset, int length,
1479 1480 1481 1482
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1483
{
1484 1485
	char *vaddr;
	int ret;
1486

1487
	vaddr = kmap(page);
1488
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1489
		shmem_clflush_swizzled_range(vaddr + offset, length,
1490
					     page_do_bit17_swizzling);
1491
	if (page_do_bit17_swizzling)
1492 1493
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1494
	else
1495
		ret = __copy_from_user(vaddr + offset, user_data, length);
1496
	if (needs_clflush_after)
1497
		shmem_clflush_swizzled_range(vaddr + offset, length,
1498
					     page_do_bit17_swizzling);
1499
	kunmap(page);
1500

1501
	return ret ? -EFAULT : 0;
1502 1503
}

1504 1505 1506 1507 1508
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1509
static int
1510 1511 1512 1513
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1514
{
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1547
	unsigned int needs_clflush;
1548 1549
	unsigned int offset, idx;
	int ret;
1550

1551
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1552 1553 1554
	if (ret)
		return ret;

1555 1556 1557 1558
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1559

1560 1561 1562
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1563

1564 1565 1566 1567 1568 1569 1570
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1571

1572 1573 1574 1575 1576
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1577
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1578

1579 1580 1581 1582
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1583
		if (ret)
1584
			break;
1585

1586 1587 1588
		remain -= length;
		user_data += length;
		offset = 0;
1589
	}
1590

1591
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1592
	i915_gem_obj_finish_shmem_access(obj);
1593
	return ret;
1594 1595 1596 1597
}

/**
 * Writes data to the object referenced by handle.
1598 1599 1600
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1601 1602 1603 1604 1605
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1606
		      struct drm_file *file)
1607 1608
{
	struct drm_i915_gem_pwrite *args = data;
1609
	struct drm_i915_gem_object *obj;
1610 1611 1612 1613 1614 1615
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1616
		       u64_to_user_ptr(args->data_ptr),
1617 1618 1619
		       args->size))
		return -EFAULT;

1620
	obj = i915_gem_object_lookup(file, args->handle);
1621 1622
	if (!obj)
		return -ENOENT;
1623

1624
	/* Bounds check destination. */
1625
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1626
		ret = -EINVAL;
1627
		goto err;
C
Chris Wilson 已提交
1628 1629
	}

1630 1631 1632 1633 1634 1635
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1636 1637
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1638 1639 1640 1641 1642 1643
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1644 1645 1646 1647 1648
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1649 1650 1651
	if (ret)
		goto err;

1652
	ret = i915_gem_object_pin_pages(obj);
1653
	if (ret)
1654
		goto err;
1655

D
Daniel Vetter 已提交
1656
	ret = -EFAULT;
1657 1658 1659 1660 1661 1662
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1663
	if (!i915_gem_object_has_struct_page(obj) ||
1664
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1665 1666
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1667 1668
		 * textures). Fallback to the shmem path in that case.
		 */
1669
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1670

1671
	if (ret == -EFAULT || ret == -ENOSPC) {
1672 1673
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1674
		else
1675
			ret = i915_gem_shmem_pwrite(obj, args);
1676
	}
1677

1678
	i915_gem_object_unpin_pages(obj);
1679
err:
C
Chris Wilson 已提交
1680
	i915_gem_object_put(obj);
1681
	return ret;
1682 1683
}

1684 1685 1686 1687 1688 1689
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1690 1691
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1692
	for_each_ggtt_vma(vma, obj) {
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1703
	spin_lock(&i915->mm.obj_lock);
1704
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1705 1706
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1707 1708
}

1709
/**
1710 1711
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1712 1713 1714
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1715 1716 1717
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1718
			  struct drm_file *file)
1719 1720
{
	struct drm_i915_gem_set_domain *args = data;
1721
	struct drm_i915_gem_object *obj;
1722 1723
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1724
	int err;
1725

1726
	/* Only handle setting domains to types used by the CPU. */
1727
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1728 1729 1730 1731 1732 1733 1734 1735
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1736
	obj = i915_gem_object_lookup(file, args->handle);
1737 1738
	if (!obj)
		return -ENOENT;
1739

1740 1741 1742 1743
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1744
	err = i915_gem_object_wait(obj,
1745 1746 1747 1748
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1749
	if (err)
C
Chris Wilson 已提交
1750
		goto out;
1751

T
Tina Zhang 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1765 1766 1767 1768 1769 1770 1771 1772 1773
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1774
		goto out;
1775 1776 1777

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1778
		goto out_unpin;
1779

1780 1781 1782 1783
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1784
	else
1785
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1786

1787 1788
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1789

1790
	mutex_unlock(&dev->struct_mutex);
1791

1792
	if (write_domain != 0)
1793 1794
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1795

C
Chris Wilson 已提交
1796
out_unpin:
1797
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1798 1799
out:
	i915_gem_object_put(obj);
1800
	return err;
1801 1802 1803 1804
}

/**
 * Called when user space has done writes to this buffer
1805 1806 1807
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1808 1809 1810
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1811
			 struct drm_file *file)
1812 1813
{
	struct drm_i915_gem_sw_finish *args = data;
1814
	struct drm_i915_gem_object *obj;
1815

1816
	obj = i915_gem_object_lookup(file, args->handle);
1817 1818
	if (!obj)
		return -ENOENT;
1819

T
Tina Zhang 已提交
1820 1821 1822 1823 1824
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1825
	/* Pinned buffers may be scanout, so flush the cache */
1826
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1827
	i915_gem_object_put(obj);
1828 1829

	return 0;
1830 1831
}

1832 1833 1834 1835 1836 1837 1838
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1839 1840
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1841 1842
}

1843
/**
1844 1845 1846 1847 1848
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1849 1850 1851
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1862 1863 1864
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1865
		    struct drm_file *file)
1866 1867
{
	struct drm_i915_gem_mmap *args = data;
1868
	struct drm_i915_gem_object *obj;
1869 1870
	unsigned long addr;

1871 1872 1873
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1874
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1875 1876
		return -ENODEV;

1877 1878
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1879
		return -ENOENT;
1880

1881 1882 1883
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1884
	if (!obj->base.filp) {
1885 1886 1887 1888 1889 1890 1891
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
1892 1893
	}

1894
	addr = vm_mmap(obj->base.filp, 0, args->size,
1895 1896
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1897 1898 1899
	if (IS_ERR_VALUE(addr))
		goto err;

1900 1901 1902 1903
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1904
		if (down_write_killable(&mm->mmap_sem)) {
1905 1906
			addr = -EINTR;
			goto err;
1907
		}
1908
		vma = find_vma(mm, addr);
1909
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1910 1911 1912 1913 1914
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1915 1916
		if (IS_ERR_VALUE(addr))
			goto err;
1917 1918

		/* This may race, but that's ok, it only gets set */
1919
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1920
	}
C
Chris Wilson 已提交
1921
	i915_gem_object_put(obj);
1922 1923 1924

	args->addr_ptr = (uint64_t) addr;
	return 0;
1925 1926 1927 1928

err:
	i915_gem_object_put(obj);
	return addr;
1929 1930
}

1931 1932
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1933
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1934 1935
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1956 1957 1958
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1986
	return 2;
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
2000 2001
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
2002
		min_t(unsigned int, chunk,
2003
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2004 2005 2006 2007 2008 2009 2010 2011

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

2012 2013
/**
 * i915_gem_fault - fault a page into the GTT
2014
 * @vmf: fault info
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
2026 2027 2028
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2029
 */
2030
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2031
{
2032
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2033
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2034
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2035
	struct drm_device *dev = obj->base.dev;
2036 2037
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2038
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2039
	struct i915_vma *vma;
2040
	pgoff_t page_offset;
2041
	int ret;
2042

2043 2044 2045 2046
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

2047
	/* We don't use vmf->pgoff since that has the fake offset */
2048
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2049

C
Chris Wilson 已提交
2050 2051
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2052
	/* Try to flush the object off the GPU first without holding the lock.
2053
	 * Upon acquiring the lock, we will perform our sanity checks and then
2054 2055 2056
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2057 2058 2059 2060
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2061
	if (ret)
2062 2063
		goto err;

2064 2065 2066 2067
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2068 2069 2070 2071 2072
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2073

2074
	/* Access to snoopable pages through the GTT is incoherent. */
2075
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2076
		ret = -EFAULT;
2077
		goto err_unlock;
2078 2079
	}

2080

2081
	/* Now pin it into the GTT as needed */
2082 2083 2084 2085
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
2086 2087
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2088
		struct i915_ggtt_view view =
2089
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2090
		unsigned int flags;
2091

2092 2093 2094 2095 2096 2097
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
2098 2099 2100 2101
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2102 2103 2104 2105 2106 2107
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
2108
	}
C
Chris Wilson 已提交
2109 2110
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2111
		goto err_unlock;
C
Chris Wilson 已提交
2112
	}
2113

2114 2115
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2116
		goto err_unpin;
2117

2118
	ret = i915_vma_pin_fence(vma);
2119
	if (ret)
2120
		goto err_unpin;
2121

2122
	/* Finally, remap it using the new GTT offset */
2123
	ret = remap_io_mapping(area,
2124
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2125
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2126
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2127
			       &ggtt->iomap);
2128 2129
	if (ret)
		goto err_fence;
2130

2131 2132 2133 2134 2135 2136
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2137 2138
	i915_vma_set_ggtt_write(vma);

2139
err_fence:
2140
	i915_vma_unpin_fence(vma);
2141
err_unpin:
C
Chris Wilson 已提交
2142
	__i915_vma_unpin(vma);
2143
err_unlock:
2144
	mutex_unlock(&dev->struct_mutex);
2145 2146
err_rpm:
	intel_runtime_pm_put(dev_priv);
2147
	i915_gem_object_unpin_pages(obj);
2148
err:
2149
	switch (ret) {
2150
	case -EIO:
2151 2152 2153 2154 2155 2156
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2157 2158
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2159
		/* else: fall through */
2160
	case -EAGAIN:
D
Daniel Vetter 已提交
2161 2162 2163 2164
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2165
		 */
2166 2167
	case 0:
	case -ERESTARTSYS:
2168
	case -EINTR:
2169 2170 2171 2172 2173
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2174
		return VM_FAULT_NOPAGE;
2175
	case -ENOMEM:
2176
		return VM_FAULT_OOM;
2177
	case -ENOSPC:
2178
	case -EFAULT:
2179
		return VM_FAULT_SIGBUS;
2180
	default:
2181
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2182
		return VM_FAULT_SIGBUS;
2183 2184 2185
	}
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2197
	for_each_ggtt_vma(vma, obj)
2198 2199 2200
		i915_vma_unset_userfault(vma);
}

2201 2202 2203 2204
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2205
 * Preserve the reservation of the mmapping with the DRM core code, but
2206 2207 2208 2209 2210 2211 2212 2213 2214
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2215
void
2216
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2217
{
2218 2219
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2220 2221 2222
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2223 2224 2225 2226
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2227
	 */
2228
	lockdep_assert_held(&i915->drm.struct_mutex);
2229
	intel_runtime_pm_get(i915);
2230

2231
	if (!obj->userfault_count)
2232
		goto out;
2233

2234
	__i915_gem_object_release_mmap(obj);
2235 2236 2237 2238 2239 2240 2241 2242 2243

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2244 2245 2246

out:
	intel_runtime_pm_put(i915);
2247 2248
}

2249
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2250
{
2251
	struct drm_i915_gem_object *obj, *on;
2252
	int i;
2253

2254 2255 2256 2257 2258 2259
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2260

2261
	list_for_each_entry_safe(obj, on,
2262 2263
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2264 2265 2266 2267 2268 2269 2270 2271

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2282 2283 2284 2285

		if (!reg->vma)
			continue;

2286
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2287 2288
		reg->dirty = true;
	}
2289 2290
}

2291 2292
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2293
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2294
	int err;
2295

2296
	err = drm_gem_create_mmap_offset(&obj->base);
2297
	if (likely(!err))
2298
		return 0;
2299

2300 2301
	/* Attempt to reap some mmap space from dead objects */
	do {
2302 2303 2304
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2305 2306
		if (err)
			break;
2307

2308
		i915_gem_drain_freed_objects(dev_priv);
2309
		err = drm_gem_create_mmap_offset(&obj->base);
2310 2311 2312 2313
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2314

2315
	return err;
2316 2317 2318 2319 2320 2321 2322
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2323
int
2324 2325
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2326
		  uint32_t handle,
2327
		  uint64_t *offset)
2328
{
2329
	struct drm_i915_gem_object *obj;
2330 2331
	int ret;

2332
	obj = i915_gem_object_lookup(file, handle);
2333 2334
	if (!obj)
		return -ENOENT;
2335

2336
	ret = i915_gem_object_create_mmap_offset(obj);
2337 2338
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2339

C
Chris Wilson 已提交
2340
	i915_gem_object_put(obj);
2341
	return ret;
2342 2343
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2365
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2366 2367
}

D
Daniel Vetter 已提交
2368 2369 2370
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2371
{
2372
	i915_gem_object_free_mmap_offset(obj);
2373

2374 2375
	if (obj->base.filp == NULL)
		return;
2376

D
Daniel Vetter 已提交
2377 2378 2379 2380 2381
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2382
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2383
	obj->mm.madv = __I915_MADV_PURGED;
2384
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2385
}
2386

2387
/* Try to discard unwanted pages */
2388
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2389
{
2390 2391
	struct address_space *mapping;

2392
	lockdep_assert_held(&obj->mm.lock);
2393
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2394

C
Chris Wilson 已提交
2395
	switch (obj->mm.madv) {
2396 2397 2398 2399 2400 2401 2402 2403 2404
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2405
	mapping = obj->base.filp->f_mapping,
2406
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2407 2408
}

2409
static void
2410 2411
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2412
{
2413 2414
	struct sgt_iter sgt_iter;
	struct page *page;
2415

2416
	__i915_gem_object_release_shmem(obj, pages, true);
2417

2418
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2419

2420
	if (i915_gem_object_needs_bit17_swizzle(obj))
2421
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2422

2423
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2424
		if (obj->mm.dirty)
2425
			set_page_dirty(page);
2426

C
Chris Wilson 已提交
2427
		if (obj->mm.madv == I915_MADV_WILLNEED)
2428
			mark_page_accessed(page);
2429

2430
		put_page(page);
2431
	}
C
Chris Wilson 已提交
2432
	obj->mm.dirty = false;
2433

2434 2435
	sg_free_table(pages);
	kfree(pages);
2436
}
C
Chris Wilson 已提交
2437

2438 2439 2440
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2441
	void __rcu **slot;
2442

2443
	rcu_read_lock();
C
Chris Wilson 已提交
2444 2445
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2446
	rcu_read_unlock();
2447 2448
}

2449 2450
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2451
{
2452
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2453
	struct sg_table *pages;
2454

2455
	pages = fetch_and_zero(&obj->mm.pages);
2456 2457
	if (!pages)
		return NULL;
2458

2459 2460 2461 2462
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2463
	if (obj->mm.mapping) {
2464 2465
		void *ptr;

2466
		ptr = page_mask_bits(obj->mm.mapping);
2467 2468
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2469
		else
2470 2471
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2472
		obj->mm.mapping = NULL;
2473 2474
	}

2475
	__i915_gem_object_reset_page_iter(obj);
2476 2477 2478 2479
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2504 2505 2506
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2507 2508
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2509 2510
}

2511
static bool i915_sg_trim(struct sg_table *orig_st)
2512 2513 2514 2515 2516 2517
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2518
		return false;
2519

2520
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2521
		return false;
2522 2523 2524 2525 2526 2527 2528

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2529
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2530 2531 2532 2533

	sg_free_table(orig_st);

	*orig_st = new_st;
2534
	return true;
2535 2536
}

2537
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2538
{
2539
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2540 2541
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2542
	struct address_space *mapping;
2543 2544
	struct sg_table *st;
	struct scatterlist *sg;
2545
	struct sgt_iter sgt_iter;
2546
	struct page *page;
2547
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2548
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2549
	unsigned int sg_page_sizes;
2550
	gfp_t noreclaim;
I
Imre Deak 已提交
2551
	int ret;
2552

C
Chris Wilson 已提交
2553 2554 2555 2556
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2557 2558
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2559

2560 2561
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2562
		return -ENOMEM;
2563

2564
rebuild_st:
2565 2566
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2567
		return -ENOMEM;
2568
	}
2569

2570 2571 2572 2573 2574
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2575
	mapping = obj->base.filp->f_mapping;
2576
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2577 2578
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2579 2580
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2581
	sg_page_sizes = 0;
2582
	for (i = 0; i < page_count; i++) {
2583 2584 2585 2586 2587 2588 2589
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2590
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2591 2592 2593 2594 2595 2596 2597 2598
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2599
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2600
			cond_resched();
2601

C
Chris Wilson 已提交
2602 2603 2604
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2605 2606 2607 2608
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2609
			 */
2610 2611 2612
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2625
				 * this we want __GFP_RETRY_MAYFAIL.
2626
				 */
M
Michal Hocko 已提交
2627
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2628
			}
2629 2630
		} while (1);

2631 2632 2633
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2634
			if (i) {
M
Matthew Auld 已提交
2635
				sg_page_sizes |= sg->length;
2636
				sg = sg_next(sg);
2637
			}
2638 2639 2640 2641 2642 2643
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2644 2645 2646

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2647
	}
2648
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2649
		sg_page_sizes |= sg->length;
2650
		sg_mark_end(sg);
2651
	}
2652

2653 2654 2655
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2656
	ret = i915_gem_gtt_prepare_pages(obj, st);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2676

2677
	if (i915_gem_object_needs_bit17_swizzle(obj))
2678
		i915_gem_object_do_bit_17_swizzle(obj, st);
2679

M
Matthew Auld 已提交
2680
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2681 2682

	return 0;
2683

2684
err_sg:
2685
	sg_mark_end(sg);
2686
err_pages:
2687 2688
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2689 2690
	sg_free_table(st);
	kfree(st);
2691 2692 2693 2694 2695 2696 2697 2698 2699

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2700 2701 2702
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2703
	return ret;
2704 2705 2706
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2707
				 struct sg_table *pages,
M
Matthew Auld 已提交
2708
				 unsigned int sg_page_sizes)
2709
{
2710 2711 2712 2713
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2714
	lockdep_assert_held(&obj->mm.lock);
2715 2716 2717 2718 2719

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2720 2721

	if (i915_gem_object_is_tiled(obj) &&
2722
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2723 2724 2725 2726
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2727

M
Matthew Auld 已提交
2728 2729
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2730 2731

	/*
M
Matthew Auld 已提交
2732 2733 2734 2735 2736 2737
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2738 2739 2740 2741 2742 2743 2744
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2745 2746 2747 2748

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2749 2750 2751 2752
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2753
	int err;
2754 2755 2756 2757 2758 2759

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2760
	err = obj->ops->get_pages(obj);
2761
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2762

2763
	return err;
2764 2765
}

2766
/* Ensure that the associated pages are gathered from the backing storage
2767
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2768
 * multiple times before they are released by a single call to
2769
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2770 2771 2772
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2773
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2774
{
2775
	int err;
2776

2777 2778 2779
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2780

2781
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2782 2783
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2784 2785 2786
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2787

2788 2789 2790
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2791

2792 2793
unlock:
	mutex_unlock(&obj->mm.lock);
2794
	return err;
2795 2796
}

2797
/* The 'mapping' part of i915_gem_object_pin_map() below */
2798 2799
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2800 2801
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2802
	struct sg_table *sgt = obj->mm.pages;
2803 2804
	struct sgt_iter sgt_iter;
	struct page *page;
2805 2806
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2807
	unsigned long i = 0;
2808
	pgprot_t pgprot;
2809 2810 2811
	void *addr;

	/* A single page can always be kmapped */
2812
	if (n_pages == 1 && type == I915_MAP_WB)
2813 2814
		return kmap(sg_page(sgt->sgl));

2815 2816
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2817
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2818 2819 2820
		if (!pages)
			return NULL;
	}
2821

2822 2823
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2824 2825 2826 2827

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2828
	switch (type) {
2829 2830 2831
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2832 2833 2834 2835 2836 2837 2838 2839
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2840

2841
	if (pages != stack_pages)
M
Michal Hocko 已提交
2842
		kvfree(pages);
2843 2844 2845 2846 2847

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2848 2849
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2850
{
2851 2852 2853
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2854 2855
	int ret;

T
Tina Zhang 已提交
2856 2857
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2858

2859
	ret = mutex_lock_interruptible(&obj->mm.lock);
2860 2861 2862
	if (ret)
		return ERR_PTR(ret);

2863 2864 2865
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2866
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2867
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2868 2869
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2870 2871 2872
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2873

2874 2875 2876
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2877 2878
		pinned = false;
	}
2879
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2880

2881
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2882 2883 2884
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2885
			goto err_unpin;
2886
		}
2887 2888 2889 2890 2891 2892

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2893
		ptr = obj->mm.mapping = NULL;
2894 2895
	}

2896 2897 2898 2899
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2900
			goto err_unpin;
2901 2902
		}

2903
		obj->mm.mapping = page_pack_bits(ptr, type);
2904 2905
	}

2906 2907
out_unlock:
	mutex_unlock(&obj->mm.lock);
2908 2909
	return ptr;

2910 2911 2912 2913 2914
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2915 2916
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2934
	if (i915_gem_object_has_pages(obj))
2935 2936
		return -ENODEV;

2937 2938 2939
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

3013
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3014
{
3015 3016
	unsigned int score;
	bool banned, bannable;
3017

3018
	atomic_inc(&ctx->guilty_count);
3019

3020 3021 3022
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3023

3024 3025
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
3026 3027
		return;

3028 3029 3030 3031
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
3032
		i915_gem_context_set_banned(ctx);
3033
	}
3034 3035 3036

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3037 3038 3039 3040
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
3041
	atomic_inc(&ctx->active_count);
3042 3043
}

3044
struct i915_request *
3045
i915_gem_find_active_request(struct intel_engine_cs *engine)
3046
{
3047
	struct i915_request *request, *active = NULL;
3048
	unsigned long flags;
3049

3050 3051 3052 3053 3054 3055
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
3056 3057
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3058 3059
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
3060
	 */
3061 3062
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
3063
		if (__i915_request_completed(request, request->global_seqno))
3064
			continue;
3065

3066 3067
		active = request;
		break;
3068
	}
3069
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3070

3071
	return active;
3072 3073
}

3074 3075 3076 3077
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3078
struct i915_request *
3079 3080
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3081
	struct i915_request *request;
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3092
	request = engine->reset.prepare(engine);
3093 3094
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3095 3096 3097 3098

	return request;
}

3099
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3100 3101
{
	struct intel_engine_cs *engine;
3102
	struct i915_request *request;
3103
	enum intel_engine_id id;
3104
	int err = 0;
3105

3106
	for_each_engine(engine, dev_priv, id) {
3107 3108 3109 3110
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3111
		}
3112 3113

		engine->hangcheck.active_request = request;
3114 3115
	}

3116
	i915_gem_revoke_fences(dev_priv);
3117
	intel_uc_sanitize(dev_priv);
3118 3119

	return err;
3120 3121
}

3122
static void engine_skip_context(struct i915_request *request)
3123 3124
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3125
	struct i915_gem_context *hung_ctx = request->gem_context;
3126
	struct i915_timeline *timeline = request->timeline;
3127 3128
	unsigned long flags;

3129
	GEM_BUG_ON(timeline == &engine->timeline);
3130

3131
	spin_lock_irqsave(&engine->timeline.lock, flags);
3132
	spin_lock(&timeline->lock);
3133

3134
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3135
		if (request->gem_context == hung_ctx)
3136
			i915_request_skip(request, -EIO);
3137 3138

	list_for_each_entry(request, &timeline->requests, link)
3139
		i915_request_skip(request, -EIO);
3140 3141

	spin_unlock(&timeline->lock);
3142
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3143 3144
}

3145
/* Returns the request if it was guilty of the hang */
3146
static struct i915_request *
3147
i915_gem_reset_request(struct intel_engine_cs *engine,
3148 3149
		       struct i915_request *request,
		       bool stalled)
3150
{
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3172 3173 3174 3175 3176 3177 3178 3179 3180
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3181
		i915_gem_context_mark_guilty(request->gem_context);
3182
		i915_request_skip(request, -EIO);
3183 3184

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3185
		if (i915_gem_context_is_banned(request->gem_context))
3186
			engine_skip_context(request);
3187
	} else {
3188 3189 3190 3191 3192 3193 3194
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3195 3196
			unsigned long flags;

C
Chris Wilson 已提交
3197
			i915_gem_context_mark_innocent(request->gem_context);
3198 3199 3200
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3201
			spin_lock_irqsave(&engine->timeline.lock, flags);
3202
			request = list_prev_entry(request, link);
3203
			if (&request->link == &engine->timeline.requests)
3204
				request = NULL;
C
Chris Wilson 已提交
3205
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3206
		}
3207 3208
	}

3209
	return request;
3210 3211
}

3212
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3213 3214
			   struct i915_request *request,
			   bool stalled)
3215
{
3216 3217 3218 3219 3220 3221
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3222

3223
	if (request)
3224
		request = i915_gem_reset_request(engine, request, stalled);
3225

3226
	/* Setup the CS to resume from the breadcrumb of the hung request */
3227
	engine->reset.reset(engine, request);
3228
}
3229

3230 3231
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3232
{
3233
	struct intel_engine_cs *engine;
3234
	enum intel_engine_id id;
3235

3236 3237
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3238
	i915_retire_requests(dev_priv);
3239

3240
	for_each_engine(engine, dev_priv, id) {
3241
		struct intel_context *ce;
3242

3243 3244
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3245
				      stalled_mask & ENGINE_MASK(id));
3246 3247 3248
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3260
		if (intel_engine_is_idle(engine)) {
3261
			struct i915_request *rq;
3262

3263 3264
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3265
			if (!IS_ERR(rq))
3266
				i915_request_add(rq);
3267
		}
3268
	}
3269

3270
	i915_gem_restore_fences(dev_priv);
3271 3272
}

3273 3274
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3275 3276
	engine->reset.finish(engine);

3277
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3278 3279
}

3280 3281
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3282 3283 3284
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3285
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3286

3287
	for_each_engine(engine, dev_priv, id) {
3288
		engine->hangcheck.active_request = NULL;
3289
		i915_gem_reset_finish_engine(engine);
3290
	}
3291 3292
}

3293
static void nop_submit_request(struct i915_request *request)
3294
{
3295 3296 3297
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3298 3299
	dma_fence_set_error(&request->fence, -EIO);

3300
	i915_request_submit(request);
3301 3302
}

3303
static void nop_complete_submit_request(struct i915_request *request)
3304
{
3305 3306
	unsigned long flags;

3307 3308 3309
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3310
	dma_fence_set_error(&request->fence, -EIO);
3311

3312
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3313
	__i915_request_submit(request);
3314
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3315
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3316 3317
}

3318
void i915_gem_set_wedged(struct drm_i915_private *i915)
3319
{
3320 3321 3322
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3323 3324
	GEM_TRACE("start\n");

3325
	if (GEM_SHOW_DEBUG()) {
3326 3327 3328 3329 3330 3331
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3332 3333 3334
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3335 3336 3337 3338 3339
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3340 3341
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3342

3343
		engine->submit_request = nop_submit_request;
3344
		engine->schedule = NULL;
3345
	}
3346
	i915->caps.scheduler = 0;
3347

3348 3349 3350
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3351 3352 3353 3354
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3355
	 */
3356
	synchronize_rcu();
3357

3358 3359 3360
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3373
	 */
3374
	synchronize_rcu();
3375

3376 3377
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3378

3379 3380
		/*
		 * Mark all pending requests as complete so that any concurrent
3381 3382 3383
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3384
		spin_lock_irqsave(&engine->timeline.lock, flags);
3385 3386
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3387
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3388 3389

		i915_gem_reset_finish_engine(engine);
3390
	}
3391

3392 3393
	GEM_TRACE("end\n");

3394
	wake_up_all(&i915->gpu_error.reset_queue);
3395 3396
}

3397 3398
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3399
	struct i915_timeline *tl;
3400 3401 3402 3403 3404

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3405 3406
	GEM_TRACE("start\n");

3407 3408
	/*
	 * Before unwedging, make sure that all pending operations
3409 3410 3411 3412 3413 3414 3415 3416 3417
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3418
		struct i915_request *rq;
3419

3420 3421 3422 3423
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3439
	}
3440 3441
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3442

3443 3444
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3445 3446 3447 3448 3449 3450 3451 3452
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3453
	i915_gem_contexts_lost(i915);
3454

3455 3456
	GEM_TRACE("end\n");

3457 3458 3459 3460 3461 3462
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3463
static void
3464 3465
i915_gem_retire_work_handler(struct work_struct *work)
{
3466
	struct drm_i915_private *dev_priv =
3467
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3468
	struct drm_device *dev = &dev_priv->drm;
3469

3470
	/* Come back later if the device is busy... */
3471
	if (mutex_trylock(&dev->struct_mutex)) {
3472
		i915_retire_requests(dev_priv);
3473
		mutex_unlock(&dev->struct_mutex);
3474
	}
3475

3476 3477
	/*
	 * Keep the retire handler running until we are finally idle.
3478 3479 3480
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3481
	if (READ_ONCE(dev_priv->gt.awake))
3482 3483
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3484
				   round_jiffies_up_relative(HZ));
3485
}
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3546 3547 3548 3549 3550 3551 3552
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3569 3570 3571 3572
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3573
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3574
	unsigned int epoch = I915_EPOCH_INVALID;
3575 3576 3577 3578 3579
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3598 3599
	/*
	 * Wait for last execlists context complete, but bail out in case a
3600 3601 3602 3603 3604
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3605
	 */
3606 3607 3608 3609
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3610 3611 3612 3613

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3614
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3615 3616 3617 3618 3619 3620 3621
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3622 3623 3624 3625
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3626
	if (new_requests_since_last_retire(dev_priv))
3627
		goto out_unlock;
3628

3629
	epoch = __i915_gem_park(dev_priv);
3630

3631 3632
	assert_kernel_context_is_current(dev_priv);

3633 3634
	rearm_hangcheck = false;
out_unlock:
3635
	mutex_unlock(&dev_priv->drm.struct_mutex);
3636

3637 3638 3639 3640
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3641
	}
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3659 3660
}

3661 3662
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3663
	struct drm_i915_private *i915 = to_i915(gem->dev);
3664 3665
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3666
	struct i915_lut_handle *lut, *ln;
3667

3668 3669 3670 3671 3672 3673
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3674
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3675 3676 3677 3678
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3679 3680 3681 3682 3683 3684 3685
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3686
			i915_vma_close(vma);
3687

3688 3689
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3690

3691 3692
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3693
	}
3694 3695

	mutex_unlock(&i915->drm.struct_mutex);
3696 3697
}

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3709 3710
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3711 3712 3713
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3714 3715 3716 3717 3718 3719 3720
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3721
 *  -EAGAIN: incomplete, restart syscall
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3738 3739
	ktime_t start;
	long ret;
3740

3741 3742 3743
	if (args->flags != 0)
		return -EINVAL;

3744
	obj = i915_gem_object_lookup(file, args->bo_handle);
3745
	if (!obj)
3746 3747
		return -ENOENT;

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3769 3770 3771 3772

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3773 3774
	}

C
Chris Wilson 已提交
3775
	i915_gem_object_put(obj);
3776
	return ret;
3777 3778
}

3779 3780
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3781
{
3782 3783 3784 3785
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3786
		return timeout;
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3800
	timeout = i915_request_wait(rq, flags, timeout);
3801 3802
	i915_request_put(rq);

3803
	return timeout;
3804 3805
}

3806 3807
static int wait_for_engines(struct drm_i915_private *i915)
{
3808
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3809 3810
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3811
		GEM_TRACE_DUMP();
3812 3813
		i915_gem_set_wedged(i915);
		return -EIO;
3814 3815 3816 3817 3818
	}

	return 0;
}

3819 3820
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3821
{
3822 3823 3824
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3825

3826 3827 3828 3829
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3830
	if (flags & I915_WAIT_LOCKED) {
3831 3832
		struct i915_timeline *tl;
		int err;
3833 3834 3835 3836

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3837 3838 3839
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3840
		}
3841 3842 3843 3844 3845

		err = wait_for_engines(i915);
		if (err)
			return err;

3846
		i915_retire_requests(i915);
3847
		GEM_BUG_ON(i915->gt.active_requests);
3848
	} else {
3849 3850
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3851

3852
		for_each_engine(engine, i915, id) {
3853 3854 3855 3856 3857
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3858 3859
		}
	}
3860 3861

	return 0;
3862 3863
}

3864 3865
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3866 3867 3868 3869 3870 3871 3872
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3873
	obj->write_domain = 0;
3874 3875 3876 3877
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3878
	if (!READ_ONCE(obj->pin_global))
3879 3880 3881 3882 3883 3884 3885
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3910
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3931
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3932 3933 3934 3935 3936
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3937 3938
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3939
	if (write) {
3940 3941
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3942 3943 3944 3945 3946 3947 3948
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3949 3950
/**
 * Moves a single object to the GTT read, and possibly write domain.
3951 3952
 * @obj: object to act on
 * @write: ask for write access or read only
3953 3954 3955 3956
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3957
int
3958
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3959
{
3960
	int ret;
3961

3962
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3963

3964 3965 3966 3967 3968 3969
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3970 3971 3972
	if (ret)
		return ret;

3973
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3974 3975
		return 0;

3976 3977 3978 3979 3980 3981 3982 3983
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3984
	ret = i915_gem_object_pin_pages(obj);
3985 3986 3987
	if (ret)
		return ret;

3988
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3989

3990 3991 3992 3993
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3994
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3995 3996
		mb();

3997 3998 3999
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4000 4001
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4002
	if (write) {
4003 4004
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
4005
		obj->mm.dirty = true;
4006 4007
	}

C
Chris Wilson 已提交
4008
	i915_gem_object_unpin_pages(obj);
4009 4010 4011
	return 0;
}

4012 4013
/**
 * Changes the cache-level of an object across all VMA.
4014 4015
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4027 4028 4029
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4030
	struct i915_vma *vma;
4031
	int ret;
4032

4033 4034
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4035
	if (obj->cache_level == cache_level)
4036
		return 0;
4037

4038 4039 4040 4041 4042
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4043 4044
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4045 4046 4047
		if (!drm_mm_node_allocated(&vma->node))
			continue;

4048
		if (i915_vma_is_pinned(vma)) {
4049 4050 4051 4052
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4053 4054
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
4066 4067
	}

4068 4069 4070 4071 4072 4073 4074
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4075
	if (obj->bind_count) {
4076 4077 4078 4079
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4080 4081 4082 4083 4084 4085
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4086 4087 4088
		if (ret)
			return ret;

4089 4090
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4107
			for_each_ggtt_vma(vma, obj) {
4108 4109 4110 4111
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4112 4113 4114 4115 4116 4117 4118 4119
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4120 4121
		}

4122
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4123 4124 4125 4126 4127 4128 4129
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4130 4131
	}

4132
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4133
		vma->node.color = cache_level;
4134
	i915_gem_object_set_cache_coherency(obj, cache_level);
4135
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4136

4137 4138 4139
	return 0;
}

B
Ben Widawsky 已提交
4140 4141
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4142
{
B
Ben Widawsky 已提交
4143
	struct drm_i915_gem_caching *args = data;
4144
	struct drm_i915_gem_object *obj;
4145
	int err = 0;
4146

4147 4148 4149 4150 4151 4152
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4153

4154 4155 4156 4157 4158 4159
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4160 4161 4162 4163
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4164 4165 4166 4167
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4168 4169 4170
out:
	rcu_read_unlock();
	return err;
4171 4172
}

B
Ben Widawsky 已提交
4173 4174
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4175
{
4176
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4177
	struct drm_i915_gem_caching *args = data;
4178 4179
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4180
	int ret = 0;
4181

B
Ben Widawsky 已提交
4182 4183
	switch (args->caching) {
	case I915_CACHING_NONE:
4184 4185
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4186
	case I915_CACHING_CACHED:
4187 4188 4189 4190 4191 4192
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4193
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4194 4195
			return -ENODEV;

4196 4197
		level = I915_CACHE_LLC;
		break;
4198
	case I915_CACHING_DISPLAY:
4199
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4200
		break;
4201 4202 4203 4204
	default:
		return -EINVAL;
	}

4205 4206 4207 4208
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4218 4219 4220 4221 4222 4223 4224
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4225
	if (ret)
4226
		goto out;
B
Ben Widawsky 已提交
4227

4228 4229 4230
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4231 4232 4233

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4234 4235 4236

out:
	i915_gem_object_put(obj);
4237 4238 4239
	return ret;
}

4240
/*
4241 4242 4243 4244
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4245
 */
C
Chris Wilson 已提交
4246
struct i915_vma *
4247 4248
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4249 4250
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4251
{
C
Chris Wilson 已提交
4252
	struct i915_vma *vma;
4253 4254
	int ret;

4255 4256
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4257
	/* Mark the global pin early so that we account for the
4258 4259
	 * display coherency whilst setting up the cache domains.
	 */
4260
	obj->pin_global++;
4261

4262 4263 4264 4265 4266 4267 4268 4269 4270
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4271
	ret = i915_gem_object_set_cache_level(obj,
4272 4273
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4274 4275
	if (ret) {
		vma = ERR_PTR(ret);
4276
		goto err_unpin_global;
C
Chris Wilson 已提交
4277
	}
4278

4279 4280
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4281 4282 4283 4284
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4285
	 */
4286
	vma = ERR_PTR(-ENOSPC);
4287 4288
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4289
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4290 4291 4292 4293
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4294
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4295
	if (IS_ERR(vma))
4296
		goto err_unpin_global;
4297

4298 4299
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4300
	__i915_gem_object_flush_for_display(obj);
4301

4302 4303 4304
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4305
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4306

C
Chris Wilson 已提交
4307
	return vma;
4308

4309 4310
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4311
	return vma;
4312 4313 4314
}

void
C
Chris Wilson 已提交
4315
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4316
{
4317
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4318

4319
	if (WARN_ON(vma->obj->pin_global == 0))
4320 4321
		return;

4322
	if (--vma->obj->pin_global == 0)
4323
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4324

4325
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4326
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4327

C
Chris Wilson 已提交
4328
	i915_vma_unpin(vma);
4329 4330
}

4331 4332
/**
 * Moves a single object to the CPU read, and possibly write domain.
4333 4334
 * @obj: object to act on
 * @write: requesting write or read-only access
4335 4336 4337 4338
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4339
int
4340
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4341 4342 4343
{
	int ret;

4344
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4345

4346 4347 4348 4349 4350 4351
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4352 4353 4354
	if (ret)
		return ret;

4355
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4356

4357
	/* Flush the CPU cache if it's still invalid. */
4358
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4359
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4360
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4361 4362 4363 4364 4365
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4366
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4367 4368 4369 4370

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4371 4372
	if (write)
		__start_cpu_write(obj);
4373 4374 4375 4376

	return 0;
}

4377 4378 4379
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4380 4381 4382 4383
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4384 4385 4386
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4387
static int
4388
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4389
{
4390
	struct drm_i915_private *dev_priv = to_i915(dev);
4391
	struct drm_i915_file_private *file_priv = file->driver_priv;
4392
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4393
	struct i915_request *request, *target = NULL;
4394
	long ret;
4395

4396 4397 4398
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4399

4400
	spin_lock(&file_priv->mm.lock);
4401
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4402 4403
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4404

4405 4406 4407 4408
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4409

4410
		target = request;
4411
	}
4412
	if (target)
4413
		i915_request_get(target);
4414
	spin_unlock(&file_priv->mm.lock);
4415

4416
	if (target == NULL)
4417
		return 0;
4418

4419
	ret = i915_request_wait(target,
4420 4421
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4422
	i915_request_put(target);
4423

4424
	return ret < 0 ? ret : 0;
4425 4426
}

C
Chris Wilson 已提交
4427
struct i915_vma *
4428 4429
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4430
			 u64 size,
4431 4432
			 u64 alignment,
			 u64 flags)
4433
{
4434
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4435
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449

	return i915_gem_object_pin(obj, vm, view, size, alignment,
				   flags | PIN_GLOBAL);
}

struct i915_vma *
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    const struct i915_ggtt_view *view,
		    u64 size,
		    u64 alignment,
		    u64 flags)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4450 4451
	struct i915_vma *vma;
	int ret;
4452

4453 4454
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4455 4456
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4487
	vma = i915_vma_instance(obj, vm, view);
4488
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4489
		return vma;
4490 4491

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4492 4493 4494
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4495

4496
			if (flags & PIN_MAPPABLE &&
4497
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4498 4499 4500
				return ERR_PTR(-ENOSPC);
		}

4501 4502
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4503 4504 4505
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4506
		     !!(flags & PIN_MAPPABLE),
4507
		     i915_vma_is_map_and_fenceable(vma));
4508 4509
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4510
			return ERR_PTR(ret);
4511 4512
	}

4513
	ret = i915_vma_pin(vma, size, alignment, flags);
C
Chris Wilson 已提交
4514 4515
	if (ret)
		return ERR_PTR(ret);
4516

C
Chris Wilson 已提交
4517
	return vma;
4518 4519
}

4520
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4535 4536 4537 4538 4539 4540 4541 4542 4543
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4544 4545
}

4546
static __always_inline unsigned int
4547
__busy_set_if_active(const struct dma_fence *fence,
4548 4549
		     unsigned int (*flag)(unsigned int id))
{
4550
	struct i915_request *rq;
4551

4552 4553 4554 4555
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4556
	 *
4557
	 * Note we only report on the status of native fences.
4558
	 */
4559 4560 4561 4562
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4563 4564
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4565 4566
		return 0;

4567
	return flag(rq->engine->uabi_id);
4568 4569
}

4570
static __always_inline unsigned int
4571
busy_check_reader(const struct dma_fence *fence)
4572
{
4573
	return __busy_set_if_active(fence, __busy_read_flag);
4574 4575
}

4576
static __always_inline unsigned int
4577
busy_check_writer(const struct dma_fence *fence)
4578
{
4579 4580 4581 4582
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4583 4584
}

4585 4586
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4587
		    struct drm_file *file)
4588 4589
{
	struct drm_i915_gem_busy *args = data;
4590
	struct drm_i915_gem_object *obj;
4591 4592
	struct reservation_object_list *list;
	unsigned int seq;
4593
	int err;
4594

4595
	err = -ENOENT;
4596 4597
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4598
	if (!obj)
4599
		goto out;
4600

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4619

4620 4621
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4622

4623 4624 4625 4626
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4627

4628 4629 4630 4631 4632 4633
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4634
	}
4635

4636 4637 4638 4639
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4640 4641 4642
out:
	rcu_read_unlock();
	return err;
4643 4644 4645 4646 4647 4648
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4649
	return i915_gem_ring_throttle(dev, file_priv);
4650 4651
}

4652 4653 4654 4655
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4656
	struct drm_i915_private *dev_priv = to_i915(dev);
4657
	struct drm_i915_gem_madvise *args = data;
4658
	struct drm_i915_gem_object *obj;
4659
	int err;
4660 4661 4662 4663 4664 4665 4666 4667 4668

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4669
	obj = i915_gem_object_lookup(file_priv, args->handle);
4670 4671 4672 4673 4674 4675
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4676

4677
	if (i915_gem_object_has_pages(obj) &&
4678
	    i915_gem_object_is_tiled(obj) &&
4679
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4680 4681
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4682
			__i915_gem_object_unpin_pages(obj);
4683 4684 4685
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4686
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4687
			__i915_gem_object_pin_pages(obj);
4688 4689
			obj->mm.quirked = true;
		}
4690 4691
	}

C
Chris Wilson 已提交
4692 4693
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4694

C
Chris Wilson 已提交
4695
	/* if the object is no longer attached, discard its backing storage */
4696 4697
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4698 4699
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4700
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4701
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4702

4703
out:
4704
	i915_gem_object_put(obj);
4705
	return err;
4706 4707
}

4708
static void
4709
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4710 4711 4712 4713
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4714
	intel_fb_obj_flush(obj, ORIGIN_CS);
4715 4716
}

4717 4718
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4719
{
4720 4721
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4722
	INIT_LIST_HEAD(&obj->vma_list);
4723
	INIT_LIST_HEAD(&obj->lut_list);
4724
	INIT_LIST_HEAD(&obj->batch_pool_link);
4725

4726 4727
	obj->ops = ops;

4728 4729 4730
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4731
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4732
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4733 4734 4735 4736

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4737

4738
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4739 4740
}

4741
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4742 4743
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4744

4745 4746
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4747 4748

	.pwrite = i915_gem_object_pwrite_gtt,
4749 4750
};

M
Matthew Auld 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4775
struct drm_i915_gem_object *
4776
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4777
{
4778
	struct drm_i915_gem_object *obj;
4779
	struct address_space *mapping;
4780
	unsigned int cache_level;
D
Daniel Vetter 已提交
4781
	gfp_t mask;
4782
	int ret;
4783

4784 4785 4786 4787 4788
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4789
	if (size >> PAGE_SHIFT > INT_MAX)
4790 4791 4792 4793 4794
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4795
	obj = i915_gem_object_alloc(dev_priv);
4796
	if (obj == NULL)
4797
		return ERR_PTR(-ENOMEM);
4798

M
Matthew Auld 已提交
4799
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4800 4801
	if (ret)
		goto fail;
4802

4803
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4804
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4805 4806 4807 4808 4809
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4810
	mapping = obj->base.filp->f_mapping;
4811
	mapping_set_gfp_mask(mapping, mask);
4812
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4813

4814
	i915_gem_object_init(obj, &i915_gem_object_ops);
4815

4816 4817
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4818

4819
	if (HAS_LLC(dev_priv))
4820
		/* On some devices, we can have the GPU use the LLC (the CPU
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4832 4833 4834
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4835

4836
	i915_gem_object_set_cache_coherency(obj, cache_level);
4837

4838 4839
	trace_i915_gem_object_create(obj);

4840
	return obj;
4841 4842 4843 4844

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4845 4846
}

4847 4848 4849 4850 4851 4852 4853 4854
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4855
	if (obj->mm.madv != I915_MADV_WILLNEED)
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4871 4872
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4873
{
4874
	struct drm_i915_gem_object *obj, *on;
4875

4876
	intel_runtime_pm_get(i915);
4877
	llist_for_each_entry_safe(obj, on, freed, freed) {
4878 4879 4880 4881
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4882 4883
		mutex_lock(&i915->drm.struct_mutex);

4884 4885 4886 4887 4888
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4889
			i915_vma_destroy(vma);
4890
		}
4891 4892
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4893

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4906
		mutex_unlock(&i915->drm.struct_mutex);
4907 4908

		GEM_BUG_ON(obj->bind_count);
4909
		GEM_BUG_ON(obj->userfault_count);
4910
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4911
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4912 4913 4914

		if (obj->ops->release)
			obj->ops->release(obj);
4915

4916 4917
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4918
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4919
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4920 4921 4922 4923

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4924
		reservation_object_fini(&obj->__builtin_resv);
4925 4926 4927 4928 4929
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4930

4931 4932 4933
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4934 4935
		if (on)
			cond_resched();
4936
	}
4937
	intel_runtime_pm_put(i915);
4938 4939 4940 4941 4942 4943
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4954
		__i915_gem_free_objects(i915, freed);
4955
	}
4956 4957 4958 4959 4960 4961 4962
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4963

4964 4965
	/*
	 * All file-owned VMA should have been released by this point through
4966 4967 4968 4969 4970 4971
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4972

4973
	spin_lock(&i915->mm.free_lock);
4974
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4975 4976
		spin_unlock(&i915->mm.free_lock);

4977
		__i915_gem_free_objects(i915, freed);
4978
		if (need_resched())
4979 4980 4981
			return;

		spin_lock(&i915->mm.free_lock);
4982
	}
4983
	spin_unlock(&i915->mm.free_lock);
4984
}
4985

4986 4987 4988 4989 4990 4991
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4992 4993 4994 4995 4996 4997 4998 4999 5000
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
5001 5002
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
5003
		queue_work(i915->wq, &i915->mm.free_work);
5004
}
5005

5006 5007 5008
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
5009

5010 5011 5012
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

5013
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
5014
		obj->mm.madv = I915_MADV_DONTNEED;
5015

5016 5017
	/*
	 * Before we free the object, make sure any pure RCU-only
5018 5019 5020 5021
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
5022
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5023
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5024 5025
}

5026 5027 5028 5029
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

5030 5031
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
5032 5033 5034 5035 5036
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

5037 5038
void i915_gem_sanitize(struct drm_i915_private *i915)
{
5039
	int err;
5040 5041 5042

	GEM_TRACE("\n");

5043
	mutex_lock(&i915->drm.struct_mutex);
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
5054
	if (i915_terminally_wedged(&i915->gpu_error))
5055 5056
		i915_gem_unset_wedged(i915);

5057 5058 5059 5060 5061 5062
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
5063
	 * of the reset, so this could be applied to even earlier gen.
5064
	 */
5065
	err = -ENODEV;
5066
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5067 5068 5069
		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
	if (!err)
		intel_engines_sanitize(i915);
5070 5071 5072 5073

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

5074 5075
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
5076 5077
}

C
Chris Wilson 已提交
5078
int i915_gem_suspend(struct drm_i915_private *i915)
5079
{
5080
	int ret;
5081

5082 5083
	GEM_TRACE("\n");

C
Chris Wilson 已提交
5084 5085
	intel_runtime_pm_get(i915);
	intel_suspend_gt_powersave(i915);
5086

C
Chris Wilson 已提交
5087
	mutex_lock(&i915->drm.struct_mutex);
5088

C
Chris Wilson 已提交
5089 5090
	/*
	 * We have to flush all the executing contexts to main memory so
5091 5092
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
5093
	 * leaves the i915->kernel_context still active when
5094 5095 5096 5097
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
5098 5099
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
5100 5101
		if (ret)
			goto err_unlock;
5102

C
Chris Wilson 已提交
5103
		ret = i915_gem_wait_for_idle(i915,
5104
					     I915_WAIT_INTERRUPTIBLE |
5105
					     I915_WAIT_LOCKED |
5106 5107
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
5108 5109
		if (ret && ret != -EIO)
			goto err_unlock;
5110

C
Chris Wilson 已提交
5111
		assert_kernel_context_is_current(i915);
5112
	}
5113 5114
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
5115
	mutex_unlock(&i915->drm.struct_mutex);
5116

C
Chris Wilson 已提交
5117
	intel_uc_suspend(i915);
5118

C
Chris Wilson 已提交
5119 5120
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
5121

C
Chris Wilson 已提交
5122 5123
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
5124 5125
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
5126
	drain_delayed_work(&i915->gt.idle_work);
5127

C
Chris Wilson 已提交
5128 5129
	/*
	 * Assert that we successfully flushed all the work and
5130 5131
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
5132 5133 5134
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
5135

C
Chris Wilson 已提交
5136
	intel_runtime_pm_put(i915);
5137 5138 5139
	return 0;

err_unlock:
C
Chris Wilson 已提交
5140 5141
	mutex_unlock(&i915->drm.struct_mutex);
	intel_runtime_pm_put(i915);
5142 5143 5144 5145 5146
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5147 5148 5149 5150 5151 5152 5153
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5174 5175 5176 5177 5178 5179 5180
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5181 5182
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5183 5184
}

5185
void i915_gem_resume(struct drm_i915_private *i915)
5186
{
5187 5188
	GEM_TRACE("\n");

5189
	WARN_ON(i915->gt.awake);
5190

5191 5192
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5193

5194 5195
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5196

5197 5198
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5199 5200 5201
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5202
	i915->gt.resume(i915);
5203

5204 5205 5206
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5207
	intel_uc_resume(i915);
5208

5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5219 5220 5221 5222
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5223
	goto out_unlock;
5224 5225
}

5226
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5227
{
5228
	if (INTEL_GEN(dev_priv) < 5 ||
5229 5230 5231 5232 5233 5234
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5235
	if (IS_GEN5(dev_priv))
5236 5237
		return;

5238
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5239
	if (IS_GEN6(dev_priv))
5240
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5241
	else if (IS_GEN7(dev_priv))
5242
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5243
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5244
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5245 5246
	else
		BUG();
5247
}
D
Daniel Vetter 已提交
5248

5249
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5250 5251 5252 5253 5254 5255 5256
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5257
static void init_unused_rings(struct drm_i915_private *dev_priv)
5258
{
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5271 5272 5273
	}
}

5274
static int __i915_gem_restart_engines(void *data)
5275
{
5276
	struct drm_i915_private *i915 = data;
5277
	struct intel_engine_cs *engine;
5278
	enum intel_engine_id id;
5279 5280 5281 5282
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5283 5284 5285
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5286
			return err;
5287
		}
5288 5289 5290 5291 5292 5293 5294
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5295
	int ret;
5296

5297 5298
	dev_priv->gt.last_init_time = ktime_get();

5299 5300 5301
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5302
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5303
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5304

5305
	if (IS_HASWELL(dev_priv))
5306
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5307
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5308

5309
	if (HAS_PCH_NOP(dev_priv)) {
5310
		if (IS_IVYBRIDGE(dev_priv)) {
5311 5312 5313
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5314
		} else if (INTEL_GEN(dev_priv) >= 7) {
5315 5316 5317 5318
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5319 5320
	}

5321 5322
	intel_gt_workarounds_apply(dev_priv);

5323
	i915_gem_init_swizzling(dev_priv);
5324

5325 5326 5327 5328 5329 5330
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5331
	init_unused_rings(dev_priv);
5332

5333
	BUG_ON(!dev_priv->kernel_context);
5334 5335 5336 5337
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5338

5339
	ret = i915_ppgtt_init_hw(dev_priv);
5340
	if (ret) {
5341
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5342 5343 5344
		goto out;
	}

5345 5346 5347 5348 5349 5350
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5351 5352
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5353 5354
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5355
		goto out;
5356
	}
5357

5358
	intel_mocs_init_l3cc_table(dev_priv);
5359

5360 5361
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5362 5363
	if (ret)
		goto cleanup_uc;
5364

5365
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5366 5367

	return 0;
5368 5369 5370

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
5371 5372 5373 5374
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
5375 5376
}

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5398
		struct i915_request *rq;
5399

5400
		rq = i915_request_alloc(engine, ctx);
5401 5402 5403 5404 5405
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5406
		err = 0;
5407 5408 5409
		if (engine->init_context)
			err = engine->init_context(rq);

5410
		i915_request_add(rq);
5411 5412 5413 5414 5415 5416 5417 5418
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5419 5420 5421
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5422
		goto err_active;
5423
	}
5424 5425 5426 5427 5428 5429

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5430
		state = to_intel_context(ctx, engine)->state;
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5486 5487 5488
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5489 5490 5491 5492 5493 5494
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5495
int i915_gem_init(struct drm_i915_private *dev_priv)
5496 5497 5498
{
	int ret;

5499 5500
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5501 5502 5503
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5504
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5505

5506
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5507
		dev_priv->gt.resume = intel_lr_context_resume;
5508
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5509 5510 5511
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5512 5513
	}

5514 5515 5516 5517
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5518
	ret = intel_uc_init_misc(dev_priv);
5519 5520 5521
	if (ret)
		return ret;

5522
	ret = intel_wopcm_init(&dev_priv->wopcm);
5523
	if (ret)
5524
		goto err_uc_misc;
5525

5526 5527 5528 5529 5530 5531
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5532
	mutex_lock(&dev_priv->drm.struct_mutex);
5533 5534
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5535
	ret = i915_gem_init_ggtt(dev_priv);
5536 5537 5538 5539
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5540

5541
	ret = i915_gem_contexts_init(dev_priv);
5542 5543 5544 5545
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5546

5547
	ret = intel_engines_init(dev_priv);
5548 5549 5550 5551
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5552

5553 5554
	intel_init_gt_powersave(dev_priv);

5555
	ret = intel_uc_init(dev_priv);
5556
	if (ret)
5557
		goto err_pm;
5558

5559 5560 5561 5562
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5574
	ret = __intel_engines_record_defaults(dev_priv);
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5600 5601 5602 5603 5604
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5605 5606
	i915_gem_drain_workqueue(dev_priv);

5607
	mutex_lock(&dev_priv->drm.struct_mutex);
5608
	intel_uc_fini_hw(dev_priv);
5609 5610
err_uc_init:
	intel_uc_fini(dev_priv);
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5624
err_uc_misc:
5625
	intel_uc_fini_misc(dev_priv);
5626

5627 5628 5629
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5630
	if (ret == -EIO) {
5631 5632
		mutex_lock(&dev_priv->drm.struct_mutex);

5633 5634
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5635 5636 5637
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5638
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5639 5640
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5641 5642
			i915_gem_set_wedged(dev_priv);
		}
5643 5644 5645 5646 5647 5648 5649 5650

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5651 5652
	}

5653
	i915_gem_drain_freed_objects(dev_priv);
5654
	return ret;
5655 5656
}

5657 5658 5659
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5660
	intel_disable_gt_powersave(dev_priv);
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5672 5673
	intel_cleanup_gt_powersave(dev_priv);

5674 5675 5676 5677 5678 5679 5680 5681
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5682 5683 5684 5685 5686
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5687
void
5688
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5689
{
5690
	struct intel_engine_cs *engine;
5691
	enum intel_engine_id id;
5692

5693
	for_each_engine(engine, dev_priv, id)
5694
		dev_priv->gt.cleanup_engine(engine);
5695 5696
}

5697 5698 5699
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5700
	int i;
5701

5702
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5703 5704
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5705
	else if (INTEL_GEN(dev_priv) >= 4 ||
5706 5707
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5708 5709 5710 5711
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5712
	if (intel_vgpu_active(dev_priv))
5713 5714 5715 5716
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5717 5718 5719 5720 5721 5722 5723
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5724
	i915_gem_restore_fences(dev_priv);
5725

5726
	i915_gem_detect_bit_6_swizzle(dev_priv);
5727 5728
}

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5745
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5746
{
5747
	int err = -ENOMEM;
5748

5749 5750
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5751 5752
		goto err_out;

5753 5754
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5755 5756
		goto err_objects;

5757 5758 5759 5760
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5761
	dev_priv->requests = KMEM_CACHE(i915_request,
5762 5763
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5764
					SLAB_TYPESAFE_BY_RCU);
5765
	if (!dev_priv->requests)
5766
		goto err_luts;
5767

5768 5769 5770 5771 5772 5773
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5774 5775 5776 5777
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5778
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5779
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5780
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5781

5782
	i915_gem_init__mm(dev_priv);
5783

5784
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5785
			  i915_gem_retire_work_handler);
5786
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5787
			  i915_gem_idle_work_handler);
5788
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5789
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5790

5791 5792
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5793
	spin_lock_init(&dev_priv->fb_tracking.lock);
5794

M
Matthew Auld 已提交
5795 5796 5797 5798
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5799 5800
	return 0;

5801 5802
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5803 5804
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5805 5806
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5807 5808 5809 5810 5811 5812
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5813
}
5814

5815
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5816
{
5817
	i915_gem_drain_freed_objects(dev_priv);
5818 5819
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5820
	WARN_ON(dev_priv->mm.object_count);
5821 5822
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5823
	kmem_cache_destroy(dev_priv->priorities);
5824
	kmem_cache_destroy(dev_priv->dependencies);
5825
	kmem_cache_destroy(dev_priv->requests);
5826
	kmem_cache_destroy(dev_priv->luts);
5827 5828
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5829 5830 5831

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5832 5833

	i915_gemfs_fini(dev_priv);
5834 5835
}

5836 5837
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5838 5839 5840
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5841 5842 5843 5844 5845
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5846
int i915_gem_freeze_late(struct drm_i915_private *i915)
5847 5848
{
	struct drm_i915_gem_object *obj;
5849
	struct list_head *phases[] = {
5850 5851
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5852
		NULL
5853
	}, **phase;
5854

5855 5856
	/*
	 * Called just before we write the hibernation image.
5857 5858 5859 5860 5861 5862 5863 5864
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5865 5866
	 *
	 * To try and reduce the hibernation image, we manually shrink
5867
	 * the objects as well, see i915_gem_freeze()
5868 5869
	 */

5870 5871
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5872

5873 5874 5875 5876
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5877
	}
5878
	mutex_unlock(&i915->drm.struct_mutex);
5879 5880 5881 5882

	return 0;
}

5883
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5884
{
5885
	struct drm_i915_file_private *file_priv = file->driver_priv;
5886
	struct i915_request *request;
5887 5888 5889 5890 5891

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5892
	spin_lock(&file_priv->mm.lock);
5893
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5894
		request->file_priv = NULL;
5895
	spin_unlock(&file_priv->mm.lock);
5896 5897
}

5898
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5899 5900
{
	struct drm_i915_file_private *file_priv;
5901
	int ret;
5902

5903
	DRM_DEBUG("\n");
5904 5905 5906 5907 5908 5909

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5910
	file_priv->dev_priv = i915;
5911
	file_priv->file = file;
5912 5913 5914 5915

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5916
	file_priv->bsd_engine = -1;
5917
	file_priv->hang_timestamp = jiffies;
5918

5919
	ret = i915_gem_context_open(i915, file);
5920 5921
	if (ret)
		kfree(file_priv);
5922

5923
	return ret;
5924 5925
}

5926 5927
/**
 * i915_gem_track_fb - update frontbuffer tracking
5928 5929 5930
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5931 5932 5933 5934
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5935 5936 5937 5938
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5939 5940 5941 5942 5943 5944 5945 5946 5947
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5948
	if (old) {
5949 5950
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5951 5952 5953
	}

	if (new) {
5954 5955
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5956 5957 5958
	}
}

5959 5960
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5961
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5962 5963 5964
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5965 5966 5967
	struct file *file;
	size_t offset;
	int err;
5968

5969
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5970
	if (IS_ERR(obj))
5971 5972
		return obj;

5973
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5974

5975 5976 5977 5978 5979 5980
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5981

5982 5983 5984 5985 5986
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5987

5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
6002 6003 6004 6005

	return obj;

fail:
6006
	i915_gem_object_put(obj);
6007
	return ERR_PTR(err);
6008
}
6009 6010 6011 6012 6013 6014

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
6015
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6016 6017 6018 6019 6020
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
6021
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6146
	if (!obj->mm.dirty)
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6162

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6198
	pages = __i915_gem_object_unset_pages(obj);
6199

6200 6201
	obj->ops = &i915_gem_phys_ops;

6202
	err = ____i915_gem_object_get_pages(obj);
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6216 6217 6218 6219 6220
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6221 6222 6223 6224 6225
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6226 6227
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6228
#include "selftests/mock_gem_device.c"
6229
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6230
#include "selftests/huge_pages.c"
6231
#include "selftests/i915_gem_object.c"
6232
#include "selftests/i915_gem_coherency.c"
6233
#endif