i915_gem.c 120.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173 174 175 176 177
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

352 353 354
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
355 356
 */
static __must_check int
357 358 359
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
360 361 362
{
	struct i915_gem_active *active;
	unsigned long active_mask;
363
	int idx;
364

365
	active_mask = __I915_BO_ACTIVE(obj);
366 367 368 369 370 371 372 373 374 375
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

376 377
	for_each_active(active_mask, idx) {
		int ret;
378

379 380 381 382
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
383 384
	}

385
	return 0;
386 387 388 389 390 391 392 393 394
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

395 396 397 398 399
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
400
	int ret;
401 402 403 404 405 406 407 408 409 410 411 412 413 414

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
415 416 417 418 419
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
420 421 422
	if (ret)
		return ret;

423 424 425 426 427 428
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
429 430 431
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
432 433 434 435 436 437 438 439 440
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
441
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
442
	int ret = 0;
443 444 445 446 447 448 449

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
450

451
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
452 453 454 455 456 457 458 459 460 461
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
462 463 464 465
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
466 467
	}

468
	drm_clflush_virt_range(vaddr, args->size);
469
	i915_gem_chipset_flush(to_i915(dev));
470 471

out:
472
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
473
	return ret;
474 475
}

476 477
void *i915_gem_object_alloc(struct drm_device *dev)
{
478
	struct drm_i915_private *dev_priv = to_i915(dev);
479
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
480 481 482 483
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
484
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
485
	kmem_cache_free(dev_priv->objects, obj);
486 487
}

488 489 490 491 492
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
493
{
494
	struct drm_i915_gem_object *obj;
495 496
	int ret;
	u32 handle;
497

498
	size = roundup(size, PAGE_SIZE);
499 500
	if (size == 0)
		return -EINVAL;
501 502

	/* Allocate the new object */
503
	obj = i915_gem_object_create(dev, size);
504 505
	if (IS_ERR(obj))
		return PTR_ERR(obj);
506

507
	ret = drm_gem_handle_create(file, &obj->base, &handle);
508
	/* drop reference from allocate - handle holds it now */
509
	i915_gem_object_put_unlocked(obj);
510 511
	if (ret)
		return ret;
512

513
	*handle_p = handle;
514 515 516
	return 0;
}

517 518 519 520 521 522
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
523
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
524 525
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
526
			       args->size, &args->handle);
527 528 529 530
}

/**
 * Creates a new mm object and returns a handle to it.
531 532 533
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
534 535 536 537 538 539
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
540

541
	return i915_gem_create(file, dev,
542
			       args->size, &args->handle);
543 544
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

571
static inline int
572 573
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

597 598 599 600 601 602 603 604 605 606 607 608
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

609
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
610 611
		return -EINVAL;

612 613 614 615
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

634 635 636
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
637
static int
638 639 640 641 642 643 644
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

645
	if (unlikely(page_do_bit17_swizzling))
646 647 648 649 650 651 652 653 654 655 656
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

657
	return ret ? -EFAULT : 0;
658 659
}

660 661 662 663
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
664
	if (unlikely(swizzled)) {
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

682 683 684 685 686 687 688 689 690 691 692 693
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
694 695 696
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
697 698 699 700 701 702 703 704 705 706 707

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

708
	return ret ? - EFAULT : 0;
709 710
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
738
	struct drm_i915_private *dev_priv = to_i915(dev);
739 740 741 742 743 744 745
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

746
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

847
static int
848 849 850 851
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
852
{
853
	char __user *user_data;
854
	ssize_t remain;
855
	loff_t offset;
856
	int shmem_page_offset, page_length, ret = 0;
857
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
858
	int prefaulted = 0;
859
	int needs_clflush = 0;
860
	struct sg_page_iter sg_iter;
861

862
	if (!i915_gem_object_has_struct_page(obj))
863 864
		return -ENODEV;

865
	user_data = u64_to_user_ptr(args->data_ptr);
866 867
	remain = args->size;

868
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
869

870
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
871 872 873
	if (ret)
		return ret;

874
	offset = args->offset;
875

876 877
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
878
		struct page *page = sg_page_iter_page(&sg_iter);
879 880 881 882

		if (remain <= 0)
			break;

883 884 885 886 887
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
888
		shmem_page_offset = offset_in_page(offset);
889 890 891 892
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

893 894 895
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

896 897 898 899 900
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
901 902 903

		mutex_unlock(&dev->struct_mutex);

904
		if (likely(!i915.prefault_disable) && !prefaulted) {
905
			ret = fault_in_multipages_writeable(user_data, remain);
906 907 908 909 910 911 912
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
913

914 915 916
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
917

918
		mutex_lock(&dev->struct_mutex);
919 920

		if (ret)
921 922
			goto out;

923
next_page:
924
		remain -= page_length;
925
		user_data += page_length;
926 927 928
		offset += page_length;
	}

929
out:
930 931
	i915_gem_object_unpin_pages(obj);

932 933 934
	return ret;
}

935 936
/**
 * Reads data from the object referenced by handle.
937 938 939
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
940 941 942 943 944
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
945
		     struct drm_file *file)
946 947
{
	struct drm_i915_gem_pread *args = data;
948
	struct drm_i915_gem_object *obj;
949
	int ret = 0;
950

951 952 953 954
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
955
		       u64_to_user_ptr(args->data_ptr),
956 957 958
		       args->size))
		return -EFAULT;

959
	obj = i915_gem_object_lookup(file, args->handle);
960 961
	if (!obj)
		return -ENOENT;
962

963
	/* Bounds check source.  */
964 965
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
966
		ret = -EINVAL;
967
		goto err;
C
Chris Wilson 已提交
968 969
	}

C
Chris Wilson 已提交
970 971
	trace_i915_gem_object_pread(obj, args->offset, args->size);

972 973 974 975 976 977 978 979
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

980
	ret = i915_gem_shmem_pread(dev, obj, args, file);
981

982
	/* pread for non shmem backed objects */
983 984
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
985 986
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
987 988
		intel_runtime_pm_put(to_i915(dev));
	}
989

990
	i915_gem_object_put(obj);
991
	mutex_unlock(&dev->struct_mutex);
992 993 994 995 996

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
997
	return ret;
998 999
}

1000 1001
/* This is the fast write path which cannot handle
 * page faults in the source data
1002
 */
1003 1004 1005 1006 1007 1008

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1009
{
1010 1011
	void __iomem *vaddr_atomic;
	void *vaddr;
1012
	unsigned long unwritten;
1013

P
Peter Zijlstra 已提交
1014
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1015 1016 1017
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1018
						      user_data, length);
P
Peter Zijlstra 已提交
1019
	io_mapping_unmap_atomic(vaddr_atomic);
1020
	return unwritten;
1021 1022
}

1023 1024 1025
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1026
 * @i915: i915 device private data
1027 1028 1029
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1030
 */
1031
static int
1032
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1033
			 struct drm_i915_gem_object *obj,
1034
			 struct drm_i915_gem_pwrite *args,
1035
			 struct drm_file *file)
1036
{
1037
	struct i915_ggtt *ggtt = &i915->ggtt;
1038
	struct drm_device *dev = obj->base.dev;
1039 1040
	struct drm_mm_node node;
	uint64_t remain, offset;
1041
	char __user *user_data;
1042
	int ret;
1043 1044 1045 1046
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
1047

1048 1049
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
1065 1066 1067
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1068
	}
D
Daniel Vetter 已提交
1069 1070 1071 1072 1073

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1074
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1075
	obj->dirty = true;
1076

1077 1078 1079 1080
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1081 1082
		/* Operation in this page
		 *
1083 1084 1085
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1086
		 */
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1100
		/* If we get a fault while copying data, then (presumably) our
1101 1102
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1103 1104
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1105
		 */
1106
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1107
				    page_offset, user_data, page_length)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1120
		}
1121

1122 1123 1124
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1125 1126
	}

1127
out_flush:
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1141
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1142
out_unpin:
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1153
out:
1154
	return ret;
1155 1156
}

1157 1158 1159 1160
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1161
static int
1162 1163 1164 1165 1166
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1167
{
1168
	char *vaddr;
1169
	int ret;
1170

1171
	if (unlikely(page_do_bit17_swizzling))
1172
		return -EINVAL;
1173

1174 1175 1176 1177
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1178 1179
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1180 1181 1182 1183
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1184

1185
	return ret ? -EFAULT : 0;
1186 1187
}

1188 1189
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1190
static int
1191 1192 1193 1194 1195
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1196
{
1197 1198
	char *vaddr;
	int ret;
1199

1200
	vaddr = kmap(page);
1201
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1202 1203 1204
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1205 1206
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1207 1208
						user_data,
						page_length);
1209 1210 1211 1212 1213
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1214 1215 1216
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1217
	kunmap(page);
1218

1219
	return ret ? -EFAULT : 0;
1220 1221 1222
}

static int
1223 1224 1225 1226
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1227 1228
{
	ssize_t remain;
1229 1230
	loff_t offset;
	char __user *user_data;
1231
	int shmem_page_offset, page_length, ret = 0;
1232
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1233
	int hit_slowpath = 0;
1234 1235
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1236
	struct sg_page_iter sg_iter;
1237

1238
	user_data = u64_to_user_ptr(args->data_ptr);
1239 1240
	remain = args->size;

1241
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1242

1243 1244 1245 1246
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1247 1248 1249 1250 1251
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1252
		needs_clflush_after = cpu_write_needs_clflush(obj);
1253
	}
1254 1255 1256 1257 1258
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1259

1260 1261 1262 1263
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1264
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1265

1266 1267
	i915_gem_object_pin_pages(obj);

1268
	offset = args->offset;
1269
	obj->dirty = 1;
1270

1271 1272
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1273
		struct page *page = sg_page_iter_page(&sg_iter);
1274
		int partial_cacheline_write;
1275

1276 1277 1278
		if (remain <= 0)
			break;

1279 1280 1281 1282 1283
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1284
		shmem_page_offset = offset_in_page(offset);
1285 1286 1287 1288 1289

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1290 1291 1292 1293 1294 1295 1296
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1297 1298 1299
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1300 1301 1302 1303 1304 1305
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1306 1307 1308

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1309 1310 1311 1312
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1313

1314
		mutex_lock(&dev->struct_mutex);
1315 1316

		if (ret)
1317 1318
			goto out;

1319
next_page:
1320
		remain -= page_length;
1321
		user_data += page_length;
1322
		offset += page_length;
1323 1324
	}

1325
out:
1326 1327
	i915_gem_object_unpin_pages(obj);

1328
	if (hit_slowpath) {
1329 1330 1331 1332 1333 1334 1335
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1336
			if (i915_gem_clflush_object(obj, obj->pin_display))
1337
				needs_clflush_after = true;
1338
		}
1339
	}
1340

1341
	if (needs_clflush_after)
1342
		i915_gem_chipset_flush(to_i915(dev));
1343 1344
	else
		obj->cache_dirty = true;
1345

1346
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1347
	return ret;
1348 1349 1350 1351
}

/**
 * Writes data to the object referenced by handle.
1352 1353 1354
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1355 1356 1357 1358 1359
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1360
		      struct drm_file *file)
1361
{
1362
	struct drm_i915_private *dev_priv = to_i915(dev);
1363
	struct drm_i915_gem_pwrite *args = data;
1364
	struct drm_i915_gem_object *obj;
1365 1366 1367 1368 1369 1370
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1371
		       u64_to_user_ptr(args->data_ptr),
1372 1373 1374
		       args->size))
		return -EFAULT;

1375
	if (likely(!i915.prefault_disable)) {
1376
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1377 1378 1379 1380
						   args->size);
		if (ret)
			return -EFAULT;
	}
1381

1382
	obj = i915_gem_object_lookup(file, args->handle);
1383 1384
	if (!obj)
		return -ENOENT;
1385

1386
	/* Bounds check destination. */
1387 1388
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1389
		ret = -EINVAL;
1390
		goto err;
C
Chris Wilson 已提交
1391 1392
	}

C
Chris Wilson 已提交
1393 1394
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1405
	ret = -EFAULT;
1406 1407 1408 1409 1410 1411
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1412 1413
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1414
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1415 1416 1417
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1418
	}
1419

1420
	if (ret == -EFAULT || ret == -ENOSPC) {
1421 1422
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1423
		else if (i915_gem_object_has_struct_page(obj))
1424
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1425 1426
		else
			ret = -ENODEV;
1427
	}
1428

1429
	i915_gem_object_put(obj);
1430
	mutex_unlock(&dev->struct_mutex);
1431 1432
	intel_runtime_pm_put(dev_priv);

1433
	return ret;
1434 1435 1436 1437 1438 1439

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1440 1441
}

1442 1443 1444 1445 1446 1447 1448
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1449
/**
1450 1451
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1452 1453 1454
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1455 1456 1457
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1458
			  struct drm_file *file)
1459 1460
{
	struct drm_i915_gem_set_domain *args = data;
1461
	struct drm_i915_gem_object *obj;
1462 1463
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1464 1465
	int ret;

1466
	/* Only handle setting domains to types used by the CPU. */
1467
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1468 1469 1470 1471 1472 1473 1474 1475
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1476
	obj = i915_gem_object_lookup(file, args->handle);
1477 1478
	if (!obj)
		return -ENOENT;
1479

1480 1481 1482 1483
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1484 1485 1486 1487 1488
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1489
	if (ret)
1490
		goto err;
1491

1492
	if (read_domains & I915_GEM_DOMAIN_GTT)
1493
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1494
	else
1495
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1496

1497
	if (write_domain != 0)
1498
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1499

1500
	i915_gem_object_put(obj);
1501 1502
	mutex_unlock(&dev->struct_mutex);
	return ret;
1503 1504 1505 1506

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1507 1508 1509 1510
}

/**
 * Called when user space has done writes to this buffer
1511 1512 1513
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1514 1515 1516
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1517
			 struct drm_file *file)
1518 1519
{
	struct drm_i915_gem_sw_finish *args = data;
1520
	struct drm_i915_gem_object *obj;
1521 1522
	int ret = 0;

1523
	ret = i915_mutex_lock_interruptible(dev);
1524
	if (ret)
1525
		return ret;
1526

1527 1528
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1529 1530
		ret = -ENOENT;
		goto unlock;
1531 1532 1533
	}

	/* Pinned buffers may be scanout, so flush the cache */
1534
	if (obj->pin_display)
1535
		i915_gem_object_flush_cpu_write_domain(obj);
1536

1537
	i915_gem_object_put(obj);
1538
unlock:
1539 1540 1541 1542 1543
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1544 1545 1546 1547 1548
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1549 1550 1551
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1562 1563 1564
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1565
		    struct drm_file *file)
1566 1567
{
	struct drm_i915_gem_mmap *args = data;
1568
	struct drm_i915_gem_object *obj;
1569 1570
	unsigned long addr;

1571 1572 1573
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1574
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1575 1576
		return -ENODEV;

1577 1578
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1579
		return -ENOENT;
1580

1581 1582 1583
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1584
	if (!obj->base.filp) {
1585
		i915_gem_object_put_unlocked(obj);
1586 1587 1588
		return -EINVAL;
	}

1589
	addr = vm_mmap(obj->base.filp, 0, args->size,
1590 1591
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1592 1593 1594 1595
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1596
		if (down_write_killable(&mm->mmap_sem)) {
1597
			i915_gem_object_put_unlocked(obj);
1598 1599
			return -EINTR;
		}
1600 1601 1602 1603 1604 1605 1606
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1607 1608

		/* This may race, but that's ok, it only gets set */
1609
		WRITE_ONCE(obj->has_wc_mmap, true);
1610
	}
1611
	i915_gem_object_put_unlocked(obj);
1612 1613 1614 1615 1616 1617 1618 1619
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1620 1621
/**
 * i915_gem_fault - fault a page into the GTT
1622 1623
 * @vma: VMA in question
 * @vmf: fault info
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1638 1639
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1640 1641
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1642
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1643
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1644 1645
	pgoff_t page_offset;
	unsigned long pfn;
1646
	int ret;
1647

1648 1649 1650 1651
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

C
Chris Wilson 已提交
1652 1653
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1654
	/* Try to flush the object off the GPU first without holding the lock.
1655
	 * Upon acquiring the lock, we will perform our sanity checks and then
1656 1657 1658
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1659
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1660
	if (ret)
1661 1662 1663 1664 1665 1666 1667
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1668

1669 1670
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1671
		ret = -EFAULT;
1672
		goto err_unlock;
1673 1674
	}

1675
	/* Use a partial view if the object is bigger than the aperture. */
1676
	if (obj->base.size >= ggtt->mappable_end &&
1677
	    obj->tiling_mode == I915_TILING_NONE) {
1678
		static const unsigned int chunk_size = 256; // 1 MiB
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1691
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1692
	if (ret)
1693
		goto err_unlock;
1694

1695 1696
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1697
		goto err_unpin;
1698

1699
	ret = i915_gem_object_get_fence(obj);
1700
	if (ret)
1701
		goto err_unpin;
1702

1703
	/* Finally, remap it using the new GTT offset */
1704
	pfn = ggtt->mappable_base +
1705
		i915_gem_obj_ggtt_offset_view(obj, &view);
1706
	pfn >>= PAGE_SHIFT;
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1717

1718 1719
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1720 1721 1722 1723 1724
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1746
err_unpin:
1747
	i915_gem_object_ggtt_unpin_view(obj, &view);
1748
err_unlock:
1749
	mutex_unlock(&dev->struct_mutex);
1750 1751 1752
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1753
	switch (ret) {
1754
	case -EIO:
1755 1756 1757 1758 1759 1760 1761
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1762 1763 1764
			ret = VM_FAULT_SIGBUS;
			break;
		}
1765
	case -EAGAIN:
D
Daniel Vetter 已提交
1766 1767 1768 1769
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1770
		 */
1771 1772
	case 0:
	case -ERESTARTSYS:
1773
	case -EINTR:
1774 1775 1776 1777 1778
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1779 1780
		ret = VM_FAULT_NOPAGE;
		break;
1781
	case -ENOMEM:
1782 1783
		ret = VM_FAULT_OOM;
		break;
1784
	case -ENOSPC:
1785
	case -EFAULT:
1786 1787
		ret = VM_FAULT_SIGBUS;
		break;
1788
	default:
1789
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1790 1791
		ret = VM_FAULT_SIGBUS;
		break;
1792
	}
1793
	return ret;
1794 1795
}

1796 1797 1798 1799
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1800
 * Preserve the reservation of the mmapping with the DRM core code, but
1801 1802 1803 1804 1805 1806 1807 1808 1809
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1810
void
1811
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1812
{
1813 1814 1815 1816 1817 1818
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1819 1820
	if (!obj->fault_mappable)
		return;
1821

1822 1823
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1834
	obj->fault_mappable = false;
1835 1836
}

1837 1838 1839 1840 1841 1842 1843 1844 1845
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1846 1847
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1848
 * @dev_priv: i915 device
1849 1850 1851 1852 1853 1854
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1855 1856
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1857
{
1858
	u64 ggtt_size;
1859

1860 1861
	GEM_BUG_ON(size == 0);

1862
	if (INTEL_GEN(dev_priv) >= 4 ||
1863 1864
	    tiling_mode == I915_TILING_NONE)
		return size;
1865 1866

	/* Previous chips need a power-of-two fence region when tiling */
1867
	if (IS_GEN3(dev_priv))
1868
		ggtt_size = 1024*1024;
1869
	else
1870
		ggtt_size = 512*1024;
1871

1872 1873
	while (ggtt_size < size)
		ggtt_size <<= 1;
1874

1875
	return ggtt_size;
1876 1877
}

1878
/**
1879
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1880
 * @dev_priv: i915 device
1881 1882
 * @size: object size
 * @tiling_mode: tiling mode
1883
 * @fenced: is fenced alignment required or not
1884
 *
1885
 * Return the required global GTT alignment for an object, taking into account
1886
 * potential fence register mapping.
1887
 */
1888
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1889
				int tiling_mode, bool fenced)
1890
{
1891 1892
	GEM_BUG_ON(size == 0);

1893 1894 1895 1896
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1897
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1898
	    tiling_mode == I915_TILING_NONE)
1899 1900
		return 4096;

1901 1902 1903 1904
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1905
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1906 1907
}

1908 1909
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1910
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1911
	int err;
1912

1913 1914 1915
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1916

1917 1918 1919
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1920
	 */
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1931

1932
	return err;
1933 1934 1935 1936 1937 1938 1939
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1940
int
1941 1942
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1943
		  uint32_t handle,
1944
		  uint64_t *offset)
1945
{
1946
	struct drm_i915_gem_object *obj;
1947 1948
	int ret;

1949
	obj = i915_gem_object_lookup(file, handle);
1950 1951
	if (!obj)
		return -ENOENT;
1952

1953
	ret = i915_gem_object_create_mmap_offset(obj);
1954 1955
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1956

1957
	i915_gem_object_put_unlocked(obj);
1958
	return ret;
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1982
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1983 1984
}

D
Daniel Vetter 已提交
1985 1986 1987
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1988
{
1989
	i915_gem_object_free_mmap_offset(obj);
1990

1991 1992
	if (obj->base.filp == NULL)
		return;
1993

D
Daniel Vetter 已提交
1994 1995 1996 1997 1998
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1999
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2000 2001
	obj->madv = __I915_MADV_PURGED;
}
2002

2003 2004 2005
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2006
{
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2021 2022
}

2023
static void
2024
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2025
{
2026 2027
	struct sgt_iter sgt_iter;
	struct page *page;
2028
	int ret;
2029

2030
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2031

C
Chris Wilson 已提交
2032
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2033
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2034 2035 2036
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2037
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2038 2039 2040
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2041 2042
	i915_gem_gtt_finish_object(obj);

2043
	if (i915_gem_object_needs_bit17_swizzle(obj))
2044 2045
		i915_gem_object_save_bit_17_swizzle(obj);

2046 2047
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2048

2049
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2050
		if (obj->dirty)
2051
			set_page_dirty(page);
2052

2053
		if (obj->madv == I915_MADV_WILLNEED)
2054
			mark_page_accessed(page);
2055

2056
		put_page(page);
2057
	}
2058
	obj->dirty = 0;
2059

2060 2061
	sg_free_table(obj->pages);
	kfree(obj->pages);
2062
}
C
Chris Wilson 已提交
2063

2064
int
2065 2066 2067 2068
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2069
	if (obj->pages == NULL)
2070 2071
		return 0;

2072 2073 2074
	if (obj->pages_pin_count)
		return -EBUSY;

2075
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2076

2077 2078 2079
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2080
	list_del(&obj->global_list);
2081

2082
	if (obj->mapping) {
2083 2084 2085 2086
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2087 2088 2089
		obj->mapping = NULL;
	}

2090
	ops->put_pages(obj);
2091
	obj->pages = NULL;
2092

2093
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2094 2095 2096 2097

	return 0;
}

2098
static int
C
Chris Wilson 已提交
2099
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2100
{
2101
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2102 2103
	int page_count, i;
	struct address_space *mapping;
2104 2105
	struct sg_table *st;
	struct scatterlist *sg;
2106
	struct sgt_iter sgt_iter;
2107
	struct page *page;
2108
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2109
	int ret;
C
Chris Wilson 已提交
2110
	gfp_t gfp;
2111

C
Chris Wilson 已提交
2112 2113 2114 2115 2116 2117 2118
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2119 2120 2121 2122
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2123
	page_count = obj->base.size / PAGE_SIZE;
2124 2125
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2126
		return -ENOMEM;
2127
	}
2128

2129 2130 2131 2132 2133
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2134
	mapping = file_inode(obj->base.filp)->i_mapping;
2135
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2136
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2137 2138 2139
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2140 2141
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2142 2143 2144 2145 2146
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2147 2148 2149 2150 2151 2152 2153 2154
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2155
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2156 2157
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2158
				goto err_pages;
I
Imre Deak 已提交
2159
			}
C
Chris Wilson 已提交
2160
		}
2161 2162 2163 2164 2165 2166 2167 2168
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2169 2170 2171 2172 2173 2174 2175 2176 2177
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2178 2179 2180

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2181
	}
2182 2183 2184 2185
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2186 2187
	obj->pages = st;

I
Imre Deak 已提交
2188 2189 2190 2191
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2192
	if (i915_gem_object_needs_bit17_swizzle(obj))
2193 2194
		i915_gem_object_do_bit_17_swizzle(obj);

2195 2196 2197 2198
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2199 2200 2201
	return 0;

err_pages:
2202
	sg_mark_end(sg);
2203 2204
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2205 2206
	sg_free_table(st);
	kfree(st);
2207 2208 2209 2210 2211 2212 2213 2214 2215

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2216 2217 2218 2219
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2220 2221
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2232
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2233 2234 2235
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2236
	if (obj->pages)
2237 2238
		return 0;

2239
	if (obj->madv != I915_MADV_WILLNEED) {
2240
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2241
		return -EFAULT;
2242 2243
	}

2244 2245
	BUG_ON(obj->pages_pin_count);

2246 2247 2248 2249
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2250
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2251 2252 2253 2254

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2255
	return 0;
2256 2257
}

2258 2259 2260 2261 2262
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2263 2264
	struct sgt_iter sgt_iter;
	struct page *page;
2265 2266
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2267 2268 2269 2270 2271 2272 2273
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2274 2275 2276 2277 2278 2279
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2280

2281 2282
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2283 2284 2285 2286 2287 2288

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2289 2290
	if (pages != stack_pages)
		drm_free_large(pages);
2291 2292 2293 2294 2295

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2308 2309 2310
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2311 2312 2313 2314 2315 2316 2317 2318
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2319
static void
2320 2321
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2322
{
2323 2324
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2325

2326
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2327 2328
}

2329
static void
2330 2331
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2332
{
2333 2334 2335
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2336

2337
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2338

2339 2340
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2341
		return;
2342

2343 2344 2345 2346
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2347 2348 2349
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2350

2351
	i915_gem_object_put(obj);
2352 2353
}

2354
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2355
{
2356
	unsigned long elapsed;
2357

2358
	if (ctx->hang_stats.banned)
2359 2360
		return true;

2361
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2362 2363
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2364 2365
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2366 2367 2368 2369 2370
	}

	return false;
}

2371
static void i915_set_reset_status(struct i915_gem_context *ctx,
2372
				  const bool guilty)
2373
{
2374
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2375 2376

	if (guilty) {
2377
		hs->banned = i915_context_is_banned(ctx);
2378 2379 2380 2381
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2382 2383 2384
	}
}

2385
struct drm_i915_gem_request *
2386
i915_gem_find_active_request(struct intel_engine_cs *engine)
2387
{
2388 2389
	struct drm_i915_gem_request *request;

2390 2391 2392 2393 2394 2395 2396 2397
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2398
	list_for_each_entry(request, &engine->request_list, link) {
2399
		if (i915_gem_request_completed(request))
2400
			continue;
2401

2402
		return request;
2403
	}
2404 2405 2406 2407

	return NULL;
}

2408
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2409 2410 2411 2412
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2413
	request = i915_gem_find_active_request(engine);
2414 2415 2416
	if (request == NULL)
		return;

2417
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2418

2419
	i915_set_reset_status(request->ctx, ring_hung);
2420
	list_for_each_entry_continue(request, &engine->request_list, link)
2421
		i915_set_reset_status(request->ctx, false);
2422
}
2423

2424
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2425
{
2426
	struct drm_i915_gem_request *request;
2427
	struct intel_ring *ring;
2428

2429 2430 2431
	request = i915_gem_active_peek(&engine->last_request,
				       &engine->i915->drm.struct_mutex);

2432 2433 2434 2435
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2436 2437
	if (request)
		intel_engine_init_seqno(engine, request->fence.seqno);
2438

2439 2440 2441 2442 2443 2444
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2445
	if (i915.enable_execlists) {
2446 2447
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2448

2449
		intel_execlists_cancel_requests(engine);
2450 2451
	}

2452 2453 2454 2455 2456 2457 2458
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2459
	if (request)
2460
		i915_gem_request_retire_upto(request);
2461
	GEM_BUG_ON(intel_engine_is_active(engine));
2462 2463 2464 2465 2466 2467 2468 2469

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2470 2471 2472
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2473
	}
2474

2475
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2476 2477
}

2478
void i915_gem_reset(struct drm_device *dev)
2479
{
2480
	struct drm_i915_private *dev_priv = to_i915(dev);
2481
	struct intel_engine_cs *engine;
2482

2483 2484 2485 2486 2487
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2488
	for_each_engine(engine, dev_priv)
2489
		i915_gem_reset_engine_status(engine);
2490

2491
	for_each_engine(engine, dev_priv)
2492
		i915_gem_reset_engine_cleanup(engine);
2493
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2494

2495 2496
	i915_gem_context_reset(dev);

2497
	i915_gem_restore_fences(dev);
2498 2499
}

2500
static void
2501 2502
i915_gem_retire_work_handler(struct work_struct *work)
{
2503
	struct drm_i915_private *dev_priv =
2504
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2505
	struct drm_device *dev = &dev_priv->drm;
2506

2507
	/* Come back later if the device is busy... */
2508
	if (mutex_trylock(&dev->struct_mutex)) {
2509
		i915_gem_retire_requests(dev_priv);
2510
		mutex_unlock(&dev->struct_mutex);
2511
	}
2512 2513 2514 2515 2516

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2517 2518
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2519 2520
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2521
				   round_jiffies_up_relative(HZ));
2522
	}
2523
}
2524

2525 2526 2527 2528
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2529
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2530
	struct drm_device *dev = &dev_priv->drm;
2531
	struct intel_engine_cs *engine;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2554

2555
	for_each_engine(engine, dev_priv)
2556
		i915_gem_batch_pool_fini(&engine->batch_pool);
2557

2558 2559 2560
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2561

2562 2563 2564 2565
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2566
	stuck_engines = intel_kick_waiters(dev_priv);
2567 2568 2569
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2570

2571 2572 2573 2574 2575
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2576

2577 2578 2579 2580
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2581
	}
2582 2583
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2597 2598
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2599 2600 2601
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2626
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2627 2628
	int i, n = 0;
	int ret;
2629

2630 2631 2632
	if (args->flags != 0)
		return -EINVAL;

2633 2634 2635 2636
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2637 2638
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2639 2640 2641 2642
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2643
	if (!i915_gem_object_is_active(obj))
2644
		goto out;
2645

2646
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2647
		struct drm_i915_gem_request *req;
2648

2649 2650
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2651 2652
		if (req)
			requests[n++] = req;
2653 2654
	}

2655 2656
out:
	i915_gem_object_put(obj);
2657 2658
	mutex_unlock(&dev->struct_mutex);

2659 2660
	for (i = 0; i < n; i++) {
		if (ret == 0)
2661 2662 2663
			ret = i915_wait_request(requests[i], true,
						args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						to_rps_client(file));
2664
		i915_gem_request_put(requests[i]);
2665
	}
2666
	return ret;
2667 2668
}

2669
static int
2670
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2671
		       struct drm_i915_gem_request *from)
2672 2673 2674
{
	int ret;

2675
	if (to->engine == from->engine)
2676 2677
		return 0;

2678
	if (!i915.semaphores) {
2679 2680 2681 2682
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2683 2684 2685
		if (ret)
			return ret;
	} else {
2686
		int idx = intel_engine_sync_index(from->engine, to->engine);
2687
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2688 2689
			return 0;

2690
		trace_i915_gem_ring_sync_to(to, from);
2691
		ret = to->engine->semaphore.sync_to(to, from);
2692 2693 2694
		if (ret)
			return ret;

2695
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2696 2697 2698 2699 2700
	}

	return 0;
}

2701 2702 2703 2704
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2705
 * @to: request we are wishing to use
2706 2707
 *
 * This code is meant to abstract object synchronization with the GPU.
2708 2709 2710
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2711 2712 2713 2714 2715 2716 2717
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2718 2719 2720
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2721 2722
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2723
		     struct drm_i915_gem_request *to)
2724
{
C
Chris Wilson 已提交
2725 2726 2727
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2728

C
Chris Wilson 已提交
2729
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2730

2731
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2732 2733
	if (!active_mask)
		return 0;
2734

C
Chris Wilson 已提交
2735 2736
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2737
	} else {
C
Chris Wilson 已提交
2738 2739
		active_mask = 1;
		active = &obj->last_write;
2740
	}
C
Chris Wilson 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2751
		ret = __i915_gem_object_sync(to, request);
2752 2753 2754
		if (ret)
			return ret;
	}
2755

2756
	return 0;
2757 2758
}

2759 2760 2761 2762 2763 2764 2765
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2766 2767 2768
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2780 2781
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2782
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2783 2784 2785 2786 2787 2788 2789 2790

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2791
int i915_vma_unbind(struct i915_vma *vma)
2792
{
2793
	struct drm_i915_gem_object *obj = vma->obj;
2794
	unsigned long active;
2795
	int ret;
2796

2797 2798 2799 2800
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2801
	if (active) {
2802 2803
		int idx;

2804 2805 2806 2807 2808
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2809
		__i915_vma_pin(vma);
2810

2811 2812 2813 2814
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2815
				break;
2816 2817
		}

2818
		__i915_vma_unpin(vma);
2819 2820 2821
		if (ret)
			return ret;

2822 2823 2824
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2825
	if (i915_vma_is_pinned(vma))
2826 2827
		return -EBUSY;

2828 2829
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2830

2831 2832
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2833

2834 2835
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2836
		i915_gem_object_finish_gtt(obj);
2837

2838 2839 2840 2841
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2842 2843

		__i915_vma_iounmap(vma);
2844
	}
2845

2846 2847 2848 2849
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2850
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2851

2852 2853 2854
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2855
	if (i915_vma_is_ggtt(vma)) {
2856 2857 2858 2859 2860 2861
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2862
		vma->ggtt_view.pages = NULL;
2863
	}
2864

B
Ben Widawsky 已提交
2865
	/* Since the unbound list is global, only move to that list if
2866
	 * no more VMAs exist. */
2867 2868 2869
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2870

2871 2872 2873 2874 2875 2876
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2877
destroy:
2878
	if (unlikely(i915_vma_is_closed(vma)))
2879 2880
		i915_vma_destroy(vma);

2881
	return 0;
2882 2883
}

2884 2885
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2886
{
2887
	struct intel_engine_cs *engine;
2888
	int ret;
2889

2890
	for_each_engine(engine, dev_priv) {
2891 2892 2893
		if (engine->last_context == NULL)
			continue;

2894
		ret = intel_engine_idle(engine, interruptible);
2895 2896 2897
		if (ret)
			return ret;
	}
2898

2899
	return 0;
2900 2901
}

2902
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2903 2904
				     unsigned long cache_level)
{
2905
	struct drm_mm_node *gtt_space = &vma->node;
2906 2907
	struct drm_mm_node *other;

2908 2909 2910 2911 2912 2913
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2914
	 */
2915
	if (vma->vm->mm.color_adjust == NULL)
2916 2917
		return true;

2918
	if (!drm_mm_node_allocated(gtt_space))
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2935
/**
2936 2937
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2938
 * @size: requested size in bytes (can be larger than the VMA)
2939
 * @alignment: required alignment
2940
 * @flags: mask of PIN_* flags to use
2941 2942 2943 2944 2945 2946 2947
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2948
 */
2949 2950
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2951
{
2952 2953
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2954 2955
	u64 start, end;
	u64 min_alignment;
2956
	int ret;
2957

2958
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2959
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
		size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);

	min_alignment =
		i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2973
		return -EINVAL;
2974
	}
2975

2976
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2977 2978

	end = vma->vm->total;
2979
	if (flags & PIN_MAPPABLE)
2980
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
2981
	if (flags & PIN_ZONE_4G)
2982
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
2983

2984 2985 2986
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
2987
	 */
2988
	if (size > end) {
2989
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
2990
			  size, obj->base.size,
2991
			  flags & PIN_MAPPABLE ? "mappable" : "total",
2992
			  end);
2993
		return -E2BIG;
2994 2995
	}

2996
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
2997
	if (ret)
2998
		return ret;
C
Chris Wilson 已提交
2999

3000 3001
	i915_gem_object_pin_pages(obj);

3002
	if (flags & PIN_OFFSET_FIXED) {
3003
		u64 offset = flags & PIN_OFFSET_MASK;
3004
		if (offset & (alignment - 1) || offset > end - size) {
3005
			ret = -EINVAL;
3006
			goto err_unpin;
3007
		}
3008

3009 3010 3011
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3012
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3013 3014 3015
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3016 3017 3018
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3019
		}
3020
	} else {
3021 3022
		u32 search_flag, alloc_flag;

3023 3024 3025 3026 3027 3028 3029
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3040
search_free:
3041 3042
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3043 3044 3045 3046 3047 3048
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3049
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3050 3051 3052 3053 3054
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3055

3056
			goto err_unpin;
3057
		}
3058
	}
3059
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3060

3061
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3062
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3063
	obj->bind_count++;
3064

3065
	return 0;
B
Ben Widawsky 已提交
3066

3067
err_unpin:
B
Ben Widawsky 已提交
3068
	i915_gem_object_unpin_pages(obj);
3069
	return ret;
3070 3071
}

3072
bool
3073 3074
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3075 3076 3077 3078 3079
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3080
	if (obj->pages == NULL)
3081
		return false;
3082

3083 3084 3085 3086
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3087
	if (obj->stolen || obj->phys_handle)
3088
		return false;
3089

3090 3091 3092 3093 3094 3095 3096 3097
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3098 3099
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3100
		return false;
3101
	}
3102

C
Chris Wilson 已提交
3103
	trace_i915_gem_object_clflush(obj);
3104
	drm_clflush_sg(obj->pages);
3105
	obj->cache_dirty = false;
3106 3107

	return true;
3108 3109 3110 3111
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3112
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3113
{
C
Chris Wilson 已提交
3114 3115
	uint32_t old_write_domain;

3116
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3117 3118
		return;

3119
	/* No actual flushing is required for the GTT write domain.  Writes
3120 3121
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3122 3123 3124 3125
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3126
	 */
3127 3128
	wmb();

3129 3130
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3131

3132
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3133

C
Chris Wilson 已提交
3134
	trace_i915_gem_object_change_domain(obj,
3135
					    obj->base.read_domains,
C
Chris Wilson 已提交
3136
					    old_write_domain);
3137 3138 3139 3140
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3141
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3142
{
C
Chris Wilson 已提交
3143
	uint32_t old_write_domain;
3144

3145
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3146 3147
		return;

3148
	if (i915_gem_clflush_object(obj, obj->pin_display))
3149
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3150

3151 3152
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3153

3154
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3155

C
Chris Wilson 已提交
3156
	trace_i915_gem_object_change_domain(obj,
3157
					    obj->base.read_domains,
C
Chris Wilson 已提交
3158
					    old_write_domain);
3159 3160
}

3161 3162
/**
 * Moves a single object to the GTT read, and possibly write domain.
3163 3164
 * @obj: object to act on
 * @write: ask for write access or read only
3165 3166 3167 3168
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3169
int
3170
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3171
{
C
Chris Wilson 已提交
3172
	uint32_t old_write_domain, old_read_domains;
3173
	struct i915_vma *vma;
3174
	int ret;
3175

3176
	ret = i915_gem_object_wait_rendering(obj, !write);
3177 3178 3179
	if (ret)
		return ret;

3180 3181 3182
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3195
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3196

3197 3198 3199 3200 3201 3202 3203
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3204 3205
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3206

3207 3208 3209
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3210 3211
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3212
	if (write) {
3213 3214 3215
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3216 3217
	}

C
Chris Wilson 已提交
3218 3219 3220 3221
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3222
	/* And bump the LRU for this access */
3223
	vma = i915_gem_obj_to_ggtt(obj);
3224 3225 3226 3227
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3228

3229 3230 3231
	return 0;
}

3232 3233
/**
 * Changes the cache-level of an object across all VMA.
3234 3235
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3247 3248 3249
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3250
	struct i915_vma *vma;
3251
	int ret = 0;
3252 3253

	if (obj->cache_level == cache_level)
3254
		goto out;
3255

3256 3257 3258 3259 3260
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3261 3262
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3263 3264 3265
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3266
		if (i915_vma_is_pinned(vma)) {
3267 3268 3269 3270
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3283 3284
	}

3285 3286 3287 3288 3289 3290 3291
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3292
	if (obj->bind_count) {
3293 3294 3295 3296
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3297
		ret = i915_gem_object_wait_rendering(obj, false);
3298 3299 3300
		if (ret)
			return ret;

3301
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3318 3319 3320
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3321 3322 3323 3324 3325 3326 3327 3328
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3329 3330
		}

3331
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3332 3333 3334 3335 3336 3337 3338
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3339 3340
	}

3341
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3342 3343 3344
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3345
out:
3346 3347 3348 3349
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3350
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3351
		if (i915_gem_clflush_object(obj, true))
3352
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3353 3354 3355 3356 3357
	}

	return 0;
}

B
Ben Widawsky 已提交
3358 3359
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3360
{
B
Ben Widawsky 已提交
3361
	struct drm_i915_gem_caching *args = data;
3362 3363
	struct drm_i915_gem_object *obj;

3364 3365
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3366
		return -ENOENT;
3367

3368 3369 3370 3371 3372 3373
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3374 3375 3376 3377
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3378 3379 3380 3381
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3382

3383
	i915_gem_object_put_unlocked(obj);
3384
	return 0;
3385 3386
}

B
Ben Widawsky 已提交
3387 3388
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3389
{
3390
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3391
	struct drm_i915_gem_caching *args = data;
3392 3393 3394 3395
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3396 3397
	switch (args->caching) {
	case I915_CACHING_NONE:
3398 3399
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3400
	case I915_CACHING_CACHED:
3401 3402 3403 3404 3405 3406
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3407
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3408 3409
			return -ENODEV;

3410 3411
		level = I915_CACHE_LLC;
		break;
3412 3413 3414
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3415 3416 3417 3418
	default:
		return -EINVAL;
	}

3419 3420
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3421 3422
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3423
		goto rpm_put;
B
Ben Widawsky 已提交
3424

3425 3426
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3427 3428 3429 3430 3431 3432
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3433
	i915_gem_object_put(obj);
3434 3435
unlock:
	mutex_unlock(&dev->struct_mutex);
3436 3437 3438
rpm_put:
	intel_runtime_pm_put(dev_priv);

3439 3440 3441
	return ret;
}

3442
/*
3443 3444 3445
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3446 3447
 */
int
3448 3449
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3450
				     const struct i915_ggtt_view *view)
3451
{
3452
	u32 old_read_domains, old_write_domain;
3453 3454
	int ret;

3455 3456 3457
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3458
	obj->pin_display++;
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3469 3470
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3471
	if (ret)
3472
		goto err_unpin_display;
3473

3474 3475 3476 3477
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3478
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3479 3480
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3481
	if (ret)
3482
		goto err_unpin_display;
3483

3484
	i915_gem_object_flush_cpu_write_domain(obj);
3485

3486
	old_write_domain = obj->base.write_domain;
3487
	old_read_domains = obj->base.read_domains;
3488 3489 3490 3491

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3492
	obj->base.write_domain = 0;
3493
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3494 3495 3496

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3497
					    old_write_domain);
3498 3499

	return 0;
3500 3501

err_unpin_display:
3502
	obj->pin_display--;
3503 3504 3505 3506
	return ret;
}

void
3507 3508
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3509
{
3510 3511 3512
	if (WARN_ON(obj->pin_display == 0))
		return;

3513 3514
	i915_gem_object_ggtt_unpin_view(obj, view);

3515
	obj->pin_display--;
3516 3517
}

3518 3519
/**
 * Moves a single object to the CPU read, and possibly write domain.
3520 3521
 * @obj: object to act on
 * @write: requesting write or read-only access
3522 3523 3524 3525
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3526
int
3527
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3528
{
C
Chris Wilson 已提交
3529
	uint32_t old_write_domain, old_read_domains;
3530 3531
	int ret;

3532
	ret = i915_gem_object_wait_rendering(obj, !write);
3533 3534 3535
	if (ret)
		return ret;

3536 3537 3538
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3539
	i915_gem_object_flush_gtt_write_domain(obj);
3540

3541 3542
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3543

3544
	/* Flush the CPU cache if it's still invalid. */
3545
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3546
		i915_gem_clflush_object(obj, false);
3547

3548
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3549 3550 3551 3552 3553
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3554
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3555 3556 3557 3558 3559

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3560 3561
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3562
	}
3563

C
Chris Wilson 已提交
3564 3565 3566 3567
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3568 3569 3570
	return 0;
}

3571 3572 3573
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3574 3575 3576 3577
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3578 3579 3580
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3581
static int
3582
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3583
{
3584
	struct drm_i915_private *dev_priv = to_i915(dev);
3585
	struct drm_i915_file_private *file_priv = file->driver_priv;
3586
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3587
	struct drm_i915_gem_request *request, *target = NULL;
3588
	int ret;
3589

3590 3591 3592 3593
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3594 3595 3596
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3597

3598
	spin_lock(&file_priv->mm.lock);
3599
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3600 3601
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3602

3603 3604 3605 3606 3607 3608 3609
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3610
		target = request;
3611
	}
3612
	if (target)
3613
		i915_gem_request_get(target);
3614
	spin_unlock(&file_priv->mm.lock);
3615

3616
	if (target == NULL)
3617
		return 0;
3618

3619
	ret = i915_wait_request(target, true, NULL, NULL);
3620
	i915_gem_request_put(target);
3621

3622 3623 3624
	return ret;
}

3625
static bool
3626
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3627 3628 3629
{
	struct drm_i915_gem_object *obj = vma->obj;

3630 3631 3632
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3633 3634 3635 3636
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3637 3638 3639 3640 3641 3642 3643 3644 3645
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3646 3647 3648 3649
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3650 3651 3652
	return false;
}

3653 3654 3655
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3656
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3657 3658 3659
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3660
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3661 3662
					    obj->base.size,
					    obj->tiling_mode);
3663
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3664 3665 3666
						      obj->base.size,
						      obj->tiling_mode,
						      true);
3667 3668 3669 3670 3671

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3672
		    dev_priv->ggtt.mappable_end);
3673 3674 3675 3676

	obj->map_and_fenceable = mappable && fenceable;
}

3677 3678
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3679
{
3680
	unsigned int bound = vma->flags;
3681 3682
	int ret;

3683
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3684
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3685

3686 3687 3688 3689
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3690

3691
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3692 3693 3694
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3695
	}
3696

3697
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3698
	if (ret)
3699
		goto err;
3700

3701
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3702
		__i915_vma_set_map_and_fenceable(vma);
3703

3704
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3705 3706
	return 0;

3707 3708 3709
err:
	__i915_vma_unpin(vma);
	return ret;
3710 3711 3712 3713 3714
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3715
			 u64 size,
3716 3717
			 u64 alignment,
			 u64 flags)
3718
{
3719 3720
	struct i915_vma *vma;
	int ret;
3721

3722 3723
	if (!view)
		view = &i915_ggtt_view_normal;
3724

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3749 3750
}

3751
void
3752 3753
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3754
{
3755
	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3756 3757 3758 3759
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3760
		    struct drm_file *file)
3761 3762
{
	struct drm_i915_gem_busy *args = data;
3763
	struct drm_i915_gem_object *obj;
3764 3765
	int ret;

3766
	ret = i915_mutex_lock_interruptible(dev);
3767
	if (ret)
3768
		return ret;
3769

3770 3771
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3772 3773
		ret = -ENOENT;
		goto unlock;
3774
	}
3775

3776 3777
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3778
	 * become non-busy without any further actions.
3779
	 */
3780
	args->busy = 0;
3781
	if (i915_gem_object_is_active(obj)) {
3782
		struct drm_i915_gem_request *req;
3783 3784
		int i;

3785
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3786 3787
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3788
			if (req)
3789
				args->busy |= 1 << (16 + req->engine->exec_id);
3790
		}
3791 3792
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3793 3794
		if (req)
			args->busy |= req->engine->exec_id;
3795
	}
3796

3797
	i915_gem_object_put(obj);
3798
unlock:
3799
	mutex_unlock(&dev->struct_mutex);
3800
	return ret;
3801 3802 3803 3804 3805 3806
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3807
	return i915_gem_ring_throttle(dev, file_priv);
3808 3809
}

3810 3811 3812 3813
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3814
	struct drm_i915_private *dev_priv = to_i915(dev);
3815
	struct drm_i915_gem_madvise *args = data;
3816
	struct drm_i915_gem_object *obj;
3817
	int ret;
3818 3819 3820 3821 3822 3823 3824 3825 3826

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3827 3828 3829 3830
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3831 3832
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3833 3834
		ret = -ENOENT;
		goto unlock;
3835 3836
	}

B
Ben Widawsky 已提交
3837
	if (i915_gem_obj_is_pinned(obj)) {
3838 3839
		ret = -EINVAL;
		goto out;
3840 3841
	}

3842 3843 3844 3845 3846 3847 3848 3849 3850
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3851 3852
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3853

C
Chris Wilson 已提交
3854
	/* if the object is no longer attached, discard its backing storage */
3855
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3856 3857
		i915_gem_object_truncate(obj);

3858
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3859

3860
out:
3861
	i915_gem_object_put(obj);
3862
unlock:
3863
	mutex_unlock(&dev->struct_mutex);
3864
	return ret;
3865 3866
}

3867 3868
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3869
{
3870 3871
	int i;

3872
	INIT_LIST_HEAD(&obj->global_list);
3873
	for (i = 0; i < I915_NUM_ENGINES; i++)
3874 3875 3876 3877 3878
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3879
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3880
	INIT_LIST_HEAD(&obj->vma_list);
3881
	INIT_LIST_HEAD(&obj->batch_pool_link);
3882

3883 3884
	obj->ops = ops;

3885 3886 3887
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3888
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3889 3890
}

3891
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3892
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3893 3894 3895 3896
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3897
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3898
						  size_t size)
3899
{
3900
	struct drm_i915_gem_object *obj;
3901
	struct address_space *mapping;
D
Daniel Vetter 已提交
3902
	gfp_t mask;
3903
	int ret;
3904

3905
	obj = i915_gem_object_alloc(dev);
3906
	if (obj == NULL)
3907
		return ERR_PTR(-ENOMEM);
3908

3909 3910 3911
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3912

3913 3914 3915 3916 3917 3918 3919
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
3920
	mapping = file_inode(obj->base.filp)->i_mapping;
3921
	mapping_set_gfp_mask(mapping, mask);
3922

3923
	i915_gem_object_init(obj, &i915_gem_object_ops);
3924

3925 3926
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3927

3928 3929
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3945 3946
	trace_i915_gem_object_create(obj);

3947
	return obj;
3948 3949 3950 3951 3952

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
3953 3954
}

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

3979
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3980
{
3981
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3982
	struct drm_device *dev = obj->base.dev;
3983
	struct drm_i915_private *dev_priv = to_i915(dev);
3984
	struct i915_vma *vma, *next;
3985

3986 3987
	intel_runtime_pm_get(dev_priv);

3988 3989
	trace_i915_gem_object_destroy(obj);

3990 3991 3992 3993 3994 3995 3996
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
3997
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3998
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3999
		GEM_BUG_ON(i915_vma_is_active(vma));
4000
		vma->flags &= ~I915_VMA_PIN_MASK;
4001
		i915_vma_close(vma);
4002
	}
4003
	GEM_BUG_ON(obj->bind_count);
4004

B
Ben Widawsky 已提交
4005 4006 4007 4008 4009
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4010
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4011

4012 4013 4014 4015 4016
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4017 4018
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4019
	if (discard_backing_storage(obj))
4020
		obj->madv = I915_MADV_DONTNEED;
4021
	i915_gem_object_put_pages(obj);
4022

4023 4024
	BUG_ON(obj->pages);

4025 4026
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4027

4028 4029 4030
	if (obj->ops->release)
		obj->ops->release(obj);

4031 4032
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4033

4034
	kfree(obj->bit_17);
4035
	i915_gem_object_free(obj);
4036 4037

	intel_runtime_pm_put(dev_priv);
4038 4039
}

4040 4041
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4042 4043
{
	struct i915_vma *vma;
4044
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4045 4046
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4047
			return vma;
4048 4049 4050 4051 4052 4053 4054 4055
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4056

4057
	GEM_BUG_ON(!view);
4058

4059
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4060 4061
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4062
			return vma;
4063 4064 4065
	return NULL;
}

4066
int i915_gem_suspend(struct drm_device *dev)
4067
{
4068
	struct drm_i915_private *dev_priv = to_i915(dev);
4069
	int ret;
4070

4071 4072
	intel_suspend_gt_powersave(dev_priv);

4073
	mutex_lock(&dev->struct_mutex);
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4087
	ret = i915_gem_wait_for_idle(dev_priv, true);
4088
	if (ret)
4089
		goto err;
4090

4091
	i915_gem_retire_requests(dev_priv);
4092

4093
	i915_gem_context_lost(dev_priv);
4094 4095
	mutex_unlock(&dev->struct_mutex);

4096
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4097 4098
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4099

4100 4101 4102
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4103
	WARN_ON(dev_priv->gt.awake);
4104

4105
	return 0;
4106 4107 4108 4109

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4110 4111
}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4129 4130
void i915_gem_init_swizzling(struct drm_device *dev)
{
4131
	struct drm_i915_private *dev_priv = to_i915(dev);
4132

4133
	if (INTEL_INFO(dev)->gen < 5 ||
4134 4135 4136 4137 4138 4139
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4140 4141 4142
	if (IS_GEN5(dev))
		return;

4143 4144
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4145
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4146
	else if (IS_GEN7(dev))
4147
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4148 4149
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4150 4151
	else
		BUG();
4152
}
D
Daniel Vetter 已提交
4153

4154 4155
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4156
	struct drm_i915_private *dev_priv = to_i915(dev);
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4181 4182 4183
int
i915_gem_init_hw(struct drm_device *dev)
{
4184
	struct drm_i915_private *dev_priv = to_i915(dev);
4185
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4186
	int ret;
4187

4188 4189 4190
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4191
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4192
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4193

4194 4195 4196
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4197

4198
	if (HAS_PCH_NOP(dev)) {
4199 4200 4201 4202 4203 4204 4205 4206 4207
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4208 4209
	}

4210 4211
	i915_gem_init_swizzling(dev);

4212 4213 4214 4215 4216 4217 4218 4219
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4220
	BUG_ON(!dev_priv->kernel_context);
4221

4222 4223 4224 4225 4226 4227 4228
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4229
	for_each_engine(engine, dev_priv) {
4230
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4231
		if (ret)
4232
			goto out;
D
Daniel Vetter 已提交
4233
	}
4234

4235 4236
	intel_mocs_init_l3cc_table(dev);

4237
	/* We can't enable contexts until all firmware is loaded */
4238 4239 4240
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4241

4242 4243
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4244
	return ret;
4245 4246
}

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4268 4269
int i915_gem_init(struct drm_device *dev)
{
4270
	struct drm_i915_private *dev_priv = to_i915(dev);
4271 4272 4273
	int ret;

	mutex_lock(&dev->struct_mutex);
4274

4275
	if (!i915.enable_execlists) {
4276
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4277
	} else {
4278
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4279 4280
	}

4281 4282 4283 4284 4285 4286 4287 4288
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4289
	i915_gem_init_userptr(dev_priv);
4290 4291 4292 4293

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4294

4295
	ret = i915_gem_context_init(dev);
4296 4297
	if (ret)
		goto out_unlock;
4298

4299
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4300
	if (ret)
4301
		goto out_unlock;
4302

4303
	ret = i915_gem_init_hw(dev);
4304
	if (ret == -EIO) {
4305
		/* Allow engine initialisation to fail by marking the GPU as
4306 4307 4308 4309
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4310
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4311
		ret = 0;
4312
	}
4313 4314

out_unlock:
4315
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4316
	mutex_unlock(&dev->struct_mutex);
4317

4318
	return ret;
4319 4320
}

4321
void
4322
i915_gem_cleanup_engines(struct drm_device *dev)
4323
{
4324
	struct drm_i915_private *dev_priv = to_i915(dev);
4325
	struct intel_engine_cs *engine;
4326

4327
	for_each_engine(engine, dev_priv)
4328
		dev_priv->gt.cleanup_engine(engine);
4329 4330
}

4331
static void
4332
init_engine_lists(struct intel_engine_cs *engine)
4333
{
4334
	INIT_LIST_HEAD(&engine->request_list);
4335 4336
}

4337 4338 4339
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4340
	struct drm_device *dev = &dev_priv->drm;
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4351
	if (intel_vgpu_active(dev_priv))
4352 4353 4354 4355 4356 4357 4358 4359 4360
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4361
void
4362
i915_gem_load_init(struct drm_device *dev)
4363
{
4364
	struct drm_i915_private *dev_priv = to_i915(dev);
4365 4366
	int i;

4367
	dev_priv->objects =
4368 4369 4370 4371
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4372 4373 4374 4375 4376
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4377 4378 4379
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4380 4381 4382
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4383
				  NULL);
4384

4385
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4386 4387
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4388
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4389 4390
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4391
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4392
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4393
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4394
			  i915_gem_retire_work_handler);
4395
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4396
			  i915_gem_idle_work_handler);
4397
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4398
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4399

4400 4401
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4402
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4403

4404
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4405

4406 4407
	dev_priv->mm.interruptible = true;

4408
	spin_lock_init(&dev_priv->fb_tracking.lock);
4409
}
4410

4411 4412 4413 4414 4415 4416 4417
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4418 4419 4420

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4421 4422
}

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4451
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4452
{
4453
	struct drm_i915_file_private *file_priv = file->driver_priv;
4454
	struct drm_i915_gem_request *request;
4455 4456 4457 4458 4459

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4460
	spin_lock(&file_priv->mm.lock);
4461
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4462
		request->file_priv = NULL;
4463
	spin_unlock(&file_priv->mm.lock);
4464

4465
	if (!list_empty(&file_priv->rps.link)) {
4466
		spin_lock(&to_i915(dev)->rps.client_lock);
4467
		list_del(&file_priv->rps.link);
4468
		spin_unlock(&to_i915(dev)->rps.client_lock);
4469
	}
4470 4471 4472 4473 4474
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4475
	int ret;
4476 4477 4478 4479 4480 4481 4482 4483

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4484
	file_priv->dev_priv = to_i915(dev);
4485
	file_priv->file = file;
4486
	INIT_LIST_HEAD(&file_priv->rps.link);
4487 4488 4489 4490

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4491
	file_priv->bsd_engine = -1;
4492

4493 4494 4495
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4496

4497
	return ret;
4498 4499
}

4500 4501
/**
 * i915_gem_track_fb - update frontbuffer tracking
4502 4503 4504
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4505 4506 4507 4508
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4509 4510 4511 4512
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4513 4514 4515 4516 4517 4518 4519 4520 4521
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4522
	if (old) {
4523 4524
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4525 4526 4527
	}

	if (new) {
4528 4529
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4530 4531 4532
	}
}

4533
/* All the new VM stuff */
4534 4535
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4536
{
4537
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4538 4539
	struct i915_vma *vma;

4540
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4541

4542
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4543
		if (i915_vma_is_ggtt(vma) &&
4544 4545 4546
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4547 4548
			return vma->node.start;
	}
4549

4550 4551
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4552 4553 4554
	return -1;
}

4555 4556
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4557 4558 4559
{
	struct i915_vma *vma;

4560
	list_for_each_entry(vma, &o->vma_list, obj_link)
4561 4562
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4563 4564
			return vma->node.start;

4565
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4566 4567 4568 4569 4570 4571 4572 4573
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4574
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4575
		if (i915_vma_is_ggtt(vma) &&
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4586
				  const struct i915_ggtt_view *view)
4587 4588 4589
{
	struct i915_vma *vma;

4590
	list_for_each_entry(vma, &o->vma_list, obj_link)
4591
		if (i915_vma_is_ggtt(vma) &&
4592
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4593
		    drm_mm_node_allocated(&vma->node))
4594 4595 4596 4597 4598
			return true;

	return false;
}

4599
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4600 4601 4602
{
	struct i915_vma *vma;

4603
	GEM_BUG_ON(list_empty(&o->vma_list));
4604

4605
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4606
		if (i915_vma_is_ggtt(vma) &&
4607
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4608
			return vma->node.size;
4609
	}
4610

4611 4612 4613
	return 0;
}

4614
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4615 4616
{
	struct i915_vma *vma;
4617
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4618
		if (i915_vma_is_pinned(vma))
4619
			return true;
4620

4621
	return false;
4622
}
4623

4624 4625 4626 4627 4628 4629 4630
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4631
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4632 4633 4634 4635 4636 4637 4638
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4649
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4650
	if (IS_ERR(obj))
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4664
	obj->dirty = 1;		/* Backing store is now out of date */
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4676
	i915_gem_object_put(obj);
4677 4678
	return ERR_PTR(ret);
}