i915_gem.c 103.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 40
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 42 43 44 45
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
46
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 48 49
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
50 51
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
52 53
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
54
				struct drm_i915_gem_pwrite *args,
55 56
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57

58 59 60 61
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

126
	WARN_ON(i915_verify_lists(dev));
127 128
	return 0;
}
129

130
static inline bool
131
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
132
{
133
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
134 135
}

136 137 138 139
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
140 141 142
{
	drm_i915_private_t *dev_priv = dev->dev_private;

143
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
144

145 146 147
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
148
	dev_priv->mm.gtt_total = end - start;
149
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
150 151 152

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
153
}
154

J
Jesse Barnes 已提交
155 156
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
157
		    struct drm_file *file)
J
Jesse Barnes 已提交
158 159
{
	struct drm_i915_gem_init *args = data;
160 161 162 163

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
164 165

	mutex_lock(&dev->struct_mutex);
166
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
167 168
	mutex_unlock(&dev->struct_mutex);

169
	return 0;
170 171
}

172 173
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174
			    struct drm_file *file)
175
{
176
	struct drm_i915_private *dev_priv = dev->dev_private;
177
	struct drm_i915_gem_get_aperture *args = data;
178 179
	struct drm_i915_gem_object *obj;
	size_t pinned;
180 181 182 183

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

184
	pinned = 0;
185
	mutex_lock(&dev->struct_mutex);
186 187
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
188
	mutex_unlock(&dev->struct_mutex);
189

190 191 192
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

193 194 195
	return 0;
}

196 197 198 199 200
/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
201
		      struct drm_file *file)
202 203
{
	struct drm_i915_gem_create *args = data;
204
	struct drm_i915_gem_object *obj;
205 206
	int ret;
	u32 handle;
207 208 209 210

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
211
	obj = i915_gem_alloc_object(dev, args->size);
212 213 214
	if (obj == NULL)
		return -ENOMEM;

215
	ret = drm_gem_handle_create(file, &obj->base, &handle);
216
	if (ret) {
217 218
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219
		kfree(obj);
220
		return ret;
221
	}
222

223
	/* drop reference from allocate - handle holds it now */
224
	drm_gem_object_unreference(&obj->base);
225 226
	trace_i915_gem_object_create(obj);

227
	args->handle = handle;
228 229 230
	return 0;
}

231
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
232
{
233
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
234 235

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
236
		obj->tiling_mode != I915_TILING_NONE;
237 238
}

239
static inline void
240 241 242 243 244 245 246 247
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

248 249
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
250 251 252

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

253 254
	kunmap(src_page);
	kunmap(dst_page);
255 256
}

257
static inline void
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

277 278
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

302 303
	kunmap(cpu_page);
	kunmap(gpu_page);
304 305
}

306 307 308 309 310 311
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
312 313
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
314
			  struct drm_i915_gem_pread *args,
315
			  struct drm_file *file)
316
{
317
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
318
	ssize_t remain;
319
	loff_t offset;
320 321 322 323 324 325 326 327 328
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
329 330 331 332
		struct page *page;
		char *vaddr;
		int ret;

333 334 335 336 337 338 339 340 341 342
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

343 344 345 346 347 348 349 350 351 352 353 354 355 356
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
357
			return -EFAULT;
358 359 360 361 362 363

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

364
	return 0;
365 366 367 368 369 370 371 372 373
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
374 375
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
376
			  struct drm_i915_gem_pread *args,
377
			  struct drm_file *file)
378
{
379
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
380 381 382 383 384
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
385 386
	int shmem_page_offset;
	int data_page_index, data_page_offset;
387 388 389
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
390
	int do_bit17_swizzling;
391 392 393 394 395 396 397 398 399 400 401

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

402
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
403 404 405
	if (user_pages == NULL)
		return -ENOMEM;

406
	mutex_unlock(&dev->struct_mutex);
407 408
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
409
				      num_pages, 1, 0, user_pages, NULL);
410
	up_read(&mm->mmap_sem);
411
	mutex_lock(&dev->struct_mutex);
412 413
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
414
		goto out;
415 416
	}

417 418 419
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
420
	if (ret)
421
		goto out;
422

423
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
424 425 426 427

	offset = args->offset;

	while (remain > 0) {
428 429
		struct page *page;

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

447 448 449 450 451
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

452
		if (do_bit17_swizzling) {
453
			slow_shmem_bit17_copy(page,
454
					      shmem_page_offset,
455 456 457 458 459 460 461
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
462
					page,
463 464
					shmem_page_offset,
					page_length);
465
		}
466

467 468 469
		mark_page_accessed(page);
		page_cache_release(page);

470 471 472 473 474
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

475
out:
476 477
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
478
		mark_page_accessed(user_pages[i]);
479 480
		page_cache_release(user_pages[i]);
	}
481
	drm_free_large(user_pages);
482 483 484 485

	return ret;
}

486 487 488 489 490 491 492
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
493
		     struct drm_file *file)
494 495
{
	struct drm_i915_gem_pread *args = data;
496
	struct drm_i915_gem_object *obj;
497
	int ret = 0;
498

499 500 501 502 503 504 505 506 507 508 509 510 511
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

512
	ret = i915_mutex_lock_interruptible(dev);
513
	if (ret)
514
		return ret;
515

516
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
517 518 519
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
520
	}
521

522
	/* Bounds check source.  */
523 524
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
525
		ret = -EINVAL;
526
		goto out;
C
Chris Wilson 已提交
527 528
	}

529 530 531 532
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
533
		goto out;
534 535 536

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
537
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
538
	if (ret == -EFAULT)
539
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
540

541
out:
542
	drm_gem_object_unreference(&obj->base);
543
unlock:
544
	mutex_unlock(&dev->struct_mutex);
545
	return ret;
546 547
}

548 549
/* This is the fast write path which cannot handle
 * page faults in the source data
550
 */
551 552 553 554 555 556

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
557 558
{
	char *vaddr_atomic;
559
	unsigned long unwritten;
560

P
Peter Zijlstra 已提交
561
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
562 563
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
564
	io_mapping_unmap_atomic(vaddr_atomic);
565
	return unwritten;
566 567 568 569 570 571
}

/* Here's the write path which can sleep for
 * page faults
 */

572
static inline void
573 574 575 576
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
577
{
578 579
	char __iomem *dst_vaddr;
	char *src_vaddr;
580

581 582 583 584 585 586 587 588 589
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
590 591
}

592 593 594 595
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
596
static int
597 598
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
599
			 struct drm_i915_gem_pwrite *args,
600
			 struct drm_file *file)
601
{
602
	drm_i915_private_t *dev_priv = dev->dev_private;
603
	ssize_t remain;
604
	loff_t offset, page_base;
605
	char __user *user_data;
606
	int page_offset, page_length;
607 608 609 610

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

611
	offset = obj->gtt_offset + args->offset;
612 613 614 615

	while (remain > 0) {
		/* Operation in this page
		 *
616 617 618
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
619
		 */
620 621 622 623 624 625 626
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
627 628
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
629
		 */
630 631 632 633
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
634

635 636 637
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
638 639
	}

640
	return 0;
641 642
}

643 644 645 646 647 648 649
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
650
static int
651 652
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
653
			 struct drm_i915_gem_pwrite *args,
654
			 struct drm_file *file)
655
{
656 657 658 659 660 661 662 663
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
664
	int ret;
665 666 667 668 669 670 671 672 673 674 675 676
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

677
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
678 679 680
	if (user_pages == NULL)
		return -ENOMEM;

681
	mutex_unlock(&dev->struct_mutex);
682 683 684 685
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
686
	mutex_lock(&dev->struct_mutex);
687 688 689 690
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
691

692 693 694 695 696
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
697
	if (ret)
698
		goto out_unpin_pages;
699

700
	offset = obj->gtt_offset + args->offset;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

722 723 724 725 726
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
727 728 729 730 731 732 733 734 735

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
736
	drm_free_large(user_pages);
737 738 739 740

	return ret;
}

741 742 743 744
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
745
static int
746 747
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
748
			   struct drm_i915_gem_pwrite *args,
749
			   struct drm_file *file)
750
{
751
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
752
	ssize_t remain;
753
	loff_t offset;
754 755 756 757 758
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
759

760
	offset = args->offset;
761
	obj->dirty = 1;
762 763

	while (remain > 0) {
764 765 766 767
		struct page *page;
		char *vaddr;
		int ret;

768 769 770 771 772 773 774 775 776 777
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
798
			return -EFAULT;
799 800 801 802 803 804

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

805
	return 0;
806 807 808 809 810 811 812 813 814 815
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
816 817
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
818
			   struct drm_i915_gem_pwrite *args,
819
			   struct drm_file *file)
820
{
821
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
822 823 824 825 826
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
827
	int shmem_page_offset;
828 829 830 831
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
832
	int do_bit17_swizzling;
833 834 835 836 837 838 839 840 841 842 843

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

844
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
845 846 847
	if (user_pages == NULL)
		return -ENOMEM;

848
	mutex_unlock(&dev->struct_mutex);
849 850 851 852
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
853
	mutex_lock(&dev->struct_mutex);
854 855
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
856
		goto out;
857 858
	}

859
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
860
	if (ret)
861
		goto out;
862

863
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
864

865
	offset = args->offset;
866
	obj->dirty = 1;
867

868
	while (remain > 0) {
869 870
		struct page *page;

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

888 889 890 891 892 893 894
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

895
		if (do_bit17_swizzling) {
896
			slow_shmem_bit17_copy(page,
897 898 899
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
900 901 902
					      page_length,
					      0);
		} else {
903
			slow_shmem_copy(page,
904 905 906 907
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
908
		}
909

910 911 912 913
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

914 915 916
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
917 918
	}

919
out:
920 921
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
922
	drm_free_large(user_pages);
923

924
	return ret;
925 926 927 928 929 930 931 932 933
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
934
		      struct drm_file *file)
935 936
{
	struct drm_i915_gem_pwrite *args = data;
937
	struct drm_i915_gem_object *obj;
938 939 940 941 942 943 944 945 946 947 948 949 950 951
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
952

953
	ret = i915_mutex_lock_interruptible(dev);
954
	if (ret)
955
		return ret;
956

957
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
958 959 960
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
961
	}
962

963
	/* Bounds check destination. */
964 965
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
966
		ret = -EINVAL;
967
		goto out;
C
Chris Wilson 已提交
968 969
	}

970 971 972 973 974 975
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
976
	if (obj->phys_obj)
977
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
978
	else if (obj->gtt_space &&
979
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
980
		ret = i915_gem_object_pin(obj, 0, true);
981 982 983
		if (ret)
			goto out;

984 985 986 987 988
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
989 990 991 992 993 994 995 996 997
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
998
	} else {
999 1000
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1001
			goto out;
1002

1003 1004 1005 1006 1007 1008
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1009

1010
out:
1011
	drm_gem_object_unreference(&obj->base);
1012
unlock:
1013
	mutex_unlock(&dev->struct_mutex);
1014 1015 1016 1017
	return ret;
}

/**
1018 1019
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1020 1021 1022
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1023
			  struct drm_file *file)
1024 1025
{
	struct drm_i915_gem_set_domain *args = data;
1026
	struct drm_i915_gem_object *obj;
1027 1028
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1029 1030 1031 1032 1033
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1034
	/* Only handle setting domains to types used by the CPU. */
1035
	if (write_domain & I915_GEM_GPU_DOMAINS)
1036 1037
		return -EINVAL;

1038
	if (read_domains & I915_GEM_GPU_DOMAINS)
1039 1040 1041 1042 1043 1044 1045 1046
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1047
	ret = i915_mutex_lock_interruptible(dev);
1048
	if (ret)
1049
		return ret;
1050

1051
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1052 1053 1054
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1055
	}
1056

1057 1058
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1059 1060 1061 1062 1063 1064 1065

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1066
	} else {
1067
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1068 1069
	}

1070
	drm_gem_object_unreference(&obj->base);
1071
unlock:
1072 1073 1074 1075 1076 1077 1078 1079 1080
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1081
			 struct drm_file *file)
1082 1083
{
	struct drm_i915_gem_sw_finish *args = data;
1084
	struct drm_i915_gem_object *obj;
1085 1086 1087 1088 1089
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1090
	ret = i915_mutex_lock_interruptible(dev);
1091
	if (ret)
1092
		return ret;
1093

1094
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1095
	if (obj == NULL) {
1096 1097
		ret = -ENOENT;
		goto unlock;
1098 1099 1100
	}

	/* Pinned buffers may be scanout, so flush the cache */
1101
	if (obj->pin_count)
1102 1103
		i915_gem_object_flush_cpu_write_domain(obj);

1104
	drm_gem_object_unreference(&obj->base);
1105
unlock:
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1119
		    struct drm_file *file)
1120
{
1121
	struct drm_i915_private *dev_priv = dev->dev_private;
1122 1123 1124 1125 1126 1127 1128
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1129
	obj = drm_gem_object_lookup(dev, file, args->handle);
1130
	if (obj == NULL)
1131
		return -ENOENT;
1132

1133 1134 1135 1136 1137
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1138 1139 1140 1141 1142
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1143
	drm_gem_object_unreference_unlocked(obj);
1144 1145 1146 1147 1148 1149 1150 1151
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1170 1171
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1172
	drm_i915_private_t *dev_priv = dev->dev_private;
1173 1174 1175
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1176
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1177 1178 1179 1180 1181 1182 1183

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1184

1185 1186 1187 1188
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1189
	}
1190
	if (!obj->gtt_space) {
1191
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1192 1193
		if (ret)
			goto unlock;
1194 1195
	}

1196 1197 1198 1199
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1200 1201 1202 1203 1204 1205
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
		ret = i915_gem_object_get_fence(obj, NULL, true);
	if (ret)
		goto unlock;
1206

1207 1208
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1209

1210 1211
	obj->fault_mappable = true;

1212
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1213 1214 1215 1216
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1217
unlock:
1218 1219 1220
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1221 1222
	case -EAGAIN:
		set_need_resched();
1223 1224 1225
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1226 1227 1228
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1229
		return VM_FAULT_SIGBUS;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1245
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1246
{
1247
	struct drm_device *dev = obj->base.dev;
1248 1249
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1250
	struct drm_local_map *map;
1251 1252 1253
	int ret = 0;

	/* Set the object up for mmap'ing */
1254
	list = &obj->base.map_list;
1255
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1256 1257 1258 1259 1260
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1261
	map->size = obj->base.size;
1262 1263 1264 1265
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1266 1267
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1268
	if (!list->file_offset_node) {
1269 1270
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1271
		ret = -ENOSPC;
1272 1273 1274 1275
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1276 1277
						  obj->base.size / PAGE_SIZE,
						  0);
1278 1279 1280 1281 1282 1283
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1284 1285
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1286 1287 1288 1289 1290 1291 1292 1293 1294
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1295
	kfree(list->map);
C
Chris Wilson 已提交
1296
	list->map = NULL;
1297 1298 1299 1300

	return ret;
}

1301 1302 1303 1304
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1305
 * Preserve the reservation of the mmapping with the DRM core code, but
1306 1307 1308 1309 1310 1311 1312 1313 1314
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1315
void
1316
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1317
{
1318 1319
	if (!obj->fault_mappable)
		return;
1320

1321 1322 1323
	unmap_mapping_range(obj->base.dev->dev_mapping,
			    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
			    obj->base.size, 1);
1324

1325
	obj->fault_mappable = false;
1326 1327
}

1328
static void
1329
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1330
{
1331
	struct drm_device *dev = obj->base.dev;
1332
	struct drm_gem_mm *mm = dev->mm_private;
1333
	struct drm_map_list *list = &obj->base.map_list;
1334 1335

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1336 1337 1338
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1339 1340
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1363 1364 1365 1366 1367
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1368
 * potential fence register mapping.
1369 1370
 */
static uint32_t
1371
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1372
{
1373
	struct drm_device *dev = obj->base.dev;
1374 1375 1376 1377 1378

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1379
	if (INTEL_INFO(dev)->gen >= 4 ||
1380
	    obj->tiling_mode == I915_TILING_NONE)
1381 1382
		return 4096;

1383 1384 1385 1386
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1387
	return i915_gem_get_gtt_size(obj);
1388 1389
}

1390 1391 1392 1393 1394 1395 1396 1397 1398
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
static uint32_t
1399
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1400
{
1401
	struct drm_device *dev = obj->base.dev;
1402 1403 1404 1405 1406 1407
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1408
	    obj->tiling_mode == I915_TILING_NONE)
1409 1410 1411 1412 1413 1414 1415 1416
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
1417
	    (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1418 1419 1420 1421
		tile_height = 32;
	else
		tile_height = 8;

1422
	return tile_height * obj->stride * 2;
1423 1424
}

1425 1426 1427 1428
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
1429
 * @file: GEM object info
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1442
			struct drm_file *file)
1443
{
1444
	struct drm_i915_private *dev_priv = dev->dev_private;
1445
	struct drm_i915_gem_mmap_gtt *args = data;
1446
	struct drm_i915_gem_object *obj;
1447 1448 1449 1450 1451
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1452
	ret = i915_mutex_lock_interruptible(dev);
1453
	if (ret)
1454
		return ret;
1455

1456
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1457 1458 1459 1460
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1461

1462
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1463 1464 1465 1466
		ret = -E2BIG;
		goto unlock;
	}

1467
	if (obj->madv != I915_MADV_WILLNEED) {
1468
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1469 1470
		ret = -EINVAL;
		goto out;
1471 1472
	}

1473
	if (!obj->base.map_list.map) {
1474
		ret = i915_gem_create_mmap_offset(obj);
1475 1476
		if (ret)
			goto out;
1477 1478
	}

1479
	args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1480

1481
out:
1482
	drm_gem_object_unreference(&obj->base);
1483
unlock:
1484
	mutex_unlock(&dev->struct_mutex);
1485
	return ret;
1486 1487
}

1488
static int
1489
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1500 1501 1502 1503
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1504 1505
		return -ENOMEM;

1506
	inode = obj->base.filp->f_path.dentry->d_inode;
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

1517
		obj->pages[i] = page;
1518 1519
	}

1520
	if (obj->tiling_mode != I915_TILING_NONE)
1521 1522 1523 1524 1525 1526
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1527
		page_cache_release(obj->pages[i]);
1528

1529 1530
	drm_free_large(obj->pages);
	obj->pages = NULL;
1531 1532 1533
	return PTR_ERR(page);
}

1534
static void
1535
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1536
{
1537
	int page_count = obj->base.size / PAGE_SIZE;
1538 1539
	int i;

1540
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1541

1542
	if (obj->tiling_mode != I915_TILING_NONE)
1543 1544
		i915_gem_object_save_bit_17_swizzle(obj);

1545 1546
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1547 1548

	for (i = 0; i < page_count; i++) {
1549 1550
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1551

1552 1553
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1554

1555
		page_cache_release(obj->pages[i]);
1556
	}
1557
	obj->dirty = 0;
1558

1559 1560
	drm_free_large(obj->pages);
	obj->pages = NULL;
1561 1562
}

1563
void
1564
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1565 1566
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1567
{
1568
	struct drm_device *dev = obj->base.dev;
1569
	struct drm_i915_private *dev_priv = dev->dev_private;
1570

1571
	BUG_ON(ring == NULL);
1572
	obj->ring = ring;
1573 1574

	/* Add a reference if we're newly entering the active list. */
1575 1576 1577
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1578
	}
1579

1580
	/* Move from whatever list we were on to the tail of execution. */
1581 1582
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1583

1584
	obj->last_rendering_seqno = seqno;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1603 1604
}

1605
static void
1606
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1607
{
1608
	struct drm_device *dev = obj->base.dev;
1609 1610
	drm_i915_private_t *dev_priv = dev->dev_private;

1611 1612
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1636
	obj->pending_gpu_write = false;
1637 1638 1639
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1640
}
1641

1642 1643
/* Immediately discard the backing storage */
static void
1644
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1645
{
C
Chris Wilson 已提交
1646
	struct inode *inode;
1647

1648 1649 1650 1651 1652 1653
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
1654
	inode = obj->base.filp->f_path.dentry->d_inode;
1655 1656 1657
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1658

1659
	obj->madv = __I915_MADV_PURGED;
1660 1661 1662
}

static inline int
1663
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1664
{
1665
	return obj->madv == I915_MADV_DONTNEED;
1666 1667
}

1668 1669
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1670
			       uint32_t flush_domains,
1671
			       struct intel_ring_buffer *ring)
1672
{
1673
	struct drm_i915_gem_object *obj, *next;
1674

1675
	list_for_each_entry_safe(obj, next,
1676
				 &ring->gpu_write_list,
1677
				 gpu_write_list) {
1678 1679
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1680

1681 1682
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1683 1684
			i915_gem_object_move_to_active(obj, ring,
						       i915_gem_next_request_seqno(dev, ring));
1685 1686

			trace_i915_gem_object_change_domain(obj,
1687
							    obj->base.read_domains,
1688 1689 1690 1691
							    old_write_domain);
		}
	}
}
1692

1693
int
1694
i915_add_request(struct drm_device *dev,
1695
		 struct drm_file *file,
C
Chris Wilson 已提交
1696
		 struct drm_i915_gem_request *request,
1697
		 struct intel_ring_buffer *ring)
1698 1699
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1700
	struct drm_i915_file_private *file_priv = NULL;
1701 1702
	uint32_t seqno;
	int was_empty;
1703 1704 1705
	int ret;

	BUG_ON(request == NULL);
1706

1707 1708
	if (file != NULL)
		file_priv = file->driver_priv;
1709

1710 1711 1712
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1713

1714
	ring->outstanding_lazy_request = false;
1715 1716

	request->seqno = seqno;
1717
	request->ring = ring;
1718
	request->emitted_jiffies = jiffies;
1719 1720 1721
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1722
	if (file_priv) {
1723
		spin_lock(&file_priv->mm.lock);
1724
		request->file_priv = file_priv;
1725
		list_add_tail(&request->client_list,
1726
			      &file_priv->mm.request_list);
1727
		spin_unlock(&file_priv->mm.lock);
1728
	}
1729

B
Ben Gamari 已提交
1730
	if (!dev_priv->mm.suspended) {
1731 1732
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1733
		if (was_empty)
1734 1735
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1736
	}
1737
	return 0;
1738 1739
}

1740 1741
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1742
{
1743
	struct drm_i915_file_private *file_priv = request->file_priv;
1744

1745 1746
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1747

1748 1749 1750 1751
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1752 1753
}

1754 1755
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1756
{
1757 1758
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1759

1760 1761 1762
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1763

1764
		list_del(&request->list);
1765
		i915_gem_request_remove_from_client(request);
1766 1767
		kfree(request);
	}
1768

1769
	while (!list_empty(&ring->active_list)) {
1770
		struct drm_i915_gem_object *obj;
1771

1772 1773 1774
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1775

1776 1777 1778
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1779 1780 1781
	}
}

1782 1783 1784 1785 1786 1787 1788
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1789 1790 1791 1792 1793 1794 1795 1796
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1797 1798 1799 1800 1801
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1802 1803 1804
	}
}

1805
void i915_gem_reset(struct drm_device *dev)
1806
{
1807
	struct drm_i915_private *dev_priv = dev->dev_private;
1808
	struct drm_i915_gem_object *obj;
1809
	int i;
1810

1811 1812
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1813 1814 1815 1816 1817 1818

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1819 1820 1821
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1822

1823 1824 1825
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1826 1827 1828 1829 1830
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1831
	list_for_each_entry(obj,
1832
			    &dev_priv->mm.inactive_list,
1833
			    mm_list)
1834
	{
1835
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1836
	}
1837 1838

	/* The fence registers are invalidated so clear them out */
1839
	i915_gem_reset_fences(dev);
1840 1841 1842 1843 1844
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1845 1846 1847
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1848 1849 1850
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
1851
	int i;
1852

1853 1854
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1855 1856
		return;

1857
	WARN_ON(i915_verify_lists(dev));
1858

1859
	seqno = ring->get_seqno(ring);
1860

1861
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1862 1863 1864
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1865
	while (!list_empty(&ring->request_list)) {
1866 1867
		struct drm_i915_gem_request *request;

1868
		request = list_first_entry(&ring->request_list,
1869 1870 1871
					   struct drm_i915_gem_request,
					   list);

1872
		if (!i915_seqno_passed(seqno, request->seqno))
1873 1874 1875 1876 1877
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1878
		i915_gem_request_remove_from_client(request);
1879 1880
		kfree(request);
	}
1881

1882 1883 1884 1885
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1886
		struct drm_i915_gem_object *obj;
1887

1888 1889 1890
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1891

1892
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1893
			break;
1894

1895
		if (obj->base.write_domain != 0)
1896 1897 1898
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1899
	}
1900 1901 1902

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1903
		ring->irq_put(ring);
1904 1905
		dev_priv->trace_irq_seqno = 0;
	}
1906 1907

	WARN_ON(i915_verify_lists(dev));
1908 1909
}

1910 1911 1912 1913
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1914
	int i;
1915

1916
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1917
	    struct drm_i915_gem_object *obj, *next;
1918 1919 1920 1921 1922 1923

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1924
	    list_for_each_entry_safe(obj, next,
1925
				     &dev_priv->mm.deferred_free_list,
1926
				     mm_list)
1927
		    i915_gem_free_object_tail(obj);
1928 1929
	}

1930 1931
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
1932 1933
}

1934
static void
1935 1936 1937 1938
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1939 1940
	bool idle;
	int i;
1941 1942 1943 1944 1945

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1946 1947 1948 1949 1950 1951
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1952
	i915_gem_retire_requests(dev);
1953

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

			ret = i915_gem_flush_ring(dev, ring, 0,
						  I915_GEM_GPU_DOMAINS);
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
			    i915_add_request(dev, NULL, request, ring))
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1977
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1978

1979 1980 1981
	mutex_unlock(&dev->struct_mutex);
}

1982
int
1983
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1984
		     bool interruptible, struct intel_ring_buffer *ring)
1985 1986
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1987
	u32 ier;
1988 1989 1990 1991
	int ret = 0;

	BUG_ON(seqno == 0);

1992
	if (atomic_read(&dev_priv->mm.wedged))
1993 1994
		return -EAGAIN;

1995
	if (seqno == ring->outstanding_lazy_request) {
1996 1997 1998 1999
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2000
			return -ENOMEM;
2001 2002 2003 2004 2005 2006 2007 2008

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2009
	}
2010

2011
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2012
		if (HAS_PCH_SPLIT(dev))
2013 2014 2015
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2016 2017 2018 2019 2020 2021 2022
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2023 2024
		trace_i915_gem_request_wait_begin(dev, seqno);

2025
		ring->waiting_seqno = seqno;
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		if (ring->irq_get(ring)) {
			if (interruptible)
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2037 2038 2039 2040
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2041
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2042 2043

		trace_i915_gem_request_wait_end(dev, seqno);
2044
	}
2045
	if (atomic_read(&dev_priv->mm.wedged))
2046
		ret = -EAGAIN;
2047 2048

	if (ret && ret != -ERESTARTSYS)
2049
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2050
			  __func__, ret, seqno, ring->get_seqno(ring),
2051
			  dev_priv->next_seqno);
2052 2053 2054 2055 2056 2057 2058

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2059
		i915_gem_retire_requests_ring(dev, ring);
2060 2061 2062 2063

	return ret;
}

2064 2065 2066 2067 2068
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2069
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2070
		  struct intel_ring_buffer *ring)
2071
{
2072
	return i915_do_wait_request(dev, seqno, 1, ring);
2073 2074
}

2075 2076 2077 2078
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2079
int
2080
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2081
			       bool interruptible)
2082
{
2083
	struct drm_device *dev = obj->base.dev;
2084 2085
	int ret;

2086 2087
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2088
	 */
2089
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2090 2091 2092 2093

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2094
	if (obj->active) {
2095
		ret = i915_do_wait_request(dev,
2096
					   obj->last_rendering_seqno,
2097
					   interruptible,
2098
					   obj->ring);
2099
		if (ret)
2100 2101 2102 2103 2104 2105 2106 2107 2108
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2109
int
2110
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2111 2112 2113
{
	int ret = 0;

2114
	if (obj->gtt_space == NULL)
2115 2116
		return 0;

2117
	if (obj->pin_count != 0) {
2118 2119 2120 2121
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2122 2123 2124
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2125 2126 2127 2128 2129 2130
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2131
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2132
	if (ret == -ERESTARTSYS)
2133
		return ret;
2134 2135 2136 2137
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2138 2139
	if (ret) {
		i915_gem_clflush_object(obj);
2140
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2141
	}
2142

2143
	/* release the fence reg _after_ flushing */
2144 2145 2146
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2147

2148
	i915_gem_gtt_unbind_object(obj);
2149
	i915_gem_object_put_pages_gtt(obj);
2150

2151
	list_del_init(&obj->gtt_list);
2152
	list_del_init(&obj->mm_list);
2153
	/* Avoid an unnecessary call to unbind on rebind. */
2154
	obj->map_and_fenceable = true;
2155

2156 2157 2158
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2159

2160
	if (i915_gem_object_is_purgeable(obj))
2161 2162
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2163 2164
	trace_i915_gem_object_unbind(obj);

2165
	return ret;
2166 2167
}

2168
int
2169 2170 2171 2172 2173
i915_gem_flush_ring(struct drm_device *dev,
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2174 2175 2176 2177 2178 2179 2180 2181
	int ret;

	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

	i915_gem_process_flushing_list(dev, flush_domains, ring);
	return 0;
2182 2183
}

2184 2185 2186
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2187 2188
	int ret;

2189
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2190 2191
		return 0;

2192 2193
	if (!list_empty(&ring->gpu_write_list)) {
		ret = i915_gem_flush_ring(dev, ring,
2194
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2195 2196 2197 2198
		if (ret)
			return ret;
	}

2199 2200 2201 2202 2203
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2204
int
2205 2206 2207 2208
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2209
	int ret, i;
2210

2211
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2212
		       list_empty(&dev_priv->mm.active_list));
2213 2214 2215 2216
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2217 2218 2219 2220 2221
	for (i = 0; i < I915_NUM_RINGS; i++) {
		ret = i915_ring_idle(dev, &dev_priv->ring[i]);
		if (ret)
			return ret;
	}
2222

2223
	return 0;
2224 2225
}

2226 2227
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2228
{
2229
	struct drm_device *dev = obj->base.dev;
2230
	drm_i915_private_t *dev_priv = dev->dev_private;
2231 2232
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2233 2234
	uint64_t val;

2235
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2236
			 0xfffff000) << 32;
2237 2238
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2239 2240
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2241
	if (obj->tiling_mode == I915_TILING_Y)
2242 2243 2244
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2261 2262
}

2263 2264
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2265
{
2266
	struct drm_device *dev = obj->base.dev;
2267
	drm_i915_private_t *dev_priv = dev->dev_private;
2268 2269
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2270 2271
	uint64_t val;

2272
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2273
		    0xfffff000) << 32;
2274 2275 2276
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2277 2278 2279
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2296 2297
}

2298 2299
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2300
{
2301
	struct drm_device *dev = obj->base.dev;
2302
	drm_i915_private_t *dev_priv = dev->dev_private;
2303
	u32 size = obj->gtt_space->size;
2304
	u32 fence_reg, val, pitch_val;
2305
	int tile_width;
2306

2307 2308 2309 2310 2311 2312
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2313

2314
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2315
		tile_width = 128;
2316
	else
2317 2318 2319
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2320
	pitch_val = obj->stride / tile_width;
2321
	pitch_val = ffs(pitch_val) - 1;
2322

2323 2324
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2325
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2326
	val |= I915_FENCE_SIZE_BITS(size);
2327 2328 2329
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2330
	fence_reg = obj->fence_reg;
2331 2332
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2333
	else
2334
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2350 2351
}

2352 2353
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2354
{
2355
	struct drm_device *dev = obj->base.dev;
2356
	drm_i915_private_t *dev_priv = dev->dev_private;
2357 2358
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2359 2360 2361
	uint32_t val;
	uint32_t pitch_val;

2362 2363 2364 2365 2366 2367
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2368

2369
	pitch_val = obj->stride / 128;
2370 2371
	pitch_val = ffs(pitch_val) - 1;

2372 2373
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2374
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2375
	val |= I830_FENCE_SIZE_BITS(size);
2376 2377 2378
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2393 2394
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
			    struct intel_ring_buffer *pipelined,
			    bool interruptible)
{
	int ret;

	if (obj->fenced_gpu_access) {
2408 2409 2410 2411 2412 2413 2414
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
			ret = i915_gem_flush_ring(obj->base.dev,
						  obj->last_fenced_ring,
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
			ret = i915_do_wait_request(obj->base.dev,
						   obj->last_fenced_seqno,
						   interruptible,
						   obj->last_fenced_ring);
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2434 2435 2436 2437 2438 2439
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	ret = i915_gem_object_flush_fence(obj, NULL, true);
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2469 2470
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2471 2472
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2473 2474

	/* First try to find a free reg */
2475
	avail = NULL;
2476 2477 2478
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2479
			return reg;
2480

2481
		if (!reg->obj->pin_count)
2482
			avail = reg;
2483 2484
	}

2485 2486
	if (avail == NULL)
		return NULL;
2487 2488

	/* None available, try to steal one or wait for a user to finish */
2489 2490 2491
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2492 2493
			continue;

2494 2495 2496 2497 2498 2499 2500 2501 2502
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2503 2504
	}

2505 2506
	if (avail == NULL)
		avail = first;
2507

2508
	return avail;
2509 2510
}

2511
/**
2512
 * i915_gem_object_get_fence - set up a fence reg for an object
2513
 * @obj: object to map through a fence reg
2514 2515
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2526
int
2527 2528 2529
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
			  struct intel_ring_buffer *pipelined,
			  bool interruptible)
2530
{
2531
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2532
	struct drm_i915_private *dev_priv = dev->dev_private;
2533
	struct drm_i915_fence_reg *reg;
2534
	int ret;
2535

2536 2537 2538
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2539
	/* Just update our place in the LRU if our fence is getting reused. */
2540 2541
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2542
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
					ret = i915_do_wait_request(obj->base.dev,
								   reg->setup_seqno,
								   interruptible,
								   obj->last_fenced_ring);
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
			ret = i915_gem_object_flush_fence(obj,
							  pipelined,
							  interruptible);
			if (ret)
				return ret;
		} else if (obj->tiling_changed) {
			if (obj->fenced_gpu_access) {
2570 2571 2572 2573 2574 2575
				if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
					ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
								  0, obj->base.write_domain);
					if (ret)
						return ret;
				}
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

				obj->fenced_gpu_access = false;
			}
		}

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;
		BUG_ON(!pipelined && reg->setup_seqno);

		if (obj->tiling_changed) {
			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(dev, pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}
			goto update;
		}

2595 2596 2597
		return 0;
	}

2598 2599 2600
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2601

2602 2603
	ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
	if (ret)
2604
		return ret;
2605

2606 2607 2608 2609 2610 2611 2612 2613 2614
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

		ret = i915_gem_object_flush_fence(old,
2615
						  pipelined,
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
						  interruptible);
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
			pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2633

2634
	reg->obj = obj;
2635 2636 2637
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2638

2639 2640 2641 2642 2643 2644
	reg->setup_seqno =
		pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2645 2646
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2647
		ret = sandybridge_write_fence_reg(obj, pipelined);
2648 2649 2650
		break;
	case 5:
	case 4:
2651
		ret = i965_write_fence_reg(obj, pipelined);
2652 2653
		break;
	case 3:
2654
		ret = i915_write_fence_reg(obj, pipelined);
2655 2656
		break;
	case 2:
2657
		ret = i830_write_fence_reg(obj, pipelined);
2658 2659
		break;
	}
2660

2661
	return ret;
2662 2663 2664 2665 2666 2667 2668
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2669
 * data structures in dev_priv and obj.
2670 2671
 */
static void
2672 2673
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2674
{
J
Jesse Barnes 已提交
2675
	drm_i915_private_t *dev_priv = dev->dev_private;
2676
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2677

2678 2679
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2680
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2681 2682 2683
		break;
	case 5:
	case 4:
2684
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2685 2686
		break;
	case 3:
2687 2688
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2689
		else
2690
	case 2:
2691
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2692 2693

		I915_WRITE(fence_reg, 0);
2694
		break;
2695
	}
2696

2697
	list_del_init(&reg->lru_list);
2698 2699
	reg->obj = NULL;
	reg->setup_seqno = 0;
2700 2701
}

2702 2703 2704 2705
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2706
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2707
			    unsigned alignment,
2708
			    bool map_and_fenceable)
2709
{
2710
	struct drm_device *dev = obj->base.dev;
2711 2712
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2713
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2714
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2715
	bool mappable, fenceable;
2716
	int ret;
2717

2718
	if (obj->madv != I915_MADV_WILLNEED) {
2719 2720 2721 2722
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2723 2724 2725
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2726

2727
	if (alignment == 0)
2728 2729
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2730
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2731 2732 2733 2734
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2735
	size = map_and_fenceable ? fence_size : obj->base.size;
2736

2737 2738 2739
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2740
	if (obj->base.size >
2741
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2742 2743 2744 2745
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2746
 search_free:
2747
	if (map_and_fenceable)
2748 2749
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2750
						    size, alignment, 0,
2751 2752 2753 2754
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2755
						size, alignment, 0);
2756 2757

	if (free_space != NULL) {
2758
		if (map_and_fenceable)
2759
			obj->gtt_space =
2760
				drm_mm_get_block_range_generic(free_space,
2761
							       size, alignment, 0,
2762 2763 2764
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2765
			obj->gtt_space =
2766
				drm_mm_get_block(free_space, size, alignment);
2767
	}
2768
	if (obj->gtt_space == NULL) {
2769 2770 2771
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2772 2773
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2774
		if (ret)
2775
			return ret;
2776

2777 2778 2779
		goto search_free;
	}

2780
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2781
	if (ret) {
2782 2783
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2784 2785

		if (ret == -ENOMEM) {
2786 2787
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2788 2789
			if (ret) {
				/* now try to shrink everyone else */
2790 2791 2792
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2793 2794
				}

2795
				return -ENOMEM;
2796 2797 2798 2799 2800
			}

			goto search_free;
		}

2801 2802 2803
		return ret;
	}

2804 2805
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2806
		i915_gem_object_put_pages_gtt(obj);
2807 2808
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2809

2810
		if (i915_gem_evict_everything(dev, false))
2811 2812 2813
			return ret;

		goto search_free;
2814 2815
	}

2816
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2817
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2818

2819 2820 2821 2822
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2823 2824
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2825

2826
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2827

2828
	fenceable =
2829 2830
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2831

2832
	mappable =
2833
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2834

2835
	obj->map_and_fenceable = mappable && fenceable;
2836

2837
	trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2838 2839 2840 2841
	return 0;
}

void
2842
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2843 2844 2845 2846 2847
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2848
	if (obj->pages == NULL)
2849 2850
		return;

C
Chris Wilson 已提交
2851
	trace_i915_gem_object_clflush(obj);
2852

2853
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2854 2855
}

2856
/** Flushes any GPU write domain for the object if it's dirty. */
2857
static int
2858
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2859
{
2860
	struct drm_device *dev = obj->base.dev;
2861

2862
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2863
		return 0;
2864 2865

	/* Queue the GPU write cache flushing we need. */
2866
	return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2867 2868 2869 2870
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2871
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2872
{
C
Chris Wilson 已提交
2873 2874
	uint32_t old_write_domain;

2875
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2876 2877
		return;

2878
	/* No actual flushing is required for the GTT write domain.  Writes
2879 2880
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2881 2882 2883 2884
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2885
	 */
2886 2887
	wmb();

2888 2889
	i915_gem_release_mmap(obj);

2890 2891
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2892 2893

	trace_i915_gem_object_change_domain(obj,
2894
					    obj->base.read_domains,
C
Chris Wilson 已提交
2895
					    old_write_domain);
2896 2897 2898 2899
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2900
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2901
{
C
Chris Wilson 已提交
2902
	uint32_t old_write_domain;
2903

2904
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2905 2906 2907
		return;

	i915_gem_clflush_object(obj);
2908
	intel_gtt_chipset_flush();
2909 2910
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2911 2912

	trace_i915_gem_object_change_domain(obj,
2913
					    obj->base.read_domains,
C
Chris Wilson 已提交
2914
					    old_write_domain);
2915 2916
}

2917 2918 2919 2920 2921 2922
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2923
int
2924
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2925
{
C
Chris Wilson 已提交
2926
	uint32_t old_write_domain, old_read_domains;
2927
	int ret;
2928

2929
	/* Not valid to be called on unbound objects. */
2930
	if (obj->gtt_space == NULL)
2931 2932
		return -EINVAL;

2933 2934 2935 2936
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2937 2938 2939 2940 2941
	if (obj->pending_gpu_write || write) {
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}
2942

2943
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2944

2945 2946
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2947

2948 2949 2950
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2951 2952
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2953
	if (write) {
2954 2955 2956
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2957 2958
	}

C
Chris Wilson 已提交
2959 2960 2961 2962
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2963 2964 2965
	return 0;
}

2966 2967 2968 2969 2970
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2971
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2972
				     struct intel_ring_buffer *pipelined)
2973
{
2974
	uint32_t old_read_domains;
2975 2976 2977
	int ret;

	/* Not valid to be called on unbound objects. */
2978
	if (obj->gtt_space == NULL)
2979 2980
		return -EINVAL;

2981 2982 2983 2984
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2985

2986
	/* Currently, we are always called from an non-interruptible context. */
2987
	if (pipelined != obj->ring) {
2988 2989
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2990 2991 2992
			return ret;
	}

2993 2994
	i915_gem_object_flush_cpu_write_domain(obj);

2995 2996
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2997 2998 2999

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3000
					    obj->base.write_domain);
3001 3002 3003 3004

	return 0;
}

3005 3006 3007 3008
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
			  bool interruptible)
{
3009 3010
	int ret;

3011 3012 3013
	if (!obj->active)
		return 0;

3014 3015 3016 3017 3018 3019
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
		ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
					  0, obj->base.write_domain);
		if (ret)
			return ret;
	}
3020

3021
	return i915_gem_object_wait_rendering(obj, interruptible);
3022 3023
}

3024 3025 3026 3027 3028 3029 3030
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3031
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3032
{
C
Chris Wilson 已提交
3033
	uint32_t old_write_domain, old_read_domains;
3034 3035
	int ret;

3036 3037 3038 3039
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3040 3041
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3042
		return ret;
3043

3044
	i915_gem_object_flush_gtt_write_domain(obj);
3045

3046 3047
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3048
	 */
3049
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3050

3051 3052
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3053

3054
	/* Flush the CPU cache if it's still invalid. */
3055
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3056 3057
		i915_gem_clflush_object(obj);

3058
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3059 3060 3061 3062 3063
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3064
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3065 3066 3067 3068 3069

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3070 3071
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3072
	}
3073

C
Chris Wilson 已提交
3074 3075 3076 3077
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3078 3079 3080
	return 0;
}

3081
/**
3082
 * Moves the object from a partially CPU read to a full one.
3083
 *
3084 3085
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3086
 */
3087
static void
3088
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3089
{
3090
	if (!obj->page_cpu_valid)
3091 3092 3093 3094
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3095
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3096 3097
		int i;

3098 3099
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3100
				continue;
3101
			drm_clflush_pages(obj->pages + i, 1);
3102 3103 3104 3105 3106 3107
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3108 3109
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3125
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3126 3127
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3128
	uint32_t old_read_domains;
3129
	int i, ret;
3130

3131
	if (offset == 0 && size == obj->base.size)
3132
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3133

3134 3135 3136 3137
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3138 3139
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3140
		return ret;
3141

3142 3143 3144
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3145 3146
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3147
		return 0;
3148

3149 3150 3151
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3152 3153 3154 3155
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3156
			return -ENOMEM;
3157 3158
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3159 3160 3161 3162

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3163 3164
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3165
		if (obj->page_cpu_valid[i])
3166 3167
			continue;

3168
		drm_clflush_pages(obj->pages + i, 1);
3169

3170
		obj->page_cpu_valid[i] = 1;
3171 3172
	}

3173 3174 3175
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3176
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3177

3178 3179
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3180

C
Chris Wilson 已提交
3181 3182
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3183
					    obj->base.write_domain);
C
Chris Wilson 已提交
3184

3185 3186 3187 3188 3189 3190
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3191 3192 3193 3194
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3195 3196 3197
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3198
static int
3199
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3200
{
3201 3202
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3203
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3204 3205 3206 3207
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3208

3209
	spin_lock(&file_priv->mm.lock);
3210
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3211 3212
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3213

3214 3215
		ring = request->ring;
		seqno = request->seqno;
3216
	}
3217
	spin_unlock(&file_priv->mm.lock);
3218

3219 3220
	if (seqno == 0)
		return 0;
3221

3222
	ret = 0;
3223
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3224 3225 3226 3227 3228
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3229 3230 3231 3232 3233
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3234

3235 3236 3237
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3238 3239
	}

3240 3241
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3242 3243 3244 3245

	return ret;
}

3246
int
3247 3248
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3249
		    bool map_and_fenceable)
3250
{
3251
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3252
	struct drm_i915_private *dev_priv = dev->dev_private;
3253 3254
	int ret;

3255
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3256
	WARN_ON(i915_verify_lists(dev));
3257

3258 3259 3260 3261
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3262
			     "bo is already pinned with incorrect alignment:"
3263 3264
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3265
			     obj->gtt_offset, alignment,
3266
			     map_and_fenceable,
3267
			     obj->map_and_fenceable);
3268 3269 3270 3271 3272 3273
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3274
	if (obj->gtt_space == NULL) {
3275
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3276
						  map_and_fenceable);
3277
		if (ret)
3278
			return ret;
3279
	}
J
Jesse Barnes 已提交
3280

3281 3282 3283
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3284
				       &dev_priv->mm.pinned_list);
3285
	}
3286
	obj->pin_mappable |= map_and_fenceable;
3287

3288
	WARN_ON(i915_verify_lists(dev));
3289 3290 3291 3292
	return 0;
}

void
3293
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3294
{
3295
	struct drm_device *dev = obj->base.dev;
3296 3297
	drm_i915_private_t *dev_priv = dev->dev_private;

3298
	WARN_ON(i915_verify_lists(dev));
3299 3300
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3301

3302 3303 3304
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3305
				       &dev_priv->mm.inactive_list);
3306
		obj->pin_mappable = false;
3307
	}
3308
	WARN_ON(i915_verify_lists(dev));
3309 3310 3311 3312
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3313
		   struct drm_file *file)
3314 3315
{
	struct drm_i915_gem_pin *args = data;
3316
	struct drm_i915_gem_object *obj;
3317 3318
	int ret;

3319 3320 3321
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3322

3323
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3324
	if (obj == NULL) {
3325 3326
		ret = -ENOENT;
		goto unlock;
3327 3328
	}

3329
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3330
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3331 3332
		ret = -EINVAL;
		goto out;
3333 3334
	}

3335
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3336 3337
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3338 3339
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3340 3341
	}

3342 3343 3344
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3345
		ret = i915_gem_object_pin(obj, args->alignment, true);
3346 3347
		if (ret)
			goto out;
3348 3349 3350 3351 3352
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3353
	i915_gem_object_flush_cpu_write_domain(obj);
3354
	args->offset = obj->gtt_offset;
3355
out:
3356
	drm_gem_object_unreference(&obj->base);
3357
unlock:
3358
	mutex_unlock(&dev->struct_mutex);
3359
	return ret;
3360 3361 3362 3363
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3364
		     struct drm_file *file)
3365 3366
{
	struct drm_i915_gem_pin *args = data;
3367
	struct drm_i915_gem_object *obj;
3368
	int ret;
3369

3370 3371 3372
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3373

3374
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3375
	if (obj == NULL) {
3376 3377
		ret = -ENOENT;
		goto unlock;
3378
	}
3379

3380
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3381 3382
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3383 3384
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3385
	}
3386 3387 3388
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3389 3390
		i915_gem_object_unpin(obj);
	}
3391

3392
out:
3393
	drm_gem_object_unreference(&obj->base);
3394
unlock:
3395
	mutex_unlock(&dev->struct_mutex);
3396
	return ret;
3397 3398 3399 3400
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3401
		    struct drm_file *file)
3402 3403
{
	struct drm_i915_gem_busy *args = data;
3404
	struct drm_i915_gem_object *obj;
3405 3406
	int ret;

3407
	ret = i915_mutex_lock_interruptible(dev);
3408
	if (ret)
3409
		return ret;
3410

3411
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3412
	if (obj == NULL) {
3413 3414
		ret = -ENOENT;
		goto unlock;
3415
	}
3416

3417 3418 3419 3420
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3421
	 */
3422
	args->busy = obj->active;
3423 3424 3425 3426 3427 3428
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3429
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3430 3431
			ret = i915_gem_flush_ring(dev, obj->ring,
						  0, obj->base.write_domain);
3432 3433 3434 3435
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3436 3437 3438
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3439 3440 3441 3442 3443 3444
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
				ret = i915_add_request(dev,
						       NULL, request,
						       obj->ring);
			else
3445 3446
				ret = -ENOMEM;
		}
3447 3448 3449 3450 3451 3452

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
3453
		i915_gem_retire_requests_ring(dev, obj->ring);
3454

3455
		args->busy = obj->active;
3456
	}
3457

3458
	drm_gem_object_unreference(&obj->base);
3459
unlock:
3460
	mutex_unlock(&dev->struct_mutex);
3461
	return ret;
3462 3463 3464 3465 3466 3467 3468 3469 3470
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3471 3472 3473 3474 3475
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3476
	struct drm_i915_gem_object *obj;
3477
	int ret;
3478 3479 3480 3481 3482 3483 3484 3485 3486

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3487 3488 3489 3490
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3491
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3492
	if (obj == NULL) {
3493 3494
		ret = -ENOENT;
		goto unlock;
3495 3496
	}

3497
	if (obj->pin_count) {
3498 3499
		ret = -EINVAL;
		goto out;
3500 3501
	}

3502 3503
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3504

3505
	/* if the object is no longer bound, discard its backing storage */
3506 3507
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3508 3509
		i915_gem_object_truncate(obj);

3510
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3511

3512
out:
3513
	drm_gem_object_unreference(&obj->base);
3514
unlock:
3515
	mutex_unlock(&dev->struct_mutex);
3516
	return ret;
3517 3518
}

3519 3520
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3521
{
3522
	struct drm_i915_private *dev_priv = dev->dev_private;
3523
	struct drm_i915_gem_object *obj;
3524

3525 3526 3527
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3528

3529 3530 3531 3532
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3533

3534 3535
	i915_gem_info_add_obj(dev_priv, size);

3536 3537
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3538

3539
	obj->agp_type = AGP_USER_MEMORY;
3540
	obj->base.driver_private = NULL;
3541
	obj->fence_reg = I915_FENCE_REG_NONE;
3542
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3543
	INIT_LIST_HEAD(&obj->gtt_list);
3544
	INIT_LIST_HEAD(&obj->ring_list);
3545
	INIT_LIST_HEAD(&obj->exec_list);
3546 3547
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3548 3549
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3550

3551
	return obj;
3552 3553 3554 3555 3556
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3557

3558 3559 3560
	return 0;
}

3561
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3562
{
3563
	struct drm_device *dev = obj->base.dev;
3564 3565
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3566

3567 3568
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3569
		list_move(&obj->mm_list,
3570 3571 3572
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3573

3574
	if (obj->base.map_list.map)
3575
		i915_gem_free_mmap_offset(obj);
3576

3577 3578
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3579

3580 3581 3582
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3583 3584
}

3585
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3586
{
3587 3588
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3589 3590 3591

	trace_i915_gem_object_destroy(obj);

3592
	while (obj->pin_count > 0)
3593 3594
		i915_gem_object_unpin(obj);

3595
	if (obj->phys_obj)
3596 3597 3598 3599 3600
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3601 3602 3603 3604 3605
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3606

3607
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3608

3609
	if (dev_priv->mm.suspended) {
3610 3611
		mutex_unlock(&dev->struct_mutex);
		return 0;
3612 3613
	}

3614
	ret = i915_gpu_idle(dev);
3615 3616
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3617
		return ret;
3618
	}
3619

3620 3621
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3622
		ret = i915_gem_evict_inactive(dev, false);
3623 3624 3625 3626 3627 3628
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3629 3630
	i915_gem_reset_fences(dev);

3631 3632 3633 3634 3635
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3636
	del_timer_sync(&dev_priv->hangcheck_timer);
3637 3638

	i915_kernel_lost_context(dev);
3639
	i915_gem_cleanup_ringbuffer(dev);
3640

3641 3642
	mutex_unlock(&dev->struct_mutex);

3643 3644 3645
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3646 3647 3648
	return 0;
}

3649 3650 3651 3652 3653
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3654

3655
	ret = intel_init_render_ring_buffer(dev);
3656
	if (ret)
3657
		return ret;
3658 3659

	if (HAS_BSD(dev)) {
3660
		ret = intel_init_bsd_ring_buffer(dev);
3661 3662
		if (ret)
			goto cleanup_render_ring;
3663
	}
3664

3665 3666 3667 3668 3669 3670
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3671 3672
	dev_priv->next_seqno = 1;

3673 3674
	return 0;

3675
cleanup_bsd_ring:
3676
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3677
cleanup_render_ring:
3678
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3679 3680 3681 3682 3683 3684 3685
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3686
	int i;
3687

3688 3689
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3690 3691
}

3692 3693 3694 3695 3696
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3697
	int ret, i;
3698

J
Jesse Barnes 已提交
3699 3700 3701
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3702
	if (atomic_read(&dev_priv->mm.wedged)) {
3703
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3704
		atomic_set(&dev_priv->mm.wedged, 0);
3705 3706 3707
	}

	mutex_lock(&dev->struct_mutex);
3708 3709 3710
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3711 3712
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3713
		return ret;
3714
	}
3715

3716
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3717 3718
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3719 3720 3721 3722
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3723
	mutex_unlock(&dev->struct_mutex);
3724

3725 3726 3727
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3728

3729
	return 0;
3730 3731 3732 3733 3734 3735 3736 3737

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3738 3739 3740 3741 3742 3743
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3744 3745 3746
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3747
	drm_irq_uninstall(dev);
3748
	return i915_gem_idle(dev);
3749 3750 3751 3752 3753 3754 3755
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3756 3757 3758
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3759 3760 3761
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3762 3763
}

3764 3765 3766 3767 3768 3769 3770 3771
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3772 3773 3774
void
i915_gem_load(struct drm_device *dev)
{
3775
	int i;
3776 3777
	drm_i915_private_t *dev_priv = dev->dev_private;

3778
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3779 3780
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3781
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3782
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3783
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3784
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3785 3786
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3787 3788
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3789 3790
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3791
	init_completion(&dev_priv->error_completion);
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3803 3804
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3805
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3806 3807
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3808

3809
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3810 3811 3812 3813
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3814
	/* Initialize fence registers to zero */
3815 3816 3817 3818 3819 3820 3821
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
3822 3823
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3824 3825
		break;
	case 3:
3826 3827 3828
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3829 3830 3831 3832
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
3833
	}
3834
	i915_gem_detect_bit_6_swizzle(dev);
3835
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3836 3837 3838 3839

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3840
}
3841 3842 3843 3844 3845

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3846 3847
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3848 3849 3850 3851 3852 3853 3854 3855
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3856
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3857 3858 3859 3860 3861
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3862
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3875
	kfree(phys_obj);
3876 3877 3878
	return ret;
}

3879
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3904
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3905 3906 3907 3908
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3909
				 struct drm_i915_gem_object *obj)
3910
{
3911
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3912
	char *vaddr;
3913 3914 3915
	int i;
	int page_count;

3916
	if (!obj->phys_obj)
3917
		return;
3918
	vaddr = obj->phys_obj->handle->vaddr;
3919

3920
	page_count = obj->base.size / PAGE_SIZE;
3921
	for (i = 0; i < page_count; i++) {
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3935
	}
3936
	intel_gtt_chipset_flush();
3937

3938 3939
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3940 3941 3942 3943
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3944
			    struct drm_i915_gem_object *obj,
3945 3946
			    int id,
			    int align)
3947
{
3948
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3949 3950 3951 3952 3953 3954 3955 3956
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3957 3958
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3959 3960 3961 3962 3963 3964 3965
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3966
						obj->base.size, align);
3967
		if (ret) {
3968 3969
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3970
			return ret;
3971 3972 3973 3974
		}
	}

	/* bind to the object */
3975 3976
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3977

3978
	page_count = obj->base.size / PAGE_SIZE;
3979 3980

	for (i = 0; i < page_count; i++) {
3981 3982 3983 3984 3985 3986 3987
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
3988

3989
		src = kmap_atomic(page);
3990
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3991
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3992
		kunmap_atomic(src);
3993

3994 3995 3996
		mark_page_accessed(page);
		page_cache_release(page);
	}
3997

3998 3999 4000 4001
	return 0;
}

static int
4002 4003
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4004 4005 4006
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4007
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4008
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4023

4024
	intel_gtt_chipset_flush();
4025 4026
	return 0;
}
4027

4028
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4029
{
4030
	struct drm_i915_file_private *file_priv = file->driver_priv;
4031 4032 4033 4034 4035

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4036
	spin_lock(&file_priv->mm.lock);
4037 4038 4039 4040 4041 4042 4043 4044 4045
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4046
	spin_unlock(&file_priv->mm.lock);
4047
}
4048

4049 4050 4051 4052 4053 4054 4055
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4056
		      list_empty(&dev_priv->mm.active_list);
4057 4058 4059 4060

	return !lists_empty;
}

4061
static int
4062 4063 4064
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4065
{
4066 4067 4068 4069 4070 4071 4072 4073 4074
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4075
		return 0;
4076 4077 4078

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4079 4080 4081 4082 4083 4084 4085
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4086 4087
	}

4088
rescan:
4089
	/* first scan for clean buffers */
4090
	i915_gem_retire_requests(dev);
4091

4092 4093 4094 4095
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4096 4097
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4098
				break;
4099 4100 4101 4102
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4103 4104 4105 4106
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4107 4108
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4109
			nr_to_scan--;
4110
		else
4111 4112 4113 4114
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4115 4116 4117 4118 4119 4120
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4121
		if (i915_gpu_idle(dev) == 0)
4122 4123
			goto rescan;
	}
4124 4125
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4126
}