i915_gem.c 136.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107 108
	might_sleep();

109
	if (!i915_reset_in_progress(error))
110 111
		return 0;

112 113 114 115 116
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
117
	ret = wait_event_interruptible_timeout(error->reset_queue,
118
					       !i915_reset_in_progress(error),
119
					       I915_RESET_TIMEOUT);
120 121 122 123
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
124
		return ret;
125 126
	} else {
		return 0;
127
	}
128 129
}

130
int i915_mutex_lock_interruptible(struct drm_device *dev)
131
{
132
	struct drm_i915_private *dev_priv = to_i915(dev);
133 134
	int ret;

135
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 137 138 139 140 141 142 143 144
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175
	struct address_space *mapping = obj->base.filp->f_mapping;
176 177 178 179
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = obj->base.filp->f_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

284
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
285 286 287
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
288 289 290
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
291

292 293 294 295
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
296
	 */
297 298 299 300 301 302
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
303 304 305 306 307
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

308 309 310 311 312 313 314 315 316 317 318 319 320
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

321 322 323 324 325
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
326
{
327
	struct drm_i915_gem_request *rq;
328

329
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
363 364
	}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	if (rps && rq->fence.seqno == rq->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
401 402
		int ret;

403 404
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
405 406 407
		if (ret)
			return ret;

408 409 410 411 412 413
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
414

415 416 417 418 419 420 421 422
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
423 424
	}

425 426 427 428 429 430
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
431 432
}

433 434 435 436 437 438
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
439
 */
440 441 442 443 444
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
445
{
446
	struct reservation_object *resv;
447 448
	struct i915_gem_active *active;
	unsigned long active_mask;
449
	int idx;
450

451 452 453 454 455 456 457
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
458

459
	if (flags & I915_WAIT_ALL) {
460
		active = obj->last_read;
461
		active_mask = i915_gem_object_get_active(obj);
462 463 464 465 466
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

467
	for_each_active(active_mask, idx) {
468 469 470 471 472 473 474 475 476 477 478
		struct drm_i915_gem_request *request;

		request = i915_gem_active_get_unlocked(&active[idx]);
		if (request) {
			timeout = i915_gem_object_wait_fence(&request->fence,
							     flags, timeout,
							     rps);
			i915_gem_request_put(request);
		}
		if (timeout < 0)
			return timeout;
479 480
	}

481 482 483 484 485 486
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv)
		timeout = i915_gem_object_wait_reservation(resv,
							   flags, timeout,
							   rps);
	return timeout < 0 ? timeout : 0;
487 488 489 490 491 492 493 494 495
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

496 497 498 499 500
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
501
	int ret;
502 503 504 505 506 507 508 509 510 511 512 513 514 515

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
516 517 518 519 520
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
521 522 523
	if (ret)
		return ret;

524 525 526 527 528 529
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
530 531 532
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
533 534 535 536 537 538 539 540 541
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
542
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
543
	int ret;
544 545 546 547

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
548 549 550 551 552 553 554
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file_priv));
555 556
	if (ret)
		return ret;
557

558
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
559 560 561 562 563 564 565 566 567 568
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
569 570 571 572
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
573 574
	}

575
	drm_clflush_virt_range(vaddr, args->size);
576
	i915_gem_chipset_flush(to_i915(dev));
577 578

out:
579
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
580
	return ret;
581 582
}

583 584
void *i915_gem_object_alloc(struct drm_device *dev)
{
585
	struct drm_i915_private *dev_priv = to_i915(dev);
586
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
587 588 589 590
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
591
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
592
	kmem_cache_free(dev_priv->objects, obj);
593 594
}

595 596 597 598 599
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
600
{
601
	struct drm_i915_gem_object *obj;
602 603
	int ret;
	u32 handle;
604

605
	size = roundup(size, PAGE_SIZE);
606 607
	if (size == 0)
		return -EINVAL;
608 609

	/* Allocate the new object */
610
	obj = i915_gem_object_create(dev, size);
611 612
	if (IS_ERR(obj))
		return PTR_ERR(obj);
613

614
	ret = drm_gem_handle_create(file, &obj->base, &handle);
615
	/* drop reference from allocate - handle holds it now */
616
	i915_gem_object_put_unlocked(obj);
617 618
	if (ret)
		return ret;
619

620
	*handle_p = handle;
621 622 623
	return 0;
}

624 625 626 627 628 629
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
630
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
631 632
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
633
			       args->size, &args->handle);
634 635 636 637
}

/**
 * Creates a new mm object and returns a handle to it.
638 639 640
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
641 642 643 644 645 646
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
647

648
	return i915_gem_create(file, dev,
649
			       args->size, &args->handle);
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

678
static inline int
679 680
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

704 705 706 707 708 709
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
710
				    unsigned int *needs_clflush)
711 712 713
{
	int ret;

714
	lockdep_assert_held(&obj->base.dev->struct_mutex);
715

716
	*needs_clflush = 0;
717 718
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
719

720 721 722 723 724
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
725 726 727
	if (ret)
		return ret;

728 729 730 731 732 733
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

734 735
	i915_gem_object_flush_gtt_write_domain(obj);

736 737 738 739 740 741
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
742 743
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
744 745 746

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
747 748 749
		if (ret)
			goto err_unpin;

750
		*needs_clflush = 0;
751 752
	}

753
	/* return with the pages pinned */
754
	return 0;
755 756 757 758

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
759 760 761 762 763 764 765
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

766 767
	lockdep_assert_held(&obj->base.dev->struct_mutex);

768 769 770 771
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

772 773 774 775 776 777
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
778 779 780
	if (ret)
		return ret;

781 782 783 784 785 786
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

787 788
	i915_gem_object_flush_gtt_write_domain(obj);

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
806 807 808
		if (ret)
			goto err_unpin;

809 810 811 812 813 814 815 816
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
817
	/* return with the pages pinned */
818
	return 0;
819 820 821 822

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
823 824
}

825 826 827
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
828
static int
829 830 831 832 833 834 835
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

836
	if (unlikely(page_do_bit17_swizzling))
837 838 839 840 841 842 843 844 845 846 847
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

848
	return ret ? -EFAULT : 0;
849 850
}

851 852 853 854
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
855
	if (unlikely(swizzled)) {
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

873 874 875 876 877 878 879 880 881 882 883 884
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
885 886 887
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
888 889 890 891 892 893 894 895 896 897 898

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

899
	return ret ? - EFAULT : 0;
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
929
	struct drm_i915_private *dev_priv = to_i915(dev);
930
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
931
	struct i915_vma *vma;
932 933 934 935 936 937
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

938
	intel_runtime_pm_get(to_i915(dev));
C
Chris Wilson 已提交
939
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
940 941 942
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
943
		ret = i915_vma_put_fence(vma);
944 945 946 947 948
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
949
	if (IS_ERR(vma)) {
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
973
		ret = fault_in_pages_writeable(user_data, remain);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
1005
		if (slow_user_access(&ggtt->mappable, page_base,
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1032
				       node.start, node.size);
1033 1034 1035
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1036
		i915_vma_unpin(vma);
1037 1038
	}
out:
1039
	intel_runtime_pm_put(to_i915(dev));
1040 1041 1042
	return ret;
}

1043
static int
1044 1045 1046 1047
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
1048
{
1049
	char __user *user_data;
1050
	ssize_t remain;
1051
	loff_t offset;
1052
	int shmem_page_offset, page_length, ret = 0;
1053
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1054
	int prefaulted = 0;
1055
	int needs_clflush = 0;
1056
	struct sg_page_iter sg_iter;
1057

1058
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1059 1060 1061
	if (ret)
		return ret;

1062 1063
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1064
	offset = args->offset;
1065
	remain = args->size;
1066

1067 1068
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1069
		struct page *page = sg_page_iter_page(&sg_iter);
1070 1071 1072 1073

		if (remain <= 0)
			break;

1074 1075 1076 1077 1078
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1079
		shmem_page_offset = offset_in_page(offset);
1080 1081 1082 1083
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1084 1085 1086
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1087 1088 1089 1090 1091
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
1092 1093 1094

		mutex_unlock(&dev->struct_mutex);

1095
		if (likely(!i915.prefault_disable) && !prefaulted) {
1096
			ret = fault_in_pages_writeable(user_data, remain);
1097 1098 1099 1100 1101 1102 1103
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
1104

1105 1106 1107
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
1108

1109
		mutex_lock(&dev->struct_mutex);
1110 1111

		if (ret)
1112 1113
			goto out;

1114
next_page:
1115
		remain -= page_length;
1116
		user_data += page_length;
1117 1118 1119
		offset += page_length;
	}

1120
out:
1121
	i915_gem_obj_finish_shmem_access(obj);
1122

1123 1124 1125
	return ret;
}

1126 1127
/**
 * Reads data from the object referenced by handle.
1128 1129 1130
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1131 1132 1133 1134 1135
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136
		     struct drm_file *file)
1137 1138
{
	struct drm_i915_gem_pread *args = data;
1139
	struct drm_i915_gem_object *obj;
1140
	int ret = 0;
1141

1142 1143 1144 1145
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1146
		       u64_to_user_ptr(args->data_ptr),
1147 1148 1149
		       args->size))
		return -EFAULT;

1150
	obj = i915_gem_object_lookup(file, args->handle);
1151 1152
	if (!obj)
		return -ENOENT;
1153

1154
	/* Bounds check source.  */
1155 1156
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1157
		ret = -EINVAL;
1158
		goto err;
C
Chris Wilson 已提交
1159 1160
	}

C
Chris Wilson 已提交
1161 1162
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1163 1164 1165 1166
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1167 1168 1169 1170 1171 1172 1173
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1174
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1175

1176
	/* pread for non shmem backed objects */
1177
	if (ret == -EFAULT || ret == -ENODEV)
1178 1179 1180
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

1181
	i915_gem_object_put(obj);
1182
	mutex_unlock(&dev->struct_mutex);
1183 1184 1185 1186 1187

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1188
	return ret;
1189 1190
}

1191 1192
/* This is the fast write path which cannot handle
 * page faults in the source data
1193
 */
1194 1195 1196 1197 1198 1199

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1200
{
1201 1202
	void __iomem *vaddr_atomic;
	void *vaddr;
1203
	unsigned long unwritten;
1204

P
Peter Zijlstra 已提交
1205
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1206 1207 1208
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1209
						      user_data, length);
P
Peter Zijlstra 已提交
1210
	io_mapping_unmap_atomic(vaddr_atomic);
1211
	return unwritten;
1212 1213
}

1214 1215 1216
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1217
 * @i915: i915 device private data
1218 1219 1220
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1221
 */
1222
static int
1223
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1224
			 struct drm_i915_gem_object *obj,
1225
			 struct drm_i915_gem_pwrite *args,
1226
			 struct drm_file *file)
1227
{
1228
	struct i915_ggtt *ggtt = &i915->ggtt;
1229
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1230
	struct i915_vma *vma;
1231 1232
	struct drm_mm_node node;
	uint64_t remain, offset;
1233
	char __user *user_data;
1234
	int ret;
1235 1236
	bool hit_slow_path = false;

1237
	if (i915_gem_object_is_tiled(obj))
1238
		return -EFAULT;
D
Daniel Vetter 已提交
1239

1240
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1241
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1242
				       PIN_MAPPABLE | PIN_NONBLOCK);
1243 1244 1245
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1246
		ret = i915_vma_put_fence(vma);
1247 1248 1249 1250 1251
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1252
	if (IS_ERR(vma)) {
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1265 1266 1267 1268 1269

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1270
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1271
	obj->dirty = true;
1272

1273 1274 1275 1276
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1277 1278
		/* Operation in this page
		 *
1279 1280 1281
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1282
		 */
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1296
		/* If we get a fault while copying data, then (presumably) our
1297 1298
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1299 1300
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1301
		 */
1302
		if (fast_user_write(&ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1303
				    page_offset, user_data, page_length)) {
1304 1305
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
1306
			if (slow_user_access(&ggtt->mappable,
1307 1308 1309 1310 1311 1312 1313 1314 1315
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1316
		}
1317

1318 1319 1320
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1321 1322
	}

1323
out_flush:
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1337
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1338
out_unpin:
1339 1340 1341
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1342
				       node.start, node.size);
1343 1344 1345
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1346
		i915_vma_unpin(vma);
1347
	}
D
Daniel Vetter 已提交
1348
out:
1349
	intel_runtime_pm_put(i915);
1350
	return ret;
1351 1352
}

1353 1354 1355 1356
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1357
static int
1358 1359 1360 1361 1362
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1363
{
1364
	char *vaddr;
1365
	int ret;
1366

1367
	if (unlikely(page_do_bit17_swizzling))
1368
		return -EINVAL;
1369

1370 1371 1372 1373
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1374 1375
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1376 1377 1378 1379
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1380

1381
	return ret ? -EFAULT : 0;
1382 1383
}

1384 1385
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1386
static int
1387 1388 1389 1390 1391
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1392
{
1393 1394
	char *vaddr;
	int ret;
1395

1396
	vaddr = kmap(page);
1397
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1398 1399 1400
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1401 1402
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1403 1404
						user_data,
						page_length);
1405 1406 1407 1408 1409
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1410 1411 1412
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1413
	kunmap(page);
1414

1415
	return ret ? -EFAULT : 0;
1416 1417 1418
}

static int
1419 1420 1421 1422
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1423 1424
{
	ssize_t remain;
1425 1426
	loff_t offset;
	char __user *user_data;
1427
	int shmem_page_offset, page_length, ret = 0;
1428
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1429
	int hit_slowpath = 0;
1430
	unsigned int needs_clflush;
1431
	struct sg_page_iter sg_iter;
1432

1433
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1434 1435 1436
	if (ret)
		return ret;

1437 1438
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1439
	offset = args->offset;
1440
	remain = args->size;
1441

1442 1443
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1444
		struct page *page = sg_page_iter_page(&sg_iter);
1445
		int partial_cacheline_write;
1446

1447 1448 1449
		if (remain <= 0)
			break;

1450 1451 1452 1453 1454
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1455
		shmem_page_offset = offset_in_page(offset);
1456 1457 1458 1459 1460

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1461 1462 1463
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1464
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1465 1466 1467
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1468 1469 1470
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1471 1472 1473
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1474
					needs_clflush & CLFLUSH_AFTER);
1475 1476
		if (ret == 0)
			goto next_page;
1477 1478 1479

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1480 1481 1482
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1483
					needs_clflush & CLFLUSH_AFTER);
1484

1485
		mutex_lock(&dev->struct_mutex);
1486 1487

		if (ret)
1488 1489
			goto out;

1490
next_page:
1491
		remain -= page_length;
1492
		user_data += page_length;
1493
		offset += page_length;
1494 1495
	}

1496
out:
1497
	i915_gem_obj_finish_shmem_access(obj);
1498

1499
	if (hit_slowpath) {
1500 1501 1502 1503 1504
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1505
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1506
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1507
			if (i915_gem_clflush_object(obj, obj->pin_display))
1508
				needs_clflush |= CLFLUSH_AFTER;
1509
		}
1510
	}
1511

1512
	if (needs_clflush & CLFLUSH_AFTER)
1513
		i915_gem_chipset_flush(to_i915(dev));
1514

1515
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1516
	return ret;
1517 1518 1519 1520
}

/**
 * Writes data to the object referenced by handle.
1521 1522 1523
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1524 1525 1526 1527 1528
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1529
		      struct drm_file *file)
1530
{
1531
	struct drm_i915_private *dev_priv = to_i915(dev);
1532
	struct drm_i915_gem_pwrite *args = data;
1533
	struct drm_i915_gem_object *obj;
1534 1535 1536 1537 1538 1539
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1540
		       u64_to_user_ptr(args->data_ptr),
1541 1542 1543
		       args->size))
		return -EFAULT;

1544
	if (likely(!i915.prefault_disable)) {
1545
		ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1546 1547 1548 1549
						   args->size);
		if (ret)
			return -EFAULT;
	}
1550

1551
	obj = i915_gem_object_lookup(file, args->handle);
1552 1553
	if (!obj)
		return -ENOENT;
1554

1555
	/* Bounds check destination. */
1556 1557
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1558
		ret = -EINVAL;
1559
		goto err;
C
Chris Wilson 已提交
1560 1561
	}

C
Chris Wilson 已提交
1562 1563
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1564 1565 1566 1567 1568
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1569 1570 1571 1572 1573 1574 1575 1576 1577
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1578
	ret = -EFAULT;
1579 1580 1581 1582 1583 1584
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1585
	if (!i915_gem_object_has_struct_page(obj) ||
1586
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1587 1588
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1589 1590 1591
		 * textures). Fallback to the shmem path in that case.
		 */
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1592

1593
	if (ret == -EFAULT || ret == -ENOSPC) {
1594 1595
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1596
		else
1597
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1598
	}
1599

1600
	i915_gem_object_put(obj);
1601
	mutex_unlock(&dev->struct_mutex);
1602 1603
	intel_runtime_pm_put(dev_priv);

1604
	return ret;
1605 1606 1607 1608 1609 1610

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1611 1612
}

1613
static inline enum fb_op_origin
1614 1615
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1616 1617
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1618 1619
}

1620
/**
1621 1622
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1623 1624 1625
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1626 1627 1628
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1629
			  struct drm_file *file)
1630 1631
{
	struct drm_i915_gem_set_domain *args = data;
1632
	struct drm_i915_gem_object *obj;
1633 1634
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1635 1636
	int ret;

1637
	/* Only handle setting domains to types used by the CPU. */
1638
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1639 1640 1641 1642 1643 1644 1645 1646
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1647
	obj = i915_gem_object_lookup(file, args->handle);
1648 1649
	if (!obj)
		return -ENOENT;
1650

1651 1652 1653 1654
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1655 1656 1657 1658 1659
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1660 1661 1662 1663
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1664
	if (ret)
1665
		goto err;
1666

1667
	if (read_domains & I915_GEM_DOMAIN_GTT)
1668
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1669
	else
1670
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1671

1672
	if (write_domain != 0)
1673
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1674

1675
	i915_gem_object_put(obj);
1676 1677
	mutex_unlock(&dev->struct_mutex);
	return ret;
1678 1679 1680 1681

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1682 1683 1684 1685
}

/**
 * Called when user space has done writes to this buffer
1686 1687 1688
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1689 1690 1691
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1692
			 struct drm_file *file)
1693 1694
{
	struct drm_i915_gem_sw_finish *args = data;
1695
	struct drm_i915_gem_object *obj;
1696
	int err = 0;
1697

1698
	obj = i915_gem_object_lookup(file, args->handle);
1699 1700
	if (!obj)
		return -ENOENT;
1701 1702

	/* Pinned buffers may be scanout, so flush the cache */
1703 1704 1705 1706 1707 1708 1709
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1710

1711 1712
	i915_gem_object_put_unlocked(obj);
	return err;
1713 1714 1715
}

/**
1716 1717 1718 1719 1720
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1721 1722 1723
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1734 1735 1736
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1737
		    struct drm_file *file)
1738 1739
{
	struct drm_i915_gem_mmap *args = data;
1740
	struct drm_i915_gem_object *obj;
1741 1742
	unsigned long addr;

1743 1744 1745
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1746
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1747 1748
		return -ENODEV;

1749 1750
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1751
		return -ENOENT;
1752

1753 1754 1755
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1756
	if (!obj->base.filp) {
1757
		i915_gem_object_put_unlocked(obj);
1758 1759 1760
		return -EINVAL;
	}

1761
	addr = vm_mmap(obj->base.filp, 0, args->size,
1762 1763
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1764 1765 1766 1767
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1768
		if (down_write_killable(&mm->mmap_sem)) {
1769
			i915_gem_object_put_unlocked(obj);
1770 1771
			return -EINTR;
		}
1772 1773 1774 1775 1776 1777 1778
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1779 1780

		/* This may race, but that's ok, it only gets set */
1781
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1782
	}
1783
	i915_gem_object_put_unlocked(obj);
1784 1785 1786 1787 1788 1789 1790 1791
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1852 1853
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1854
 * @area: CPU VMA in question
1855
 * @vmf: fault info
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1867 1868 1869
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1870
 */
C
Chris Wilson 已提交
1871
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1872
{
1873
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1874
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1875
	struct drm_device *dev = obj->base.dev;
1876 1877
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1878
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1879
	struct i915_vma *vma;
1880
	pgoff_t page_offset;
1881
	unsigned int flags;
1882
	int ret;
1883

1884
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1885
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1886 1887
		PAGE_SHIFT;

C
Chris Wilson 已提交
1888 1889
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1890
	/* Try to flush the object off the GPU first without holding the lock.
1891
	 * Upon acquiring the lock, we will perform our sanity checks and then
1892 1893 1894
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1895 1896 1897 1898
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1899
	if (ret)
1900 1901 1902 1903 1904 1905 1906
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1907

1908 1909
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1910
		ret = -EFAULT;
1911
		goto err_unlock;
1912 1913
	}

1914 1915 1916 1917 1918 1919 1920 1921
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1922
	/* Now pin it into the GTT as needed */
1923
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1924 1925
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1926 1927
		unsigned int chunk_size;

1928
		/* Use a partial view if it is bigger than available space */
1929 1930 1931
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1932

1933 1934 1935 1936
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1937
			min_t(unsigned int, chunk_size,
1938
			      vma_pages(area) - view.params.partial.offset);
1939

1940 1941 1942 1943 1944 1945
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1946 1947 1948 1949 1950
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1951 1952
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1953 1954
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1955
		goto err_unlock;
C
Chris Wilson 已提交
1956
	}
1957

1958 1959
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1960
		goto err_unpin;
1961

1962
	ret = i915_vma_get_fence(vma);
1963
	if (ret)
1964
		goto err_unpin;
1965

1966
	/* Mark as being mmapped into userspace for later revocation */
1967
	assert_rpm_wakelock_held(dev_priv);
1968 1969 1970
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1971
	/* Finally, remap it using the new GTT offset */
1972 1973 1974 1975 1976
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1977

1978
err_unpin:
C
Chris Wilson 已提交
1979
	__i915_vma_unpin(vma);
1980
err_unlock:
1981
	mutex_unlock(&dev->struct_mutex);
1982 1983 1984
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1985
	switch (ret) {
1986
	case -EIO:
1987 1988 1989 1990 1991 1992 1993
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1994 1995 1996
			ret = VM_FAULT_SIGBUS;
			break;
		}
1997
	case -EAGAIN:
D
Daniel Vetter 已提交
1998 1999 2000 2001
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2002
		 */
2003 2004
	case 0:
	case -ERESTARTSYS:
2005
	case -EINTR:
2006 2007 2008 2009 2010
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2011 2012
		ret = VM_FAULT_NOPAGE;
		break;
2013
	case -ENOMEM:
2014 2015
		ret = VM_FAULT_OOM;
		break;
2016
	case -ENOSPC:
2017
	case -EFAULT:
2018 2019
		ret = VM_FAULT_SIGBUS;
		break;
2020
	default:
2021
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2022 2023
		ret = VM_FAULT_SIGBUS;
		break;
2024
	}
2025
	return ret;
2026 2027
}

2028 2029 2030 2031
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2032
 * Preserve the reservation of the mmapping with the DRM core code, but
2033 2034 2035 2036 2037 2038 2039 2040 2041
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2042
void
2043
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2044
{
2045 2046
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2047 2048 2049
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2050 2051 2052 2053
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2054
	 */
2055
	lockdep_assert_held(&i915->drm.struct_mutex);
2056
	intel_runtime_pm_get(i915);
2057

2058
	if (list_empty(&obj->userfault_link))
2059
		goto out;
2060

2061
	list_del_init(&obj->userfault_link);
2062 2063
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2064 2065 2066 2067 2068 2069 2070 2071 2072

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2073 2074 2075

out:
	intel_runtime_pm_put(i915);
2076 2077
}

2078
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2079
{
2080
	struct drm_i915_gem_object *obj, *on;
2081
	int i;
2082

2083 2084 2085 2086 2087 2088
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2089

2090 2091 2092
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2093 2094 2095
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2113 2114
}

2115 2116
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2117
 * @dev_priv: i915 device
2118 2119 2120 2121 2122 2123
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2124 2125
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2126
{
2127
	u64 ggtt_size;
2128

2129 2130
	GEM_BUG_ON(size == 0);

2131
	if (INTEL_GEN(dev_priv) >= 4 ||
2132 2133
	    tiling_mode == I915_TILING_NONE)
		return size;
2134 2135

	/* Previous chips need a power-of-two fence region when tiling */
2136
	if (IS_GEN3(dev_priv))
2137
		ggtt_size = 1024*1024;
2138
	else
2139
		ggtt_size = 512*1024;
2140

2141 2142
	while (ggtt_size < size)
		ggtt_size <<= 1;
2143

2144
	return ggtt_size;
2145 2146
}

2147
/**
2148
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2149
 * @dev_priv: i915 device
2150 2151
 * @size: object size
 * @tiling_mode: tiling mode
2152
 * @fenced: is fenced alignment required or not
2153
 *
2154
 * Return the required global GTT alignment for an object, taking into account
2155
 * potential fence register mapping.
2156
 */
2157
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2158
				int tiling_mode, bool fenced)
2159
{
2160 2161
	GEM_BUG_ON(size == 0);

2162 2163 2164 2165
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2166
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2167
	    tiling_mode == I915_TILING_NONE)
2168 2169
		return 4096;

2170 2171 2172 2173
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2174
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2175 2176
}

2177 2178
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2179
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2180
	int err;
2181

2182 2183 2184
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2185

2186 2187 2188
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2189
	 */
2190
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2191 2192 2193 2194 2195 2196 2197 2198 2199
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2200

2201
	return err;
2202 2203 2204 2205 2206 2207 2208
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2209
int
2210 2211
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2212
		  uint32_t handle,
2213
		  uint64_t *offset)
2214
{
2215
	struct drm_i915_gem_object *obj;
2216 2217
	int ret;

2218
	obj = i915_gem_object_lookup(file, handle);
2219 2220
	if (!obj)
		return -ENOENT;
2221

2222
	ret = i915_gem_object_create_mmap_offset(obj);
2223 2224
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2225

2226
	i915_gem_object_put_unlocked(obj);
2227
	return ret;
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2251
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2252 2253
}

D
Daniel Vetter 已提交
2254 2255 2256
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2257
{
2258
	i915_gem_object_free_mmap_offset(obj);
2259

2260 2261
	if (obj->base.filp == NULL)
		return;
2262

D
Daniel Vetter 已提交
2263 2264 2265 2266 2267
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2268
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2269 2270
	obj->madv = __I915_MADV_PURGED;
}
2271

2272 2273 2274
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2275
{
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2288
	mapping = obj->base.filp->f_mapping,
2289
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2290 2291
}

2292
static void
2293
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2294
{
2295 2296
	struct sgt_iter sgt_iter;
	struct page *page;
2297
	int ret;
2298

2299
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2300

C
Chris Wilson 已提交
2301
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2302
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2303 2304 2305
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2306
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2307 2308 2309
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2310 2311
	i915_gem_gtt_finish_object(obj);

2312
	if (i915_gem_object_needs_bit17_swizzle(obj))
2313 2314
		i915_gem_object_save_bit_17_swizzle(obj);

2315 2316
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2317

2318
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2319
		if (obj->dirty)
2320
			set_page_dirty(page);
2321

2322
		if (obj->madv == I915_MADV_WILLNEED)
2323
			mark_page_accessed(page);
2324

2325
		put_page(page);
2326
	}
2327
	obj->dirty = 0;
2328

2329 2330
	sg_free_table(obj->pages);
	kfree(obj->pages);
2331
}
C
Chris Wilson 已提交
2332

2333
int
2334 2335 2336 2337
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2338 2339
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2340
	if (obj->pages == NULL)
2341 2342
		return 0;

2343 2344 2345
	if (obj->pages_pin_count)
		return -EBUSY;

2346
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2347

2348 2349 2350
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2351
	list_del(&obj->global_list);
2352

2353
	if (obj->mapping) {
2354 2355 2356 2357 2358
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2359
		else
2360 2361
			kunmap(kmap_to_page(ptr));

2362 2363 2364
		obj->mapping = NULL;
	}

2365
	ops->put_pages(obj);
2366
	obj->pages = NULL;
2367

2368
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2369 2370 2371 2372

	return 0;
}

2373
static unsigned int swiotlb_max_size(void)
2374 2375 2376 2377 2378 2379 2380 2381
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2382
static int
C
Chris Wilson 已提交
2383
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2384
{
2385
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386 2387
	int page_count, i;
	struct address_space *mapping;
2388 2389
	struct sg_table *st;
	struct scatterlist *sg;
2390
	struct sgt_iter sgt_iter;
2391
	struct page *page;
2392
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2393
	unsigned int max_segment;
I
Imre Deak 已提交
2394
	int ret;
C
Chris Wilson 已提交
2395
	gfp_t gfp;
2396

C
Chris Wilson 已提交
2397 2398 2399 2400 2401 2402 2403
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2404 2405
	max_segment = swiotlb_max_size();
	if (!max_segment)
2406
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2407

2408 2409 2410 2411
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2412
	page_count = obj->base.size / PAGE_SIZE;
2413 2414
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2415
		return -ENOMEM;
2416
	}
2417

2418 2419 2420 2421 2422
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2423
	mapping = obj->base.filp->f_mapping;
2424
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2425
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2426 2427 2428
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2429 2430
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2431 2432 2433 2434 2435
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2436 2437 2438 2439 2440 2441 2442
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2443
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2444 2445
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2446
				goto err_pages;
I
Imre Deak 已提交
2447
			}
C
Chris Wilson 已提交
2448
		}
2449 2450 2451
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2452 2453 2454 2455 2456 2457 2458 2459
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2460 2461 2462

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2463
	}
2464
	if (sg) /* loop terminated early; short sg table */
2465
		sg_mark_end(sg);
2466 2467
	obj->pages = st;

I
Imre Deak 已提交
2468 2469 2470 2471
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2472
	if (i915_gem_object_needs_bit17_swizzle(obj))
2473 2474
		i915_gem_object_do_bit_17_swizzle(obj);

2475
	if (i915_gem_object_is_tiled(obj) &&
2476 2477 2478
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2479 2480 2481
	return 0;

err_pages:
2482
	sg_mark_end(sg);
2483 2484
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2485 2486
	sg_free_table(st);
	kfree(st);
2487 2488 2489 2490 2491 2492 2493 2494 2495

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2496 2497 2498 2499
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2500 2501
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2512
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2513 2514 2515
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2516 2517
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2518
	if (obj->pages)
2519 2520
		return 0;

2521
	if (obj->madv != I915_MADV_WILLNEED) {
2522
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2523
		return -EFAULT;
2524 2525
	}

2526 2527
	BUG_ON(obj->pages_pin_count);

2528 2529 2530 2531
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2532
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2533 2534 2535 2536

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2537
	return 0;
2538 2539
}

2540
/* The 'mapping' part of i915_gem_object_pin_map() below */
2541 2542
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2543 2544 2545
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2546 2547
	struct sgt_iter sgt_iter;
	struct page *page;
2548 2549
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2550
	unsigned long i = 0;
2551
	pgprot_t pgprot;
2552 2553 2554
	void *addr;

	/* A single page can always be kmapped */
2555
	if (n_pages == 1 && type == I915_MAP_WB)
2556 2557
		return kmap(sg_page(sgt->sgl));

2558 2559 2560 2561 2562 2563
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2564

2565 2566
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2567 2568 2569 2570

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2571 2572 2573 2574 2575 2576 2577 2578 2579
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2580

2581 2582
	if (pages != stack_pages)
		drm_free_large(pages);
2583 2584 2585 2586 2587

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2588 2589
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2590
{
2591 2592 2593
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2594 2595 2596
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2597
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2598 2599 2600 2601 2602 2603

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2604
	pinned = obj->pages_pin_count > 1;
2605

2606 2607 2608 2609 2610
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2611
		}
2612 2613 2614 2615 2616 2617 2618

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2619 2620
	}

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2636 2637
}

2638
static void
2639 2640
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2641
{
2642 2643
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2644

2645
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2646 2647
}

2648
static void
2649 2650
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2651
{
2652 2653 2654
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2655

2656
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2657

2658 2659
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2660
		return;
2661

2662 2663 2664 2665
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2666 2667 2668
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2669

2670 2671 2672 2673
	if (i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_clear_active_reference(obj);
		i915_gem_object_put(obj);
	}
2674 2675
}

2676
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2677
{
2678
	unsigned long elapsed;
2679

2680
	if (ctx->hang_stats.banned)
2681 2682
		return true;

2683
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2684 2685
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2686 2687
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2688 2689 2690 2691 2692
	}

	return false;
}

2693
static void i915_set_reset_status(struct i915_gem_context *ctx,
2694
				  const bool guilty)
2695
{
2696
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2697 2698

	if (guilty) {
2699
		hs->banned = i915_context_is_banned(ctx);
2700 2701 2702 2703
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2704 2705 2706
	}
}

2707
struct drm_i915_gem_request *
2708
i915_gem_find_active_request(struct intel_engine_cs *engine)
2709
{
2710 2711
	struct drm_i915_gem_request *request;

2712 2713 2714 2715 2716 2717 2718 2719
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2720
	list_for_each_entry(request, &engine->request_list, link) {
2721
		if (i915_gem_request_completed(request))
2722
			continue;
2723

2724 2725 2726
		if (!i915_sw_fence_done(&request->submit))
			break;

2727
		return request;
2728
	}
2729 2730 2731 2732

	return NULL;
}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2751 2752
{
	struct drm_i915_gem_request *request;
2753
	struct i915_gem_context *incomplete_ctx;
2754 2755
	bool ring_hung;

2756 2757 2758
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2759
	request = i915_gem_find_active_request(engine);
2760
	if (!request)
2761 2762
		return;

2763
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2764 2765 2766
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2767
	i915_set_reset_status(request->ctx, ring_hung);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
			 engine->name, request->fence.seqno);

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2789
	list_for_each_entry_continue(request, &engine->request_list, link)
2790 2791
		if (request->ctx == incomplete_ctx)
			reset_request(request);
2792
}
2793

2794
void i915_gem_reset(struct drm_i915_private *dev_priv)
2795
{
2796
	struct intel_engine_cs *engine;
2797
	enum intel_engine_id id;
2798

2799 2800
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2801 2802
	i915_gem_retire_requests(dev_priv);

2803
	for_each_engine(engine, dev_priv, id)
2804 2805 2806
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2807 2808 2809 2810 2811 2812 2813

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2814 2815 2816 2817 2818 2819 2820 2821 2822
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2823

2824 2825 2826 2827
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2828
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2829

2830 2831 2832 2833 2834 2835
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2836
	if (i915.enable_execlists) {
2837 2838 2839 2840 2841 2842
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2843 2844
	}

2845
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2846 2847
}

2848
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2849
{
2850
	struct intel_engine_cs *engine;
2851
	enum intel_engine_id id;
2852

2853 2854
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2855

2856
	i915_gem_context_lost(dev_priv);
2857
	for_each_engine(engine, dev_priv, id)
2858
		i915_gem_cleanup_engine(engine);
2859
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2860

2861
	i915_gem_retire_requests(dev_priv);
2862 2863
}

2864
static void
2865 2866
i915_gem_retire_work_handler(struct work_struct *work)
{
2867
	struct drm_i915_private *dev_priv =
2868
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2869
	struct drm_device *dev = &dev_priv->drm;
2870

2871
	/* Come back later if the device is busy... */
2872
	if (mutex_trylock(&dev->struct_mutex)) {
2873
		i915_gem_retire_requests(dev_priv);
2874
		mutex_unlock(&dev->struct_mutex);
2875
	}
2876 2877 2878 2879 2880

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2881 2882
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2883 2884
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2885
				   round_jiffies_up_relative(HZ));
2886
	}
2887
}
2888

2889 2890 2891 2892
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2893
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2894
	struct drm_device *dev = &dev_priv->drm;
2895
	struct intel_engine_cs *engine;
2896
	enum intel_engine_id id;
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2918

2919
	for_each_engine(engine, dev_priv, id)
2920
		i915_gem_batch_pool_fini(&engine->batch_pool);
2921

2922 2923 2924
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2925

2926 2927 2928 2929 2930
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2931

2932 2933 2934 2935
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2936
	}
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2949 2950 2951 2952 2953 2954

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2955 2956 2957
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2969 2970
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2971 2972 2973
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2998 2999
	ktime_t start;
	long ret;
3000

3001 3002 3003
	if (args->flags != 0)
		return -EINVAL;

3004
	obj = i915_gem_object_lookup(file, args->bo_handle);
3005
	if (!obj)
3006 3007
		return -ENOENT;

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3019 3020
	}

3021
	i915_gem_object_put_unlocked(obj);
3022
	return ret;
3023 3024
}

3025 3026
static void __i915_vma_iounmap(struct i915_vma *vma)
{
3027
	GEM_BUG_ON(i915_vma_is_pinned(vma));
3028 3029 3030 3031 3032 3033 3034 3035

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3036
int i915_vma_unbind(struct i915_vma *vma)
3037
{
3038
	struct drm_i915_gem_object *obj = vma->obj;
3039
	unsigned long active;
3040
	int ret;
3041

3042 3043
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3044 3045 3046 3047
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
3048
	if (active) {
3049 3050
		int idx;

3051 3052 3053 3054 3055
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
3056
		__i915_vma_pin(vma);
3057

3058 3059 3060 3061
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
3062
				break;
3063 3064
		}

3065
		__i915_vma_unpin(vma);
3066 3067 3068
		if (ret)
			return ret;

3069 3070 3071
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

3072
	if (i915_vma_is_pinned(vma))
3073 3074
		return -EBUSY;

3075 3076
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
3077

3078 3079
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
3080

3081
	if (i915_vma_is_map_and_fenceable(vma)) {
3082
		/* release the fence reg _after_ flushing */
3083
		ret = i915_vma_put_fence(vma);
3084 3085
		if (ret)
			return ret;
3086

3087 3088 3089
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

3090
		__i915_vma_iounmap(vma);
3091
		vma->flags &= ~I915_VMA_CAN_FENCE;
3092
	}
3093

3094 3095 3096 3097
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
3098
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3099

3100 3101 3102
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

3103 3104 3105 3106
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
3107
	}
3108
	vma->pages = NULL;
3109

B
Ben Widawsky 已提交
3110
	/* Since the unbound list is global, only move to that list if
3111
	 * no more VMAs exist. */
3112 3113 3114
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3115

3116 3117 3118 3119 3120 3121
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3122
destroy:
3123
	if (unlikely(i915_vma_is_closed(vma)))
3124 3125
		i915_vma_destroy(vma);

3126
	return 0;
3127 3128
}

3129
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3130
			   unsigned int flags)
3131
{
3132
	struct intel_engine_cs *engine;
3133
	enum intel_engine_id id;
3134
	int ret;
3135

3136
	for_each_engine(engine, dev_priv, id) {
3137 3138 3139
		if (engine->last_context == NULL)
			continue;

3140
		ret = intel_engine_idle(engine, flags);
3141 3142 3143
		if (ret)
			return ret;
	}
3144

3145
	return 0;
3146 3147
}

3148
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3149 3150
				     unsigned long cache_level)
{
3151
	struct drm_mm_node *gtt_space = &vma->node;
3152 3153
	struct drm_mm_node *other;

3154 3155 3156 3157 3158 3159
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3160
	 */
3161
	if (vma->vm->mm.color_adjust == NULL)
3162 3163
		return true;

3164
	if (!drm_mm_node_allocated(gtt_space))
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3181
/**
3182 3183
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3184
 * @size: requested size in bytes (can be larger than the VMA)
3185
 * @alignment: required alignment
3186
 * @flags: mask of PIN_* flags to use
3187 3188 3189 3190 3191 3192 3193
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3194
 */
3195 3196
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3197
{
3198 3199
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3200
	u64 start, end;
3201
	int ret;
3202

3203
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3204
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3205 3206 3207

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3208 3209
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3210

3211 3212 3213 3214
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3215

3216
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3217 3218

	end = vma->vm->total;
3219
	if (flags & PIN_MAPPABLE)
3220
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3221
	if (flags & PIN_ZONE_4G)
3222
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3223

3224 3225 3226
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3227
	 */
3228
	if (size > end) {
3229
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3230
			  size, obj->base.size,
3231
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3232
			  end);
3233
		return -E2BIG;
3234 3235
	}

3236
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3237
	if (ret)
3238
		return ret;
C
Chris Wilson 已提交
3239

3240 3241
	i915_gem_object_pin_pages(obj);

3242
	if (flags & PIN_OFFSET_FIXED) {
3243
		u64 offset = flags & PIN_OFFSET_MASK;
3244
		if (offset & (alignment - 1) || offset > end - size) {
3245
			ret = -EINVAL;
3246
			goto err_unpin;
3247
		}
3248

3249 3250 3251
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3252
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3253 3254 3255
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3256 3257 3258
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3259
		}
3260
	} else {
3261 3262
		u32 search_flag, alloc_flag;

3263 3264 3265 3266 3267 3268 3269
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3280
search_free:
3281 3282
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3283 3284 3285 3286 3287 3288
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3289
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3290 3291 3292 3293 3294
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3295

3296
			goto err_unpin;
3297
		}
3298 3299 3300

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3301
	}
3302
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3303

3304
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3305
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3306
	obj->bind_count++;
3307

3308
	return 0;
B
Ben Widawsky 已提交
3309

3310
err_unpin:
B
Ben Widawsky 已提交
3311
	i915_gem_object_unpin_pages(obj);
3312
	return ret;
3313 3314
}

3315
bool
3316 3317
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3318 3319 3320 3321 3322
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3323
	if (obj->pages == NULL)
3324
		return false;
3325

3326 3327 3328 3329
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3330
	if (obj->stolen || obj->phys_handle)
3331
		return false;
3332

3333 3334 3335 3336 3337 3338 3339 3340
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3341 3342
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3343
		return false;
3344
	}
3345

C
Chris Wilson 已提交
3346
	trace_i915_gem_object_clflush(obj);
3347
	drm_clflush_sg(obj->pages);
3348
	obj->cache_dirty = false;
3349 3350

	return true;
3351 3352 3353 3354
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3355
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3356
{
3357
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3358

3359
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3360 3361
		return;

3362
	/* No actual flushing is required for the GTT write domain.  Writes
3363
	 * to it "immediately" go to main memory as far as we know, so there's
3364
	 * no chipset flush.  It also doesn't land in render cache.
3365 3366 3367 3368
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3369 3370 3371 3372 3373 3374 3375
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3376
	 */
3377
	wmb();
3378
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3379
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3380

3381
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3382

3383
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3384
	trace_i915_gem_object_change_domain(obj,
3385
					    obj->base.read_domains,
3386
					    I915_GEM_DOMAIN_GTT);
3387 3388 3389 3390
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3391
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3392
{
3393
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3394 3395
		return;

3396
	if (i915_gem_clflush_object(obj, obj->pin_display))
3397
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3398

3399
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3400

3401
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3402
	trace_i915_gem_object_change_domain(obj,
3403
					    obj->base.read_domains,
3404
					    I915_GEM_DOMAIN_CPU);
3405 3406
}

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}
}

3425 3426
/**
 * Moves a single object to the GTT read, and possibly write domain.
3427 3428
 * @obj: object to act on
 * @write: ask for write access or read only
3429 3430 3431 3432
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3433
int
3434
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3435
{
C
Chris Wilson 已提交
3436
	uint32_t old_write_domain, old_read_domains;
3437
	int ret;
3438

3439
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3440

3441 3442 3443 3444 3445 3446
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3447 3448 3449
	if (ret)
		return ret;

3450 3451 3452
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3465
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3466

3467 3468 3469 3470 3471 3472 3473
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3474 3475
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3476

3477 3478 3479
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3480 3481
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3482
	if (write) {
3483 3484 3485
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3486 3487
	}

C
Chris Wilson 已提交
3488 3489 3490 3491
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3492
	/* And bump the LRU for this access */
3493
	i915_gem_object_bump_inactive_ggtt(obj);
3494

3495 3496 3497
	return 0;
}

3498 3499
/**
 * Changes the cache-level of an object across all VMA.
3500 3501
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3513 3514 3515
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3516
	struct i915_vma *vma;
3517
	int ret = 0;
3518

3519 3520
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3521
	if (obj->cache_level == cache_level)
3522
		goto out;
3523

3524 3525 3526 3527 3528
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3529 3530
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3531 3532 3533
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3534
		if (i915_vma_is_pinned(vma)) {
3535 3536 3537 3538
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3551 3552
	}

3553 3554 3555 3556 3557 3558 3559
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3560
	if (obj->bind_count) {
3561 3562 3563 3564
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3565 3566 3567 3568 3569 3570
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3571 3572 3573
		if (ret)
			return ret;

3574
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3591 3592 3593 3594 3595
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3596 3597 3598 3599 3600 3601 3602 3603
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3604 3605
		}

3606
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3607 3608 3609 3610 3611 3612 3613
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3614 3615
	}

3616
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3617 3618 3619
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3620
out:
3621 3622 3623 3624
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3625
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3626
		if (i915_gem_clflush_object(obj, true))
3627
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3628 3629 3630 3631 3632
	}

	return 0;
}

B
Ben Widawsky 已提交
3633 3634
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3635
{
B
Ben Widawsky 已提交
3636
	struct drm_i915_gem_caching *args = data;
3637 3638
	struct drm_i915_gem_object *obj;

3639 3640
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3641
		return -ENOENT;
3642

3643 3644 3645 3646 3647 3648
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3649 3650 3651 3652
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3653 3654 3655 3656
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3657

3658
	i915_gem_object_put_unlocked(obj);
3659
	return 0;
3660 3661
}

B
Ben Widawsky 已提交
3662 3663
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3664
{
3665
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3666
	struct drm_i915_gem_caching *args = data;
3667 3668 3669 3670
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3671 3672
	switch (args->caching) {
	case I915_CACHING_NONE:
3673 3674
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3675
	case I915_CACHING_CACHED:
3676 3677 3678 3679 3680 3681
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3682
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3683 3684
			return -ENODEV;

3685 3686
		level = I915_CACHE_LLC;
		break;
3687
	case I915_CACHING_DISPLAY:
3688
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3689
		break;
3690 3691 3692 3693
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3694 3695
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3696
		return ret;
B
Ben Widawsky 已提交
3697

3698 3699
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3700 3701 3702 3703 3704
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3705
	i915_gem_object_put(obj);
3706 3707 3708 3709 3710
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3711
/*
3712 3713 3714
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3715
 */
C
Chris Wilson 已提交
3716
struct i915_vma *
3717 3718
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3719
				     const struct i915_ggtt_view *view)
3720
{
C
Chris Wilson 已提交
3721
	struct i915_vma *vma;
3722
	u32 old_read_domains, old_write_domain;
3723 3724
	int ret;

3725 3726
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3727 3728 3729
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3730
	obj->pin_display++;
3731

3732 3733 3734 3735 3736 3737 3738 3739 3740
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3741
	ret = i915_gem_object_set_cache_level(obj,
3742 3743
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3744 3745
	if (ret) {
		vma = ERR_PTR(ret);
3746
		goto err_unpin_display;
C
Chris Wilson 已提交
3747
	}
3748

3749 3750
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3751 3752 3753 3754
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3755
	 */
3756 3757 3758 3759 3760 3761
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3762
	if (IS_ERR(vma))
3763
		goto err_unpin_display;
3764

3765 3766
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3767
	i915_gem_object_flush_cpu_write_domain(obj);
3768

3769
	old_write_domain = obj->base.write_domain;
3770
	old_read_domains = obj->base.read_domains;
3771 3772 3773 3774

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3775
	obj->base.write_domain = 0;
3776
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3777 3778 3779

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3780
					    old_write_domain);
3781

C
Chris Wilson 已提交
3782
	return vma;
3783 3784

err_unpin_display:
3785
	obj->pin_display--;
C
Chris Wilson 已提交
3786
	return vma;
3787 3788 3789
}

void
C
Chris Wilson 已提交
3790
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3791
{
3792 3793
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3794
	if (WARN_ON(vma->obj->pin_display == 0))
3795 3796
		return;

3797 3798
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3799

3800 3801 3802 3803
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3804
	i915_vma_unpin(vma);
3805 3806
}

3807 3808
/**
 * Moves a single object to the CPU read, and possibly write domain.
3809 3810
 * @obj: object to act on
 * @write: requesting write or read-only access
3811 3812 3813 3814
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3815
int
3816
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3817
{
C
Chris Wilson 已提交
3818
	uint32_t old_write_domain, old_read_domains;
3819 3820
	int ret;

3821
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3822

3823 3824 3825 3826 3827 3828
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3829 3830 3831
	if (ret)
		return ret;

3832 3833 3834
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3835
	i915_gem_object_flush_gtt_write_domain(obj);
3836

3837 3838
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3839

3840
	/* Flush the CPU cache if it's still invalid. */
3841
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3842
		i915_gem_clflush_object(obj, false);
3843

3844
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3845 3846 3847 3848 3849
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3850
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3851 3852 3853 3854 3855

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3856 3857
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3858
	}
3859

C
Chris Wilson 已提交
3860 3861 3862 3863
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3864 3865 3866
	return 0;
}

3867 3868 3869
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3870 3871 3872 3873
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3874 3875 3876
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3877
static int
3878
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3879
{
3880
	struct drm_i915_private *dev_priv = to_i915(dev);
3881
	struct drm_i915_file_private *file_priv = file->driver_priv;
3882
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3883
	struct drm_i915_gem_request *request, *target = NULL;
3884
	long ret;
3885

3886 3887 3888
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3889

3890
	spin_lock(&file_priv->mm.lock);
3891
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3892 3893
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3894

3895 3896 3897 3898 3899 3900 3901
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3902
		target = request;
3903
	}
3904
	if (target)
3905
		i915_gem_request_get(target);
3906
	spin_unlock(&file_priv->mm.lock);
3907

3908
	if (target == NULL)
3909
		return 0;
3910

3911 3912 3913
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3914
	i915_gem_request_put(target);
3915

3916
	return ret < 0 ? ret : 0;
3917 3918
}

3919
static bool
3920
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3921
{
3922 3923 3924
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3925 3926 3927 3928
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3929 3930
		return true;

3931
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3932 3933 3934 3935 3936 3937
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3938 3939 3940 3941
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3942 3943 3944
	return false;
}

3945 3946 3947
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3948
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3949 3950 3951
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3952
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3953
					    vma->size,
3954
					    i915_gem_object_get_tiling(obj));
3955
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3956
						      vma->size,
3957
						      i915_gem_object_get_tiling(obj),
3958
						      true);
3959 3960 3961 3962 3963

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3964
		    dev_priv->ggtt.mappable_end);
3965

3966 3967 3968 3969 3970 3971
	/*
	 * Explicitly disable for rotated VMA since the display does not
	 * need the fence and the VMA is not accessible to other users.
	 */
	if (mappable && fenceable &&
	    vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3972 3973 3974
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3975 3976
}

3977 3978
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3979
{
3980
	unsigned int bound = vma->flags;
3981 3982
	int ret;

3983
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3984
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3985
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3986

3987 3988 3989 3990
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3991

3992
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3993 3994 3995
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3996
	}
3997

3998
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3999
	if (ret)
4000
		goto err;
4001

4002
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
4003
		__i915_vma_set_map_and_fenceable(vma);
4004

4005
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
4006 4007
	return 0;

4008 4009 4010
err:
	__i915_vma_unpin(vma);
	return ret;
4011 4012
}

C
Chris Wilson 已提交
4013
struct i915_vma *
4014 4015
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4016
			 u64 size,
4017 4018
			 u64 alignment,
			 u64 flags)
4019
{
4020 4021
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4022 4023
	struct i915_vma *vma;
	int ret;
4024

4025 4026
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
4027
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
4028
	if (IS_ERR(vma))
C
Chris Wilson 已提交
4029
		return vma;
4030 4031 4032 4033

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4034
			return ERR_PTR(-ENOSPC);
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

4071 4072
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4073 4074 4075
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4076
		     !!(flags & PIN_MAPPABLE),
4077
		     i915_vma_is_map_and_fenceable(vma));
4078 4079
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4080
			return ERR_PTR(ret);
4081 4082
	}

C
Chris Wilson 已提交
4083 4084 4085
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4086

C
Chris Wilson 已提交
4087
	return vma;
4088 4089
}

4090
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4105 4106 4107 4108 4109 4110 4111 4112 4113
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4114 4115
}

4116
static __always_inline unsigned int
4117 4118 4119
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
4120
	struct drm_i915_gem_request *request;
4121

4122 4123 4124
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
4182 4183
}

4184
static __always_inline unsigned int
4185 4186 4187 4188 4189
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

4190
static __always_inline unsigned int
4191 4192 4193 4194 4195
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

4196 4197
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4198
		    struct drm_file *file)
4199 4200
{
	struct drm_i915_gem_busy *args = data;
4201
	struct drm_i915_gem_object *obj;
4202
	unsigned long active;
4203

4204
	obj = i915_gem_object_lookup(file, args->handle);
4205 4206
	if (!obj)
		return -ENOENT;
4207

4208
	args->busy = 0;
4209 4210 4211
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
4212

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4229 4230 4231 4232 4233 4234
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4235 4236 4237 4238 4239 4240 4241
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4242 4243 4244 4245 4246
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4247 4248 4249 4250 4251 4252 4253 4254 4255
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4256
	}
4257

4258 4259
	i915_gem_object_put_unlocked(obj);
	return 0;
4260 4261 4262 4263 4264 4265
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4266
	return i915_gem_ring_throttle(dev, file_priv);
4267 4268
}

4269 4270 4271 4272
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4273
	struct drm_i915_private *dev_priv = to_i915(dev);
4274
	struct drm_i915_gem_madvise *args = data;
4275
	struct drm_i915_gem_object *obj;
4276
	int ret;
4277 4278 4279 4280 4281 4282 4283 4284 4285

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4286 4287 4288 4289
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4290 4291
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4292 4293
		ret = -ENOENT;
		goto unlock;
4294 4295
	}

4296
	if (obj->pages &&
4297
	    i915_gem_object_is_tiled(obj) &&
4298 4299 4300 4301 4302 4303 4304
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4305 4306
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4307

C
Chris Wilson 已提交
4308
	/* if the object is no longer attached, discard its backing storage */
4309
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4310 4311
		i915_gem_object_truncate(obj);

4312
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4313

4314
	i915_gem_object_put(obj);
4315
unlock:
4316
	mutex_unlock(&dev->struct_mutex);
4317
	return ret;
4318 4319
}

4320 4321
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4322
{
4323 4324
	int i;

4325
	INIT_LIST_HEAD(&obj->global_list);
4326
	INIT_LIST_HEAD(&obj->userfault_link);
4327
	for (i = 0; i < I915_NUM_ENGINES; i++)
4328 4329 4330 4331
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4332
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4333
	INIT_LIST_HEAD(&obj->vma_list);
4334
	INIT_LIST_HEAD(&obj->batch_pool_link);
4335

4336 4337
	obj->ops = ops;

4338
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4339 4340
	obj->madv = I915_MADV_WILLNEED;

4341
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4342 4343
}

4344
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4345
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4346 4347 4348 4349
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4350 4351 4352 4353 4354 4355
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
4356
{
4357
	struct drm_i915_gem_object *obj;
4358
	struct address_space *mapping;
D
Daniel Vetter 已提交
4359
	gfp_t mask;
4360
	int ret;
4361

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4373
	obj = i915_gem_object_alloc(dev);
4374
	if (obj == NULL)
4375
		return ERR_PTR(-ENOMEM);
4376

4377 4378 4379
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4380

4381 4382 4383 4384 4385 4386 4387
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4388
	mapping = obj->base.filp->f_mapping;
4389
	mapping_set_gfp_mask(mapping, mask);
4390

4391
	i915_gem_object_init(obj, &i915_gem_object_ops);
4392

4393 4394
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4395

4396 4397
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4413 4414
	trace_i915_gem_object_create(obj);

4415
	return obj;
4416 4417 4418 4419 4420

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4421 4422
}

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4447
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4448
{
4449
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4450
	struct drm_device *dev = obj->base.dev;
4451
	struct drm_i915_private *dev_priv = to_i915(dev);
4452
	struct i915_vma *vma, *next;
4453

4454 4455
	intel_runtime_pm_get(dev_priv);

4456 4457
	trace_i915_gem_object_destroy(obj);

4458 4459 4460 4461 4462 4463 4464
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4465
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4466
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4467
		GEM_BUG_ON(i915_vma_is_active(vma));
4468
		vma->flags &= ~I915_VMA_PIN_MASK;
4469
		i915_vma_close(vma);
4470
	}
4471
	GEM_BUG_ON(obj->bind_count);
4472

B
Ben Widawsky 已提交
4473 4474 4475 4476 4477
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4478
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4479

4480 4481
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4482
	    i915_gem_object_is_tiled(obj))
4483 4484
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4485 4486
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4487
	if (discard_backing_storage(obj))
4488
		obj->madv = I915_MADV_DONTNEED;
4489
	i915_gem_object_put_pages(obj);
4490

4491 4492
	BUG_ON(obj->pages);

4493 4494
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4495

4496 4497 4498
	if (obj->ops->release)
		obj->ops->release(obj);

4499 4500
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4501

4502
	kfree(obj->bit_17);
4503
	i915_gem_object_free(obj);
4504 4505

	intel_runtime_pm_put(dev_priv);
4506 4507
}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4519
int i915_gem_suspend(struct drm_device *dev)
4520
{
4521
	struct drm_i915_private *dev_priv = to_i915(dev);
4522
	int ret;
4523

4524 4525
	intel_suspend_gt_powersave(dev_priv);

4526
	mutex_lock(&dev->struct_mutex);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4540 4541 4542
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4543
	if (ret)
4544
		goto err;
4545

4546
	i915_gem_retire_requests(dev_priv);
4547

4548
	i915_gem_context_lost(dev_priv);
4549 4550
	mutex_unlock(&dev->struct_mutex);

4551
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4552 4553
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4554

4555 4556 4557
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4558
	WARN_ON(dev_priv->gt.awake);
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4584
	return 0;
4585 4586 4587 4588

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4589 4590
}

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4602
	dev_priv->gt.resume(dev_priv);
4603 4604 4605 4606

	mutex_unlock(&dev->struct_mutex);
}

4607 4608
void i915_gem_init_swizzling(struct drm_device *dev)
{
4609
	struct drm_i915_private *dev_priv = to_i915(dev);
4610

4611
	if (INTEL_INFO(dev)->gen < 5 ||
4612 4613 4614 4615 4616 4617
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4618
	if (IS_GEN5(dev_priv))
4619 4620
		return;

4621
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4622
	if (IS_GEN6(dev_priv))
4623
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4624
	else if (IS_GEN7(dev_priv))
4625
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4626
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4627
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4628 4629
	else
		BUG();
4630
}
D
Daniel Vetter 已提交
4631

4632
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4633 4634 4635 4636 4637 4638 4639
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4640
static void init_unused_rings(struct drm_i915_private *dev_priv)
4641
{
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4654 4655 4656
	}
}

4657 4658 4659
int
i915_gem_init_hw(struct drm_device *dev)
{
4660
	struct drm_i915_private *dev_priv = to_i915(dev);
4661
	struct intel_engine_cs *engine;
4662
	enum intel_engine_id id;
C
Chris Wilson 已提交
4663
	int ret;
4664

4665 4666
	dev_priv->gt.last_init_time = ktime_get();

4667 4668 4669
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4670
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4671
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4672

4673
	if (IS_HASWELL(dev_priv))
4674
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4675
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4676

4677
	if (HAS_PCH_NOP(dev_priv)) {
4678
		if (IS_IVYBRIDGE(dev_priv)) {
4679 4680 4681 4682 4683 4684 4685 4686
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4687 4688
	}

4689 4690
	i915_gem_init_swizzling(dev);

4691 4692 4693 4694 4695 4696
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4697
	init_unused_rings(dev_priv);
4698

4699
	BUG_ON(!dev_priv->kernel_context);
4700

4701 4702 4703 4704 4705 4706 4707
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4708
	for_each_engine(engine, dev_priv, id) {
4709
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4710
		if (ret)
4711
			goto out;
D
Daniel Vetter 已提交
4712
	}
4713

4714 4715
	intel_mocs_init_l3cc_table(dev);

4716
	/* We can't enable contexts until all firmware is loaded */
4717 4718 4719
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4720

4721 4722
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4723
	return ret;
4724 4725
}

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4747 4748
int i915_gem_init(struct drm_device *dev)
{
4749
	struct drm_i915_private *dev_priv = to_i915(dev);
4750 4751 4752
	int ret;

	mutex_lock(&dev->struct_mutex);
4753

4754
	if (!i915.enable_execlists) {
4755
		dev_priv->gt.resume = intel_legacy_submission_resume;
4756
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4757
	} else {
4758
		dev_priv->gt.resume = intel_lr_context_resume;
4759
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4760 4761
	}

4762 4763 4764 4765 4766 4767 4768 4769
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4770
	i915_gem_init_userptr(dev_priv);
4771 4772 4773 4774

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4775

4776
	ret = i915_gem_context_init(dev);
4777 4778
	if (ret)
		goto out_unlock;
4779

4780
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4781
	if (ret)
4782
		goto out_unlock;
4783

4784
	ret = i915_gem_init_hw(dev);
4785
	if (ret == -EIO) {
4786
		/* Allow engine initialisation to fail by marking the GPU as
4787 4788 4789 4790
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4791
		i915_gem_set_wedged(dev_priv);
4792
		ret = 0;
4793
	}
4794 4795

out_unlock:
4796
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4797
	mutex_unlock(&dev->struct_mutex);
4798

4799
	return ret;
4800 4801
}

4802
void
4803
i915_gem_cleanup_engines(struct drm_device *dev)
4804
{
4805
	struct drm_i915_private *dev_priv = to_i915(dev);
4806
	struct intel_engine_cs *engine;
4807
	enum intel_engine_id id;
4808

4809
	for_each_engine(engine, dev_priv, id)
4810
		dev_priv->gt.cleanup_engine(engine);
4811 4812
}

4813 4814 4815
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4816
	struct drm_device *dev = &dev_priv->drm;
4817
	int i;
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4828
	if (intel_vgpu_active(dev_priv))
4829 4830 4831 4832
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4833 4834 4835 4836 4837 4838 4839
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4840 4841 4842 4843 4844
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4845
void
4846
i915_gem_load_init(struct drm_device *dev)
4847
{
4848
	struct drm_i915_private *dev_priv = to_i915(dev);
4849

4850
	dev_priv->objects =
4851 4852 4853 4854
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4855 4856 4857 4858 4859
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4860 4861 4862
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4863 4864 4865
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4866
				  NULL);
4867

4868
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4869 4870
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4871
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4872
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4873
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4874
			  i915_gem_retire_work_handler);
4875
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4876
			  i915_gem_idle_work_handler);
4877
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4878
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4879

4880 4881
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4882
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4883

4884 4885
	dev_priv->mm.interruptible = true;

4886 4887
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4888
	spin_lock_init(&dev_priv->fb_tracking.lock);
4889
}
4890

4891 4892 4893 4894 4895 4896 4897
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4898 4899 4900

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4901 4902
}

4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4916 4917 4918
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4919 4920 4921 4922 4923
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4934 4935 4936
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4937 4938
	 */

4939 4940
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4941

4942 4943 4944 4945 4946
	for (p = phases; *p; p++) {
		list_for_each_entry(obj, *p, global_list) {
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4947
	}
4948
	mutex_unlock(&dev_priv->drm.struct_mutex);
4949 4950 4951 4952

	return 0;
}

4953
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4954
{
4955
	struct drm_i915_file_private *file_priv = file->driver_priv;
4956
	struct drm_i915_gem_request *request;
4957 4958 4959 4960 4961

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4962
	spin_lock(&file_priv->mm.lock);
4963
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4964
		request->file_priv = NULL;
4965
	spin_unlock(&file_priv->mm.lock);
4966

4967
	if (!list_empty(&file_priv->rps.link)) {
4968
		spin_lock(&to_i915(dev)->rps.client_lock);
4969
		list_del(&file_priv->rps.link);
4970
		spin_unlock(&to_i915(dev)->rps.client_lock);
4971
	}
4972 4973 4974 4975 4976
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4977
	int ret;
4978 4979 4980 4981 4982 4983 4984 4985

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4986
	file_priv->dev_priv = to_i915(dev);
4987
	file_priv->file = file;
4988
	INIT_LIST_HEAD(&file_priv->rps.link);
4989 4990 4991 4992

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4993
	file_priv->bsd_engine = -1;
4994

4995 4996 4997
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4998

4999
	return ret;
5000 5001
}

5002 5003
/**
 * i915_gem_track_fb - update frontbuffer tracking
5004 5005 5006
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5007 5008 5009 5010
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5011 5012 5013 5014
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5015 5016 5017 5018 5019 5020 5021 5022 5023
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5024
	if (old) {
5025 5026
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5027 5028 5029
	}

	if (new) {
5030 5031
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5032 5033 5034
	}
}

5035 5036 5037 5038 5039 5040 5041
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5042
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5043 5044 5045 5046 5047 5048 5049
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5060
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5061
	if (IS_ERR(obj))
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5075
	obj->dirty = 1;		/* Backing store is now out of date */
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
5087
	i915_gem_object_put(obj);
5088 5089
	return ERR_PTR(ret);
}