i915_gem.c 136.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65
static int
66
insert_mappable_node(struct i915_ggtt *ggtt,
67 68 69
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
70 71 72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
						   size, 0, -1,
						   0, ggtt->mappable_end,
73 74 75 76 77 78 79 80 81 82
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107 108
	might_sleep();

109
	if (!i915_reset_in_progress(error))
110 111
		return 0;

112 113 114 115 116
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
117
	ret = wait_event_interruptible_timeout(error->reset_queue,
118
					       !i915_reset_in_progress(error),
119
					       I915_RESET_TIMEOUT);
120 121 122 123
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
124
		return ret;
125 126
	} else {
		return 0;
127
	}
128 129
}

130
int i915_mutex_lock_interruptible(struct drm_device *dev)
131
{
132
	struct drm_i915_private *dev_priv = to_i915(dev);
133 134
	int ret;

135
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 137 138 139 140 141 142 143 144
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172
static struct sg_table *
173
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175
	struct address_space *mapping = obj->base.filp->f_mapping;
176 177 178 179
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182
		return ERR_PTR(-EINVAL);
183 184 185 186 187 188 189

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
190
			return ERR_CAST(page);
191 192 193 194 195 196

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
205
		return ERR_PTR(-ENOMEM);
206 207 208

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
209
		return ERR_PTR(-ENOMEM);
210 211 212 213 214
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

219
	return st;
220 221 222
}

static void
223
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
224
{
C
Chris Wilson 已提交
225
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
226

C
Chris Wilson 已提交
227 228
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
229

230 231 232 233 234 235 236 237 238 239 240 241 242
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		i915_gem_clflush_object(obj, false);

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
	__i915_gem_object_release_shmem(obj);

C
Chris Wilson 已提交
243
	if (obj->mm.dirty) {
244
		struct address_space *mapping = obj->base.filp->f_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
262
			if (obj->mm.madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			put_page(page);
265 266
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
267
		obj->mm.dirty = false;
268 269
	}

270 271
	sg_free_table(pages);
	kfree(pages);
272 273 274 275 276 277
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
C
Chris Wilson 已提交
278
	i915_gem_object_unpin_pages(obj);
279 280 281 282 283 284 285 286
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

287
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
288 289 290
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
291 292 293
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
294

295 296 297 298
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
299
	 */
300 301 302 303 304 305
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
306 307 308 309 310
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

311 312 313 314 315 316 317 318 319 320 321 322 323
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

324 325 326 327 328
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
329
{
330
	struct drm_i915_gem_request *rq;
331

332
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
366 367
	}

368 369 370 371 372 373
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

374
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
404 405
		int ret;

406 407
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
408 409 410
		if (ret)
			return ret;

411 412 413 414 415 416
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
417

418 419 420 421 422 423 424 425
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
426 427
	}

428 429 430 431 432 433
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
434 435
}

436 437 438 439 440 441
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
442
 */
443 444 445 446 447
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
448
{
449 450 451 452 453 454 455
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
456

457 458 459
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
460
	return timeout < 0 ? timeout : 0;
461 462 463 464 465 466 467 468 469
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

470 471 472 473 474
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
475
	int ret;
476 477 478 479 480 481 482 483

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

C
Chris Wilson 已提交
484
	if (obj->mm.madv != I915_MADV_WILLNEED)
485 486 487 488 489
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
490 491 492 493
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

494
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
495 496
	if (obj->mm.pages)
		return -EBUSY;
497

498 499 500 501 502 503
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
504 505
	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
506
	return i915_gem_object_pin_pages(obj);
507 508 509 510 511
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
512
		     struct drm_file *file)
513 514 515
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
516
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
517
	int ret;
518 519 520 521

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
522 523 524 525 526 527
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
528
				   to_rps_client(file));
529 530
	if (ret)
		return ret;
531

532
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
533 534 535 536 537 538 539 540 541 542
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
543 544 545 546
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
547 548
	}

549
	drm_clflush_virt_range(vaddr, args->size);
550
	i915_gem_chipset_flush(to_i915(dev));
551 552

out:
553
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
554
	return ret;
555 556
}

557 558
void *i915_gem_object_alloc(struct drm_device *dev)
{
559
	struct drm_i915_private *dev_priv = to_i915(dev);
560
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
561 562 563 564
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
565
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
566
	kmem_cache_free(dev_priv->objects, obj);
567 568
}

569 570 571 572 573
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
574
{
575
	struct drm_i915_gem_object *obj;
576 577
	int ret;
	u32 handle;
578

579
	size = roundup(size, PAGE_SIZE);
580 581
	if (size == 0)
		return -EINVAL;
582 583

	/* Allocate the new object */
584
	obj = i915_gem_object_create(dev, size);
585 586
	if (IS_ERR(obj))
		return PTR_ERR(obj);
587

588
	ret = drm_gem_handle_create(file, &obj->base, &handle);
589
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
590
	i915_gem_object_put(obj);
591 592
	if (ret)
		return ret;
593

594
	*handle_p = handle;
595 596 597
	return 0;
}

598 599 600 601 602 603
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
604
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
605 606
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
607
			       args->size, &args->handle);
608 609 610 611
}

/**
 * Creates a new mm object and returns a handle to it.
612 613 614
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
615 616 617 618 619 620
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
621

622 623
	i915_gem_flush_free_objects(to_i915(dev));

624
	return i915_gem_create(file, dev,
625
			       args->size, &args->handle);
626 627
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

654
static inline int
655 656
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

680 681 682 683 684 685
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
686
				    unsigned int *needs_clflush)
687 688 689
{
	int ret;

690
	lockdep_assert_held(&obj->base.dev->struct_mutex);
691

692
	*needs_clflush = 0;
693 694
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
695

696 697 698 699 700
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
701 702 703
	if (ret)
		return ret;

C
Chris Wilson 已提交
704
	ret = i915_gem_object_pin_pages(obj);
705 706 707
	if (ret)
		return ret;

708 709
	i915_gem_object_flush_gtt_write_domain(obj);

710 711 712 713 714 715
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
716 717
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
718 719 720

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
721 722 723
		if (ret)
			goto err_unpin;

724
		*needs_clflush = 0;
725 726
	}

727
	/* return with the pages pinned */
728
	return 0;
729 730 731 732

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
733 734 735 736 737 738 739
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

740 741
	lockdep_assert_held(&obj->base.dev->struct_mutex);

742 743 744 745
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

746 747 748 749 750 751
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
752 753 754
	if (ret)
		return ret;

C
Chris Wilson 已提交
755
	ret = i915_gem_object_pin_pages(obj);
756 757 758
	if (ret)
		return ret;

759 760
	i915_gem_object_flush_gtt_write_domain(obj);

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
778 779 780
		if (ret)
			goto err_unpin;

781 782 783 784 785 786 787
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
788
	obj->mm.dirty = true;
789
	/* return with the pages pinned */
790
	return 0;
791 792 793 794

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
795 796
}

797 798 799 800
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
801
	if (unlikely(swizzled)) {
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

819 820 821
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
822
shmem_pread_slow(struct page *page, int offset, int length,
823 824 825 826 827 828 829 830
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
831
		shmem_clflush_swizzled_range(vaddr + offset, length,
832
					     page_do_bit17_swizzling);
833 834

	if (page_do_bit17_swizzling)
835
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
836
	else
837
		ret = __copy_to_user(user_data, vaddr + offset, length);
838 839
	kunmap(page);

840
	return ret ? - EFAULT : 0;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
919 920
{
	void *vaddr;
921
	unsigned long unwritten;
922 923

	/* We can use the cpu mem copy function because this is X86. */
924 925 926 927 928 929 930 931 932
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
933 934 935 936
	return unwritten;
}

static int
937 938
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
939
{
940 941
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
942
	struct drm_mm_node node;
943 944 945
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
946 947
	int ret;

948 949 950 951 952 953 954
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
955 956 957
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
958
		ret = i915_vma_put_fence(vma);
959 960 961 962 963
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
964
	if (IS_ERR(vma)) {
965
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
966
		if (ret)
967 968
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
969 970 971 972 973 974
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

975
	mutex_unlock(&i915->drm.struct_mutex);
976

977 978 979
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
996
					       node.start, I915_CACHE_NONE, 0);
997 998 999 1000
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1001 1002 1003

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1004 1005 1006 1007 1008 1009 1010 1011 1012
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1013
	mutex_lock(&i915->drm.struct_mutex);
1014 1015 1016 1017
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1018
				       node.start, node.size);
1019 1020
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1021
		i915_vma_unpin(vma);
1022
	}
1023 1024 1025
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1026

1027 1028 1029
	return ret;
}

1030 1031
/**
 * Reads data from the object referenced by handle.
1032 1033 1034
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1035 1036 1037 1038 1039
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1040
		     struct drm_file *file)
1041 1042
{
	struct drm_i915_gem_pread *args = data;
1043
	struct drm_i915_gem_object *obj;
1044
	int ret;
1045

1046 1047 1048 1049
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1050
		       u64_to_user_ptr(args->data_ptr),
1051 1052 1053
		       args->size))
		return -EFAULT;

1054
	obj = i915_gem_object_lookup(file, args->handle);
1055 1056
	if (!obj)
		return -ENOENT;
1057

1058
	/* Bounds check source.  */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

C
Chris Wilson 已提交
1065 1066
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1067 1068 1069 1070
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1071
	if (ret)
1072
		goto out;
1073

1074
	ret = i915_gem_object_pin_pages(obj);
1075
	if (ret)
1076
		goto out;
1077

1078
	ret = i915_gem_shmem_pread(obj, args);
1079
	if (ret == -EFAULT || ret == -ENODEV)
1080
		ret = i915_gem_gtt_pread(obj, args);
1081

1082 1083
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1084
	i915_gem_object_put(obj);
1085
	return ret;
1086 1087
}

1088 1089
/* This is the fast write path which cannot handle
 * page faults in the source data
1090
 */
1091

1092 1093 1094 1095
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1096
{
1097
	void *vaddr;
1098
	unsigned long unwritten;
1099

1100
	/* We can use the cpu mem copy function because this is X86. */
1101 1102
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1103
						      user_data, length);
1104 1105 1106 1107 1108 1109 1110
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1111 1112 1113 1114

	return unwritten;
}

1115 1116 1117
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1118
 * @obj: i915 GEM object
1119
 * @args: pwrite arguments structure
1120
 */
1121
static int
1122 1123
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1124
{
1125
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1126 1127
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1128 1129 1130
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1131
	int ret;
1132

1133 1134 1135
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1136

1137
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1138
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1139
				       PIN_MAPPABLE | PIN_NONBLOCK);
1140 1141 1142
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1143
		ret = i915_vma_put_fence(vma);
1144 1145 1146 1147 1148
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1149
	if (IS_ERR(vma)) {
1150
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1151
		if (ret)
1152 1153
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1154
	}
D
Daniel Vetter 已提交
1155 1156 1157 1158 1159

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1160 1161
	mutex_unlock(&i915->drm.struct_mutex);

1162
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1163

1164 1165 1166 1167
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1168 1169
		/* Operation in this page
		 *
1170 1171 1172
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1173
		 */
1174
		u32 page_base = node.start;
1175 1176
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1187
		/* If we get a fault while copying data, then (presumably) our
1188 1189
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1190 1191
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1192
		 */
1193 1194 1195 1196
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1197
		}
1198

1199 1200 1201
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1202
	}
1203
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1204 1205

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1206
out_unpin:
1207 1208 1209
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1210
				       node.start, node.size);
1211 1212
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1213
		i915_vma_unpin(vma);
1214
	}
1215
out_unlock:
1216
	intel_runtime_pm_put(i915);
1217
	mutex_unlock(&i915->drm.struct_mutex);
1218
	return ret;
1219 1220
}

1221
static int
1222
shmem_pwrite_slow(struct page *page, int offset, int length,
1223 1224 1225 1226
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1227
{
1228 1229
	char *vaddr;
	int ret;
1230

1231
	vaddr = kmap(page);
1232
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1233
		shmem_clflush_swizzled_range(vaddr + offset, length,
1234
					     page_do_bit17_swizzling);
1235
	if (page_do_bit17_swizzling)
1236 1237
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1238
	else
1239
		ret = __copy_from_user(vaddr + offset, user_data, length);
1240
	if (needs_clflush_after)
1241
		shmem_clflush_swizzled_range(vaddr + offset, length,
1242
					     page_do_bit17_swizzling);
1243
	kunmap(page);
1244

1245
	return ret ? -EFAULT : 0;
1246 1247
}

1248 1249 1250 1251 1252
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1253
static int
1254 1255 1256 1257
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1258
{
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1291
	unsigned int needs_clflush;
1292 1293
	unsigned int offset, idx;
	int ret;
1294

1295
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1296 1297 1298
	if (ret)
		return ret;

1299 1300 1301 1302
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1303

1304 1305 1306
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1307

1308 1309 1310 1311 1312 1313 1314
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1315

1316 1317 1318 1319 1320 1321
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1322

1323 1324 1325
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1326

1327 1328 1329 1330
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1331
		if (ret)
1332
			break;
1333

1334 1335 1336
		remain -= length;
		user_data += length;
		offset = 0;
1337
	}
1338

1339
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1340
	i915_gem_obj_finish_shmem_access(obj);
1341
	return ret;
1342 1343 1344 1345
}

/**
 * Writes data to the object referenced by handle.
1346 1347 1348
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1349 1350 1351 1352 1353
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1354
		      struct drm_file *file)
1355 1356
{
	struct drm_i915_gem_pwrite *args = data;
1357
	struct drm_i915_gem_object *obj;
1358 1359 1360 1361 1362 1363
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1364
		       u64_to_user_ptr(args->data_ptr),
1365 1366 1367
		       args->size))
		return -EFAULT;

1368
	obj = i915_gem_object_lookup(file, args->handle);
1369 1370
	if (!obj)
		return -ENOENT;
1371

1372
	/* Bounds check destination. */
1373 1374
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1375
		ret = -EINVAL;
1376
		goto err;
C
Chris Wilson 已提交
1377 1378
	}

C
Chris Wilson 已提交
1379 1380
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1381 1382 1383 1384 1385
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1386 1387 1388
	if (ret)
		goto err;

1389
	ret = i915_gem_object_pin_pages(obj);
1390
	if (ret)
1391
		goto err;
1392

D
Daniel Vetter 已提交
1393
	ret = -EFAULT;
1394 1395 1396 1397 1398 1399
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1400
	if (!i915_gem_object_has_struct_page(obj) ||
1401
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1402 1403
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1404 1405
		 * textures). Fallback to the shmem path in that case.
		 */
1406
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1407

1408
	if (ret == -EFAULT || ret == -ENOSPC) {
1409 1410
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1411
		else
1412
			ret = i915_gem_shmem_pwrite(obj, args);
1413
	}
1414

1415
	i915_gem_object_unpin_pages(obj);
1416
err:
C
Chris Wilson 已提交
1417
	i915_gem_object_put(obj);
1418
	return ret;
1419 1420
}

1421
static inline enum fb_op_origin
1422 1423
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1424 1425
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1449
	list_move_tail(&obj->global_link, list);
1450 1451
}

1452
/**
1453 1454
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1455 1456 1457
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1458 1459 1460
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1461
			  struct drm_file *file)
1462 1463
{
	struct drm_i915_gem_set_domain *args = data;
1464
	struct drm_i915_gem_object *obj;
1465 1466
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1467
	int err;
1468

1469
	/* Only handle setting domains to types used by the CPU. */
1470
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1471 1472 1473 1474 1475 1476 1477 1478
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1479
	obj = i915_gem_object_lookup(file, args->handle);
1480 1481
	if (!obj)
		return -ENOENT;
1482

1483 1484 1485 1486
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1487
	err = i915_gem_object_wait(obj,
1488 1489 1490 1491
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1492
	if (err)
C
Chris Wilson 已提交
1493
		goto out;
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1505
		goto out;
1506 1507 1508

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1509
		goto out_unpin;
1510

1511
	if (read_domains & I915_GEM_DOMAIN_GTT)
1512
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1513
	else
1514
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1515

1516 1517
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1518

1519
	mutex_unlock(&dev->struct_mutex);
1520

1521 1522 1523
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1524
out_unpin:
1525
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1526 1527
out:
	i915_gem_object_put(obj);
1528
	return err;
1529 1530 1531 1532
}

/**
 * Called when user space has done writes to this buffer
1533 1534 1535
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1536 1537 1538
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1539
			 struct drm_file *file)
1540 1541
{
	struct drm_i915_gem_sw_finish *args = data;
1542
	struct drm_i915_gem_object *obj;
1543
	int err = 0;
1544

1545
	obj = i915_gem_object_lookup(file, args->handle);
1546 1547
	if (!obj)
		return -ENOENT;
1548 1549

	/* Pinned buffers may be scanout, so flush the cache */
1550 1551 1552 1553 1554 1555 1556
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1557

C
Chris Wilson 已提交
1558
	i915_gem_object_put(obj);
1559
	return err;
1560 1561 1562
}

/**
1563 1564 1565 1566 1567
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1568 1569 1570
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1581 1582 1583
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1584
		    struct drm_file *file)
1585 1586
{
	struct drm_i915_gem_mmap *args = data;
1587
	struct drm_i915_gem_object *obj;
1588 1589
	unsigned long addr;

1590 1591 1592
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1593
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1594 1595
		return -ENODEV;

1596 1597
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1598
		return -ENOENT;
1599

1600 1601 1602
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1603
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1604
		i915_gem_object_put(obj);
1605 1606 1607
		return -EINVAL;
	}

1608
	addr = vm_mmap(obj->base.filp, 0, args->size,
1609 1610
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1611 1612 1613 1614
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1615
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1616
			i915_gem_object_put(obj);
1617 1618
			return -EINTR;
		}
1619 1620 1621 1622 1623 1624 1625
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1626 1627

		/* This may race, but that's ok, it only gets set */
1628
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1629
	}
C
Chris Wilson 已提交
1630
	i915_gem_object_put(obj);
1631 1632 1633 1634 1635 1636 1637 1638
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1699 1700
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1701
 * @area: CPU VMA in question
1702
 * @vmf: fault info
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1714 1715 1716
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1717
 */
C
Chris Wilson 已提交
1718
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1719
{
1720
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1721
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1722
	struct drm_device *dev = obj->base.dev;
1723 1724
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1725
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1726
	struct i915_vma *vma;
1727
	pgoff_t page_offset;
1728
	unsigned int flags;
1729
	int ret;
1730

1731
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1732
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1733 1734
		PAGE_SHIFT;

C
Chris Wilson 已提交
1735 1736
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1737
	/* Try to flush the object off the GPU first without holding the lock.
1738
	 * Upon acquiring the lock, we will perform our sanity checks and then
1739 1740 1741
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1742 1743 1744 1745
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1746
	if (ret)
1747 1748
		goto err;

1749 1750 1751 1752
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1753 1754 1755 1756 1757
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1758

1759 1760
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1761
		ret = -EFAULT;
1762
		goto err_unlock;
1763 1764
	}

1765 1766 1767 1768 1769 1770 1771 1772
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1773
	/* Now pin it into the GTT as needed */
1774
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1775 1776
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1777 1778
		unsigned int chunk_size;

1779
		/* Use a partial view if it is bigger than available space */
1780 1781
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
1782
			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1783

1784 1785 1786 1787
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1788
			min_t(unsigned int, chunk_size,
1789
			      vma_pages(area) - view.params.partial.offset);
1790

1791 1792 1793 1794 1795 1796
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1797 1798 1799 1800 1801
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1802 1803
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1804 1805
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1806
		goto err_unlock;
C
Chris Wilson 已提交
1807
	}
1808

1809 1810
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1811
		goto err_unpin;
1812

1813
	ret = i915_vma_get_fence(vma);
1814
	if (ret)
1815
		goto err_unpin;
1816

1817
	/* Mark as being mmapped into userspace for later revocation */
1818
	assert_rpm_wakelock_held(dev_priv);
1819 1820 1821
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1822
	/* Finally, remap it using the new GTT offset */
1823 1824 1825 1826 1827
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1828

1829
err_unpin:
C
Chris Wilson 已提交
1830
	__i915_vma_unpin(vma);
1831
err_unlock:
1832
	mutex_unlock(&dev->struct_mutex);
1833 1834
err_rpm:
	intel_runtime_pm_put(dev_priv);
1835
	i915_gem_object_unpin_pages(obj);
1836
err:
1837
	switch (ret) {
1838
	case -EIO:
1839 1840 1841 1842 1843 1844 1845
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1846 1847 1848
			ret = VM_FAULT_SIGBUS;
			break;
		}
1849
	case -EAGAIN:
D
Daniel Vetter 已提交
1850 1851 1852 1853
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1854
		 */
1855 1856
	case 0:
	case -ERESTARTSYS:
1857
	case -EINTR:
1858 1859 1860 1861 1862
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1863 1864
		ret = VM_FAULT_NOPAGE;
		break;
1865
	case -ENOMEM:
1866 1867
		ret = VM_FAULT_OOM;
		break;
1868
	case -ENOSPC:
1869
	case -EFAULT:
1870 1871
		ret = VM_FAULT_SIGBUS;
		break;
1872
	default:
1873
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1874 1875
		ret = VM_FAULT_SIGBUS;
		break;
1876
	}
1877
	return ret;
1878 1879
}

1880 1881 1882 1883
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1884
 * Preserve the reservation of the mmapping with the DRM core code, but
1885 1886 1887 1888 1889 1890 1891 1892 1893
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1894
void
1895
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1896
{
1897 1898
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1899 1900 1901
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1902 1903 1904 1905
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1906
	 */
1907
	lockdep_assert_held(&i915->drm.struct_mutex);
1908
	intel_runtime_pm_get(i915);
1909

1910
	if (list_empty(&obj->userfault_link))
1911
		goto out;
1912

1913
	list_del_init(&obj->userfault_link);
1914 1915
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1916 1917 1918 1919 1920 1921 1922 1923 1924

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1925 1926 1927

out:
	intel_runtime_pm_put(i915);
1928 1929
}

1930
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1931
{
1932
	struct drm_i915_gem_object *obj, *on;
1933
	int i;
1934

1935 1936 1937 1938 1939 1940
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1941

1942 1943 1944
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
1945 1946 1947
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
1965 1966
}

1967 1968
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1969
 * @dev_priv: i915 device
1970 1971 1972 1973 1974 1975
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1976 1977
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1978
{
1979
	u64 ggtt_size;
1980

1981 1982
	GEM_BUG_ON(size == 0);

1983
	if (INTEL_GEN(dev_priv) >= 4 ||
1984 1985
	    tiling_mode == I915_TILING_NONE)
		return size;
1986 1987

	/* Previous chips need a power-of-two fence region when tiling */
1988
	if (IS_GEN3(dev_priv))
1989
		ggtt_size = 1024*1024;
1990
	else
1991
		ggtt_size = 512*1024;
1992

1993 1994
	while (ggtt_size < size)
		ggtt_size <<= 1;
1995

1996
	return ggtt_size;
1997 1998
}

1999
/**
2000
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2001
 * @dev_priv: i915 device
2002 2003
 * @size: object size
 * @tiling_mode: tiling mode
2004
 * @fenced: is fenced alignment required or not
2005
 *
2006
 * Return the required global GTT alignment for an object, taking into account
2007
 * potential fence register mapping.
2008
 */
2009
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2010
				int tiling_mode, bool fenced)
2011
{
2012 2013
	GEM_BUG_ON(size == 0);

2014 2015 2016 2017
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2018
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2019
	    tiling_mode == I915_TILING_NONE)
2020 2021
		return 4096;

2022 2023 2024 2025
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2026
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2027 2028
}

2029 2030
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2031
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2032
	int err;
2033

2034 2035 2036
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2037

2038 2039 2040
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2041
	 */
2042
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2043 2044 2045 2046 2047 2048 2049 2050 2051
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2052

2053
	return err;
2054 2055 2056 2057 2058 2059 2060
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2061
int
2062 2063
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2064
		  uint32_t handle,
2065
		  uint64_t *offset)
2066
{
2067
	struct drm_i915_gem_object *obj;
2068 2069
	int ret;

2070
	obj = i915_gem_object_lookup(file, handle);
2071 2072
	if (!obj)
		return -ENOENT;
2073

2074
	ret = i915_gem_object_create_mmap_offset(obj);
2075 2076
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077

C
Chris Wilson 已提交
2078
	i915_gem_object_put(obj);
2079
	return ret;
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2103
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 2105
}

D
Daniel Vetter 已提交
2106 2107 2108
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109
{
2110
	i915_gem_object_free_mmap_offset(obj);
2111

2112 2113
	if (obj->base.filp == NULL)
		return;
2114

D
Daniel Vetter 已提交
2115 2116 2117 2118 2119
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2120
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2121
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2122
}
2123

2124
/* Try to discard unwanted pages */
2125
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2126
{
2127 2128
	struct address_space *mapping;

2129 2130 2131
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2132
	switch (obj->mm.madv) {
2133 2134 2135 2136 2137 2138 2139 2140 2141
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2142
	mapping = obj->base.filp->f_mapping,
2143
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 2145
}

2146
static void
2147 2148
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2149
{
2150 2151
	struct sgt_iter sgt_iter;
	struct page *page;
2152

2153
	__i915_gem_object_release_shmem(obj);
2154

2155
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2156

2157
	if (i915_gem_object_needs_bit17_swizzle(obj))
2158
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2159

2160
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2161
		if (obj->mm.dirty)
2162
			set_page_dirty(page);
2163

C
Chris Wilson 已提交
2164
		if (obj->mm.madv == I915_MADV_WILLNEED)
2165
			mark_page_accessed(page);
2166

2167
		put_page(page);
2168
	}
C
Chris Wilson 已提交
2169
	obj->mm.dirty = false;
2170

2171 2172
	sg_free_table(pages);
	kfree(pages);
2173
}
C
Chris Wilson 已提交
2174

2175 2176 2177 2178 2179
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2180 2181
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2182 2183
}

2184 2185
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2186
{
2187
	struct sg_table *pages;
2188

C
Chris Wilson 已提交
2189
	if (i915_gem_object_has_pinned_pages(obj))
2190
		return;
2191

2192
	GEM_BUG_ON(obj->bind_count);
2193 2194 2195 2196
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2197
	mutex_lock_nested(&obj->mm.lock, subclass);
2198 2199
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2200

2201 2202 2203
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2204 2205
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2206

C
Chris Wilson 已提交
2207
	if (obj->mm.mapping) {
2208 2209
		void *ptr;

C
Chris Wilson 已提交
2210
		ptr = ptr_mask_bits(obj->mm.mapping);
2211 2212
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2213
		else
2214 2215
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2216
		obj->mm.mapping = NULL;
2217 2218
	}

2219 2220
	__i915_gem_object_reset_page_iter(obj);

2221
	obj->ops->put_pages(obj, pages);
2222 2223
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2224 2225
}

2226
static unsigned int swiotlb_max_size(void)
2227 2228 2229 2230 2231 2232 2233 2234
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2235
static struct sg_table *
C
Chris Wilson 已提交
2236
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2237
{
2238
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2239 2240
	int page_count, i;
	struct address_space *mapping;
2241 2242
	struct sg_table *st;
	struct scatterlist *sg;
2243
	struct sgt_iter sgt_iter;
2244
	struct page *page;
2245
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2246
	unsigned int max_segment;
I
Imre Deak 已提交
2247
	int ret;
C
Chris Wilson 已提交
2248
	gfp_t gfp;
2249

C
Chris Wilson 已提交
2250 2251 2252 2253
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2254 2255
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2256

2257 2258
	max_segment = swiotlb_max_size();
	if (!max_segment)
2259
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2260

2261 2262
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2263
		return ERR_PTR(-ENOMEM);
2264

2265
	page_count = obj->base.size / PAGE_SIZE;
2266 2267
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2268
		return ERR_PTR(-ENOMEM);
2269
	}
2270

2271 2272 2273 2274 2275
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2276
	mapping = obj->base.filp->f_mapping;
2277
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2278
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2279 2280 2281
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2282 2283
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2284 2285 2286 2287 2288
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2289 2290 2291 2292 2293 2294 2295
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2296
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2297 2298
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2299
				goto err_pages;
I
Imre Deak 已提交
2300
			}
C
Chris Wilson 已提交
2301
		}
2302 2303 2304
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2305 2306 2307 2308 2309 2310 2311 2312
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2313 2314 2315

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2316
	}
2317
	if (sg) /* loop terminated early; short sg table */
2318
		sg_mark_end(sg);
2319

2320
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2321 2322 2323
	if (ret)
		goto err_pages;

2324
	if (i915_gem_object_needs_bit17_swizzle(obj))
2325
		i915_gem_object_do_bit_17_swizzle(obj, st);
2326

2327
	return st;
2328 2329

err_pages:
2330
	sg_mark_end(sg);
2331 2332
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2333 2334
	sg_free_table(st);
	kfree(st);
2335 2336 2337 2338 2339 2340 2341 2342 2343

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2344 2345 2346
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2347 2348 2349 2350 2351 2352
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2353
	lockdep_assert_held(&obj->mm.lock);
2354 2355 2356 2357 2358

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2359 2360 2361 2362 2363 2364 2365

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2366 2367 2368 2369 2370 2371
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2372 2373
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2385 2386
}

2387
/* Ensure that the associated pages are gathered from the backing storage
2388
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2389
 * multiple times before they are released by a single call to
2390
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2391 2392 2393
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2394
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2395
{
2396
	int err;
2397

2398 2399 2400
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2401

2402 2403 2404 2405
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2406

2407 2408 2409
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2410

2411 2412
unlock:
	mutex_unlock(&obj->mm.lock);
2413
	return err;
2414 2415
}

2416
/* The 'mapping' part of i915_gem_object_pin_map() below */
2417 2418
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2419 2420
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2421
	struct sg_table *sgt = obj->mm.pages;
2422 2423
	struct sgt_iter sgt_iter;
	struct page *page;
2424 2425
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2426
	unsigned long i = 0;
2427
	pgprot_t pgprot;
2428 2429 2430
	void *addr;

	/* A single page can always be kmapped */
2431
	if (n_pages == 1 && type == I915_MAP_WB)
2432 2433
		return kmap(sg_page(sgt->sgl));

2434 2435 2436 2437 2438 2439
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2440

2441 2442
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2443 2444 2445 2446

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2447 2448 2449 2450 2451 2452 2453 2454 2455
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2456

2457 2458
	if (pages != stack_pages)
		drm_free_large(pages);
2459 2460 2461 2462 2463

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2464 2465
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2466
{
2467 2468 2469
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2470 2471
	int ret;

2472
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2473

2474
	ret = mutex_lock_interruptible(&obj->mm.lock);
2475 2476 2477
	if (ret)
		return ERR_PTR(ret);

2478 2479
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2480 2481 2482 2483
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2484

2485 2486 2487
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2488 2489 2490
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2491

C
Chris Wilson 已提交
2492
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2493 2494 2495
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2496
			goto err_unpin;
2497
		}
2498 2499 2500 2501 2502 2503

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2504
		ptr = obj->mm.mapping = NULL;
2505 2506
	}

2507 2508 2509 2510
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2511
			goto err_unpin;
2512 2513
		}

C
Chris Wilson 已提交
2514
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2515 2516
	}

2517 2518
out_unlock:
	mutex_unlock(&obj->mm.lock);
2519 2520
	return ptr;

2521 2522 2523 2524 2525
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2526 2527
}

2528
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2529
{
2530
	unsigned long elapsed;
2531

2532
	if (ctx->hang_stats.banned)
2533 2534
		return true;

2535
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2536 2537
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2538 2539
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2540 2541 2542 2543 2544
	}

	return false;
}

2545
static void i915_set_reset_status(struct i915_gem_context *ctx,
2546
				  const bool guilty)
2547
{
2548
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2549 2550

	if (guilty) {
2551
		hs->banned = i915_context_is_banned(ctx);
2552 2553 2554 2555
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2556 2557 2558
	}
}

2559
struct drm_i915_gem_request *
2560
i915_gem_find_active_request(struct intel_engine_cs *engine)
2561
{
2562 2563
	struct drm_i915_gem_request *request;

2564 2565 2566 2567 2568 2569 2570 2571
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2572
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2573
		if (__i915_gem_request_completed(request))
2574
			continue;
2575

2576
		return request;
2577
	}
2578 2579 2580 2581

	return NULL;
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2600 2601
{
	struct drm_i915_gem_request *request;
2602
	struct i915_gem_context *incomplete_ctx;
C
Chris Wilson 已提交
2603
	struct intel_timeline *timeline;
2604 2605
	bool ring_hung;

2606 2607 2608
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2609
	request = i915_gem_find_active_request(engine);
2610
	if (!request)
2611 2612
		return;

2613
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2614 2615 2616
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2617
	i915_set_reset_status(request->ctx, ring_hung);
2618 2619 2620 2621
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2622
			 engine->name, request->global_seqno);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2639
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2640 2641
		if (request->ctx == incomplete_ctx)
			reset_request(request);
C
Chris Wilson 已提交
2642 2643 2644 2645

	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2646
}
2647

2648
void i915_gem_reset(struct drm_i915_private *dev_priv)
2649
{
2650
	struct intel_engine_cs *engine;
2651
	enum intel_engine_id id;
2652

2653 2654
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2655 2656
	i915_gem_retire_requests(dev_priv);

2657
	for_each_engine(engine, dev_priv, id)
2658 2659 2660
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2661 2662 2663 2664 2665 2666 2667

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2668 2669 2670 2671 2672 2673 2674 2675 2676
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2677

2678 2679 2680 2681
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2682
	intel_engine_init_global_seqno(engine,
2683
				       intel_engine_last_submit(engine));
2684

2685 2686 2687 2688 2689 2690
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2691
	if (i915.enable_execlists) {
2692 2693 2694 2695 2696 2697
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2698
	}
2699 2700
}

2701
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2702
{
2703
	struct intel_engine_cs *engine;
2704
	enum intel_engine_id id;
2705

2706 2707
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2708

2709
	i915_gem_context_lost(dev_priv);
2710
	for_each_engine(engine, dev_priv, id)
2711
		i915_gem_cleanup_engine(engine);
2712
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2713

2714
	i915_gem_retire_requests(dev_priv);
2715 2716
}

2717
static void
2718 2719
i915_gem_retire_work_handler(struct work_struct *work)
{
2720
	struct drm_i915_private *dev_priv =
2721
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2722
	struct drm_device *dev = &dev_priv->drm;
2723

2724
	/* Come back later if the device is busy... */
2725
	if (mutex_trylock(&dev->struct_mutex)) {
2726
		i915_gem_retire_requests(dev_priv);
2727
		mutex_unlock(&dev->struct_mutex);
2728
	}
2729 2730 2731 2732 2733

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2734 2735
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2736 2737
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2738
				   round_jiffies_up_relative(HZ));
2739
	}
2740
}
2741

2742 2743 2744 2745
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2746
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2747
	struct drm_device *dev = &dev_priv->drm;
2748
	struct intel_engine_cs *engine;
2749
	enum intel_engine_id id;
2750 2751 2752 2753 2754
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2755 2756 2757 2758 2759 2760 2761
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2762
	if (READ_ONCE(dev_priv->gt.active_requests))
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2776 2777 2778 2779 2780 2781 2782
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2783
	if (dev_priv->gt.active_requests)
2784
		goto out_unlock;
2785

2786 2787 2788
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2789
	for_each_engine(engine, dev_priv, id)
2790
		i915_gem_batch_pool_fini(&engine->batch_pool);
2791

2792 2793 2794
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2795

2796 2797 2798 2799 2800
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2801

2802 2803 2804 2805
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2806
	}
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2819 2820 2821 2822 2823 2824

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2825 2826 2827
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2839 2840
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2841 2842 2843
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2868 2869
	ktime_t start;
	long ret;
2870

2871 2872 2873
	if (args->flags != 0)
		return -EINVAL;

2874
	obj = i915_gem_object_lookup(file, args->bo_handle);
2875
	if (!obj)
2876 2877
		return -ENOENT;

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
2889 2890
	}

C
Chris Wilson 已提交
2891
	i915_gem_object_put(obj);
2892
	return ret;
2893 2894
}

2895 2896
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2897
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2898 2899 2900 2901 2902 2903 2904 2905

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2906
int i915_vma_unbind(struct i915_vma *vma)
2907
{
2908
	struct drm_i915_gem_object *obj = vma->obj;
2909
	unsigned long active;
2910
	int ret;
2911

2912 2913
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2914 2915 2916 2917
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2918
	if (active) {
2919 2920
		int idx;

2921 2922 2923 2924
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
2925 2926 2927 2928 2929 2930 2931
		 *
		 * Even more scary is that the retire callback may free
		 * the object (last active vma). To prevent the explosion
		 * we defer the actual object free to a worker that can
		 * only proceed once it acquires the struct_mutex (which
		 * we currently hold, therefore it cannot free this object
		 * before we are finished).
2932
		 */
2933
		__i915_vma_pin(vma);
2934

2935 2936 2937 2938
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2939
				break;
2940 2941
		}

2942
		__i915_vma_unpin(vma);
2943 2944 2945
		if (ret)
			return ret;

2946 2947 2948
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2949
	if (i915_vma_is_pinned(vma))
2950 2951
		return -EBUSY;

2952 2953
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2954

2955
	GEM_BUG_ON(obj->bind_count == 0);
2956
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2957

2958
	if (i915_vma_is_map_and_fenceable(vma)) {
2959
		/* release the fence reg _after_ flushing */
2960
		ret = i915_vma_put_fence(vma);
2961 2962
		if (ret)
			return ret;
2963

2964 2965 2966
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

2967
		__i915_vma_iounmap(vma);
2968
		vma->flags &= ~I915_VMA_CAN_FENCE;
2969
	}
2970

2971 2972 2973 2974
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2975
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2976

2977 2978 2979
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

C
Chris Wilson 已提交
2980
	if (vma->pages != obj->mm.pages) {
2981 2982 2983
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
2984
	}
2985
	vma->pages = NULL;
2986

B
Ben Widawsky 已提交
2987
	/* Since the unbound list is global, only move to that list if
2988
	 * no more VMAs exist. */
2989
	if (--obj->bind_count == 0)
2990
		list_move_tail(&obj->global_link,
2991
			       &to_i915(obj->base.dev)->mm.unbound_list);
2992

2993 2994 2995 2996 2997 2998
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2999
destroy:
3000
	if (unlikely(i915_vma_is_closed(vma)))
3001 3002
		i915_vma_destroy(vma);

3003
	return 0;
3004 3005
}

3006
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3007
{
3008
	int ret, i;
3009

3010 3011 3012 3013 3014
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	struct i915_gem_timeline *tl;
	int ret;

	list_for_each_entry(tl, &i915->gt.timelines, link) {
		ret = wait_for_timeline(tl, flags);
3026 3027 3028
		if (ret)
			return ret;
	}
3029

3030
	return 0;
3031 3032
}

3033
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3034 3035
				     unsigned long cache_level)
{
3036
	struct drm_mm_node *gtt_space = &vma->node;
3037 3038
	struct drm_mm_node *other;

3039 3040 3041 3042 3043 3044
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3045
	 */
3046
	if (vma->vm->mm.color_adjust == NULL)
3047 3048
		return true;

3049
	if (!drm_mm_node_allocated(gtt_space))
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3066
/**
3067 3068
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3069
 * @size: requested size in bytes (can be larger than the VMA)
3070
 * @alignment: required alignment
3071
 * @flags: mask of PIN_* flags to use
3072 3073 3074 3075 3076 3077 3078
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3079
 */
3080 3081
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3082
{
3083 3084
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3085
	u64 start, end;
3086
	int ret;
3087

3088
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3089
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3090 3091 3092

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3093 3094
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3095

3096 3097 3098 3099
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3100

3101
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3102 3103

	end = vma->vm->total;
3104
	if (flags & PIN_MAPPABLE)
3105
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3106
	if (flags & PIN_ZONE_4G)
3107
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3108

3109 3110 3111
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3112
	 */
3113
	if (size > end) {
3114
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3115
			  size, obj->base.size,
3116
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3117
			  end);
3118
		return -E2BIG;
3119 3120
	}

C
Chris Wilson 已提交
3121
	ret = i915_gem_object_pin_pages(obj);
C
Chris Wilson 已提交
3122
	if (ret)
3123
		return ret;
C
Chris Wilson 已提交
3124

3125
	if (flags & PIN_OFFSET_FIXED) {
3126
		u64 offset = flags & PIN_OFFSET_MASK;
3127
		if (offset & (alignment - 1) || offset > end - size) {
3128
			ret = -EINVAL;
3129
			goto err_unpin;
3130
		}
3131

3132 3133 3134
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3135
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3136 3137 3138
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3139 3140 3141
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3142
		}
3143
	} else {
3144 3145
		u32 search_flag, alloc_flag;

3146 3147 3148 3149 3150 3151 3152
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3163
search_free:
3164 3165
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3166 3167 3168 3169 3170 3171
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3172
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3173 3174 3175 3176 3177
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3178

3179
			goto err_unpin;
3180
		}
3181 3182 3183

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3184
	}
3185
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3186

3187
	list_move_tail(&obj->global_link, &dev_priv->mm.bound_list);
3188
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3189
	obj->bind_count++;
3190
	GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count) < obj->bind_count);
3191

3192
	return 0;
B
Ben Widawsky 已提交
3193

3194
err_unpin:
B
Ben Widawsky 已提交
3195
	i915_gem_object_unpin_pages(obj);
3196
	return ret;
3197 3198
}

3199 3200
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3201 3202 3203 3204 3205
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3206
	if (!obj->mm.pages)
3207
		return;
3208

3209 3210 3211 3212
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3213
	if (obj->stolen || obj->phys_handle)
3214
		return;
3215

3216 3217 3218 3219 3220 3221 3222 3223
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3224 3225
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3226
		return;
3227
	}
3228

C
Chris Wilson 已提交
3229
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3230
	drm_clflush_sg(obj->mm.pages);
3231
	obj->cache_dirty = false;
3232 3233 3234 3235
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3236
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3237
{
3238
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3239

3240
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3241 3242
		return;

3243
	/* No actual flushing is required for the GTT write domain.  Writes
3244
	 * to it "immediately" go to main memory as far as we know, so there's
3245
	 * no chipset flush.  It also doesn't land in render cache.
3246 3247 3248 3249
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3250 3251 3252 3253 3254 3255 3256
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3257
	 */
3258
	wmb();
3259
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3260
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3261

3262
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3263

3264
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3265
	trace_i915_gem_object_change_domain(obj,
3266
					    obj->base.read_domains,
3267
					    I915_GEM_DOMAIN_GTT);
3268 3269 3270 3271
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3272
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3273
{
3274
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3275 3276
		return;

3277
	i915_gem_clflush_object(obj, obj->pin_display);
3278
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3279

3280
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3281
	trace_i915_gem_object_change_domain(obj,
3282
					    obj->base.read_domains,
3283
					    I915_GEM_DOMAIN_CPU);
3284 3285
}

3286 3287
/**
 * Moves a single object to the GTT read, and possibly write domain.
3288 3289
 * @obj: object to act on
 * @write: ask for write access or read only
3290 3291 3292 3293
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3294
int
3295
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3296
{
C
Chris Wilson 已提交
3297
	uint32_t old_write_domain, old_read_domains;
3298
	int ret;
3299

3300
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3301

3302 3303 3304 3305 3306 3307
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3308 3309 3310
	if (ret)
		return ret;

3311 3312 3313
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3314 3315 3316 3317 3318 3319 3320 3321
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3322
	ret = i915_gem_object_pin_pages(obj);
3323 3324 3325
	if (ret)
		return ret;

3326
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3327

3328 3329 3330 3331 3332 3333 3334
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3335 3336
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3337

3338 3339 3340
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3341
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3342
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3343
	if (write) {
3344 3345
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3346
		obj->mm.dirty = true;
3347 3348
	}

C
Chris Wilson 已提交
3349 3350 3351 3352
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3353
	i915_gem_object_unpin_pages(obj);
3354 3355 3356
	return 0;
}

3357 3358
/**
 * Changes the cache-level of an object across all VMA.
3359 3360
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3372 3373 3374
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3375
	struct i915_vma *vma;
3376
	int ret = 0;
3377

3378 3379
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3380
	if (obj->cache_level == cache_level)
3381
		goto out;
3382

3383 3384 3385 3386 3387
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3388 3389
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3390 3391 3392
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3393
		if (i915_vma_is_pinned(vma)) {
3394 3395 3396 3397
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3410 3411
	}

3412 3413 3414 3415 3416 3417 3418
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3419
	if (obj->bind_count) {
3420 3421 3422 3423
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3424 3425 3426 3427 3428 3429
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3430 3431 3432
		if (ret)
			return ret;

3433
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3450 3451 3452 3453 3454
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3455 3456 3457 3458 3459 3460 3461 3462
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3463 3464
		}

3465
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3466 3467 3468 3469 3470 3471 3472
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3473 3474
	}

3475
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3476 3477 3478
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3479
out:
3480 3481 3482 3483
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3484 3485
	if (obj->cache_dirty && cpu_write_needs_clflush(obj))
		i915_gem_clflush_object(obj, true);
3486 3487 3488 3489

	return 0;
}

B
Ben Widawsky 已提交
3490 3491
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3492
{
B
Ben Widawsky 已提交
3493
	struct drm_i915_gem_caching *args = data;
3494
	struct drm_i915_gem_object *obj;
3495
	int err = 0;
3496

3497 3498 3499 3500 3501 3502
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3503

3504 3505 3506 3507 3508 3509
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3510 3511 3512 3513
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3514 3515 3516 3517
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3518 3519 3520
out:
	rcu_read_unlock();
	return err;
3521 3522
}

B
Ben Widawsky 已提交
3523 3524
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3525
{
3526
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3527
	struct drm_i915_gem_caching *args = data;
3528 3529 3530 3531
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3532 3533
	switch (args->caching) {
	case I915_CACHING_NONE:
3534 3535
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3536
	case I915_CACHING_CACHED:
3537 3538 3539 3540 3541 3542
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3543
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3544 3545
			return -ENODEV;

3546 3547
		level = I915_CACHE_LLC;
		break;
3548
	case I915_CACHING_DISPLAY:
3549
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3550
		break;
3551 3552 3553 3554
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3555 3556
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3557
		return ret;
B
Ben Widawsky 已提交
3558

3559 3560
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3561 3562 3563 3564 3565
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3566
	i915_gem_object_put(obj);
3567 3568 3569 3570 3571
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3572
/*
3573 3574 3575
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3576
 */
C
Chris Wilson 已提交
3577
struct i915_vma *
3578 3579
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3580
				     const struct i915_ggtt_view *view)
3581
{
C
Chris Wilson 已提交
3582
	struct i915_vma *vma;
3583
	u32 old_read_domains, old_write_domain;
3584 3585
	int ret;

3586 3587
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3588 3589 3590
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3591
	obj->pin_display++;
3592

3593 3594 3595 3596 3597 3598 3599 3600 3601
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3602
	ret = i915_gem_object_set_cache_level(obj,
3603 3604
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3605 3606
	if (ret) {
		vma = ERR_PTR(ret);
3607
		goto err_unpin_display;
C
Chris Wilson 已提交
3608
	}
3609

3610 3611
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3612 3613 3614 3615
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3616
	 */
3617 3618 3619 3620
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3637
	if (IS_ERR(vma))
3638
		goto err_unpin_display;
3639

3640 3641
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3642
	i915_gem_object_flush_cpu_write_domain(obj);
3643

3644
	old_write_domain = obj->base.write_domain;
3645
	old_read_domains = obj->base.read_domains;
3646 3647 3648 3649

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3650
	obj->base.write_domain = 0;
3651
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3652 3653 3654

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3655
					    old_write_domain);
3656

C
Chris Wilson 已提交
3657
	return vma;
3658 3659

err_unpin_display:
3660
	obj->pin_display--;
C
Chris Wilson 已提交
3661
	return vma;
3662 3663 3664
}

void
C
Chris Wilson 已提交
3665
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3666
{
3667 3668
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3669
	if (WARN_ON(vma->obj->pin_display == 0))
3670 3671
		return;

3672 3673
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3674

3675 3676 3677 3678
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3679
	i915_vma_unpin(vma);
3680 3681
}

3682 3683
/**
 * Moves a single object to the CPU read, and possibly write domain.
3684 3685
 * @obj: object to act on
 * @write: requesting write or read-only access
3686 3687 3688 3689
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3690
int
3691
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3692
{
C
Chris Wilson 已提交
3693
	uint32_t old_write_domain, old_read_domains;
3694 3695
	int ret;

3696
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3697

3698 3699 3700 3701 3702 3703
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3704 3705 3706
	if (ret)
		return ret;

3707 3708 3709
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3710
	i915_gem_object_flush_gtt_write_domain(obj);
3711

3712 3713
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3714

3715
	/* Flush the CPU cache if it's still invalid. */
3716
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3717
		i915_gem_clflush_object(obj, false);
3718

3719
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3720 3721 3722 3723 3724
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3725
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3726 3727 3728 3729 3730

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3731 3732
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3733
	}
3734

C
Chris Wilson 已提交
3735 3736 3737 3738
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3739 3740 3741
	return 0;
}

3742 3743 3744
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3745 3746 3747 3748
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3749 3750 3751
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3752
static int
3753
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3754
{
3755
	struct drm_i915_private *dev_priv = to_i915(dev);
3756
	struct drm_i915_file_private *file_priv = file->driver_priv;
3757
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3758
	struct drm_i915_gem_request *request, *target = NULL;
3759
	long ret;
3760

3761 3762 3763
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3764

3765
	spin_lock(&file_priv->mm.lock);
3766
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3767 3768
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3769

3770 3771 3772 3773 3774 3775 3776
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3777
		target = request;
3778
	}
3779
	if (target)
3780
		i915_gem_request_get(target);
3781
	spin_unlock(&file_priv->mm.lock);
3782

3783
	if (target == NULL)
3784
		return 0;
3785

3786 3787 3788
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3789
	i915_gem_request_put(target);
3790

3791
	return ret < 0 ? ret : 0;
3792 3793
}

3794
static bool
3795
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3796
{
3797 3798 3799
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3800 3801 3802 3803
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3804 3805
		return true;

3806
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3807 3808 3809 3810 3811 3812
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3813 3814 3815 3816
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3817 3818 3819
	return false;
}

3820 3821 3822
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3823
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3824 3825 3826
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3827
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3828
					    vma->size,
3829
					    i915_gem_object_get_tiling(obj));
3830
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3831
						      vma->size,
3832
						      i915_gem_object_get_tiling(obj),
3833
						      true);
3834 3835 3836 3837 3838

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3839
		    dev_priv->ggtt.mappable_end);
3840

3841 3842 3843 3844 3845 3846
	/*
	 * Explicitly disable for rotated VMA since the display does not
	 * need the fence and the VMA is not accessible to other users.
	 */
	if (mappable && fenceable &&
	    vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3847 3848 3849
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3850 3851
}

3852 3853
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3854
{
3855
	unsigned int bound = vma->flags;
3856 3857
	int ret;

3858
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3859
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3860
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3861

3862 3863 3864 3865
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3866

3867
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3868 3869 3870
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3871
	}
3872

3873
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3874
	if (ret)
3875
		goto err;
3876

3877
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3878
		__i915_vma_set_map_and_fenceable(vma);
3879

3880
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3881 3882
	return 0;

3883 3884 3885
err:
	__i915_vma_unpin(vma);
	return ret;
3886 3887
}

C
Chris Wilson 已提交
3888
struct i915_vma *
3889 3890
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3891
			 u64 size,
3892 3893
			 u64 alignment,
			 u64 flags)
3894
{
3895 3896
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3897 3898
	struct i915_vma *vma;
	int ret;
3899

3900 3901
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3902
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3903
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3904
		return vma;
3905 3906 3907 3908

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3909
			return ERR_PTR(-ENOSPC);
3910

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3946 3947
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3948 3949 3950
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3951
		     !!(flags & PIN_MAPPABLE),
3952
		     i915_vma_is_map_and_fenceable(vma));
3953 3954
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3955
			return ERR_PTR(ret);
3956 3957
	}

C
Chris Wilson 已提交
3958 3959 3960
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3961

C
Chris Wilson 已提交
3962
	return vma;
3963 3964
}

3965
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3980 3981 3982 3983 3984 3985 3986 3987 3988
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3989 3990
}

3991
static __always_inline unsigned int
3992
__busy_set_if_active(const struct dma_fence *fence,
3993 3994
		     unsigned int (*flag)(unsigned int id))
{
3995
	struct drm_i915_gem_request *rq;
3996

3997 3998 3999 4000
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4001
	 *
4002
	 * Note we only report on the status of native fences.
4003
	 */
4004 4005 4006 4007 4008 4009 4010 4011 4012
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
4013 4014
}

4015
static __always_inline unsigned int
4016
busy_check_reader(const struct dma_fence *fence)
4017
{
4018
	return __busy_set_if_active(fence, __busy_read_flag);
4019 4020
}

4021
static __always_inline unsigned int
4022
busy_check_writer(const struct dma_fence *fence)
4023
{
4024 4025 4026 4027
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4028 4029
}

4030 4031
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4032
		    struct drm_file *file)
4033 4034
{
	struct drm_i915_gem_busy *args = data;
4035
	struct drm_i915_gem_object *obj;
4036 4037
	struct reservation_object_list *list;
	unsigned int seq;
4038
	int err;
4039

4040
	err = -ENOENT;
4041 4042
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4043
	if (!obj)
4044
		goto out;
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4064

4065 4066
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4067

4068 4069 4070 4071
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4072

4073 4074 4075 4076 4077 4078
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4079
	}
4080

4081 4082 4083 4084
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4085 4086 4087
out:
	rcu_read_unlock();
	return err;
4088 4089 4090 4091 4092 4093
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4094
	return i915_gem_ring_throttle(dev, file_priv);
4095 4096
}

4097 4098 4099 4100
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4101
	struct drm_i915_private *dev_priv = to_i915(dev);
4102
	struct drm_i915_gem_madvise *args = data;
4103
	struct drm_i915_gem_object *obj;
4104
	int err;
4105 4106 4107 4108 4109 4110 4111 4112 4113

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4114
	obj = i915_gem_object_lookup(file_priv, args->handle);
4115 4116 4117 4118 4119 4120
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4121

C
Chris Wilson 已提交
4122
	if (obj->mm.pages &&
4123
	    i915_gem_object_is_tiled(obj) &&
4124
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4125 4126
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4127
			__i915_gem_object_unpin_pages(obj);
4128 4129 4130
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4131
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4132
			__i915_gem_object_pin_pages(obj);
4133 4134
			obj->mm.quirked = true;
		}
4135 4136
	}

C
Chris Wilson 已提交
4137 4138
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4139

C
Chris Wilson 已提交
4140
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4141
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4142 4143
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4144
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4145
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4146

4147
out:
4148
	i915_gem_object_put(obj);
4149
	return err;
4150 4151
}

4152 4153
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4154
{
4155 4156
	mutex_init(&obj->mm.lock);

4157
	INIT_LIST_HEAD(&obj->global_link);
4158
	INIT_LIST_HEAD(&obj->userfault_link);
4159
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4160
	INIT_LIST_HEAD(&obj->vma_list);
4161
	INIT_LIST_HEAD(&obj->batch_pool_link);
4162

4163 4164
	obj->ops = ops;

4165 4166 4167
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4168
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
C
Chris Wilson 已提交
4169 4170 4171 4172

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4173

4174
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4175 4176
}

4177
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4178 4179
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4180 4181 4182 4183
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4184 4185 4186 4187 4188 4189
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
4190
{
4191
	struct drm_i915_private *dev_priv = to_i915(dev);
4192
	struct drm_i915_gem_object *obj;
4193
	struct address_space *mapping;
D
Daniel Vetter 已提交
4194
	gfp_t mask;
4195
	int ret;
4196

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4208
	obj = i915_gem_object_alloc(dev);
4209
	if (obj == NULL)
4210
		return ERR_PTR(-ENOMEM);
4211

4212 4213 4214
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4215

4216
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4217
	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
4218 4219 4220 4221 4222
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4223
	mapping = obj->base.filp->f_mapping;
4224
	mapping_set_gfp_mask(mapping, mask);
4225

4226
	i915_gem_object_init(obj, &i915_gem_object_ops);
4227

4228 4229
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4230

4231 4232
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4248 4249
	trace_i915_gem_object_create(obj);

4250
	return obj;
4251 4252 4253 4254

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4255 4256
}

4257 4258 4259 4260 4261 4262 4263 4264
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4265
	if (obj->mm.madv != I915_MADV_WILLNEED)
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4281 4282
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4283
{
4284
	struct drm_i915_gem_object *obj, *on;
4285

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4301 4302
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4303

4304
		list_del(&obj->global_link);
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4315

4316 4317
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4318
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4319 4320 4321 4322 4323
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4324
		reservation_object_fini(&obj->__builtin_resv);
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4347

4348 4349 4350 4351 4352 4353 4354
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4355

4356 4357 4358
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4359

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4374

4375 4376 4377
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4378

4379 4380 4381
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4382
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4383
		obj->mm.madv = I915_MADV_DONTNEED;
4384

4385 4386 4387 4388 4389 4390
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4391 4392
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4404 4405 4406 4407 4408 4409 4410 4411 4412
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
}

4413
int i915_gem_suspend(struct drm_device *dev)
4414
{
4415
	struct drm_i915_private *dev_priv = to_i915(dev);
4416
	int ret;
4417

4418 4419
	intel_suspend_gt_powersave(dev_priv);

4420
	mutex_lock(&dev->struct_mutex);
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4434 4435 4436
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4437
	if (ret)
4438
		goto err;
4439

4440
	i915_gem_retire_requests(dev_priv);
4441
	GEM_BUG_ON(dev_priv->gt.active_requests);
4442

4443
	assert_kernel_context_is_current(dev_priv);
4444
	i915_gem_context_lost(dev_priv);
4445 4446
	mutex_unlock(&dev->struct_mutex);

4447
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4448 4449
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4450
	flush_work(&dev_priv->mm.free_work);
4451

4452 4453 4454
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4455
	WARN_ON(dev_priv->gt.awake);
4456
	WARN_ON(!intel_execlists_idle(dev_priv));
4457

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4482
	return 0;
4483 4484 4485 4486

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4487 4488
}

4489 4490 4491 4492
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4493 4494
	WARN_ON(dev_priv->gt.awake);

4495 4496 4497 4498 4499 4500 4501
	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4502
	dev_priv->gt.resume(dev_priv);
4503 4504 4505 4506

	mutex_unlock(&dev->struct_mutex);
}

4507 4508
void i915_gem_init_swizzling(struct drm_device *dev)
{
4509
	struct drm_i915_private *dev_priv = to_i915(dev);
4510

4511
	if (INTEL_INFO(dev)->gen < 5 ||
4512 4513 4514 4515 4516 4517
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4518
	if (IS_GEN5(dev_priv))
4519 4520
		return;

4521
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4522
	if (IS_GEN6(dev_priv))
4523
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4524
	else if (IS_GEN7(dev_priv))
4525
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4526
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4527
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4528 4529
	else
		BUG();
4530
}
D
Daniel Vetter 已提交
4531

4532
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4533 4534 4535 4536 4537 4538 4539
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4540
static void init_unused_rings(struct drm_i915_private *dev_priv)
4541
{
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4554 4555 4556
	}
}

4557 4558 4559
int
i915_gem_init_hw(struct drm_device *dev)
{
4560
	struct drm_i915_private *dev_priv = to_i915(dev);
4561
	struct intel_engine_cs *engine;
4562
	enum intel_engine_id id;
C
Chris Wilson 已提交
4563
	int ret;
4564

4565 4566
	dev_priv->gt.last_init_time = ktime_get();

4567 4568 4569
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4570
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4571
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4572

4573
	if (IS_HASWELL(dev_priv))
4574
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4575
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4576

4577
	if (HAS_PCH_NOP(dev_priv)) {
4578
		if (IS_IVYBRIDGE(dev_priv)) {
4579 4580 4581 4582 4583 4584 4585 4586
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4587 4588
	}

4589 4590
	i915_gem_init_swizzling(dev);

4591 4592 4593 4594 4595 4596
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4597
	init_unused_rings(dev_priv);
4598

4599
	BUG_ON(!dev_priv->kernel_context);
4600

4601 4602 4603 4604 4605 4606 4607
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4608
	for_each_engine(engine, dev_priv, id) {
4609
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4610
		if (ret)
4611
			goto out;
D
Daniel Vetter 已提交
4612
	}
4613

4614 4615
	intel_mocs_init_l3cc_table(dev);

4616
	/* We can't enable contexts until all firmware is loaded */
4617 4618 4619
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4620

4621 4622
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4623
	return ret;
4624 4625
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4647 4648
int i915_gem_init(struct drm_device *dev)
{
4649
	struct drm_i915_private *dev_priv = to_i915(dev);
4650 4651 4652
	int ret;

	mutex_lock(&dev->struct_mutex);
4653

4654
	if (!i915.enable_execlists) {
4655
		dev_priv->gt.resume = intel_legacy_submission_resume;
4656
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4657
	} else {
4658
		dev_priv->gt.resume = intel_lr_context_resume;
4659
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4660 4661
	}

4662 4663 4664 4665 4666 4667 4668 4669
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4670
	i915_gem_init_userptr(dev_priv);
4671 4672 4673 4674

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4675

4676
	ret = i915_gem_context_init(dev);
4677 4678
	if (ret)
		goto out_unlock;
4679

4680
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4681
	if (ret)
4682
		goto out_unlock;
4683

4684
	ret = i915_gem_init_hw(dev);
4685
	if (ret == -EIO) {
4686
		/* Allow engine initialisation to fail by marking the GPU as
4687 4688 4689 4690
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4691
		i915_gem_set_wedged(dev_priv);
4692
		ret = 0;
4693
	}
4694 4695

out_unlock:
4696
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4697
	mutex_unlock(&dev->struct_mutex);
4698

4699
	return ret;
4700 4701
}

4702
void
4703
i915_gem_cleanup_engines(struct drm_device *dev)
4704
{
4705
	struct drm_i915_private *dev_priv = to_i915(dev);
4706
	struct intel_engine_cs *engine;
4707
	enum intel_engine_id id;
4708

4709
	for_each_engine(engine, dev_priv, id)
4710
		dev_priv->gt.cleanup_engine(engine);
4711 4712
}

4713 4714 4715
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4716
	struct drm_device *dev = &dev_priv->drm;
4717
	int i;
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4728
	if (intel_vgpu_active(dev_priv))
4729 4730 4731 4732
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4733 4734 4735 4736 4737 4738 4739
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4740 4741 4742 4743 4744
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4745
int
4746
i915_gem_load_init(struct drm_device *dev)
4747
{
4748
	struct drm_i915_private *dev_priv = to_i915(dev);
4749
	int err = -ENOMEM;
4750

4751 4752
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4753 4754
		goto err_out;

4755 4756
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4757 4758
		goto err_objects;

4759 4760 4761 4762 4763
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
		goto err_vmas;

	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
	err = i915_gem_timeline_init(dev_priv,
				     &dev_priv->gt.global_timeline,
				     "[execution]");
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
		goto err_requests;
4774

4775
	INIT_LIST_HEAD(&dev_priv->context_list);
4776 4777
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4778 4779
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4780
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4781
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4782
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4783
			  i915_gem_retire_work_handler);
4784
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4785
			  i915_gem_idle_work_handler);
4786
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4787
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4788

4789 4790
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4791
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4792

4793 4794
	dev_priv->mm.interruptible = true;

4795 4796
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4797
	spin_lock_init(&dev_priv->fb_tracking.lock);
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808

	return 0;

err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4809
}
4810

4811 4812 4813 4814
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4815 4816
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4817 4818 4819
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4820 4821 4822

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4823 4824
}

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4838 4839 4840
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4841 4842 4843 4844 4845
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4856 4857 4858
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4859 4860
	 */

4861 4862
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4863

4864
	for (p = phases; *p; p++) {
4865
		list_for_each_entry(obj, *p, global_link) {
4866 4867 4868
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4869
	}
4870
	mutex_unlock(&dev_priv->drm.struct_mutex);
4871 4872 4873 4874

	return 0;
}

4875
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4876
{
4877
	struct drm_i915_file_private *file_priv = file->driver_priv;
4878
	struct drm_i915_gem_request *request;
4879 4880 4881 4882 4883

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4884
	spin_lock(&file_priv->mm.lock);
4885
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4886
		request->file_priv = NULL;
4887
	spin_unlock(&file_priv->mm.lock);
4888

4889
	if (!list_empty(&file_priv->rps.link)) {
4890
		spin_lock(&to_i915(dev)->rps.client_lock);
4891
		list_del(&file_priv->rps.link);
4892
		spin_unlock(&to_i915(dev)->rps.client_lock);
4893
	}
4894 4895 4896 4897 4898
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4899
	int ret;
4900 4901 4902 4903 4904 4905 4906 4907

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4908
	file_priv->dev_priv = to_i915(dev);
4909
	file_priv->file = file;
4910
	INIT_LIST_HEAD(&file_priv->rps.link);
4911 4912 4913 4914

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4915
	file_priv->bsd_engine = -1;
4916

4917 4918 4919
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4920

4921
	return ret;
4922 4923
}

4924 4925
/**
 * i915_gem_track_fb - update frontbuffer tracking
4926 4927 4928
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4929 4930 4931 4932
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4933 4934 4935 4936
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4937 4938 4939 4940 4941 4942 4943 4944 4945
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4946
	if (old) {
4947 4948
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4949 4950 4951
	}

	if (new) {
4952 4953
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4954 4955 4956
	}
}

4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4967
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4968
	if (IS_ERR(obj))
4969 4970 4971 4972 4973 4974
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4975
	ret = i915_gem_object_pin_pages(obj);
4976 4977 4978
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4979
	sg = obj->mm.pages;
4980
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4981
	obj->mm.dirty = true; /* Backing store is now out of date */
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4993
	i915_gem_object_put(obj);
4994 4995
	return ERR_PTR(ret);
}
4996 4997 4998 4999 5000 5001

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5002
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5003 5004 5005 5006 5007
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5008
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5133
	if (!obj->mm.dirty)
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}