i915_gem.c 141.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!obj->cache_coherent)
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !obj->cache_coherent)
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
391
			gen6_rps_boost(rq, rps);
392 393
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
411
	unsigned int seq = __read_seqcount_begin(&resv->seq);
412
	struct dma_fence *excl;
413
	bool prune_fences = false;
414 415 416 417

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
418 419
		int ret;

420 421
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
422 423 424
		if (ret)
			return ret;

425 426 427 428
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
429
			if (timeout < 0)
430
				break;
431

432 433 434 435 436 437
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
438 439

		prune_fences = count && timeout >= 0;
440 441
	} else {
		excl = reservation_object_get_excl_rcu(resv);
442 443
	}

444
	if (excl && timeout >= 0) {
445
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 447
		prune_fences = timeout >= 0;
	}
448 449 450

	dma_fence_put(excl);

451 452 453 454
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
455
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 457 458 459 460
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
461 462
	}

463
	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566 567
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
568
	int ret;
569

570 571
	if (align > obj->base.size)
		return -EINVAL;
572

573
	if (obj->ops == &i915_gem_phys_ops)
574 575
		return 0;

C
Chris Wilson 已提交
576
	if (obj->mm.madv != I915_MADV_WILLNEED)
577 578 579 580 581
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
582 583 584 585
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

586
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 588
	if (obj->mm.pages)
		return -EBUSY;
589

590
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
591 592
	obj->ops = &i915_gem_phys_ops;

593 594 595 596 597 598 599 600 601
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
602 603 604 605 606
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
607
		     struct drm_file *file)
608 609
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
610
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
611 612 613 614

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
615
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
616 617
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
618

619
	drm_clflush_virt_range(vaddr, args->size);
620
	i915_gem_chipset_flush(to_i915(obj->base.dev));
621

622
	intel_fb_obj_flush(obj, ORIGIN_CPU);
623
	return 0;
624 625
}

626
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
627
{
628
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
629 630 631 632
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
633
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
634
	kmem_cache_free(dev_priv->objects, obj);
635 636
}

637 638
static int
i915_gem_create(struct drm_file *file,
639
		struct drm_i915_private *dev_priv,
640 641
		uint64_t size,
		uint32_t *handle_p)
642
{
643
	struct drm_i915_gem_object *obj;
644 645
	int ret;
	u32 handle;
646

647
	size = roundup(size, PAGE_SIZE);
648 649
	if (size == 0)
		return -EINVAL;
650 651

	/* Allocate the new object */
652
	obj = i915_gem_object_create(dev_priv, size);
653 654
	if (IS_ERR(obj))
		return PTR_ERR(obj);
655

656
	ret = drm_gem_handle_create(file, &obj->base, &handle);
657
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
658
	i915_gem_object_put(obj);
659 660
	if (ret)
		return ret;
661

662
	*handle_p = handle;
663 664 665
	return 0;
}

666 667 668 669 670 671
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
672
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
673
	args->size = args->pitch * args->height;
674
	return i915_gem_create(file, to_i915(dev),
675
			       args->size, &args->handle);
676 677
}

678 679 680 681 682 683
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

684 685
/**
 * Creates a new mm object and returns a handle to it.
686 687 688
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
689 690 691 692 693
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
694
	struct drm_i915_private *dev_priv = to_i915(dev);
695
	struct drm_i915_gem_create *args = data;
696

697
	i915_gem_flush_free_objects(dev_priv);
698

699
	return i915_gem_create(file, dev_priv,
700
			       args->size, &args->handle);
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
				spin_lock_irq(&dev_priv->uncore.lock);
				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
				spin_unlock_irq(&dev_priv->uncore.lock);
				intel_runtime_pm_put(dev_priv);
			}
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
753 754 755 756 757

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
758 759 760 761 762
	}

	obj->base.write_domain = 0;
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

789
static inline int
790 791
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

815 816 817 818 819 820
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
821
				    unsigned int *needs_clflush)
822 823 824
{
	int ret;

825
	lockdep_assert_held(&obj->base.dev->struct_mutex);
826

827
	*needs_clflush = 0;
828 829
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
830

831 832 833 834 835
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
836 837 838
	if (ret)
		return ret;

C
Chris Wilson 已提交
839
	ret = i915_gem_object_pin_pages(obj);
840 841 842
	if (ret)
		return ret;

843
	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
844 845 846 847 848 849 850
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

851
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
852

853 854 855 856 857
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
858 859
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
860
		*needs_clflush = CLFLUSH_BEFORE;
861

862
out:
863
	/* return with the pages pinned */
864
	return 0;
865 866 867 868

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
869 870 871 872 873 874 875
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

876 877
	lockdep_assert_held(&obj->base.dev->struct_mutex);

878 879 880 881
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

882 883 884 885 886 887
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
888 889 890
	if (ret)
		return ret;

C
Chris Wilson 已提交
891
	ret = i915_gem_object_pin_pages(obj);
892 893 894
	if (ret)
		return ret;

895
	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
896 897 898 899 900 901 902
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

903
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
904

905 906 907 908 909
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
910
	if (!obj->cache_dirty) {
911
		*needs_clflush |= CLFLUSH_AFTER;
912

913 914 915 916 917 918 919
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
920

921
out:
922
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
923
	obj->mm.dirty = true;
924
	/* return with the pages pinned */
925
	return 0;
926 927 928 929

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
930 931
}

932 933 934 935
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
936
	if (unlikely(swizzled)) {
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

954 955 956
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
957
shmem_pread_slow(struct page *page, int offset, int length,
958 959 960 961 962 963 964 965
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
966
		shmem_clflush_swizzled_range(vaddr + offset, length,
967
					     page_do_bit17_swizzling);
968 969

	if (page_do_bit17_swizzling)
970
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
971
	else
972
		ret = __copy_to_user(user_data, vaddr + offset, length);
973 974
	kunmap(page);

975
	return ret ? - EFAULT : 0;
976 977
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1054 1055
{
	void *vaddr;
1056
	unsigned long unwritten;
1057 1058

	/* We can use the cpu mem copy function because this is X86. */
1059 1060 1061 1062 1063 1064 1065 1066 1067
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1068 1069 1070 1071
	return unwritten;
}

static int
1072 1073
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1074
{
1075 1076
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1077
	struct drm_mm_node node;
1078 1079 1080
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1081 1082
	int ret;

1083 1084 1085 1086 1087 1088 1089
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1090 1091 1092
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1093
		ret = i915_vma_put_fence(vma);
1094 1095 1096 1097 1098
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1099
	if (IS_ERR(vma)) {
1100
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1101
		if (ret)
1102 1103
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1104 1105 1106 1107 1108 1109
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1110
	mutex_unlock(&i915->drm.struct_mutex);
1111

1112 1113 1114
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1131
					       node.start, I915_CACHE_NONE, 0);
1132 1133 1134 1135
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1136 1137 1138

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1139 1140 1141 1142 1143 1144 1145 1146 1147
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1148
	mutex_lock(&i915->drm.struct_mutex);
1149 1150 1151 1152
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1153
				       node.start, node.size);
1154 1155
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1156
		i915_vma_unpin(vma);
1157
	}
1158 1159 1160
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1161

1162 1163 1164
	return ret;
}

1165 1166
/**
 * Reads data from the object referenced by handle.
1167 1168 1169
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1170 1171 1172 1173 1174
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1175
		     struct drm_file *file)
1176 1177
{
	struct drm_i915_gem_pread *args = data;
1178
	struct drm_i915_gem_object *obj;
1179
	int ret;
1180

1181 1182 1183 1184
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1185
		       u64_to_user_ptr(args->data_ptr),
1186 1187 1188
		       args->size))
		return -EFAULT;

1189
	obj = i915_gem_object_lookup(file, args->handle);
1190 1191
	if (!obj)
		return -ENOENT;
1192

1193
	/* Bounds check source.  */
1194
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1195
		ret = -EINVAL;
1196
		goto out;
C
Chris Wilson 已提交
1197 1198
	}

C
Chris Wilson 已提交
1199 1200
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1201 1202 1203 1204
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1205
	if (ret)
1206
		goto out;
1207

1208
	ret = i915_gem_object_pin_pages(obj);
1209
	if (ret)
1210
		goto out;
1211

1212
	ret = i915_gem_shmem_pread(obj, args);
1213
	if (ret == -EFAULT || ret == -ENODEV)
1214
		ret = i915_gem_gtt_pread(obj, args);
1215

1216 1217
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1218
	i915_gem_object_put(obj);
1219
	return ret;
1220 1221
}

1222 1223
/* This is the fast write path which cannot handle
 * page faults in the source data
1224
 */
1225

1226 1227 1228 1229
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1230
{
1231
	void *vaddr;
1232
	unsigned long unwritten;
1233

1234
	/* We can use the cpu mem copy function because this is X86. */
1235 1236
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1237
						      user_data, length);
1238 1239 1240 1241 1242 1243 1244
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1245 1246 1247 1248

	return unwritten;
}

1249 1250 1251
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1252
 * @obj: i915 GEM object
1253
 * @args: pwrite arguments structure
1254
 */
1255
static int
1256 1257
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1258
{
1259
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1260 1261
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1262 1263 1264
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1265
	int ret;
1266

1267 1268 1269
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1270

1271
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1272
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1273
				       PIN_MAPPABLE | PIN_NONBLOCK);
1274 1275 1276
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1277
		ret = i915_vma_put_fence(vma);
1278 1279 1280 1281 1282
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1283
	if (IS_ERR(vma)) {
1284
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1285
		if (ret)
1286 1287
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1288
	}
D
Daniel Vetter 已提交
1289 1290 1291 1292 1293

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1294 1295
	mutex_unlock(&i915->drm.struct_mutex);

1296
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1297

1298 1299 1300 1301
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1302 1303
		/* Operation in this page
		 *
1304 1305 1306
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1307
		 */
1308
		u32 page_base = node.start;
1309 1310
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1321
		/* If we get a fault while copying data, then (presumably) our
1322 1323
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1324 1325
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1326
		 */
1327 1328 1329 1330
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1331
		}
1332

1333 1334 1335
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1336
	}
1337
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1338 1339

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1340
out_unpin:
1341 1342 1343
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1344
				       node.start, node.size);
1345 1346
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1347
		i915_vma_unpin(vma);
1348
	}
1349
out_unlock:
1350
	intel_runtime_pm_put(i915);
1351
	mutex_unlock(&i915->drm.struct_mutex);
1352
	return ret;
1353 1354
}

1355
static int
1356
shmem_pwrite_slow(struct page *page, int offset, int length,
1357 1358 1359 1360
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1361
{
1362 1363
	char *vaddr;
	int ret;
1364

1365
	vaddr = kmap(page);
1366
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1367
		shmem_clflush_swizzled_range(vaddr + offset, length,
1368
					     page_do_bit17_swizzling);
1369
	if (page_do_bit17_swizzling)
1370 1371
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1372
	else
1373
		ret = __copy_from_user(vaddr + offset, user_data, length);
1374
	if (needs_clflush_after)
1375
		shmem_clflush_swizzled_range(vaddr + offset, length,
1376
					     page_do_bit17_swizzling);
1377
	kunmap(page);
1378

1379
	return ret ? -EFAULT : 0;
1380 1381
}

1382 1383 1384 1385 1386
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1387
static int
1388 1389 1390 1391
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1392
{
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1425
	unsigned int needs_clflush;
1426 1427
	unsigned int offset, idx;
	int ret;
1428

1429
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1430 1431 1432
	if (ret)
		return ret;

1433 1434 1435 1436
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1437

1438 1439 1440
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1441

1442 1443 1444 1445 1446 1447 1448
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1449

1450 1451 1452 1453 1454 1455
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1456

1457 1458 1459
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1460

1461 1462 1463 1464
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1465
		if (ret)
1466
			break;
1467

1468 1469 1470
		remain -= length;
		user_data += length;
		offset = 0;
1471
	}
1472

1473
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1474
	i915_gem_obj_finish_shmem_access(obj);
1475
	return ret;
1476 1477 1478 1479
}

/**
 * Writes data to the object referenced by handle.
1480 1481 1482
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1483 1484 1485 1486 1487
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1488
		      struct drm_file *file)
1489 1490
{
	struct drm_i915_gem_pwrite *args = data;
1491
	struct drm_i915_gem_object *obj;
1492 1493 1494 1495 1496 1497
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1498
		       u64_to_user_ptr(args->data_ptr),
1499 1500 1501
		       args->size))
		return -EFAULT;

1502
	obj = i915_gem_object_lookup(file, args->handle);
1503 1504
	if (!obj)
		return -ENOENT;
1505

1506
	/* Bounds check destination. */
1507
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1508
		ret = -EINVAL;
1509
		goto err;
C
Chris Wilson 已提交
1510 1511
	}

C
Chris Wilson 已提交
1512 1513
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1514 1515 1516 1517 1518 1519
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1520 1521 1522 1523 1524
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1525 1526 1527
	if (ret)
		goto err;

1528
	ret = i915_gem_object_pin_pages(obj);
1529
	if (ret)
1530
		goto err;
1531

D
Daniel Vetter 已提交
1532
	ret = -EFAULT;
1533 1534 1535 1536 1537 1538
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1539
	if (!i915_gem_object_has_struct_page(obj) ||
1540
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1541 1542
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1543 1544
		 * textures). Fallback to the shmem path in that case.
		 */
1545
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1546

1547
	if (ret == -EFAULT || ret == -ENOSPC) {
1548 1549
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1550
		else
1551
			ret = i915_gem_shmem_pwrite(obj, args);
1552
	}
1553

1554
	i915_gem_object_unpin_pages(obj);
1555
err:
C
Chris Wilson 已提交
1556
	i915_gem_object_put(obj);
1557
	return ret;
1558 1559
}

1560 1561 1562 1563 1564 1565 1566 1567
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1568
			break;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1581
	list_move_tail(&obj->global_link, list);
1582 1583
}

1584
/**
1585 1586
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1587 1588 1589
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1590 1591 1592
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1593
			  struct drm_file *file)
1594 1595
{
	struct drm_i915_gem_set_domain *args = data;
1596
	struct drm_i915_gem_object *obj;
1597 1598
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1599
	int err;
1600

1601
	/* Only handle setting domains to types used by the CPU. */
1602
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1603 1604 1605 1606 1607 1608 1609 1610
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1611
	obj = i915_gem_object_lookup(file, args->handle);
1612 1613
	if (!obj)
		return -ENOENT;
1614

1615 1616 1617 1618
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1619
	err = i915_gem_object_wait(obj,
1620 1621 1622 1623
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1624
	if (err)
C
Chris Wilson 已提交
1625
		goto out;
1626

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1637
		goto out;
1638 1639 1640

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1641
		goto out_unpin;
1642

1643 1644 1645 1646
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1647
	else
1648
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1649

1650 1651
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1652

1653
	mutex_unlock(&dev->struct_mutex);
1654

1655
	if (write_domain != 0)
1656 1657
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1658

C
Chris Wilson 已提交
1659
out_unpin:
1660
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1661 1662
out:
	i915_gem_object_put(obj);
1663
	return err;
1664 1665 1666 1667
}

/**
 * Called when user space has done writes to this buffer
1668 1669 1670
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1671 1672 1673
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1674
			 struct drm_file *file)
1675 1676
{
	struct drm_i915_gem_sw_finish *args = data;
1677
	struct drm_i915_gem_object *obj;
1678

1679
	obj = i915_gem_object_lookup(file, args->handle);
1680 1681
	if (!obj)
		return -ENOENT;
1682 1683

	/* Pinned buffers may be scanout, so flush the cache */
1684
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1685
	i915_gem_object_put(obj);
1686 1687

	return 0;
1688 1689 1690
}

/**
1691 1692 1693 1694 1695
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1696 1697 1698
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1709 1710 1711
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1712
		    struct drm_file *file)
1713 1714
{
	struct drm_i915_gem_mmap *args = data;
1715
	struct drm_i915_gem_object *obj;
1716 1717
	unsigned long addr;

1718 1719 1720
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1721
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1722 1723
		return -ENODEV;

1724 1725
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1726
		return -ENOENT;
1727

1728 1729 1730
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1731
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1732
		i915_gem_object_put(obj);
1733 1734 1735
		return -EINVAL;
	}

1736
	addr = vm_mmap(obj->base.filp, 0, args->size,
1737 1738
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1739 1740 1741 1742
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1743
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1744
			i915_gem_object_put(obj);
1745 1746
			return -EINTR;
		}
1747 1748 1749 1750 1751 1752 1753
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1754 1755

		/* This may race, but that's ok, it only gets set */
1756
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1757
	}
C
Chris Wilson 已提交
1758
	i915_gem_object_put(obj);
1759 1760 1761 1762 1763 1764 1765 1766
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1767 1768
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1769
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1792 1793 1794
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1822
	return 2;
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1836 1837
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1838
		min_t(unsigned int, chunk,
1839
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1840 1841 1842 1843 1844 1845 1846 1847

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1848 1849
/**
 * i915_gem_fault - fault a page into the GTT
1850
 * @vmf: fault info
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1862 1863 1864
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1865
 */
1866
int i915_gem_fault(struct vm_fault *vmf)
1867
{
1868
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1869
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1870
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1871
	struct drm_device *dev = obj->base.dev;
1872 1873
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1874
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1875
	struct i915_vma *vma;
1876
	pgoff_t page_offset;
1877
	unsigned int flags;
1878
	int ret;
1879

1880
	/* We don't use vmf->pgoff since that has the fake offset */
1881
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1882

C
Chris Wilson 已提交
1883 1884
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1885
	/* Try to flush the object off the GPU first without holding the lock.
1886
	 * Upon acquiring the lock, we will perform our sanity checks and then
1887 1888 1889
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1890 1891 1892 1893
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1894
	if (ret)
1895 1896
		goto err;

1897 1898 1899 1900
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1901 1902 1903 1904 1905
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1906

1907
	/* Access to snoopable pages through the GTT is incoherent. */
1908
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1909
		ret = -EFAULT;
1910
		goto err_unlock;
1911 1912
	}

1913 1914 1915 1916 1917 1918 1919 1920
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1921
	/* Now pin it into the GTT as needed */
1922
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1923 1924
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1925
		struct i915_ggtt_view view =
1926
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1927

1928 1929 1930 1931 1932
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1933 1934
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1935 1936
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1937
		goto err_unlock;
C
Chris Wilson 已提交
1938
	}
1939

1940 1941
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1942
		goto err_unpin;
1943

1944
	ret = i915_vma_get_fence(vma);
1945
	if (ret)
1946
		goto err_unpin;
1947

1948
	/* Mark as being mmapped into userspace for later revocation */
1949
	assert_rpm_wakelock_held(dev_priv);
1950 1951 1952
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1953
	/* Finally, remap it using the new GTT offset */
1954
	ret = remap_io_mapping(area,
1955
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1956 1957 1958
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1959

1960
err_unpin:
C
Chris Wilson 已提交
1961
	__i915_vma_unpin(vma);
1962
err_unlock:
1963
	mutex_unlock(&dev->struct_mutex);
1964 1965
err_rpm:
	intel_runtime_pm_put(dev_priv);
1966
	i915_gem_object_unpin_pages(obj);
1967
err:
1968
	switch (ret) {
1969
	case -EIO:
1970 1971 1972 1973 1974 1975 1976
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1977 1978 1979
			ret = VM_FAULT_SIGBUS;
			break;
		}
1980
	case -EAGAIN:
D
Daniel Vetter 已提交
1981 1982 1983 1984
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1985
		 */
1986 1987
	case 0:
	case -ERESTARTSYS:
1988
	case -EINTR:
1989 1990 1991 1992 1993
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1994 1995
		ret = VM_FAULT_NOPAGE;
		break;
1996
	case -ENOMEM:
1997 1998
		ret = VM_FAULT_OOM;
		break;
1999
	case -ENOSPC:
2000
	case -EFAULT:
2001 2002
		ret = VM_FAULT_SIGBUS;
		break;
2003
	default:
2004
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2005 2006
		ret = VM_FAULT_SIGBUS;
		break;
2007
	}
2008
	return ret;
2009 2010
}

2011 2012 2013 2014
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2015
 * Preserve the reservation of the mmapping with the DRM core code, but
2016 2017 2018 2019 2020 2021 2022 2023 2024
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2025
void
2026
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2027
{
2028 2029
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2030 2031 2032
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2033 2034 2035 2036
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2037
	 */
2038
	lockdep_assert_held(&i915->drm.struct_mutex);
2039
	intel_runtime_pm_get(i915);
2040

2041
	if (list_empty(&obj->userfault_link))
2042
		goto out;
2043

2044
	list_del_init(&obj->userfault_link);
2045 2046
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2047 2048 2049 2050 2051 2052 2053 2054 2055

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2056 2057 2058

out:
	intel_runtime_pm_put(i915);
2059 2060
}

2061
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2062
{
2063
	struct drm_i915_gem_object *obj, *on;
2064
	int i;
2065

2066 2067 2068 2069 2070 2071
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2072

2073 2074 2075
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2076 2077 2078
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2079 2080 2081 2082 2083 2084 2085 2086

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2097 2098 2099 2100 2101 2102 2103

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2104 2105
}

2106 2107
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2108
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2109
	int err;
2110

2111
	err = drm_gem_create_mmap_offset(&obj->base);
2112
	if (likely(!err))
2113
		return 0;
2114

2115 2116 2117 2118 2119
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2120

2121
		i915_gem_drain_freed_objects(dev_priv);
2122
		err = drm_gem_create_mmap_offset(&obj->base);
2123 2124 2125 2126
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2127

2128
	return err;
2129 2130 2131 2132 2133 2134 2135
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2136
int
2137 2138
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2139
		  uint32_t handle,
2140
		  uint64_t *offset)
2141
{
2142
	struct drm_i915_gem_object *obj;
2143 2144
	int ret;

2145
	obj = i915_gem_object_lookup(file, handle);
2146 2147
	if (!obj)
		return -ENOENT;
2148

2149
	ret = i915_gem_object_create_mmap_offset(obj);
2150 2151
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2152

C
Chris Wilson 已提交
2153
	i915_gem_object_put(obj);
2154
	return ret;
2155 2156
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2178
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2179 2180
}

D
Daniel Vetter 已提交
2181 2182 2183
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2184
{
2185
	i915_gem_object_free_mmap_offset(obj);
2186

2187 2188
	if (obj->base.filp == NULL)
		return;
2189

D
Daniel Vetter 已提交
2190 2191 2192 2193 2194
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2195
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2196
	obj->mm.madv = __I915_MADV_PURGED;
2197
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2198
}
2199

2200
/* Try to discard unwanted pages */
2201
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2202
{
2203 2204
	struct address_space *mapping;

2205 2206 2207
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2208
	switch (obj->mm.madv) {
2209 2210 2211 2212 2213 2214 2215 2216 2217
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2218
	mapping = obj->base.filp->f_mapping,
2219
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2220 2221
}

2222
static void
2223 2224
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2225
{
2226 2227
	struct sgt_iter sgt_iter;
	struct page *page;
2228

2229
	__i915_gem_object_release_shmem(obj, pages, true);
2230

2231
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2232

2233
	if (i915_gem_object_needs_bit17_swizzle(obj))
2234
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2235

2236
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2237
		if (obj->mm.dirty)
2238
			set_page_dirty(page);
2239

C
Chris Wilson 已提交
2240
		if (obj->mm.madv == I915_MADV_WILLNEED)
2241
			mark_page_accessed(page);
2242

2243
		put_page(page);
2244
	}
C
Chris Wilson 已提交
2245
	obj->mm.dirty = false;
2246

2247 2248
	sg_free_table(pages);
	kfree(pages);
2249
}
C
Chris Wilson 已提交
2250

2251 2252 2253 2254 2255
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2256 2257
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2258 2259
}

2260 2261
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2262
{
2263
	struct sg_table *pages;
2264

C
Chris Wilson 已提交
2265
	if (i915_gem_object_has_pinned_pages(obj))
2266
		return;
2267

2268
	GEM_BUG_ON(obj->bind_count);
2269 2270 2271 2272
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2273
	mutex_lock_nested(&obj->mm.lock, subclass);
2274 2275
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2276

2277 2278 2279
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2280 2281
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2282

C
Chris Wilson 已提交
2283
	if (obj->mm.mapping) {
2284 2285
		void *ptr;

2286
		ptr = page_mask_bits(obj->mm.mapping);
2287 2288
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2289
		else
2290 2291
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2292
		obj->mm.mapping = NULL;
2293 2294
	}

2295 2296
	__i915_gem_object_reset_page_iter(obj);

2297 2298 2299
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2300 2301
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2302 2303
}

2304
static bool i915_sg_trim(struct sg_table *orig_st)
2305 2306 2307 2308 2309 2310
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2311
		return false;
2312

2313
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2314
		return false;
2315 2316 2317 2318 2319 2320 2321

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2322
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2323 2324 2325 2326

	sg_free_table(orig_st);

	*orig_st = new_st;
2327
	return true;
2328 2329
}

2330
static struct sg_table *
C
Chris Wilson 已提交
2331
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332
{
2333
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2334 2335
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2336
	struct address_space *mapping;
2337 2338
	struct sg_table *st;
	struct scatterlist *sg;
2339
	struct sgt_iter sgt_iter;
2340
	struct page *page;
2341
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2342
	unsigned int max_segment;
2343
	gfp_t noreclaim;
I
Imre Deak 已提交
2344
	int ret;
2345

C
Chris Wilson 已提交
2346 2347 2348 2349
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2350 2351
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2352

2353
	max_segment = swiotlb_max_segment();
2354
	if (!max_segment)
2355
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2356

2357 2358
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2359
		return ERR_PTR(-ENOMEM);
2360

2361
rebuild_st:
2362 2363
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2364
		return ERR_PTR(-ENOMEM);
2365
	}
2366

2367 2368 2369 2370 2371
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2372
	mapping = obj->base.filp->f_mapping;
2373
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2374 2375
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2376 2377 2378
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2379 2380 2381 2382 2383 2384 2385
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2386
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2397

C
Chris Wilson 已提交
2398 2399 2400
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2401 2402 2403 2404
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2405
			 */
2406 2407 2408
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2421
				 * this we want __GFP_RETRY_MAYFAIL.
2422
				 */
M
Michal Hocko 已提交
2423
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2424
			}
2425 2426
		} while (1);

2427 2428 2429
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2430 2431 2432 2433 2434 2435 2436 2437
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2438 2439 2440

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2441
	}
2442
	if (sg) /* loop terminated early; short sg table */
2443
		sg_mark_end(sg);
2444

2445 2446 2447
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2448
	ret = i915_gem_gtt_prepare_pages(obj, st);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2468

2469
	if (i915_gem_object_needs_bit17_swizzle(obj))
2470
		i915_gem_object_do_bit_17_swizzle(obj, st);
2471

2472
	return st;
2473

2474
err_sg:
2475
	sg_mark_end(sg);
2476
err_pages:
2477 2478
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2479 2480
	sg_free_table(st);
	kfree(st);
2481 2482 2483 2484 2485 2486 2487 2488 2489

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2490 2491 2492
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2493 2494 2495 2496 2497 2498
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2499
	lockdep_assert_held(&obj->mm.lock);
2500 2501 2502 2503 2504

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2505 2506 2507 2508 2509 2510 2511

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2512 2513 2514 2515 2516 2517
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2518 2519
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2531 2532
}

2533
/* Ensure that the associated pages are gathered from the backing storage
2534
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2535
 * multiple times before they are released by a single call to
2536
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2537 2538 2539
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2540
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2541
{
2542
	int err;
2543

2544 2545 2546
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2547

2548
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2549 2550 2551
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2552

2553 2554 2555
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2556

2557 2558
unlock:
	mutex_unlock(&obj->mm.lock);
2559
	return err;
2560 2561
}

2562
/* The 'mapping' part of i915_gem_object_pin_map() below */
2563 2564
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2565 2566
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2567
	struct sg_table *sgt = obj->mm.pages;
2568 2569
	struct sgt_iter sgt_iter;
	struct page *page;
2570 2571
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2572
	unsigned long i = 0;
2573
	pgprot_t pgprot;
2574 2575 2576
	void *addr;

	/* A single page can always be kmapped */
2577
	if (n_pages == 1 && type == I915_MAP_WB)
2578 2579
		return kmap(sg_page(sgt->sgl));

2580 2581
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2582
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2583 2584 2585
		if (!pages)
			return NULL;
	}
2586

2587 2588
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2589 2590 2591 2592

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2593 2594 2595 2596 2597 2598 2599 2600 2601
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2602

2603
	if (pages != stack_pages)
M
Michal Hocko 已提交
2604
		kvfree(pages);
2605 2606 2607 2608 2609

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2610 2611
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2612
{
2613 2614 2615
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2616 2617
	int ret;

2618
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2619

2620
	ret = mutex_lock_interruptible(&obj->mm.lock);
2621 2622 2623
	if (ret)
		return ERR_PTR(ret);

2624 2625
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2626
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2627 2628 2629
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2630

2631 2632 2633
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2634 2635 2636
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2637

2638
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2639 2640 2641
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2642
			goto err_unpin;
2643
		}
2644 2645 2646 2647 2648 2649

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2650
		ptr = obj->mm.mapping = NULL;
2651 2652
	}

2653 2654 2655 2656
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2657
			goto err_unpin;
2658 2659
		}

2660
		obj->mm.mapping = page_pack_bits(ptr, type);
2661 2662
	}

2663 2664
out_unlock:
	mutex_unlock(&obj->mm.lock);
2665 2666
	return ptr;

2667 2668 2669 2670 2671
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2672 2673
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2743 2744
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2745
{
2746
	return (i915_gem_context_is_bannable(ctx) &&
2747
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2748 2749
}

2750
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2751
{
2752 2753
	unsigned int score;
	bool banned;
2754

2755
	atomic_inc(&ctx->guilty_count);
2756

2757 2758 2759 2760 2761
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2762 2763
		return;

2764 2765 2766 2767 2768 2769
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2770 2771 2772 2773
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2774
	atomic_inc(&ctx->active_count);
2775 2776
}

2777
struct drm_i915_gem_request *
2778
i915_gem_find_active_request(struct intel_engine_cs *engine)
2779
{
2780 2781
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2782

2783 2784 2785 2786 2787 2788 2789 2790
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2791
	spin_lock_irqsave(&engine->timeline->lock, flags);
2792
	list_for_each_entry(request, &engine->timeline->requests, link) {
2793 2794
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2795
			continue;
2796

2797
		GEM_BUG_ON(request->engine != engine);
2798 2799
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2800 2801 2802

		active = request;
		break;
2803
	}
2804
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2805

2806
	return active;
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

	/* Prevent the signaler thread from updating the request
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

	/* Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
	tasklet_kill(&engine->irq_tasklet);
	tasklet_disable(&engine->irq_tasklet);

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

	if (engine_stalled(engine)) {
		request = i915_gem_find_active_request(engine);
		if (request && request->fence.error == -EIO)
			request = ERR_PTR(-EIO); /* Previous reset failed! */
	}

	return request;
}

2866
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2867 2868
{
	struct intel_engine_cs *engine;
2869
	struct drm_i915_gem_request *request;
2870
	enum intel_engine_id id;
2871
	int err = 0;
2872

2873
	for_each_engine(engine, dev_priv, id) {
2874 2875 2876 2877
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2878
		}
2879 2880

		engine->hangcheck.active_request = request;
2881 2882
	}

2883
	i915_gem_revoke_fences(dev_priv);
2884 2885

	return err;
2886 2887
}

2888
static void skip_request(struct drm_i915_gem_request *request)
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2903 2904

	dma_fence_set_error(&request->fence, -EIO);
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2930 2931 2932 2933
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
2934
	const bool guilty = !i915_gem_request_completed(request);
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2968 2969
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
2970
{
2971 2972
	engine->irq_posted = 0;

2973 2974 2975
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2976

2977 2978 2979 2980
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2981 2982 2983

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2984
}
2985

2986
void i915_gem_reset(struct drm_i915_private *dev_priv)
2987
{
2988
	struct intel_engine_cs *engine;
2989
	enum intel_engine_id id;
2990

2991 2992
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2993 2994
	i915_gem_retire_requests(dev_priv);

2995 2996 2997
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2998
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2999 3000 3001 3002
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
3003

3004
	i915_gem_restore_fences(dev_priv);
3005 3006 3007 3008 3009 3010 3011

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3012 3013
}

3014 3015 3016 3017 3018 3019
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->irq_tasklet);
	kthread_unpark(engine->breadcrumbs.signaler);
}

3020 3021
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3022 3023 3024
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3025
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3026

3027
	for_each_engine(engine, dev_priv, id) {
3028
		engine->hangcheck.active_request = NULL;
3029
		i915_gem_reset_finish_engine(engine);
3030
	}
3031 3032
}

3033 3034
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3035
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3036
	dma_fence_set_error(&request->fence, -EIO);
3037 3038
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3039 3040
}

3041
static void engine_set_wedged(struct intel_engine_cs *engine)
3042
{
3043 3044 3045
	struct drm_i915_gem_request *request;
	unsigned long flags;

3046 3047 3048 3049 3050 3051
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3052
	engine->submit_request = nop_submit_request;
3053

3054 3055 3056
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
3057 3058
		if (!i915_gem_request_completed(request))
			dma_fence_set_error(&request->fence, -EIO);
3059 3060
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3061 3062 3063 3064 3065 3066
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3067
	if (i915.enable_execlists) {
3068
		struct execlist_port *port = engine->execlist_port;
3069
		unsigned long flags;
3070
		unsigned int n;
3071 3072 3073

		spin_lock_irqsave(&engine->timeline->lock, flags);

3074 3075
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3076
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3077 3078
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3079 3080

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3081 3082 3083 3084 3085 3086 3087

		/* The port is checked prior to scheduling a tasklet, but
		 * just in case we have suspended the tasklet to do the
		 * wedging make sure that when it wakes, it decides there
		 * is no work to do by clearing the irq_posted bit.
		 */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3088
	}
3089 3090 3091 3092 3093 3094 3095

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3096 3097
}

3098
static int __i915_gem_set_wedged_BKL(void *data)
3099
{
3100
	struct drm_i915_private *i915 = data;
3101
	struct intel_engine_cs *engine;
3102
	enum intel_engine_id id;
3103

3104
	for_each_engine(engine, i915, id)
3105
		engine_set_wedged(engine);
3106

3107 3108 3109
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3110 3111 3112 3113 3114 3115
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3116 3117
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3170
	i915_gem_contexts_lost(i915);
3171 3172 3173 3174 3175 3176 3177

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3178
static void
3179 3180
i915_gem_retire_work_handler(struct work_struct *work)
{
3181
	struct drm_i915_private *dev_priv =
3182
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3183
	struct drm_device *dev = &dev_priv->drm;
3184

3185
	/* Come back later if the device is busy... */
3186
	if (mutex_trylock(&dev->struct_mutex)) {
3187
		i915_gem_retire_requests(dev_priv);
3188
		mutex_unlock(&dev->struct_mutex);
3189
	}
3190 3191 3192 3193 3194

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3195 3196
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3197 3198
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3199
				   round_jiffies_up_relative(HZ));
3200
	}
3201
}
3202

3203 3204 3205 3206
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3207
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3208
	struct drm_device *dev = &dev_priv->drm;
3209 3210 3211 3212 3213
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3214 3215 3216 3217
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3218
	wait_for(intel_engines_are_idle(dev_priv), 10);
3219
	if (READ_ONCE(dev_priv->gt.active_requests))
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3233 3234 3235 3236 3237 3238 3239
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3240
	if (dev_priv->gt.active_requests)
3241
		goto out_unlock;
3242

3243
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3244 3245
		DRM_ERROR("Timeout waiting for engines to idle\n");

3246
	intel_engines_mark_idle(dev_priv);
3247
	i915_gem_timelines_mark_idle(dev_priv);
3248

3249 3250 3251
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3252

3253 3254 3255 3256 3257
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3258

3259 3260 3261 3262
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3263
	}
3264 3265
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3276

3277 3278 3279 3280
	vma = obj->vma_hashed;
	if (vma && vma->ctx->file_priv == fpriv)
		i915_vma_unlink_ctx(vma);

3281 3282 3283 3284 3285
	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3286 3287 3288
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3300 3301
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3302 3303 3304
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3329 3330
	ktime_t start;
	long ret;
3331

3332 3333 3334
	if (args->flags != 0)
		return -EINVAL;

3335
	obj = i915_gem_object_lookup(file, args->bo_handle);
3336
	if (!obj)
3337 3338
		return -ENOENT;

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3360 3361
	}

C
Chris Wilson 已提交
3362
	i915_gem_object_put(obj);
3363
	return ret;
3364 3365
}

3366
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3367
{
3368
	int ret, i;
3369

3370 3371 3372 3373 3374
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3375

3376 3377 3378
	return 0;
}

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
{
	return wait_for(intel_engine_is_idle(engine), timeout_ms);
}

static int wait_for_engines(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
			i915_gem_set_wedged(i915);
			return -EIO;
		}

		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
			   intel_engine_last_submit(engine));
	}

	return 0;
}

3402 3403 3404 3405
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3406 3407 3408 3409
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3420 3421 3422

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3423 3424

		ret = wait_for_engines(i915);
3425 3426
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3427
	}
3428

3429
	return ret;
3430 3431
}

3432 3433
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3434 3435 3436 3437 3438 3439 3440
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3517 3518
/**
 * Moves a single object to the GTT read, and possibly write domain.
3519 3520
 * @obj: object to act on
 * @write: ask for write access or read only
3521 3522 3523 3524
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3525
int
3526
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3527
{
3528
	int ret;
3529

3530
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3531

3532 3533 3534 3535 3536 3537
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3538 3539 3540
	if (ret)
		return ret;

3541 3542 3543
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3544 3545 3546 3547 3548 3549 3550 3551
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3552
	ret = i915_gem_object_pin_pages(obj);
3553 3554 3555
	if (ret)
		return ret;

3556
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3557

3558 3559 3560 3561 3562 3563 3564
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3565 3566 3567
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3568
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3569
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3570
	if (write) {
3571 3572
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3573
		obj->mm.dirty = true;
3574 3575
	}

C
Chris Wilson 已提交
3576
	i915_gem_object_unpin_pages(obj);
3577 3578 3579
	return 0;
}

3580 3581
/**
 * Changes the cache-level of an object across all VMA.
3582 3583
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3595 3596 3597
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3598
	struct i915_vma *vma;
3599
	int ret;
3600

3601 3602
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3603
	if (obj->cache_level == cache_level)
3604
		return 0;
3605

3606 3607 3608 3609 3610
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3611 3612
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3613 3614 3615
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3616
		if (i915_vma_is_pinned(vma)) {
3617 3618 3619 3620
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3633 3634
	}

3635 3636 3637 3638 3639 3640 3641
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3642
	if (obj->bind_count) {
3643 3644 3645 3646
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3647 3648 3649 3650 3651 3652
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3653 3654 3655
		if (ret)
			return ret;

3656 3657
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3674 3675 3676 3677 3678
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3679 3680 3681 3682 3683 3684 3685 3686
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3687 3688
		}

3689
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3690 3691 3692 3693 3694 3695 3696
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3697 3698
	}

3699
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3700 3701
		vma->node.color = cache_level;
	obj->cache_level = cache_level;
3702
	obj->cache_coherent = i915_gem_object_is_coherent(obj);
3703
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3704

3705 3706 3707
	return 0;
}

B
Ben Widawsky 已提交
3708 3709
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3710
{
B
Ben Widawsky 已提交
3711
	struct drm_i915_gem_caching *args = data;
3712
	struct drm_i915_gem_object *obj;
3713
	int err = 0;
3714

3715 3716 3717 3718 3719 3720
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3721

3722 3723 3724 3725 3726 3727
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3728 3729 3730 3731
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3732 3733 3734 3735
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3736 3737 3738
out:
	rcu_read_unlock();
	return err;
3739 3740
}

B
Ben Widawsky 已提交
3741 3742
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3743
{
3744
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3745
	struct drm_i915_gem_caching *args = data;
3746 3747
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3748
	int ret = 0;
3749

B
Ben Widawsky 已提交
3750 3751
	switch (args->caching) {
	case I915_CACHING_NONE:
3752 3753
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3754
	case I915_CACHING_CACHED:
3755 3756 3757 3758 3759 3760
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3761
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3762 3763
			return -ENODEV;

3764 3765
		level = I915_CACHE_LLC;
		break;
3766
	case I915_CACHING_DISPLAY:
3767
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3768
		break;
3769 3770 3771 3772
	default:
		return -EINVAL;
	}

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3784
	if (ret)
3785
		goto out;
B
Ben Widawsky 已提交
3786

3787 3788 3789
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3790 3791 3792

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3793 3794 3795

out:
	i915_gem_object_put(obj);
3796 3797 3798
	return ret;
}

3799
/*
3800 3801 3802
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3803
 */
C
Chris Wilson 已提交
3804
struct i915_vma *
3805 3806
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3807
				     const struct i915_ggtt_view *view)
3808
{
C
Chris Wilson 已提交
3809
	struct i915_vma *vma;
3810 3811
	int ret;

3812 3813
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3814 3815 3816
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3817
	obj->pin_display++;
3818

3819 3820 3821 3822 3823 3824 3825 3826 3827
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3828
	ret = i915_gem_object_set_cache_level(obj,
3829 3830
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3831 3832
	if (ret) {
		vma = ERR_PTR(ret);
3833
		goto err_unpin_display;
C
Chris Wilson 已提交
3834
	}
3835

3836 3837
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3838 3839 3840 3841
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3842
	 */
3843
	vma = ERR_PTR(-ENOSPC);
3844
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3845 3846
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3863
	if (IS_ERR(vma))
3864
		goto err_unpin_display;
3865

3866 3867
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3868
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3869
	__i915_gem_object_flush_for_display(obj);
3870
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3871

3872 3873 3874
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3875
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3876

C
Chris Wilson 已提交
3877
	return vma;
3878 3879

err_unpin_display:
3880
	obj->pin_display--;
C
Chris Wilson 已提交
3881
	return vma;
3882 3883 3884
}

void
C
Chris Wilson 已提交
3885
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3886
{
3887
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3888

C
Chris Wilson 已提交
3889
	if (WARN_ON(vma->obj->pin_display == 0))
3890 3891
		return;

3892
	if (--vma->obj->pin_display == 0)
3893
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3894

3895
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3896
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3897

C
Chris Wilson 已提交
3898
	i915_vma_unpin(vma);
3899 3900
}

3901 3902
/**
 * Moves a single object to the CPU read, and possibly write domain.
3903 3904
 * @obj: object to act on
 * @write: requesting write or read-only access
3905 3906 3907 3908
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3909
int
3910
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3911 3912 3913
{
	int ret;

3914
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3915

3916 3917 3918 3919 3920 3921
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3922 3923 3924
	if (ret)
		return ret;

3925
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3926

3927
	/* Flush the CPU cache if it's still invalid. */
3928
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3929
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3930
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3931 3932 3933 3934 3935
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3936
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3937 3938 3939 3940

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3941 3942
	if (write)
		__start_cpu_write(obj);
3943 3944 3945 3946

	return 0;
}

3947 3948 3949
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3950 3951 3952 3953
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3954 3955 3956
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3957
static int
3958
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3959
{
3960
	struct drm_i915_private *dev_priv = to_i915(dev);
3961
	struct drm_i915_file_private *file_priv = file->driver_priv;
3962
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3963
	struct drm_i915_gem_request *request, *target = NULL;
3964
	long ret;
3965

3966 3967 3968
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3969

3970
	spin_lock(&file_priv->mm.lock);
3971
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3972 3973
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3974

3975 3976 3977 3978
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3979

3980
		target = request;
3981
	}
3982
	if (target)
3983
		i915_gem_request_get(target);
3984
	spin_unlock(&file_priv->mm.lock);
3985

3986
	if (target == NULL)
3987
		return 0;
3988

3989 3990 3991
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3992
	i915_gem_request_put(target);
3993

3994
	return ret < 0 ? ret : 0;
3995 3996
}

C
Chris Wilson 已提交
3997
struct i915_vma *
3998 3999
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4000
			 u64 size,
4001 4002
			 u64 alignment,
			 u64 flags)
4003
{
4004 4005
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4006 4007
	struct i915_vma *vma;
	int ret;
4008

4009 4010
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4011
	vma = i915_vma_instance(obj, vm, view);
4012
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4013
		return vma;
4014 4015 4016 4017

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4018
			return ERR_PTR(-ENOSPC);
4019

4020 4021 4022 4023 4024 4025 4026 4027
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4028
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4047
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4048 4049 4050
				return ERR_PTR(-ENOSPC);
		}

4051 4052
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4053 4054 4055
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4056
		     !!(flags & PIN_MAPPABLE),
4057
		     i915_vma_is_map_and_fenceable(vma));
4058 4059
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4060
			return ERR_PTR(ret);
4061 4062
	}

C
Chris Wilson 已提交
4063 4064 4065
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4066

C
Chris Wilson 已提交
4067
	return vma;
4068 4069
}

4070
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4085 4086 4087 4088 4089 4090 4091 4092 4093
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4094 4095
}

4096
static __always_inline unsigned int
4097
__busy_set_if_active(const struct dma_fence *fence,
4098 4099
		     unsigned int (*flag)(unsigned int id))
{
4100
	struct drm_i915_gem_request *rq;
4101

4102 4103 4104 4105
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4106
	 *
4107
	 * Note we only report on the status of native fences.
4108
	 */
4109 4110 4111 4112 4113 4114 4115 4116
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4117
	return flag(rq->engine->uabi_id);
4118 4119
}

4120
static __always_inline unsigned int
4121
busy_check_reader(const struct dma_fence *fence)
4122
{
4123
	return __busy_set_if_active(fence, __busy_read_flag);
4124 4125
}

4126
static __always_inline unsigned int
4127
busy_check_writer(const struct dma_fence *fence)
4128
{
4129 4130 4131 4132
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4133 4134
}

4135 4136
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4137
		    struct drm_file *file)
4138 4139
{
	struct drm_i915_gem_busy *args = data;
4140
	struct drm_i915_gem_object *obj;
4141 4142
	struct reservation_object_list *list;
	unsigned int seq;
4143
	int err;
4144

4145
	err = -ENOENT;
4146 4147
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4148
	if (!obj)
4149
		goto out;
4150

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4169

4170 4171
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4172

4173 4174 4175 4176
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4177

4178 4179 4180 4181 4182 4183
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4184
	}
4185

4186 4187 4188 4189
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4190 4191 4192
out:
	rcu_read_unlock();
	return err;
4193 4194 4195 4196 4197 4198
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4199
	return i915_gem_ring_throttle(dev, file_priv);
4200 4201
}

4202 4203 4204 4205
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4206
	struct drm_i915_private *dev_priv = to_i915(dev);
4207
	struct drm_i915_gem_madvise *args = data;
4208
	struct drm_i915_gem_object *obj;
4209
	int err;
4210 4211 4212 4213 4214 4215 4216 4217 4218

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4219
	obj = i915_gem_object_lookup(file_priv, args->handle);
4220 4221 4222 4223 4224 4225
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4226

C
Chris Wilson 已提交
4227
	if (obj->mm.pages &&
4228
	    i915_gem_object_is_tiled(obj) &&
4229
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4230 4231
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4232
			__i915_gem_object_unpin_pages(obj);
4233 4234 4235
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4236
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4237
			__i915_gem_object_pin_pages(obj);
4238 4239
			obj->mm.quirked = true;
		}
4240 4241
	}

C
Chris Wilson 已提交
4242 4243
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4244

C
Chris Wilson 已提交
4245
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4246
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4247 4248
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4249
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4250
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4251

4252
out:
4253
	i915_gem_object_put(obj);
4254
	return err;
4255 4256
}

4257 4258 4259 4260 4261 4262 4263
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4264
	intel_fb_obj_flush(obj, ORIGIN_CS);
4265 4266
}

4267 4268
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4269
{
4270 4271
	mutex_init(&obj->mm.lock);

4272
	INIT_LIST_HEAD(&obj->global_link);
4273
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4274
	INIT_LIST_HEAD(&obj->vma_list);
4275
	INIT_LIST_HEAD(&obj->batch_pool_link);
4276

4277 4278
	obj->ops = ops;

4279 4280 4281
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4282
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4283
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4284 4285 4286 4287

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4288

4289
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4290 4291
}

4292
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4293 4294
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4295

4296 4297
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4298 4299

	.pwrite = i915_gem_object_pwrite_gtt,
4300 4301
};

4302
struct drm_i915_gem_object *
4303
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4304
{
4305
	struct drm_i915_gem_object *obj;
4306
	struct address_space *mapping;
D
Daniel Vetter 已提交
4307
	gfp_t mask;
4308
	int ret;
4309

4310 4311 4312 4313 4314
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4315
	if (size >> PAGE_SHIFT > INT_MAX)
4316 4317 4318 4319 4320
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4321
	obj = i915_gem_object_alloc(dev_priv);
4322
	if (obj == NULL)
4323
		return ERR_PTR(-ENOMEM);
4324

4325
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4326 4327
	if (ret)
		goto fail;
4328

4329
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4330
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4331 4332 4333 4334 4335
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4336
	mapping = obj->base.filp->f_mapping;
4337
	mapping_set_gfp_mask(mapping, mask);
4338
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4339

4340
	i915_gem_object_init(obj, &i915_gem_object_ops);
4341

4342 4343
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4344

4345
	if (HAS_LLC(dev_priv)) {
4346
		/* On some devices, we can have the GPU use the LLC (the CPU
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4362 4363
	obj->cache_coherent = i915_gem_object_is_coherent(obj);
	obj->cache_dirty = !obj->cache_coherent;
4364

4365 4366
	trace_i915_gem_object_create(obj);

4367
	return obj;
4368 4369 4370 4371

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4372 4373
}

4374 4375 4376 4377 4378 4379 4380 4381
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4382
	if (obj->mm.madv != I915_MADV_WILLNEED)
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4398 4399
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4400
{
4401
	struct drm_i915_gem_object *obj, *on;
4402

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4417 4418
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4419

4420
		list_del(&obj->global_link);
4421 4422 4423 4424
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4425 4426
	cond_resched();

4427 4428 4429 4430 4431 4432
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4433

4434 4435
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4436
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4437 4438 4439 4440 4441
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4442
		reservation_object_fini(&obj->__builtin_resv);
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4465

4466 4467 4468 4469 4470 4471 4472
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4473

4474
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4475
		__i915_gem_free_objects(i915, freed);
4476 4477 4478
		if (need_resched())
			break;
	}
4479
}
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4495

4496 4497 4498
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4499

4500 4501 4502
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4503
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4504
		obj->mm.madv = I915_MADV_DONTNEED;
4505

4506 4507 4508 4509 4510 4511
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4512 4513
}

4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4525 4526 4527 4528 4529 4530
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4531 4532
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4533 4534
}

4535 4536 4537 4538 4539 4540 4541 4542
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4543
	 * of the reset, so this could be applied to even earlier gen.
4544
	 */
4545
	if (INTEL_GEN(i915) >= 5) {
4546 4547 4548 4549 4550
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4551
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4552
{
4553
	struct drm_device *dev = &dev_priv->drm;
4554
	int ret;
4555

4556
	intel_runtime_pm_get(dev_priv);
4557 4558
	intel_suspend_gt_powersave(dev_priv);

4559
	mutex_lock(&dev->struct_mutex);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4571
		goto err_unlock;
4572

4573 4574 4575
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4576
	if (ret)
4577
		goto err_unlock;
4578

4579
	assert_kernel_context_is_current(dev_priv);
4580
	i915_gem_contexts_lost(dev_priv);
4581 4582
	mutex_unlock(&dev->struct_mutex);

4583 4584
	intel_guc_suspend(dev_priv);

4585
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4586
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4587 4588 4589 4590 4591 4592 4593

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

4594 4595 4596
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4597
	WARN_ON(dev_priv->gt.awake);
4598
	WARN_ON(!intel_engines_are_idle(dev_priv));
4599

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4619
	i915_gem_sanitize(dev_priv);
4620
	goto out_rpm_put;
4621

4622
err_unlock:
4623
	mutex_unlock(&dev->struct_mutex);
4624 4625
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4626
	return ret;
4627 4628
}

4629
void i915_gem_resume(struct drm_i915_private *dev_priv)
4630
{
4631
	struct drm_device *dev = &dev_priv->drm;
4632

4633 4634
	WARN_ON(dev_priv->gt.awake);

4635
	mutex_lock(&dev->struct_mutex);
4636
	i915_gem_restore_gtt_mappings(dev_priv);
4637 4638 4639 4640 4641

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4642
	dev_priv->gt.resume(dev_priv);
4643 4644 4645 4646

	mutex_unlock(&dev->struct_mutex);
}

4647
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4648
{
4649
	if (INTEL_GEN(dev_priv) < 5 ||
4650 4651 4652 4653 4654 4655
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4656
	if (IS_GEN5(dev_priv))
4657 4658
		return;

4659
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4660
	if (IS_GEN6(dev_priv))
4661
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4662
	else if (IS_GEN7(dev_priv))
4663
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4664
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4665
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4666 4667
	else
		BUG();
4668
}
D
Daniel Vetter 已提交
4669

4670
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4671 4672 4673 4674 4675 4676 4677
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4678
static void init_unused_rings(struct drm_i915_private *dev_priv)
4679
{
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4692 4693 4694
	}
}

4695
static int __i915_gem_restart_engines(void *data)
4696
{
4697
	struct drm_i915_private *i915 = data;
4698
	struct intel_engine_cs *engine;
4699
	enum intel_engine_id id;
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4713
	int ret;
4714

4715 4716
	dev_priv->gt.last_init_time = ktime_get();

4717 4718 4719
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4720
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4721
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4722

4723
	if (IS_HASWELL(dev_priv))
4724
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4725
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4726

4727
	if (HAS_PCH_NOP(dev_priv)) {
4728
		if (IS_IVYBRIDGE(dev_priv)) {
4729 4730 4731
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4732
		} else if (INTEL_GEN(dev_priv) >= 7) {
4733 4734 4735 4736
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4737 4738
	}

4739
	i915_gem_init_swizzling(dev_priv);
4740

4741 4742 4743 4744 4745 4746
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4747
	init_unused_rings(dev_priv);
4748

4749
	BUG_ON(!dev_priv->kernel_context);
4750

4751
	ret = i915_ppgtt_init_hw(dev_priv);
4752 4753 4754 4755 4756 4757
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4758 4759 4760
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4761

4762
	intel_mocs_init_l3cc_table(dev_priv);
4763

4764 4765 4766 4767
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4768

4769 4770
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4771
	return ret;
4772 4773
}

4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4787
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4788 4789 4790 4791 4792
		return false;

	return true;
}

4793
int i915_gem_init(struct drm_i915_private *dev_priv)
4794 4795 4796
{
	int ret;

4797
	mutex_lock(&dev_priv->drm.struct_mutex);
4798

4799
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4800

4801
	if (!i915.enable_execlists) {
4802
		dev_priv->gt.resume = intel_legacy_submission_resume;
4803
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4804
	} else {
4805
		dev_priv->gt.resume = intel_lr_context_resume;
4806
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4807 4808
	}

4809 4810 4811 4812 4813 4814 4815 4816
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4817 4818 4819
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4820 4821 4822 4823

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4824

4825
	ret = i915_gem_contexts_init(dev_priv);
4826 4827
	if (ret)
		goto out_unlock;
4828

4829
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4830
	if (ret)
4831
		goto out_unlock;
4832

4833
	ret = i915_gem_init_hw(dev_priv);
4834
	if (ret == -EIO) {
4835
		/* Allow engine initialisation to fail by marking the GPU as
4836 4837 4838 4839
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4840
		i915_gem_set_wedged(dev_priv);
4841
		ret = 0;
4842
	}
4843 4844

out_unlock:
4845
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4846
	mutex_unlock(&dev_priv->drm.struct_mutex);
4847

4848
	return ret;
4849 4850
}

4851 4852 4853 4854 4855
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4856
void
4857
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4858
{
4859
	struct intel_engine_cs *engine;
4860
	enum intel_engine_id id;
4861

4862
	for_each_engine(engine, dev_priv, id)
4863
		dev_priv->gt.cleanup_engine(engine);
4864 4865
}

4866 4867 4868
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4869
	int i;
4870 4871 4872 4873

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4874 4875 4876
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4877 4878 4879 4880
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4881
	if (intel_vgpu_active(dev_priv))
4882 4883 4884 4885
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4886 4887 4888 4889 4890 4891 4892
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4893
	i915_gem_restore_fences(dev_priv);
4894

4895
	i915_gem_detect_bit_6_swizzle(dev_priv);
4896 4897
}

4898
int
4899
i915_gem_load_init(struct drm_i915_private *dev_priv)
4900
{
4901
	int err = -ENOMEM;
4902

4903 4904
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4905 4906
		goto err_out;

4907 4908
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4909 4910
		goto err_objects;

4911 4912 4913
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4914
					SLAB_TYPESAFE_BY_RCU);
4915
	if (!dev_priv->requests)
4916 4917
		goto err_vmas;

4918 4919 4920 4921 4922 4923
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4924 4925 4926 4927
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4928 4929
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4930
	err = i915_gem_timeline_init__global(dev_priv);
4931 4932
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4933
		goto err_priorities;
4934

4935 4936
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4937 4938
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4939
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4940
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4941
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4942
			  i915_gem_retire_work_handler);
4943
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4944
			  i915_gem_idle_work_handler);
4945
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4946
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4947

4948 4949
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4950
	spin_lock_init(&dev_priv->fb_tracking.lock);
4951 4952 4953

	return 0;

4954 4955
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4956 4957
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4958 4959 4960 4961 4962 4963 4964 4965
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4966
}
4967

4968
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4969
{
4970
	i915_gem_drain_freed_objects(dev_priv);
4971
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4972
	WARN_ON(dev_priv->mm.object_count);
4973

4974 4975 4976 4977 4978
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4979
	kmem_cache_destroy(dev_priv->priorities);
4980
	kmem_cache_destroy(dev_priv->dependencies);
4981 4982 4983
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4984 4985 4986

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4987 4988
}

4989 4990
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4991 4992 4993
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4994 4995 4996 4997 4998
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4999 5000 5001
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5002 5003 5004 5005 5006
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5017 5018
	 *
	 * To try and reduce the hibernation image, we manually shrink
5019
	 * the objects as well, see i915_gem_freeze()
5020 5021
	 */

5022
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5023
	i915_gem_drain_freed_objects(dev_priv);
5024

5025
	mutex_lock(&dev_priv->drm.struct_mutex);
5026
	for (p = phases; *p; p++) {
5027 5028
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5029
	}
5030
	mutex_unlock(&dev_priv->drm.struct_mutex);
5031 5032 5033 5034

	return 0;
}

5035
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5036
{
5037
	struct drm_i915_file_private *file_priv = file->driver_priv;
5038
	struct drm_i915_gem_request *request;
5039 5040 5041 5042 5043

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5044
	spin_lock(&file_priv->mm.lock);
5045
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5046
		request->file_priv = NULL;
5047
	spin_unlock(&file_priv->mm.lock);
5048 5049
}

5050
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5051 5052
{
	struct drm_i915_file_private *file_priv;
5053
	int ret;
5054

5055
	DRM_DEBUG("\n");
5056 5057 5058 5059 5060 5061

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5062
	file_priv->dev_priv = i915;
5063
	file_priv->file = file;
5064 5065 5066 5067

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5068
	file_priv->bsd_engine = -1;
5069

5070
	ret = i915_gem_context_open(i915, file);
5071 5072
	if (ret)
		kfree(file_priv);
5073

5074
	return ret;
5075 5076
}

5077 5078
/**
 * i915_gem_track_fb - update frontbuffer tracking
5079 5080 5081
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5082 5083 5084 5085
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5086 5087 5088 5089
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5090 5091 5092 5093 5094 5095 5096 5097 5098
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5099
	if (old) {
5100 5101
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5102 5103 5104
	}

	if (new) {
5105 5106
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5107 5108 5109
	}
}

5110 5111
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5112
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5113 5114 5115
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5116 5117 5118
	struct file *file;
	size_t offset;
	int err;
5119

5120
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5121
	if (IS_ERR(obj))
5122 5123
		return obj;

5124
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5125

5126 5127 5128 5129 5130 5131
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5132

5133 5134 5135 5136 5137
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5138

5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5153 5154 5155 5156

	return obj;

fail:
5157
	i915_gem_object_put(obj);
5158
	return ERR_PTR(err);
5159
}
5160 5161 5162 5163 5164 5165

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5166
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5167 5168 5169 5170 5171
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5172
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5297
	if (!obj->mm.dirty)
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5313 5314 5315

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5316
#include "selftests/mock_gem_device.c"
5317
#include "selftests/huge_gem_object.c"
5318
#include "selftests/i915_gem_object.c"
5319
#include "selftests/i915_gem_coherency.c"
5320
#endif