i915_gem.c 149.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58
		return true;

59
	return obj->pin_global; /* currently in use by HW, keep flushed */
60 61
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141
			    struct drm_file *file)
142
{
143
	struct drm_i915_private *dev_priv = to_i915(dev);
144
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145
	struct drm_i915_gem_get_aperture *args = data;
146
	struct i915_vma *vma;
147
	u64 pinned;
148

149
	pinned = ggtt->base.reserved;
150
	mutex_lock(&dev->struct_mutex);
151
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152
		if (i915_vma_is_pinned(vma))
153
			pinned += vma->node.size;
154
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155
		if (i915_vma_is_pinned(vma))
156
			pinned += vma->node.size;
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = ggtt->base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173
	int err;
174

175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176
		return -EINVAL;
177

178 179 180 181 182
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
183
			     roundup_pow_of_two(obj->base.size),
184 185
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
186
		return -ENOMEM;
187 188

	vaddr = phys->vaddr;
189 190 191 192 193
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
194
		if (IS_ERR(page)) {
195
			err = PTR_ERR(page);
196 197
			goto err_phys;
		}
198 199 200 201 202 203

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

204
		put_page(page);
205 206 207
		vaddr += PAGE_SIZE;
	}

208
	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 210

	st = kmalloc(sizeof(*st), GFP_KERNEL);
211
	if (!st) {
212
		err = -ENOMEM;
213 214
		goto err_phys;
	}
215 216 217

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
218
		err = -ENOMEM;
219
		goto err_phys;
220 221 222 223 224
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
225

226
	sg_dma_address(sg) = phys->busaddr;
227 228
	sg_dma_len(sg) = obj->base.size;

229
	obj->phys_handle = phys;
230

231
	__i915_gem_object_set_pages(obj, st, sg->length);
232 233

	return 0;
234 235 236

err_phys:
	drm_pci_free(obj->base.dev, phys);
237 238

	return err;
239 240
}

241 242 243 244 245 246 247 248
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

249
static void
250
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 252
				struct sg_table *pages,
				bool needs_clflush)
253
{
C
Chris Wilson 已提交
254
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255

C
Chris Wilson 已提交
256 257
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
258

259 260
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262
		drm_clflush_sg(pages);
263

264
	__start_cpu_write(obj);
265 266 267 268 269 270
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
271
	__i915_gem_object_release_shmem(obj, pages, false);
272

C
Chris Wilson 已提交
273
	if (obj->mm.dirty) {
274
		struct address_space *mapping = obj->base.filp->f_mapping;
275
		char *vaddr = obj->phys_handle->vaddr;
276 277 278
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 280 281 282 283 284 285 286 287 288 289 290 291
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
292
			if (obj->mm.madv == I915_MADV_WILLNEED)
293
				mark_page_accessed(page);
294
			put_page(page);
295 296
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
297
		obj->mm.dirty = false;
298 299
	}

300 301
	sg_free_table(pages);
	kfree(pages);
302 303

	drm_pci_free(obj->base.dev, obj->phys_handle);
304 305 306 307 308
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
309
	i915_gem_object_unpin_pages(obj);
310 311 312 313 314 315 316 317
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

318 319
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

320
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 322 323
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
324 325 326
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
327

328 329 330 331
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
332
	 */
333 334 335 336 337 338
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
339 340 341 342 343
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

344 345 346 347 348 349 350 351 352 353 354 355 356
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

357 358 359 360
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
361
			   struct intel_rps_client *rps_client)
362
{
363
	struct drm_i915_gem_request *rq;
364

365
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
394
	if (rps_client) {
395
		if (INTEL_GEN(rq->i915) >= 6)
396
			gen6_rps_boost(rq, rps_client);
397
		else
398
			rps_client = NULL;
399 400
	}

401 402 403 404 405 406 407 408 409 410 411 412 413
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
414
				 struct intel_rps_client *rps_client)
415
{
416
	unsigned int seq = __read_seqcount_begin(&resv->seq);
417
	struct dma_fence *excl;
418
	bool prune_fences = false;
419 420 421 422

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
423 424
		int ret;

425 426
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
427 428 429
		if (ret)
			return ret;

430 431 432
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
433
							     rps_client);
434
			if (timeout < 0)
435
				break;
436

437 438 439 440 441 442
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
443 444

		prune_fences = count && timeout >= 0;
445 446
	} else {
		excl = reservation_object_get_excl_rcu(resv);
447 448
	}

449
	if (excl && timeout >= 0) {
450 451
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
452 453
		prune_fences = timeout >= 0;
	}
454 455 456

	dma_fence_put(excl);

457 458 459 460
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
461
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462 463 464 465 466
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
467 468
	}

469
	return timeout;
470 471
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

536 537 538 539 540 541
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
542
 */
543 544 545 546
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
547
		     struct intel_rps_client *rps_client)
548
{
549 550 551 552 553 554 555
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
556

557 558
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
559
						   rps_client);
560
	return timeout < 0 ? timeout : 0;
561 562 563 564 565 566
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

567
	return &fpriv->rps_client;
568 569
}

570 571 572
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
573
		     struct drm_file *file)
574 575
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
576
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
577 578 579 580

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
581
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
582 583
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
584

585
	drm_clflush_virt_range(vaddr, args->size);
586
	i915_gem_chipset_flush(to_i915(obj->base.dev));
587

588
	intel_fb_obj_flush(obj, ORIGIN_CPU);
589
	return 0;
590 591
}

592
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
593
{
594
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
595 596 597 598
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
599
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
600
	kmem_cache_free(dev_priv->objects, obj);
601 602
}

603 604
static int
i915_gem_create(struct drm_file *file,
605
		struct drm_i915_private *dev_priv,
606 607
		uint64_t size,
		uint32_t *handle_p)
608
{
609
	struct drm_i915_gem_object *obj;
610 611
	int ret;
	u32 handle;
612

613
	size = roundup(size, PAGE_SIZE);
614 615
	if (size == 0)
		return -EINVAL;
616 617

	/* Allocate the new object */
618
	obj = i915_gem_object_create(dev_priv, size);
619 620
	if (IS_ERR(obj))
		return PTR_ERR(obj);
621

622
	ret = drm_gem_handle_create(file, &obj->base, &handle);
623
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
624
	i915_gem_object_put(obj);
625 626
	if (ret)
		return ret;
627

628
	*handle_p = handle;
629 630 631
	return 0;
}

632 633 634 635 636 637
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
638
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
639
	args->size = args->pitch * args->height;
640
	return i915_gem_create(file, to_i915(dev),
641
			       args->size, &args->handle);
642 643
}

644 645 646 647 648 649
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

650 651
/**
 * Creates a new mm object and returns a handle to it.
652 653 654
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
655 656 657 658 659
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
660
	struct drm_i915_private *dev_priv = to_i915(dev);
661
	struct drm_i915_gem_create *args = data;
662

663
	i915_gem_flush_free_objects(dev_priv);
664

665
	return i915_gem_create(file, dev_priv,
666
			       args->size, &args->handle);
667 668
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
703
		if (!HAS_LLC(dev_priv)) {
704 705
			intel_runtime_pm_get(dev_priv);
			spin_lock_irq(&dev_priv->uncore.lock);
706
			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
707 708
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
709 710 711 712 713 714 715 716 717
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
718 719 720 721 722

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
723 724 725 726 727
	}

	obj->base.write_domain = 0;
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

754
static inline int
755 756
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

780 781 782 783 784 785
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
786
				    unsigned int *needs_clflush)
787 788 789
{
	int ret;

790
	lockdep_assert_held(&obj->base.dev->struct_mutex);
791

792
	*needs_clflush = 0;
793 794
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
795

796 797 798 799 800
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
801 802 803
	if (ret)
		return ret;

C
Chris Wilson 已提交
804
	ret = i915_gem_object_pin_pages(obj);
805 806 807
	if (ret)
		return ret;

808 809
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
810 811 812 813 814 815 816
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

817
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
818

819 820 821 822 823
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
824 825
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
826
		*needs_clflush = CLFLUSH_BEFORE;
827

828
out:
829
	/* return with the pages pinned */
830
	return 0;
831 832 833 834

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
835 836 837 838 839 840 841
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

842 843
	lockdep_assert_held(&obj->base.dev->struct_mutex);

844 845 846 847
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

848 849 850 851 852 853
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
854 855 856
	if (ret)
		return ret;

C
Chris Wilson 已提交
857
	ret = i915_gem_object_pin_pages(obj);
858 859 860
	if (ret)
		return ret;

861 862
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
863 864 865 866 867 868 869
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

870
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
871

872 873 874 875 876
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
877
	if (!obj->cache_dirty) {
878
		*needs_clflush |= CLFLUSH_AFTER;
879

880 881 882 883 884 885 886
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
887

888
out:
889
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
890
	obj->mm.dirty = true;
891
	/* return with the pages pinned */
892
	return 0;
893 894 895 896

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
897 898
}

899 900 901 902
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
903
	if (unlikely(swizzled)) {
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

921 922 923
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
924
shmem_pread_slow(struct page *page, int offset, int length,
925 926 927 928 929 930 931 932
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
933
		shmem_clflush_swizzled_range(vaddr + offset, length,
934
					     page_do_bit17_swizzling);
935 936

	if (page_do_bit17_swizzling)
937
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
938
	else
939
		ret = __copy_to_user(user_data, vaddr + offset, length);
940 941
	kunmap(page);

942
	return ret ? - EFAULT : 0;
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1021
{
1022
	void __iomem *vaddr;
1023
	unsigned long unwritten;
1024 1025

	/* We can use the cpu mem copy function because this is X86. */
1026 1027 1028 1029
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1030 1031
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1032 1033 1034 1035
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1036 1037
		io_mapping_unmap(vaddr);
	}
1038 1039 1040 1041
	return unwritten;
}

static int
1042 1043
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1044
{
1045 1046
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1047
	struct drm_mm_node node;
1048 1049 1050
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1051 1052
	int ret;

1053 1054 1055 1056 1057 1058
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1059 1060 1061
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1062 1063 1064
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1065
		ret = i915_vma_put_fence(vma);
1066 1067 1068 1069 1070
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1071
	if (IS_ERR(vma)) {
1072
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1073
		if (ret)
1074 1075
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1076 1077 1078 1079 1080 1081
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1082
	mutex_unlock(&i915->drm.struct_mutex);
1083

1084 1085 1086
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1103
					       node.start, I915_CACHE_NONE, 0);
1104 1105 1106 1107
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1108 1109 1110

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1111 1112 1113 1114 1115 1116 1117 1118 1119
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1120
	mutex_lock(&i915->drm.struct_mutex);
1121 1122 1123 1124
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1125
				       node.start, node.size);
1126 1127
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1128
		i915_vma_unpin(vma);
1129
	}
1130 1131 1132
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1133

1134 1135 1136
	return ret;
}

1137 1138
/**
 * Reads data from the object referenced by handle.
1139 1140 1141
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1142 1143 1144 1145 1146
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1147
		     struct drm_file *file)
1148 1149
{
	struct drm_i915_gem_pread *args = data;
1150
	struct drm_i915_gem_object *obj;
1151
	int ret;
1152

1153 1154 1155 1156
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1157
		       u64_to_user_ptr(args->data_ptr),
1158 1159 1160
		       args->size))
		return -EFAULT;

1161
	obj = i915_gem_object_lookup(file, args->handle);
1162 1163
	if (!obj)
		return -ENOENT;
1164

1165
	/* Bounds check source.  */
1166
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1167
		ret = -EINVAL;
1168
		goto out;
C
Chris Wilson 已提交
1169 1170
	}

C
Chris Wilson 已提交
1171 1172
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1173 1174 1175 1176
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1177
	if (ret)
1178
		goto out;
1179

1180
	ret = i915_gem_object_pin_pages(obj);
1181
	if (ret)
1182
		goto out;
1183

1184
	ret = i915_gem_shmem_pread(obj, args);
1185
	if (ret == -EFAULT || ret == -ENODEV)
1186
		ret = i915_gem_gtt_pread(obj, args);
1187

1188 1189
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1190
	i915_gem_object_put(obj);
1191
	return ret;
1192 1193
}

1194 1195
/* This is the fast write path which cannot handle
 * page faults in the source data
1196
 */
1197

1198 1199 1200 1201
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1202
{
1203
	void __iomem *vaddr;
1204
	unsigned long unwritten;
1205

1206
	/* We can use the cpu mem copy function because this is X86. */
1207 1208
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1209
						      user_data, length);
1210 1211
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1212 1213 1214
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1215 1216
		io_mapping_unmap(vaddr);
	}
1217 1218 1219 1220

	return unwritten;
}

1221 1222 1223
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1224
 * @obj: i915 GEM object
1225
 * @args: pwrite arguments structure
1226
 */
1227
static int
1228 1229
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1230
{
1231
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1232 1233
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1234 1235 1236
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1237
	int ret;
1238

1239 1240 1241
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1260
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1261 1262 1263
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1264 1265 1266
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1267
		ret = i915_vma_put_fence(vma);
1268 1269 1270 1271 1272
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1273
	if (IS_ERR(vma)) {
1274
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1275
		if (ret)
1276
			goto out_rpm;
1277
		GEM_BUG_ON(!node.allocated);
1278
	}
D
Daniel Vetter 已提交
1279 1280 1281 1282 1283

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1284 1285
	mutex_unlock(&i915->drm.struct_mutex);

1286
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1287

1288 1289 1290 1291
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1292 1293
		/* Operation in this page
		 *
1294 1295 1296
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1297
		 */
1298
		u32 page_base = node.start;
1299 1300
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1311
		/* If we get a fault while copying data, then (presumably) our
1312 1313
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1314 1315
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1316
		 */
1317 1318 1319 1320
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1321
		}
1322

1323 1324 1325
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1326
	}
1327
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1328 1329

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1330
out_unpin:
1331 1332 1333
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1334
				       node.start, node.size);
1335 1336
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1337
		i915_vma_unpin(vma);
1338
	}
1339
out_rpm:
1340
	intel_runtime_pm_put(i915);
1341
out_unlock:
1342
	mutex_unlock(&i915->drm.struct_mutex);
1343
	return ret;
1344 1345
}

1346
static int
1347
shmem_pwrite_slow(struct page *page, int offset, int length,
1348 1349 1350 1351
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1352
{
1353 1354
	char *vaddr;
	int ret;
1355

1356
	vaddr = kmap(page);
1357
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1358
		shmem_clflush_swizzled_range(vaddr + offset, length,
1359
					     page_do_bit17_swizzling);
1360
	if (page_do_bit17_swizzling)
1361 1362
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1363
	else
1364
		ret = __copy_from_user(vaddr + offset, user_data, length);
1365
	if (needs_clflush_after)
1366
		shmem_clflush_swizzled_range(vaddr + offset, length,
1367
					     page_do_bit17_swizzling);
1368
	kunmap(page);
1369

1370
	return ret ? -EFAULT : 0;
1371 1372
}

1373 1374 1375 1376 1377
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1378
static int
1379 1380 1381 1382
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1383
{
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1416
	unsigned int needs_clflush;
1417 1418
	unsigned int offset, idx;
	int ret;
1419

1420
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1421 1422 1423
	if (ret)
		return ret;

1424 1425 1426 1427
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1428

1429 1430 1431
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1432

1433 1434 1435 1436 1437 1438 1439
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1440

1441 1442 1443 1444 1445 1446
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1447

1448 1449 1450
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1451

1452 1453 1454 1455
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1456
		if (ret)
1457
			break;
1458

1459 1460 1461
		remain -= length;
		user_data += length;
		offset = 0;
1462
	}
1463

1464
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1465
	i915_gem_obj_finish_shmem_access(obj);
1466
	return ret;
1467 1468 1469 1470
}

/**
 * Writes data to the object referenced by handle.
1471 1472 1473
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1474 1475 1476 1477 1478
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1479
		      struct drm_file *file)
1480 1481
{
	struct drm_i915_gem_pwrite *args = data;
1482
	struct drm_i915_gem_object *obj;
1483 1484 1485 1486 1487 1488
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1489
		       u64_to_user_ptr(args->data_ptr),
1490 1491 1492
		       args->size))
		return -EFAULT;

1493
	obj = i915_gem_object_lookup(file, args->handle);
1494 1495
	if (!obj)
		return -ENOENT;
1496

1497
	/* Bounds check destination. */
1498
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1499
		ret = -EINVAL;
1500
		goto err;
C
Chris Wilson 已提交
1501 1502
	}

C
Chris Wilson 已提交
1503 1504
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1505 1506 1507 1508 1509 1510
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1511 1512 1513 1514 1515
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1516 1517 1518
	if (ret)
		goto err;

1519
	ret = i915_gem_object_pin_pages(obj);
1520
	if (ret)
1521
		goto err;
1522

D
Daniel Vetter 已提交
1523
	ret = -EFAULT;
1524 1525 1526 1527 1528 1529
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1530
	if (!i915_gem_object_has_struct_page(obj) ||
1531
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1532 1533
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1534 1535
		 * textures). Fallback to the shmem path in that case.
		 */
1536
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1537

1538
	if (ret == -EFAULT || ret == -ENOSPC) {
1539 1540
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1541
		else
1542
			ret = i915_gem_shmem_pwrite(obj, args);
1543
	}
1544

1545
	i915_gem_object_unpin_pages(obj);
1546
err:
C
Chris Wilson 已提交
1547
	i915_gem_object_put(obj);
1548
	return ret;
1549 1550
}

1551 1552 1553 1554 1555 1556
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1557 1558
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1559 1560
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1561
			break;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1573
	spin_lock(&i915->mm.obj_lock);
1574
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1575 1576
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1577 1578
}

1579
/**
1580 1581
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1582 1583 1584
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1585 1586 1587
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1588
			  struct drm_file *file)
1589 1590
{
	struct drm_i915_gem_set_domain *args = data;
1591
	struct drm_i915_gem_object *obj;
1592 1593
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1594
	int err;
1595

1596
	/* Only handle setting domains to types used by the CPU. */
1597
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1598 1599 1600 1601 1602 1603 1604 1605
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1606
	obj = i915_gem_object_lookup(file, args->handle);
1607 1608
	if (!obj)
		return -ENOENT;
1609

1610 1611 1612 1613
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1614
	err = i915_gem_object_wait(obj,
1615 1616 1617 1618
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1619
	if (err)
C
Chris Wilson 已提交
1620
		goto out;
1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1632
		goto out;
1633 1634 1635

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1636
		goto out_unpin;
1637

1638 1639 1640 1641
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1642
	else
1643
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1644

1645 1646
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1647

1648
	mutex_unlock(&dev->struct_mutex);
1649

1650
	if (write_domain != 0)
1651 1652
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1653

C
Chris Wilson 已提交
1654
out_unpin:
1655
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1656 1657
out:
	i915_gem_object_put(obj);
1658
	return err;
1659 1660 1661 1662
}

/**
 * Called when user space has done writes to this buffer
1663 1664 1665
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1666 1667 1668
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1669
			 struct drm_file *file)
1670 1671
{
	struct drm_i915_gem_sw_finish *args = data;
1672
	struct drm_i915_gem_object *obj;
1673

1674
	obj = i915_gem_object_lookup(file, args->handle);
1675 1676
	if (!obj)
		return -ENOENT;
1677 1678

	/* Pinned buffers may be scanout, so flush the cache */
1679
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1680
	i915_gem_object_put(obj);
1681 1682

	return 0;
1683 1684 1685
}

/**
1686 1687 1688 1689 1690
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1691 1692 1693
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1704 1705 1706
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1707
		    struct drm_file *file)
1708 1709
{
	struct drm_i915_gem_mmap *args = data;
1710
	struct drm_i915_gem_object *obj;
1711 1712
	unsigned long addr;

1713 1714 1715
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1716
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1717 1718
		return -ENODEV;

1719 1720
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1721
		return -ENOENT;
1722

1723 1724 1725
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1726
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1727
		i915_gem_object_put(obj);
1728 1729 1730
		return -EINVAL;
	}

1731
	addr = vm_mmap(obj->base.filp, 0, args->size,
1732 1733
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1734 1735 1736 1737
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1738
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1739
			i915_gem_object_put(obj);
1740 1741
			return -EINTR;
		}
1742 1743 1744 1745 1746 1747 1748
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1749 1750

		/* This may race, but that's ok, it only gets set */
1751
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1752
	}
C
Chris Wilson 已提交
1753
	i915_gem_object_put(obj);
1754 1755 1756 1757 1758 1759 1760 1761
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1762 1763
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1764
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1765 1766
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1787 1788 1789
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1817
	return 2;
1818 1819
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1831 1832
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1833
		min_t(unsigned int, chunk,
1834
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1835 1836 1837 1838 1839 1840 1841 1842

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1843 1844
/**
 * i915_gem_fault - fault a page into the GTT
1845
 * @vmf: fault info
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1857 1858 1859
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1860
 */
1861
int i915_gem_fault(struct vm_fault *vmf)
1862
{
1863
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1864
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1865
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1866
	struct drm_device *dev = obj->base.dev;
1867 1868
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1869
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1870
	struct i915_vma *vma;
1871
	pgoff_t page_offset;
1872
	unsigned int flags;
1873
	int ret;
1874

1875
	/* We don't use vmf->pgoff since that has the fake offset */
1876
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1877

C
Chris Wilson 已提交
1878 1879
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1880
	/* Try to flush the object off the GPU first without holding the lock.
1881
	 * Upon acquiring the lock, we will perform our sanity checks and then
1882 1883 1884
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1885 1886 1887 1888
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1889
	if (ret)
1890 1891
		goto err;

1892 1893 1894 1895
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1896 1897 1898 1899 1900
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1901

1902
	/* Access to snoopable pages through the GTT is incoherent. */
1903
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1904
		ret = -EFAULT;
1905
		goto err_unlock;
1906 1907
	}

1908 1909 1910 1911 1912 1913 1914 1915
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1916
	/* Now pin it into the GTT as needed */
1917
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1918 1919
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1920
		struct i915_ggtt_view view =
1921
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1922

1923 1924 1925 1926 1927
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1928 1929
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1930 1931
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1932
		goto err_unlock;
C
Chris Wilson 已提交
1933
	}
1934

1935 1936
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1937
		goto err_unpin;
1938

1939
	ret = i915_vma_pin_fence(vma);
1940
	if (ret)
1941
		goto err_unpin;
1942

1943
	/* Finally, remap it using the new GTT offset */
1944
	ret = remap_io_mapping(area,
1945
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1946 1947 1948
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1949 1950
	if (ret)
		goto err_fence;
1951

1952 1953 1954 1955 1956 1957 1958
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

err_fence:
1959
	i915_vma_unpin_fence(vma);
1960
err_unpin:
C
Chris Wilson 已提交
1961
	__i915_vma_unpin(vma);
1962
err_unlock:
1963
	mutex_unlock(&dev->struct_mutex);
1964 1965
err_rpm:
	intel_runtime_pm_put(dev_priv);
1966
	i915_gem_object_unpin_pages(obj);
1967
err:
1968
	switch (ret) {
1969
	case -EIO:
1970 1971 1972 1973 1974 1975 1976
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1977 1978 1979
			ret = VM_FAULT_SIGBUS;
			break;
		}
1980
	case -EAGAIN:
D
Daniel Vetter 已提交
1981 1982 1983 1984
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1985
		 */
1986 1987
	case 0:
	case -ERESTARTSYS:
1988
	case -EINTR:
1989 1990 1991 1992 1993
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1994 1995
		ret = VM_FAULT_NOPAGE;
		break;
1996
	case -ENOMEM:
1997 1998
		ret = VM_FAULT_OOM;
		break;
1999
	case -ENOSPC:
2000
	case -EFAULT:
2001 2002
		ret = VM_FAULT_SIGBUS;
		break;
2003
	default:
2004
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2005 2006
		ret = VM_FAULT_SIGBUS;
		break;
2007
	}
2008
	return ret;
2009 2010
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			break;

		i915_vma_unset_userfault(vma);
	}
}

2030 2031 2032 2033
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2034
 * Preserve the reservation of the mmapping with the DRM core code, but
2035 2036 2037 2038 2039 2040 2041 2042 2043
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2044
void
2045
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2046
{
2047 2048
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2049 2050 2051
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2052 2053 2054 2055
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2056
	 */
2057
	lockdep_assert_held(&i915->drm.struct_mutex);
2058
	intel_runtime_pm_get(i915);
2059

2060
	if (!obj->userfault_count)
2061
		goto out;
2062

2063
	__i915_gem_object_release_mmap(obj);
2064 2065 2066 2067 2068 2069 2070 2071 2072

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2073 2074 2075

out:
	intel_runtime_pm_put(i915);
2076 2077
}

2078
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2079
{
2080
	struct drm_i915_gem_object *obj, *on;
2081
	int i;
2082

2083 2084 2085 2086 2087 2088
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2089

2090
	list_for_each_entry_safe(obj, on,
2091 2092
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2093 2094 2095 2096 2097 2098 2099 2100

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2111 2112 2113 2114

		if (!reg->vma)
			continue;

2115
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2116 2117
		reg->dirty = true;
	}
2118 2119
}

2120 2121
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2122
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2123
	int err;
2124

2125
	err = drm_gem_create_mmap_offset(&obj->base);
2126
	if (likely(!err))
2127
		return 0;
2128

2129 2130 2131 2132 2133
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2134

2135
		i915_gem_drain_freed_objects(dev_priv);
2136
		err = drm_gem_create_mmap_offset(&obj->base);
2137 2138 2139 2140
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2141

2142
	return err;
2143 2144 2145 2146 2147 2148 2149
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2150
int
2151 2152
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2153
		  uint32_t handle,
2154
		  uint64_t *offset)
2155
{
2156
	struct drm_i915_gem_object *obj;
2157 2158
	int ret;

2159
	obj = i915_gem_object_lookup(file, handle);
2160 2161
	if (!obj)
		return -ENOENT;
2162

2163
	ret = i915_gem_object_create_mmap_offset(obj);
2164 2165
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2166

C
Chris Wilson 已提交
2167
	i915_gem_object_put(obj);
2168
	return ret;
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2192
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2193 2194
}

D
Daniel Vetter 已提交
2195 2196 2197
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2198
{
2199
	i915_gem_object_free_mmap_offset(obj);
2200

2201 2202
	if (obj->base.filp == NULL)
		return;
2203

D
Daniel Vetter 已提交
2204 2205 2206 2207 2208
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2209
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2210
	obj->mm.madv = __I915_MADV_PURGED;
2211
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2212
}
2213

2214
/* Try to discard unwanted pages */
2215
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2216
{
2217 2218
	struct address_space *mapping;

2219
	lockdep_assert_held(&obj->mm.lock);
2220
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2221

C
Chris Wilson 已提交
2222
	switch (obj->mm.madv) {
2223 2224 2225 2226 2227 2228 2229 2230 2231
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2232
	mapping = obj->base.filp->f_mapping,
2233
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2234 2235
}

2236
static void
2237 2238
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2239
{
2240 2241
	struct sgt_iter sgt_iter;
	struct page *page;
2242

2243
	__i915_gem_object_release_shmem(obj, pages, true);
2244

2245
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2246

2247
	if (i915_gem_object_needs_bit17_swizzle(obj))
2248
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2249

2250
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2251
		if (obj->mm.dirty)
2252
			set_page_dirty(page);
2253

C
Chris Wilson 已提交
2254
		if (obj->mm.madv == I915_MADV_WILLNEED)
2255
			mark_page_accessed(page);
2256

2257
		put_page(page);
2258
	}
C
Chris Wilson 已提交
2259
	obj->mm.dirty = false;
2260

2261 2262
	sg_free_table(pages);
	kfree(pages);
2263
}
C
Chris Wilson 已提交
2264

2265 2266 2267
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2268
	void __rcu **slot;
2269

2270
	rcu_read_lock();
C
Chris Wilson 已提交
2271 2272
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2273
	rcu_read_unlock();
2274 2275
}

2276 2277
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2278
{
2279
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2280
	struct sg_table *pages;
2281

C
Chris Wilson 已提交
2282
	if (i915_gem_object_has_pinned_pages(obj))
2283
		return;
2284

2285
	GEM_BUG_ON(obj->bind_count);
2286
	if (!i915_gem_object_has_pages(obj))
2287 2288 2289
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2290
	mutex_lock_nested(&obj->mm.lock, subclass);
2291 2292
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2293

2294 2295 2296
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2297 2298
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2299

2300 2301 2302 2303
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2304
	if (obj->mm.mapping) {
2305 2306
		void *ptr;

2307
		ptr = page_mask_bits(obj->mm.mapping);
2308 2309
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2310
		else
2311 2312
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2313
		obj->mm.mapping = NULL;
2314 2315
	}

2316 2317
	__i915_gem_object_reset_page_iter(obj);

2318 2319 2320
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2321 2322
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2323 2324
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2325 2326
}

2327
static bool i915_sg_trim(struct sg_table *orig_st)
2328 2329 2330 2331 2332 2333
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2334
		return false;
2335

2336
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2337
		return false;
2338 2339 2340 2341 2342 2343 2344

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2345
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2346 2347 2348 2349

	sg_free_table(orig_st);

	*orig_st = new_st;
2350
	return true;
2351 2352
}

2353
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2354
{
2355
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2356 2357
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2358
	struct address_space *mapping;
2359 2360
	struct sg_table *st;
	struct scatterlist *sg;
2361
	struct sgt_iter sgt_iter;
2362
	struct page *page;
2363
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2364
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2365
	unsigned int sg_page_sizes;
2366
	gfp_t noreclaim;
I
Imre Deak 已提交
2367
	int ret;
2368

C
Chris Wilson 已提交
2369 2370 2371 2372
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2373 2374
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2375

2376 2377
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2378
		return -ENOMEM;
2379

2380
rebuild_st:
2381 2382
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2383
		return -ENOMEM;
2384
	}
2385

2386 2387 2388 2389 2390
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2391
	mapping = obj->base.filp->f_mapping;
2392
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2393 2394
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2395 2396
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2397
	sg_page_sizes = 0;
2398
	for (i = 0; i < page_count; i++) {
2399 2400 2401 2402 2403 2404 2405
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2406
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2407 2408 2409 2410 2411 2412 2413 2414
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2415
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2416
			cond_resched();
2417

C
Chris Wilson 已提交
2418 2419 2420
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2421 2422 2423 2424
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2425
			 */
2426 2427 2428
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2441
				 * this we want __GFP_RETRY_MAYFAIL.
2442
				 */
M
Michal Hocko 已提交
2443
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2444
			}
2445 2446
		} while (1);

2447 2448 2449
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2450
			if (i) {
M
Matthew Auld 已提交
2451
				sg_page_sizes |= sg->length;
2452
				sg = sg_next(sg);
2453
			}
2454 2455 2456 2457 2458 2459
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2460 2461 2462

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2463
	}
2464
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2465
		sg_page_sizes |= sg->length;
2466
		sg_mark_end(sg);
2467
	}
2468

2469 2470 2471
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2472
	ret = i915_gem_gtt_prepare_pages(obj, st);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2492

2493
	if (i915_gem_object_needs_bit17_swizzle(obj))
2494
		i915_gem_object_do_bit_17_swizzle(obj, st);
2495

M
Matthew Auld 已提交
2496
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2497 2498

	return 0;
2499

2500
err_sg:
2501
	sg_mark_end(sg);
2502
err_pages:
2503 2504
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2505 2506
	sg_free_table(st);
	kfree(st);
2507 2508 2509 2510 2511 2512 2513 2514 2515

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2516 2517 2518
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2519
	return ret;
2520 2521 2522
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2523
				 struct sg_table *pages,
M
Matthew Auld 已提交
2524
				 unsigned int sg_page_sizes)
2525
{
2526 2527 2528 2529
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2530
	lockdep_assert_held(&obj->mm.lock);
2531 2532 2533 2534 2535

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2536 2537

	if (i915_gem_object_is_tiled(obj) &&
2538
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2539 2540 2541 2542
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2543

M
Matthew Auld 已提交
2544 2545
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2546 2547

	/*
M
Matthew Auld 已提交
2548 2549 2550 2551 2552 2553
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2554 2555 2556 2557 2558 2559 2560
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2561 2562 2563 2564

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2565 2566 2567 2568
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2569
	int err;
2570 2571 2572 2573 2574 2575

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2576 2577
	err = obj->ops->get_pages(obj);
	GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2578

2579
	return err;
2580 2581
}

2582
/* Ensure that the associated pages are gathered from the backing storage
2583
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2584
 * multiple times before they are released by a single call to
2585
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2586 2587 2588
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2589
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2590
{
2591
	int err;
2592

2593 2594 2595
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2596

2597
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2598 2599
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2600 2601 2602
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2603

2604 2605 2606
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2607

2608 2609
unlock:
	mutex_unlock(&obj->mm.lock);
2610
	return err;
2611 2612
}

2613
/* The 'mapping' part of i915_gem_object_pin_map() below */
2614 2615
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2616 2617
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2618
	struct sg_table *sgt = obj->mm.pages;
2619 2620
	struct sgt_iter sgt_iter;
	struct page *page;
2621 2622
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2623
	unsigned long i = 0;
2624
	pgprot_t pgprot;
2625 2626 2627
	void *addr;

	/* A single page can always be kmapped */
2628
	if (n_pages == 1 && type == I915_MAP_WB)
2629 2630
		return kmap(sg_page(sgt->sgl));

2631 2632
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2633
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2634 2635 2636
		if (!pages)
			return NULL;
	}
2637

2638 2639
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2640 2641 2642 2643

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2644
	switch (type) {
2645 2646 2647
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2648 2649 2650 2651 2652 2653 2654 2655
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2656

2657
	if (pages != stack_pages)
M
Michal Hocko 已提交
2658
		kvfree(pages);
2659 2660 2661 2662 2663

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2664 2665
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2666
{
2667 2668 2669
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2670 2671
	int ret;

2672
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2673

2674
	ret = mutex_lock_interruptible(&obj->mm.lock);
2675 2676 2677
	if (ret)
		return ERR_PTR(ret);

2678 2679 2680
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2681
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2682
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2683 2684
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2685 2686 2687
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2688

2689 2690 2691
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2692 2693
		pinned = false;
	}
2694
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2695

2696
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2697 2698 2699
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2700
			goto err_unpin;
2701
		}
2702 2703 2704 2705 2706 2707

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2708
		ptr = obj->mm.mapping = NULL;
2709 2710
	}

2711 2712 2713 2714
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2715
			goto err_unpin;
2716 2717
		}

2718
		obj->mm.mapping = page_pack_bits(ptr, type);
2719 2720
	}

2721 2722
out_unlock:
	mutex_unlock(&obj->mm.lock);
2723 2724
	return ptr;

2725 2726 2727 2728 2729
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2730 2731
}

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2749
	if (i915_gem_object_has_pages(obj))
2750 2751
		return -ENODEV;

2752 2753 2754
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2804 2805
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2806
{
2807
	return (i915_gem_context_is_bannable(ctx) &&
2808
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2809 2810
}

2811
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2812
{
2813 2814
	unsigned int score;
	bool banned;
2815

2816
	atomic_inc(&ctx->guilty_count);
2817

2818 2819 2820 2821 2822
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2823 2824
		return;

2825 2826 2827 2828 2829 2830
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2831 2832 2833 2834
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2835
	atomic_inc(&ctx->active_count);
2836 2837
}

2838
struct drm_i915_gem_request *
2839
i915_gem_find_active_request(struct intel_engine_cs *engine)
2840
{
2841 2842
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2843

2844 2845 2846 2847 2848 2849 2850 2851
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2852
	spin_lock_irqsave(&engine->timeline->lock, flags);
2853
	list_for_each_entry(request, &engine->timeline->requests, link) {
2854 2855
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2856
			continue;
2857

2858
		GEM_BUG_ON(request->engine != engine);
2859 2860
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2861 2862 2863

		active = request;
		break;
2864
	}
2865
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2866

2867
	return active;
2868 2869
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2884 2885 2886 2887 2888 2889 2890 2891 2892
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

2914 2915
	/*
	 * Prevent request submission to the hardware until we have
2916 2917 2918 2919 2920 2921 2922
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
2923 2924
	tasklet_kill(&engine->execlists.irq_tasklet);
	tasklet_disable(&engine->execlists.irq_tasklet);
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

2936 2937 2938
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2939 2940 2941
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2942 2943 2944 2945

	return request;
}

2946
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2947 2948
{
	struct intel_engine_cs *engine;
2949
	struct drm_i915_gem_request *request;
2950
	enum intel_engine_id id;
2951
	int err = 0;
2952

2953
	for_each_engine(engine, dev_priv, id) {
2954 2955 2956 2957
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2958
		}
2959 2960

		engine->hangcheck.active_request = request;
2961 2962
	}

2963
	i915_gem_revoke_fences(dev_priv);
2964 2965

	return err;
2966 2967
}

2968
static void skip_request(struct drm_i915_gem_request *request)
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2983 2984

	dma_fence_set_error(&request->fence, -EIO);
2985 2986
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

3010 3011 3012 3013
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
3014
{
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3036
	if (engine_stalled(engine)) {
3037 3038
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3039 3040 3041 3042

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3043
	} else {
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3061 3062
	}

3063
	return request;
3064 3065
}

3066 3067
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
3068
{
3069 3070
	engine->irq_posted = 0;

3071 3072 3073 3074
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
3075 3076 3077
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3078 3079 3080

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3081
}
3082

3083
void i915_gem_reset(struct drm_i915_private *dev_priv)
3084
{
3085
	struct intel_engine_cs *engine;
3086
	enum intel_engine_id id;
3087

3088 3089
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3090 3091
	i915_gem_retire_requests(dev_priv);

3092 3093 3094
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3095
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3096 3097 3098 3099
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
3100

3101
	i915_gem_restore_fences(dev_priv);
3102 3103 3104 3105 3106 3107 3108

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3109 3110
}

3111 3112
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3113
	tasklet_enable(&engine->execlists.irq_tasklet);
3114
	kthread_unpark(engine->breadcrumbs.signaler);
3115 3116

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3117 3118
}

3119 3120
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3121 3122 3123
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3124
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3125

3126
	for_each_engine(engine, dev_priv, id) {
3127
		engine->hangcheck.active_request = NULL;
3128
		i915_gem_reset_finish_engine(engine);
3129
	}
3130 3131
}

3132
static void nop_submit_request(struct drm_i915_gem_request *request)
3133 3134 3135 3136 3137 3138 3139
{
	dma_fence_set_error(&request->fence, -EIO);

	i915_gem_request_submit(request);
}

static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3140
{
3141 3142
	unsigned long flags;

3143
	dma_fence_set_error(&request->fence, -EIO);
3144 3145 3146

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
	__i915_gem_request_submit(request);
3147
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3148
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3149 3150
}

3151
void i915_gem_set_wedged(struct drm_i915_private *i915)
3152
{
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
	for_each_engine(engine, i915, id)
		engine->submit_request = nop_submit_request;

	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3168
	 */
3169
	synchronize_rcu();
3170

3171 3172 3173
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3186
	 */
3187
	synchronize_rcu();
3188

3189 3190
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200
		/* Mark all pending requests as complete so that any concurrent
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
		spin_lock_irqsave(&engine->timeline->lock, flags);
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
		spin_unlock_irqrestore(&engine->timeline->lock, flags);
	}
3201

3202 3203
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);
3204 3205
}

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3258
	i915_gem_contexts_lost(i915);
3259 3260 3261 3262 3263 3264 3265

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3266
static void
3267 3268
i915_gem_retire_work_handler(struct work_struct *work)
{
3269
	struct drm_i915_private *dev_priv =
3270
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3271
	struct drm_device *dev = &dev_priv->drm;
3272

3273
	/* Come back later if the device is busy... */
3274
	if (mutex_trylock(&dev->struct_mutex)) {
3275
		i915_gem_retire_requests(dev_priv);
3276
		mutex_unlock(&dev->struct_mutex);
3277
	}
3278 3279 3280 3281 3282

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3283 3284
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3285 3286
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3287
				   round_jiffies_up_relative(HZ));
3288
	}
3289
}
3290

3291 3292 3293 3294 3295 3296 3297
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3298 3299 3300 3301
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3302 3303
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
	bool rearm_hangcheck;
3304
	ktime_t end;
3305 3306 3307 3308

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3309 3310 3311 3312
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	end = ktime_add_ms(ktime_get(), 200);
	do {
		if (new_requests_since_last_retire(dev_priv))
			return;

		if (intel_engines_are_idle(dev_priv))
			break;

		usleep_range(100, 500);
	} while (ktime_before(ktime_get(), end));
3323 3324 3325 3326

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3327
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3328 3329 3330 3331 3332 3333 3334
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3335 3336 3337 3338
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3339
	if (new_requests_since_last_retire(dev_priv))
3340
		goto out_unlock;
3341

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(dev_priv->drm.irq);

3355
	intel_engines_park(dev_priv);
3356
	i915_gem_timelines_mark_idle(dev_priv);
3357

3358 3359 3360
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3361

3362 3363 3364 3365
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
3366
	mutex_unlock(&dev_priv->drm.struct_mutex);
3367

3368 3369 3370 3371
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3372
	}
3373 3374
}

3375 3376
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3377
	struct drm_i915_private *i915 = to_i915(gem->dev);
3378 3379
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3380
	struct i915_lut_handle *lut, *ln;
3381

3382 3383 3384 3385 3386 3387
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3388
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3389 3390 3391 3392
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3393 3394 3395 3396 3397 3398 3399
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3400
			i915_vma_close(vma);
3401

3402 3403
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3404

3405 3406
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3407
	}
3408 3409

	mutex_unlock(&i915->drm.struct_mutex);
3410 3411
}

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3423 3424
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3425 3426 3427
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3428 3429 3430 3431 3432 3433 3434
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3435
 *  -EAGAIN: incomplete, restart syscall
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3452 3453
	ktime_t start;
	long ret;
3454

3455 3456 3457
	if (args->flags != 0)
		return -EINVAL;

3458
	obj = i915_gem_object_lookup(file, args->bo_handle);
3459
	if (!obj)
3460 3461
		return -ENOENT;

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3483 3484 3485 3486

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3487 3488
	}

C
Chris Wilson 已提交
3489
	i915_gem_object_put(obj);
3490
	return ret;
3491 3492
}

3493
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3494
{
3495
	int ret, i;
3496

3497 3498 3499 3500 3501
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3502

3503 3504 3505
	return 0;
}

3506 3507
static int wait_for_engines(struct drm_i915_private *i915)
{
3508 3509 3510 3511
	if (wait_for(intel_engines_are_idle(i915), 50)) {
		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
		i915_gem_set_wedged(i915);
		return -EIO;
3512 3513 3514 3515 3516
	}

	return 0;
}

3517 3518 3519 3520
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3521 3522 3523 3524
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3535 3536 3537

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3538 3539

		ret = wait_for_engines(i915);
3540 3541
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3542
	}
3543

3544
	return ret;
3545 3546
}

3547 3548
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3549 3550 3551 3552 3553 3554 3555
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3556 3557 3558 3559 3560
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3561
	if (!READ_ONCE(obj->pin_global))
3562 3563 3564 3565 3566 3567 3568
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3632 3633
/**
 * Moves a single object to the GTT read, and possibly write domain.
3634 3635
 * @obj: object to act on
 * @write: ask for write access or read only
3636 3637 3638 3639
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3640
int
3641
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3642
{
3643
	int ret;
3644

3645
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3646

3647 3648 3649 3650 3651 3652
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3653 3654 3655
	if (ret)
		return ret;

3656 3657 3658
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3659 3660 3661 3662 3663 3664 3665 3666
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3667
	ret = i915_gem_object_pin_pages(obj);
3668 3669 3670
	if (ret)
		return ret;

3671
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3672

3673 3674 3675 3676 3677 3678 3679
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3680 3681 3682
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3683
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3684
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3685
	if (write) {
3686 3687
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3688
		obj->mm.dirty = true;
3689 3690
	}

C
Chris Wilson 已提交
3691
	i915_gem_object_unpin_pages(obj);
3692 3693 3694
	return 0;
}

3695 3696
/**
 * Changes the cache-level of an object across all VMA.
3697 3698
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3710 3711 3712
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3713
	struct i915_vma *vma;
3714
	int ret;
3715

3716 3717
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3718
	if (obj->cache_level == cache_level)
3719
		return 0;
3720

3721 3722 3723 3724 3725
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3726 3727
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3728 3729 3730
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3731
		if (i915_vma_is_pinned(vma)) {
3732 3733 3734 3735
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3748 3749
	}

3750 3751 3752 3753 3754 3755 3756
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3757
	if (obj->bind_count) {
3758 3759 3760 3761
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3762 3763 3764 3765 3766 3767
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3768 3769 3770
		if (ret)
			return ret;

3771 3772
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3789 3790 3791 3792 3793
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3794 3795 3796 3797 3798 3799 3800 3801
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3802 3803
		}

3804
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3805 3806 3807 3808 3809 3810 3811
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3812 3813
	}

3814
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3815
		vma->node.color = cache_level;
3816
	i915_gem_object_set_cache_coherency(obj, cache_level);
3817
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3818

3819 3820 3821
	return 0;
}

B
Ben Widawsky 已提交
3822 3823
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3824
{
B
Ben Widawsky 已提交
3825
	struct drm_i915_gem_caching *args = data;
3826
	struct drm_i915_gem_object *obj;
3827
	int err = 0;
3828

3829 3830 3831 3832 3833 3834
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3835

3836 3837 3838 3839 3840 3841
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3842 3843 3844 3845
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3846 3847 3848 3849
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3850 3851 3852
out:
	rcu_read_unlock();
	return err;
3853 3854
}

B
Ben Widawsky 已提交
3855 3856
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3857
{
3858
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3859
	struct drm_i915_gem_caching *args = data;
3860 3861
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3862
	int ret = 0;
3863

B
Ben Widawsky 已提交
3864 3865
	switch (args->caching) {
	case I915_CACHING_NONE:
3866 3867
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3868
	case I915_CACHING_CACHED:
3869 3870 3871 3872 3873 3874
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3875
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3876 3877
			return -ENODEV;

3878 3879
		level = I915_CACHE_LLC;
		break;
3880
	case I915_CACHING_DISPLAY:
3881
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3882
		break;
3883 3884 3885 3886
	default:
		return -EINVAL;
	}

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3898
	if (ret)
3899
		goto out;
B
Ben Widawsky 已提交
3900

3901 3902 3903
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3904 3905 3906

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3907 3908 3909

out:
	i915_gem_object_put(obj);
3910 3911 3912
	return ret;
}

3913
/*
3914 3915 3916
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3917
 */
C
Chris Wilson 已提交
3918
struct i915_vma *
3919 3920
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3921
				     const struct i915_ggtt_view *view)
3922
{
C
Chris Wilson 已提交
3923
	struct i915_vma *vma;
3924 3925
	int ret;

3926 3927
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3928
	/* Mark the global pin early so that we account for the
3929 3930
	 * display coherency whilst setting up the cache domains.
	 */
3931
	obj->pin_global++;
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3942
	ret = i915_gem_object_set_cache_level(obj,
3943 3944
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3945 3946
	if (ret) {
		vma = ERR_PTR(ret);
3947
		goto err_unpin_global;
C
Chris Wilson 已提交
3948
	}
3949

3950 3951
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3952 3953 3954 3955
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3956
	 */
3957
	vma = ERR_PTR(-ENOSPC);
3958
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3959 3960
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3977
	if (IS_ERR(vma))
3978
		goto err_unpin_global;
3979

3980 3981
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3982
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3983
	__i915_gem_object_flush_for_display(obj);
3984
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3985

3986 3987 3988
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3989
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3990

C
Chris Wilson 已提交
3991
	return vma;
3992

3993 3994
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3995
	return vma;
3996 3997 3998
}

void
C
Chris Wilson 已提交
3999
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4000
{
4001
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4002

4003
	if (WARN_ON(vma->obj->pin_global == 0))
4004 4005
		return;

4006
	if (--vma->obj->pin_global == 0)
4007
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4008

4009
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4010
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4011

C
Chris Wilson 已提交
4012
	i915_vma_unpin(vma);
4013 4014
}

4015 4016
/**
 * Moves a single object to the CPU read, and possibly write domain.
4017 4018
 * @obj: object to act on
 * @write: requesting write or read-only access
4019 4020 4021 4022
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4023
int
4024
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4025 4026 4027
{
	int ret;

4028
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4029

4030 4031 4032 4033 4034 4035
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4036 4037 4038
	if (ret)
		return ret;

4039
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4040

4041
	/* Flush the CPU cache if it's still invalid. */
4042
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4043
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4044
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4045 4046 4047 4048 4049
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4050
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4051 4052 4053 4054

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4055 4056
	if (write)
		__start_cpu_write(obj);
4057 4058 4059 4060

	return 0;
}

4061 4062 4063
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4064 4065 4066 4067
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4068 4069 4070
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4071
static int
4072
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4073
{
4074
	struct drm_i915_private *dev_priv = to_i915(dev);
4075
	struct drm_i915_file_private *file_priv = file->driver_priv;
4076
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4077
	struct drm_i915_gem_request *request, *target = NULL;
4078
	long ret;
4079

4080 4081 4082
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4083

4084
	spin_lock(&file_priv->mm.lock);
4085
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4086 4087
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4088

4089 4090 4091 4092
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4093

4094
		target = request;
4095
	}
4096
	if (target)
4097
		i915_gem_request_get(target);
4098
	spin_unlock(&file_priv->mm.lock);
4099

4100
	if (target == NULL)
4101
		return 0;
4102

4103 4104 4105
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4106
	i915_gem_request_put(target);
4107

4108
	return ret < 0 ? ret : 0;
4109 4110
}

C
Chris Wilson 已提交
4111
struct i915_vma *
4112 4113
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4114
			 u64 size,
4115 4116
			 u64 alignment,
			 u64 flags)
4117
{
4118 4119
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4120 4121
	struct i915_vma *vma;
	int ret;
4122

4123 4124
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	if (!view && flags & PIN_MAPPABLE) {
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4156
	vma = i915_vma_instance(obj, vm, view);
4157
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4158
		return vma;
4159 4160

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4161 4162 4163
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4164

4165
			if (flags & PIN_MAPPABLE &&
4166
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4167 4168 4169
				return ERR_PTR(-ENOSPC);
		}

4170 4171
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4172 4173 4174
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4175
		     !!(flags & PIN_MAPPABLE),
4176
		     i915_vma_is_map_and_fenceable(vma));
4177 4178
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4179
			return ERR_PTR(ret);
4180 4181
	}

C
Chris Wilson 已提交
4182 4183 4184
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4185

C
Chris Wilson 已提交
4186
	return vma;
4187 4188
}

4189
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4204 4205 4206 4207 4208 4209 4210 4211 4212
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4213 4214
}

4215
static __always_inline unsigned int
4216
__busy_set_if_active(const struct dma_fence *fence,
4217 4218
		     unsigned int (*flag)(unsigned int id))
{
4219
	struct drm_i915_gem_request *rq;
4220

4221 4222 4223 4224
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4225
	 *
4226
	 * Note we only report on the status of native fences.
4227
	 */
4228 4229 4230 4231 4232 4233 4234 4235
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4236
	return flag(rq->engine->uabi_id);
4237 4238
}

4239
static __always_inline unsigned int
4240
busy_check_reader(const struct dma_fence *fence)
4241
{
4242
	return __busy_set_if_active(fence, __busy_read_flag);
4243 4244
}

4245
static __always_inline unsigned int
4246
busy_check_writer(const struct dma_fence *fence)
4247
{
4248 4249 4250 4251
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4252 4253
}

4254 4255
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4256
		    struct drm_file *file)
4257 4258
{
	struct drm_i915_gem_busy *args = data;
4259
	struct drm_i915_gem_object *obj;
4260 4261
	struct reservation_object_list *list;
	unsigned int seq;
4262
	int err;
4263

4264
	err = -ENOENT;
4265 4266
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4267
	if (!obj)
4268
		goto out;
4269

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4288

4289 4290
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4291

4292 4293 4294 4295
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4296

4297 4298 4299 4300 4301 4302
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4303
	}
4304

4305 4306 4307 4308
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4309 4310 4311
out:
	rcu_read_unlock();
	return err;
4312 4313 4314 4315 4316 4317
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4318
	return i915_gem_ring_throttle(dev, file_priv);
4319 4320
}

4321 4322 4323 4324
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4325
	struct drm_i915_private *dev_priv = to_i915(dev);
4326
	struct drm_i915_gem_madvise *args = data;
4327
	struct drm_i915_gem_object *obj;
4328
	int err;
4329 4330 4331 4332 4333 4334 4335 4336 4337

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4338
	obj = i915_gem_object_lookup(file_priv, args->handle);
4339 4340 4341 4342 4343 4344
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4345

4346
	if (i915_gem_object_has_pages(obj) &&
4347
	    i915_gem_object_is_tiled(obj) &&
4348
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4349 4350
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4351
			__i915_gem_object_unpin_pages(obj);
4352 4353 4354
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4355
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4356
			__i915_gem_object_pin_pages(obj);
4357 4358
			obj->mm.quirked = true;
		}
4359 4360
	}

C
Chris Wilson 已提交
4361 4362
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4363

C
Chris Wilson 已提交
4364
	/* if the object is no longer attached, discard its backing storage */
4365 4366
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4367 4368
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4369
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4370
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4371

4372
out:
4373
	i915_gem_object_put(obj);
4374
	return err;
4375 4376
}

4377 4378 4379 4380 4381 4382 4383
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4384
	intel_fb_obj_flush(obj, ORIGIN_CS);
4385 4386
}

4387 4388
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4389
{
4390 4391
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4392
	INIT_LIST_HEAD(&obj->vma_list);
4393
	INIT_LIST_HEAD(&obj->lut_list);
4394
	INIT_LIST_HEAD(&obj->batch_pool_link);
4395

4396 4397
	obj->ops = ops;

4398 4399 4400
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4401
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4402
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4403 4404 4405 4406

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4407

4408
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4409 4410
}

4411
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4412 4413
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4414

4415 4416
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4417 4418

	.pwrite = i915_gem_object_pwrite_gtt,
4419 4420
};

M
Matthew Auld 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4445
struct drm_i915_gem_object *
4446
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4447
{
4448
	struct drm_i915_gem_object *obj;
4449
	struct address_space *mapping;
4450
	unsigned int cache_level;
D
Daniel Vetter 已提交
4451
	gfp_t mask;
4452
	int ret;
4453

4454 4455 4456 4457 4458
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4459
	if (size >> PAGE_SHIFT > INT_MAX)
4460 4461 4462 4463 4464
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4465
	obj = i915_gem_object_alloc(dev_priv);
4466
	if (obj == NULL)
4467
		return ERR_PTR(-ENOMEM);
4468

M
Matthew Auld 已提交
4469
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4470 4471
	if (ret)
		goto fail;
4472

4473
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4474
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4475 4476 4477 4478 4479
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4480
	mapping = obj->base.filp->f_mapping;
4481
	mapping_set_gfp_mask(mapping, mask);
4482
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4483

4484
	i915_gem_object_init(obj, &i915_gem_object_ops);
4485

4486 4487
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4488

4489
	if (HAS_LLC(dev_priv))
4490
		/* On some devices, we can have the GPU use the LLC (the CPU
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4502 4503 4504
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4505

4506
	i915_gem_object_set_cache_coherency(obj, cache_level);
4507

4508 4509
	trace_i915_gem_object_create(obj);

4510
	return obj;
4511 4512 4513 4514

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4515 4516
}

4517 4518 4519 4520 4521 4522 4523 4524
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4525
	if (obj->mm.madv != I915_MADV_WILLNEED)
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4541 4542
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4543
{
4544
	struct drm_i915_gem_object *obj, *on;
4545

4546
	intel_runtime_pm_get(i915);
4547
	llist_for_each_entry_safe(obj, on, freed, freed) {
4548 4549 4550 4551
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4552 4553
		mutex_lock(&i915->drm.struct_mutex);

4554 4555 4556 4557 4558 4559 4560
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4561 4562
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4563

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4576
		mutex_unlock(&i915->drm.struct_mutex);
4577 4578

		GEM_BUG_ON(obj->bind_count);
4579
		GEM_BUG_ON(obj->userfault_count);
4580
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4581
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4582 4583 4584

		if (obj->ops->release)
			obj->ops->release(obj);
4585

4586 4587
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4588
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4589
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4590 4591 4592 4593

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4594
		reservation_object_fini(&obj->__builtin_resv);
4595 4596 4597 4598 4599
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4600 4601 4602

		if (on)
			cond_resched();
4603
	}
4604
	intel_runtime_pm_put(i915);
4605 4606 4607 4608 4609 4610
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4621
		__i915_gem_free_objects(i915, freed);
4622
	}
4623 4624 4625 4626 4627 4628 4629
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4630

4631 4632 4633 4634 4635 4636 4637
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4638

4639
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4640
		__i915_gem_free_objects(i915, freed);
4641 4642 4643
		if (need_resched())
			break;
	}
4644
}
4645

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4660

4661 4662 4663
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4664

4665 4666 4667
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4668
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4669
		obj->mm.madv = I915_MADV_DONTNEED;
4670

4671 4672 4673 4674 4675 4676
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4677 4678
}

4679 4680 4681 4682
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4683 4684
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4685 4686 4687 4688 4689
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4690 4691 4692 4693 4694 4695
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4696 4697
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4698 4699
}

4700 4701
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4702 4703 4704 4705 4706 4707
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4708 4709 4710 4711 4712 4713
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4714
	 * of the reset, so this could be applied to even earlier gen.
4715
	 */
4716
	if (INTEL_GEN(i915) >= 5) {
4717 4718 4719 4720 4721
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4722
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4723
{
4724
	struct drm_device *dev = &dev_priv->drm;
4725
	int ret;
4726

4727
	intel_runtime_pm_get(dev_priv);
4728 4729
	intel_suspend_gt_powersave(dev_priv);

4730
	mutex_lock(&dev->struct_mutex);
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4742
		goto err_unlock;
4743

4744 4745 4746
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4747
	if (ret && ret != -EIO)
4748
		goto err_unlock;
4749

4750
	assert_kernel_context_is_current(dev_priv);
4751
	i915_gem_contexts_lost(dev_priv);
4752 4753
	mutex_unlock(&dev->struct_mutex);

4754 4755
	intel_guc_suspend(dev_priv);

4756
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4757
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4758 4759 4760 4761

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4762
	drain_delayed_work(&dev_priv->gt.idle_work);
4763

4764 4765 4766
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4767
	WARN_ON(dev_priv->gt.awake);
4768 4769
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4770

4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4790
	i915_gem_sanitize(dev_priv);
4791 4792 4793

	intel_runtime_pm_put(dev_priv);
	return 0;
4794

4795
err_unlock:
4796
	mutex_unlock(&dev->struct_mutex);
4797
	intel_runtime_pm_put(dev_priv);
4798
	return ret;
4799 4800
}

4801
void i915_gem_resume(struct drm_i915_private *dev_priv)
4802
{
4803
	struct drm_device *dev = &dev_priv->drm;
4804

4805 4806
	WARN_ON(dev_priv->gt.awake);

4807
	mutex_lock(&dev->struct_mutex);
4808
	i915_gem_restore_gtt_mappings(dev_priv);
4809
	i915_gem_restore_fences(dev_priv);
4810 4811 4812 4813 4814

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4815
	dev_priv->gt.resume(dev_priv);
4816 4817 4818 4819

	mutex_unlock(&dev->struct_mutex);
}

4820
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4821
{
4822
	if (INTEL_GEN(dev_priv) < 5 ||
4823 4824 4825 4826 4827 4828
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4829
	if (IS_GEN5(dev_priv))
4830 4831
		return;

4832
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4833
	if (IS_GEN6(dev_priv))
4834
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4835
	else if (IS_GEN7(dev_priv))
4836
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4837
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4838
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4839 4840
	else
		BUG();
4841
}
D
Daniel Vetter 已提交
4842

4843
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4844 4845 4846 4847 4848 4849 4850
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4851
static void init_unused_rings(struct drm_i915_private *dev_priv)
4852
{
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4865 4866 4867
	}
}

4868
static int __i915_gem_restart_engines(void *data)
4869
{
4870
	struct drm_i915_private *i915 = data;
4871
	struct intel_engine_cs *engine;
4872
	enum intel_engine_id id;
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4886
	int ret;
4887

4888 4889
	dev_priv->gt.last_init_time = ktime_get();

4890 4891 4892
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4893
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4894
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4895

4896
	if (IS_HASWELL(dev_priv))
4897
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4898
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4899

4900
	if (HAS_PCH_NOP(dev_priv)) {
4901
		if (IS_IVYBRIDGE(dev_priv)) {
4902 4903 4904
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4905
		} else if (INTEL_GEN(dev_priv) >= 7) {
4906 4907 4908 4909
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4910 4911
	}

4912
	i915_gem_init_swizzling(dev_priv);
4913

4914 4915 4916 4917 4918 4919
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4920
	init_unused_rings(dev_priv);
4921

4922
	BUG_ON(!dev_priv->kernel_context);
4923 4924 4925 4926
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
4927

4928
	ret = i915_ppgtt_init_hw(dev_priv);
4929 4930 4931 4932 4933
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

4934 4935 4936 4937 4938
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;

4939
	/* Need to do basic initialisation of all rings first: */
4940 4941 4942
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4943

4944
	intel_mocs_init_l3cc_table(dev_priv);
4945

4946 4947
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4948
	return ret;
4949 4950
}

4951 4952 4953 4954 4955 4956
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
4957
	if (i915_modparams.enable_execlists)
4958 4959 4960 4961 4962 4963
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4964
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4965 4966 4967 4968 4969
		return false;

	return true;
}

4970
int i915_gem_init(struct drm_i915_private *dev_priv)
4971 4972 4973
{
	int ret;

4974
	mutex_lock(&dev_priv->drm.struct_mutex);
4975

4976 4977 4978 4979 4980 4981 4982 4983 4984
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4985
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4986

4987
	if (!i915_modparams.enable_execlists) {
4988
		dev_priv->gt.resume = intel_legacy_submission_resume;
4989
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4990
	} else {
4991
		dev_priv->gt.resume = intel_lr_context_resume;
4992
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4993 4994
	}

4995 4996 4997 4998 4999 5000 5001 5002
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5003 5004 5005
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
5006 5007 5008 5009

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
5010

5011
	ret = i915_gem_contexts_init(dev_priv);
5012 5013
	if (ret)
		goto out_unlock;
5014

5015
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
5016
	if (ret)
5017
		goto out_unlock;
5018

5019
	ret = i915_gem_init_hw(dev_priv);
5020
	if (ret == -EIO) {
5021
		/* Allow engine initialisation to fail by marking the GPU as
5022 5023 5024
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5025 5026 5027 5028
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5029
		ret = 0;
5030
	}
5031 5032

out_unlock:
5033
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5034
	mutex_unlock(&dev_priv->drm.struct_mutex);
5035

5036
	return ret;
5037 5038
}

5039 5040 5041 5042 5043
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5044
void
5045
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5046
{
5047
	struct intel_engine_cs *engine;
5048
	enum intel_engine_id id;
5049

5050
	for_each_engine(engine, dev_priv, id)
5051
		dev_priv->gt.cleanup_engine(engine);
5052 5053
}

5054 5055 5056
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5057
	int i;
5058 5059 5060 5061

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5062 5063 5064
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5065 5066 5067 5068
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5069
	if (intel_vgpu_active(dev_priv))
5070 5071 5072 5073
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5074 5075 5076 5077 5078 5079 5080
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5081
	i915_gem_restore_fences(dev_priv);
5082

5083
	i915_gem_detect_bit_6_swizzle(dev_priv);
5084 5085
}

5086
int
5087
i915_gem_load_init(struct drm_i915_private *dev_priv)
5088
{
5089
	int err = -ENOMEM;
5090

5091 5092
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5093 5094
		goto err_out;

5095 5096
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5097 5098
		goto err_objects;

5099 5100 5101 5102
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5103 5104 5105
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5106
					SLAB_TYPESAFE_BY_RCU);
5107
	if (!dev_priv->requests)
5108
		goto err_luts;
5109

5110 5111 5112 5113 5114 5115
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5116 5117 5118 5119
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5120 5121
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5122
	err = i915_gem_timeline_init__global(dev_priv);
5123 5124
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5125
		goto err_priorities;
5126

5127
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5128 5129

	spin_lock_init(&dev_priv->mm.obj_lock);
5130
	spin_lock_init(&dev_priv->mm.free_lock);
5131
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
5132 5133
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5134
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5135
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5136

5137
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5138
			  i915_gem_retire_work_handler);
5139
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5140
			  i915_gem_idle_work_handler);
5141
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5142
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5143

5144 5145
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5146
	spin_lock_init(&dev_priv->fb_tracking.lock);
5147

M
Matthew Auld 已提交
5148 5149 5150 5151
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5152 5153
	return 0;

5154 5155
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5156 5157
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5158 5159
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5160 5161
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5162 5163 5164 5165 5166 5167
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5168
}
5169

5170
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5171
{
5172
	i915_gem_drain_freed_objects(dev_priv);
5173
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5174
	WARN_ON(dev_priv->mm.object_count);
5175

5176 5177 5178 5179 5180
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5181
	kmem_cache_destroy(dev_priv->priorities);
5182
	kmem_cache_destroy(dev_priv->dependencies);
5183
	kmem_cache_destroy(dev_priv->requests);
5184
	kmem_cache_destroy(dev_priv->luts);
5185 5186
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5187 5188 5189

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5190 5191

	i915_gemfs_fini(dev_priv);
5192 5193
}

5194 5195
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5196 5197 5198
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5199 5200 5201 5202 5203
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5204 5205 5206
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5207 5208 5209 5210 5211
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5222 5223
	 *
	 * To try and reduce the hibernation image, we manually shrink
5224
	 * the objects as well, see i915_gem_freeze()
5225 5226
	 */

5227
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5228
	i915_gem_drain_freed_objects(dev_priv);
5229

5230
	spin_lock(&dev_priv->mm.obj_lock);
5231
	for (p = phases; *p; p++) {
5232
		list_for_each_entry(obj, *p, mm.link)
5233
			__start_cpu_write(obj);
5234
	}
5235
	spin_unlock(&dev_priv->mm.obj_lock);
5236 5237 5238 5239

	return 0;
}

5240
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5241
{
5242
	struct drm_i915_file_private *file_priv = file->driver_priv;
5243
	struct drm_i915_gem_request *request;
5244 5245 5246 5247 5248

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5249
	spin_lock(&file_priv->mm.lock);
5250
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5251
		request->file_priv = NULL;
5252
	spin_unlock(&file_priv->mm.lock);
5253 5254
}

5255
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5256 5257
{
	struct drm_i915_file_private *file_priv;
5258
	int ret;
5259

5260
	DRM_DEBUG("\n");
5261 5262 5263 5264 5265 5266

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5267
	file_priv->dev_priv = i915;
5268
	file_priv->file = file;
5269 5270 5271 5272

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5273
	file_priv->bsd_engine = -1;
5274

5275
	ret = i915_gem_context_open(i915, file);
5276 5277
	if (ret)
		kfree(file_priv);
5278

5279
	return ret;
5280 5281
}

5282 5283
/**
 * i915_gem_track_fb - update frontbuffer tracking
5284 5285 5286
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5287 5288 5289 5290
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5291 5292 5293 5294
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5295 5296 5297 5298 5299 5300 5301 5302 5303
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5304
	if (old) {
5305 5306
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5307 5308 5309
	}

	if (new) {
5310 5311
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5312 5313 5314
	}
}

5315 5316
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5317
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5318 5319 5320
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5321 5322 5323
	struct file *file;
	size_t offset;
	int err;
5324

5325
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5326
	if (IS_ERR(obj))
5327 5328
		return obj;

5329
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5330

5331 5332 5333 5334 5335 5336
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5337

5338 5339 5340 5341 5342
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5343

5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5358 5359 5360 5361

	return obj;

fail:
5362
	i915_gem_object_put(obj);
5363
	return ERR_PTR(err);
5364
}
5365 5366 5367 5368 5369 5370

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5371
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5372 5373 5374 5375 5376
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5377
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5502
	if (!obj->mm.dirty)
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5518

5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

5565 5566
	obj->ops = &i915_gem_phys_ops;

5567
	err = ____i915_gem_object_get_pages(obj);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5587 5588
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5589
#include "selftests/mock_gem_device.c"
5590
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5591
#include "selftests/huge_pages.c"
5592
#include "selftests/i915_gem_object.c"
5593
#include "selftests/i915_gem_coherency.c"
5594
#endif