i915_gem.c 161.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141 142 143
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
144
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
	i915_gem_timelines_park(i915);

	i915_pmu_gt_parked(i915);

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

235 236
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
237
			    struct drm_file *file)
238
{
239
	struct drm_i915_private *dev_priv = to_i915(dev);
240
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
241
	struct drm_i915_gem_get_aperture *args = data;
242
	struct i915_vma *vma;
243
	u64 pinned;
244

245
	pinned = ggtt->base.reserved;
246
	mutex_lock(&dev->struct_mutex);
247
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
248
		if (i915_vma_is_pinned(vma))
249
			pinned += vma->node.size;
250
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
251
		if (i915_vma_is_pinned(vma))
252
			pinned += vma->node.size;
253
	mutex_unlock(&dev->struct_mutex);
254

255
	args->aper_size = ggtt->base.total;
256
	args->aper_available_size = args->aper_size - pinned;
257

258 259 260
	return 0;
}

261
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
262
{
263
	struct address_space *mapping = obj->base.filp->f_mapping;
264
	drm_dma_handle_t *phys;
265 266
	struct sg_table *st;
	struct scatterlist *sg;
267
	char *vaddr;
268
	int i;
269
	int err;
270

271
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
272
		return -EINVAL;
273

274 275 276 277 278
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
279
			     roundup_pow_of_two(obj->base.size),
280 281
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
282
		return -ENOMEM;
283 284

	vaddr = phys->vaddr;
285 286 287 288 289
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
290
		if (IS_ERR(page)) {
291
			err = PTR_ERR(page);
292 293
			goto err_phys;
		}
294 295 296 297 298 299

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

300
		put_page(page);
301 302 303
		vaddr += PAGE_SIZE;
	}

304
	i915_gem_chipset_flush(to_i915(obj->base.dev));
305 306

	st = kmalloc(sizeof(*st), GFP_KERNEL);
307
	if (!st) {
308
		err = -ENOMEM;
309 310
		goto err_phys;
	}
311 312 313

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
314
		err = -ENOMEM;
315
		goto err_phys;
316 317 318 319 320
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
321

322
	sg_dma_address(sg) = phys->busaddr;
323 324
	sg_dma_len(sg) = obj->base.size;

325
	obj->phys_handle = phys;
326

327
	__i915_gem_object_set_pages(obj, st, sg->length);
328 329

	return 0;
330 331 332

err_phys:
	drm_pci_free(obj->base.dev, phys);
333 334

	return err;
335 336
}

337 338
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
339 340
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
341 342 343 344
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

345
static void
346
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
347 348
				struct sg_table *pages,
				bool needs_clflush)
349
{
C
Chris Wilson 已提交
350
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
351

C
Chris Wilson 已提交
352 353
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
354

355
	if (needs_clflush &&
356
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
357
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
358
		drm_clflush_sg(pages);
359

360
	__start_cpu_write(obj);
361 362 363 364 365 366
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
367
	__i915_gem_object_release_shmem(obj, pages, false);
368

C
Chris Wilson 已提交
369
	if (obj->mm.dirty) {
370
		struct address_space *mapping = obj->base.filp->f_mapping;
371
		char *vaddr = obj->phys_handle->vaddr;
372 373 374
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
375 376 377 378 379 380 381 382 383 384 385 386 387
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
388
			if (obj->mm.madv == I915_MADV_WILLNEED)
389
				mark_page_accessed(page);
390
			put_page(page);
391 392
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
393
		obj->mm.dirty = false;
394 395
	}

396 397
	sg_free_table(pages);
	kfree(pages);
398 399

	drm_pci_free(obj->base.dev, obj->phys_handle);
400 401 402 403 404
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
405
	i915_gem_object_unpin_pages(obj);
406 407 408 409 410 411 412 413
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

414 415
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

416
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
417 418 419
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
420 421 422
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
423

424 425 426 427
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
428
	 */
429
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
430 431 432
	if (ret)
		return ret;

433 434 435 436 437 438 439 440 441 442 443 444 445
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

446 447 448 449
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
450
			   struct intel_rps_client *rps_client)
451
{
452
	struct i915_request *rq;
453

454
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
455

456 457 458 459 460 461 462 463 464
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
465
	if (i915_request_completed(rq))
466 467
		goto out;

468 469
	/*
	 * This client is about to stall waiting for the GPU. In many cases
470 471 472 473 474 475 476 477 478 479 480 481 482 483
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
484
	if (rps_client && !i915_request_started(rq)) {
485
		if (INTEL_GEN(rq->i915) >= 6)
486
			gen6_rps_boost(rq, rps_client);
487 488
	}

489
	timeout = i915_request_wait(rq, flags, timeout);
490 491

out:
492 493
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
494 495 496 497 498 499 500 501

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
502
				 struct intel_rps_client *rps_client)
503
{
504
	unsigned int seq = __read_seqcount_begin(&resv->seq);
505
	struct dma_fence *excl;
506
	bool prune_fences = false;
507 508 509 510

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
511 512
		int ret;

513 514
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
515 516 517
		if (ret)
			return ret;

518 519 520
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
521
							     rps_client);
522
			if (timeout < 0)
523
				break;
524

525 526 527 528 529 530
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
531

532 533 534 535 536 537 538 539 540
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
541
		prune_fences = count && timeout >= 0;
542 543
	} else {
		excl = reservation_object_get_excl_rcu(resv);
544 545
	}

546
	if (excl && timeout >= 0)
547 548
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
549 550 551

	dma_fence_put(excl);

552 553
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
554 555 556
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
557
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
558 559 560 561 562
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
563 564
	}

565
	return timeout;
566 567
}

568 569
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
570
{
571
	struct i915_request *rq;
572 573
	struct intel_engine_cs *engine;

574
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
575 576 577 578 579
		return;

	rq = to_request(fence);
	engine = rq->engine;

580 581
	rcu_read_lock();
	if (engine->schedule)
582
		engine->schedule(rq, attr);
583
	rcu_read_unlock();
584 585
}

586 587
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
588 589 590 591 592 593 594
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
595
			__fence_set_priority(array->fences[i], attr);
596
	} else {
597
		__fence_set_priority(fence, attr);
598 599 600 601 602 603
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
604
			      const struct i915_sched_attr *attr)
605 606 607 608 609 610 611 612 613 614 615 616 617 618
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
619
			fence_set_priority(shared[i], attr);
620 621 622 623 624 625 626 627 628
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
629
		fence_set_priority(excl, attr);
630 631 632 633 634
		dma_fence_put(excl);
	}
	return 0;
}

635 636 637 638 639
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
640
 * @rps_client: client (user process) to charge for any waitboosting
641
 */
642 643 644 645
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
646
		     struct intel_rps_client *rps_client)
647
{
648 649 650 651 652 653 654
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
655

656 657
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
658
						   rps_client);
659
	return timeout < 0 ? timeout : 0;
660 661 662 663 664 665
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

666
	return &fpriv->rps_client;
667 668
}

669 670 671
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
672
		     struct drm_file *file)
673 674
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
675
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
676 677 678 679

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
680
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
681 682
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
683

684
	drm_clflush_virt_range(vaddr, args->size);
685
	i915_gem_chipset_flush(to_i915(obj->base.dev));
686

687
	intel_fb_obj_flush(obj, ORIGIN_CPU);
688
	return 0;
689 690
}

691
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
692
{
693
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
694 695 696 697
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
698
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
699
	kmem_cache_free(dev_priv->objects, obj);
700 701
}

702 703
static int
i915_gem_create(struct drm_file *file,
704
		struct drm_i915_private *dev_priv,
705 706
		uint64_t size,
		uint32_t *handle_p)
707
{
708
	struct drm_i915_gem_object *obj;
709 710
	int ret;
	u32 handle;
711

712
	size = roundup(size, PAGE_SIZE);
713 714
	if (size == 0)
		return -EINVAL;
715 716

	/* Allocate the new object */
717
	obj = i915_gem_object_create(dev_priv, size);
718 719
	if (IS_ERR(obj))
		return PTR_ERR(obj);
720

721
	ret = drm_gem_handle_create(file, &obj->base, &handle);
722
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
723
	i915_gem_object_put(obj);
724 725
	if (ret)
		return ret;
726

727
	*handle_p = handle;
728 729 730
	return 0;
}

731 732 733 734 735 736
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
737
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
738
	args->size = args->pitch * args->height;
739
	return i915_gem_create(file, to_i915(dev),
740
			       args->size, &args->handle);
741 742
}

743 744 745 746 747 748
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

749 750
/**
 * Creates a new mm object and returns a handle to it.
751 752 753
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
754 755 756 757 758
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
759
	struct drm_i915_private *dev_priv = to_i915(dev);
760
	struct drm_i915_gem_create *args = data;
761

762
	i915_gem_flush_free_objects(dev_priv);
763

764
	return i915_gem_create(file, dev_priv,
765
			       args->size, &args->handle);
766 767
}

768 769 770 771 772 773 774
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

775
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
776
{
777 778 779 780 781
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
782 783 784 785 786 787 788 789 790 791
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
792 793
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
794
	 */
795

796 797
	wmb();

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

813
	if (!(obj->write_domain & flush_domains))
814 815
		return;

816
	switch (obj->write_domain) {
817
	case I915_GEM_DOMAIN_GTT:
818
		i915_gem_flush_ggtt_writes(dev_priv);
819 820 821

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
822

823
		for_each_ggtt_vma(vma, obj) {
824 825 826 827 828
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
829 830 831 832 833
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
834 835 836 837 838

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
839 840
	}

841
	obj->write_domain = 0;
842 843
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

870
static inline int
871 872
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

896 897 898 899 900 901
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
902
				    unsigned int *needs_clflush)
903 904 905
{
	int ret;

906
	lockdep_assert_held(&obj->base.dev->struct_mutex);
907

908
	*needs_clflush = 0;
909 910
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
911

912 913 914 915 916
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
917 918 919
	if (ret)
		return ret;

C
Chris Wilson 已提交
920
	ret = i915_gem_object_pin_pages(obj);
921 922 923
	if (ret)
		return ret;

924 925
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
926 927 928 929 930 931 932
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

933
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
934

935 936 937 938 939
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
940
	if (!obj->cache_dirty &&
941
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
942
		*needs_clflush = CLFLUSH_BEFORE;
943

944
out:
945
	/* return with the pages pinned */
946
	return 0;
947 948 949 950

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
951 952 953 954 955 956 957
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

958 959
	lockdep_assert_held(&obj->base.dev->struct_mutex);

960 961 962 963
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

964 965 966 967 968 969
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
970 971 972
	if (ret)
		return ret;

C
Chris Wilson 已提交
973
	ret = i915_gem_object_pin_pages(obj);
974 975 976
	if (ret)
		return ret;

977 978
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
979 980 981 982 983 984 985
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

986
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
987

988 989 990 991 992
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
993
	if (!obj->cache_dirty) {
994
		*needs_clflush |= CLFLUSH_AFTER;
995

996 997 998 999
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1000
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1001 1002
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1003

1004
out:
1005
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1006
	obj->mm.dirty = true;
1007
	/* return with the pages pinned */
1008
	return 0;
1009 1010 1011 1012

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1013 1014
}

1015 1016 1017 1018
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1019
	if (unlikely(swizzled)) {
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1037 1038 1039
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1040
shmem_pread_slow(struct page *page, int offset, int length,
1041 1042 1043 1044 1045 1046 1047 1048
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1049
		shmem_clflush_swizzled_range(vaddr + offset, length,
1050
					     page_do_bit17_swizzling);
1051 1052

	if (page_do_bit17_swizzling)
1053
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1054
	else
1055
		ret = __copy_to_user(user_data, vaddr + offset, length);
1056 1057
	kunmap(page);

1058
	return ret ? - EFAULT : 0;
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1137
{
1138
	void __iomem *vaddr;
1139
	unsigned long unwritten;
1140 1141

	/* We can use the cpu mem copy function because this is X86. */
1142 1143 1144 1145
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1146 1147
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1148 1149 1150 1151
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1152 1153
		io_mapping_unmap(vaddr);
	}
1154 1155 1156 1157
	return unwritten;
}

static int
1158 1159
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1160
{
1161 1162
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1163
	struct drm_mm_node node;
1164 1165 1166
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1167 1168
	int ret;

1169 1170 1171 1172 1173 1174
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1175 1176 1177
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1178 1179 1180
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1181
		ret = i915_vma_put_fence(vma);
1182 1183 1184 1185 1186
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1187
	if (IS_ERR(vma)) {
1188
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1189
		if (ret)
1190 1191
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1192 1193 1194 1195 1196 1197
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1198
	mutex_unlock(&i915->drm.struct_mutex);
1199

1200 1201 1202
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1219
					       node.start, I915_CACHE_NONE, 0);
1220 1221 1222 1223
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1224

1225
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1226
				  user_data, page_length)) {
1227 1228 1229 1230 1231 1232 1233 1234 1235
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1236
	mutex_lock(&i915->drm.struct_mutex);
1237 1238 1239 1240
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1241
				       node.start, node.size);
1242 1243
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1244
		i915_vma_unpin(vma);
1245
	}
1246 1247 1248
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1249

1250 1251 1252
	return ret;
}

1253 1254
/**
 * Reads data from the object referenced by handle.
1255 1256 1257
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1258 1259 1260 1261 1262
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1263
		     struct drm_file *file)
1264 1265
{
	struct drm_i915_gem_pread *args = data;
1266
	struct drm_i915_gem_object *obj;
1267
	int ret;
1268

1269 1270 1271 1272
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1273
		       u64_to_user_ptr(args->data_ptr),
1274 1275 1276
		       args->size))
		return -EFAULT;

1277
	obj = i915_gem_object_lookup(file, args->handle);
1278 1279
	if (!obj)
		return -ENOENT;
1280

1281
	/* Bounds check source.  */
1282
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1283
		ret = -EINVAL;
1284
		goto out;
C
Chris Wilson 已提交
1285 1286
	}

C
Chris Wilson 已提交
1287 1288
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1289 1290 1291 1292
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1293
	if (ret)
1294
		goto out;
1295

1296
	ret = i915_gem_object_pin_pages(obj);
1297
	if (ret)
1298
		goto out;
1299

1300
	ret = i915_gem_shmem_pread(obj, args);
1301
	if (ret == -EFAULT || ret == -ENODEV)
1302
		ret = i915_gem_gtt_pread(obj, args);
1303

1304 1305
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1306
	i915_gem_object_put(obj);
1307
	return ret;
1308 1309
}

1310 1311
/* This is the fast write path which cannot handle
 * page faults in the source data
1312
 */
1313

1314 1315 1316 1317
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1318
{
1319
	void __iomem *vaddr;
1320
	unsigned long unwritten;
1321

1322
	/* We can use the cpu mem copy function because this is X86. */
1323 1324
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1325
						      user_data, length);
1326 1327
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1328 1329 1330
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1331 1332
		io_mapping_unmap(vaddr);
	}
1333 1334 1335 1336

	return unwritten;
}

1337 1338 1339
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1340
 * @obj: i915 GEM object
1341
 * @args: pwrite arguments structure
1342
 */
1343
static int
1344 1345
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1346
{
1347
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1348 1349
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1350 1351 1352
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1353
	int ret;
1354

1355 1356 1357
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1376
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1377 1378 1379
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1380 1381 1382
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1383
		ret = i915_vma_put_fence(vma);
1384 1385 1386 1387 1388
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1389
	if (IS_ERR(vma)) {
1390
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1391
		if (ret)
1392
			goto out_rpm;
1393
		GEM_BUG_ON(!node.allocated);
1394
	}
D
Daniel Vetter 已提交
1395 1396 1397 1398 1399

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1400 1401
	mutex_unlock(&i915->drm.struct_mutex);

1402
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1403

1404 1405 1406 1407
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1408 1409
		/* Operation in this page
		 *
1410 1411 1412
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1413
		 */
1414
		u32 page_base = node.start;
1415 1416
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1427
		/* If we get a fault while copying data, then (presumably) our
1428 1429
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1430 1431
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1432
		 */
1433
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1434 1435 1436
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1437
		}
1438

1439 1440 1441
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1442
	}
1443
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1444 1445

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1446
out_unpin:
1447 1448 1449
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1450
				       node.start, node.size);
1451 1452
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1453
		i915_vma_unpin(vma);
1454
	}
1455
out_rpm:
1456
	intel_runtime_pm_put(i915);
1457
out_unlock:
1458
	mutex_unlock(&i915->drm.struct_mutex);
1459
	return ret;
1460 1461
}

1462
static int
1463
shmem_pwrite_slow(struct page *page, int offset, int length,
1464 1465 1466 1467
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1468
{
1469 1470
	char *vaddr;
	int ret;
1471

1472
	vaddr = kmap(page);
1473
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1474
		shmem_clflush_swizzled_range(vaddr + offset, length,
1475
					     page_do_bit17_swizzling);
1476
	if (page_do_bit17_swizzling)
1477 1478
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1479
	else
1480
		ret = __copy_from_user(vaddr + offset, user_data, length);
1481
	if (needs_clflush_after)
1482
		shmem_clflush_swizzled_range(vaddr + offset, length,
1483
					     page_do_bit17_swizzling);
1484
	kunmap(page);
1485

1486
	return ret ? -EFAULT : 0;
1487 1488
}

1489 1490 1491 1492 1493
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1494
static int
1495 1496 1497 1498
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1499
{
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1532
	unsigned int needs_clflush;
1533 1534
	unsigned int offset, idx;
	int ret;
1535

1536
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1537 1538 1539
	if (ret)
		return ret;

1540 1541 1542 1543
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1544

1545 1546 1547
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1548

1549 1550 1551 1552 1553 1554 1555
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1556

1557 1558 1559 1560 1561 1562
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1563

1564 1565 1566
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1567

1568 1569 1570 1571
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1572
		if (ret)
1573
			break;
1574

1575 1576 1577
		remain -= length;
		user_data += length;
		offset = 0;
1578
	}
1579

1580
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1581
	i915_gem_obj_finish_shmem_access(obj);
1582
	return ret;
1583 1584 1585 1586
}

/**
 * Writes data to the object referenced by handle.
1587 1588 1589
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1590 1591 1592 1593 1594
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1595
		      struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_pwrite *args = data;
1598
	struct drm_i915_gem_object *obj;
1599 1600 1601 1602 1603 1604
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1605
		       u64_to_user_ptr(args->data_ptr),
1606 1607 1608
		       args->size))
		return -EFAULT;

1609
	obj = i915_gem_object_lookup(file, args->handle);
1610 1611
	if (!obj)
		return -ENOENT;
1612

1613
	/* Bounds check destination. */
1614
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1615
		ret = -EINVAL;
1616
		goto err;
C
Chris Wilson 已提交
1617 1618
	}

C
Chris Wilson 已提交
1619 1620
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1621 1622 1623 1624 1625 1626
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1627 1628 1629 1630 1631
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1632 1633 1634
	if (ret)
		goto err;

1635
	ret = i915_gem_object_pin_pages(obj);
1636
	if (ret)
1637
		goto err;
1638

D
Daniel Vetter 已提交
1639
	ret = -EFAULT;
1640 1641 1642 1643 1644 1645
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1646
	if (!i915_gem_object_has_struct_page(obj) ||
1647
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1648 1649
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1650 1651
		 * textures). Fallback to the shmem path in that case.
		 */
1652
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1653

1654
	if (ret == -EFAULT || ret == -ENOSPC) {
1655 1656
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1657
		else
1658
			ret = i915_gem_shmem_pwrite(obj, args);
1659
	}
1660

1661
	i915_gem_object_unpin_pages(obj);
1662
err:
C
Chris Wilson 已提交
1663
	i915_gem_object_put(obj);
1664
	return ret;
1665 1666
}

1667 1668 1669 1670 1671 1672
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1673 1674
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1675
	for_each_ggtt_vma(vma, obj) {
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1686
	spin_lock(&i915->mm.obj_lock);
1687
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1688 1689
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1690 1691
}

1692
/**
1693 1694
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1695 1696 1697
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1698 1699 1700
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1701
			  struct drm_file *file)
1702 1703
{
	struct drm_i915_gem_set_domain *args = data;
1704
	struct drm_i915_gem_object *obj;
1705 1706
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1707
	int err;
1708

1709
	/* Only handle setting domains to types used by the CPU. */
1710
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1711 1712 1713 1714 1715 1716 1717 1718
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1719
	obj = i915_gem_object_lookup(file, args->handle);
1720 1721
	if (!obj)
		return -ENOENT;
1722

1723 1724 1725 1726
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1727
	err = i915_gem_object_wait(obj,
1728 1729 1730 1731
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1732
	if (err)
C
Chris Wilson 已提交
1733
		goto out;
1734

T
Tina Zhang 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1748 1749 1750 1751 1752 1753 1754 1755 1756
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1757
		goto out;
1758 1759 1760

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1761
		goto out_unpin;
1762

1763 1764 1765 1766
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1767
	else
1768
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1769

1770 1771
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1772

1773
	mutex_unlock(&dev->struct_mutex);
1774

1775
	if (write_domain != 0)
1776 1777
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1778

C
Chris Wilson 已提交
1779
out_unpin:
1780
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1781 1782
out:
	i915_gem_object_put(obj);
1783
	return err;
1784 1785 1786 1787
}

/**
 * Called when user space has done writes to this buffer
1788 1789 1790
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1791 1792 1793
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1794
			 struct drm_file *file)
1795 1796
{
	struct drm_i915_gem_sw_finish *args = data;
1797
	struct drm_i915_gem_object *obj;
1798

1799
	obj = i915_gem_object_lookup(file, args->handle);
1800 1801
	if (!obj)
		return -ENOENT;
1802

T
Tina Zhang 已提交
1803 1804 1805 1806 1807
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1808
	/* Pinned buffers may be scanout, so flush the cache */
1809
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1810
	i915_gem_object_put(obj);
1811 1812

	return 0;
1813 1814 1815
}

/**
1816 1817 1818 1819 1820
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1821 1822 1823
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1834 1835 1836
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1837
		    struct drm_file *file)
1838 1839
{
	struct drm_i915_gem_mmap *args = data;
1840
	struct drm_i915_gem_object *obj;
1841 1842
	unsigned long addr;

1843 1844 1845
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1846
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1847 1848
		return -ENODEV;

1849 1850
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1851
		return -ENOENT;
1852

1853 1854 1855
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1856
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1857
		i915_gem_object_put(obj);
1858
		return -ENXIO;
1859 1860
	}

1861
	addr = vm_mmap(obj->base.filp, 0, args->size,
1862 1863
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1864 1865 1866 1867
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1868
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1869
			i915_gem_object_put(obj);
1870 1871
			return -EINTR;
		}
1872 1873 1874 1875 1876 1877 1878
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1879 1880

		/* This may race, but that's ok, it only gets set */
1881
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1882
	}
C
Chris Wilson 已提交
1883
	i915_gem_object_put(obj);
1884 1885 1886 1887 1888 1889 1890 1891
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1892 1893
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1894
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1917 1918 1919
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1947
	return 2;
1948 1949
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1961 1962
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1963
		min_t(unsigned int, chunk,
1964
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1965 1966 1967 1968 1969 1970 1971 1972

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1973 1974
/**
 * i915_gem_fault - fault a page into the GTT
1975
 * @vmf: fault info
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1987 1988 1989
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1990
 */
1991
int i915_gem_fault(struct vm_fault *vmf)
1992
{
1993
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1994
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1995
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1996
	struct drm_device *dev = obj->base.dev;
1997 1998
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1999
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2000
	struct i915_vma *vma;
2001
	pgoff_t page_offset;
2002
	unsigned int flags;
2003
	int ret;
2004

2005
	/* We don't use vmf->pgoff since that has the fake offset */
2006
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2007

C
Chris Wilson 已提交
2008 2009
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2010
	/* Try to flush the object off the GPU first without holding the lock.
2011
	 * Upon acquiring the lock, we will perform our sanity checks and then
2012 2013 2014
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2015 2016 2017 2018
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2019
	if (ret)
2020 2021
		goto err;

2022 2023 2024 2025
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2026 2027 2028 2029 2030
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2031

2032
	/* Access to snoopable pages through the GTT is incoherent. */
2033
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2034
		ret = -EFAULT;
2035
		goto err_unlock;
2036 2037
	}

2038 2039 2040 2041 2042 2043 2044 2045
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

2046
	/* Now pin it into the GTT as needed */
2047
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2048 2049
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2050
		struct i915_ggtt_view view =
2051
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2052

2053 2054 2055 2056 2057
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2058 2059
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
2060 2061
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2062
		goto err_unlock;
C
Chris Wilson 已提交
2063
	}
2064

2065 2066
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2067
		goto err_unpin;
2068

2069
	ret = i915_vma_pin_fence(vma);
2070
	if (ret)
2071
		goto err_unpin;
2072

2073
	/* Finally, remap it using the new GTT offset */
2074
	ret = remap_io_mapping(area,
2075
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2076
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2077
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2078
			       &ggtt->iomap);
2079 2080
	if (ret)
		goto err_fence;
2081

2082 2083 2084 2085 2086 2087
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2088 2089
	i915_vma_set_ggtt_write(vma);

2090
err_fence:
2091
	i915_vma_unpin_fence(vma);
2092
err_unpin:
C
Chris Wilson 已提交
2093
	__i915_vma_unpin(vma);
2094
err_unlock:
2095
	mutex_unlock(&dev->struct_mutex);
2096 2097
err_rpm:
	intel_runtime_pm_put(dev_priv);
2098
	i915_gem_object_unpin_pages(obj);
2099
err:
2100
	switch (ret) {
2101
	case -EIO:
2102 2103 2104 2105 2106 2107 2108
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2109 2110 2111
			ret = VM_FAULT_SIGBUS;
			break;
		}
2112
	case -EAGAIN:
D
Daniel Vetter 已提交
2113 2114 2115 2116
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2117
		 */
2118 2119
	case 0:
	case -ERESTARTSYS:
2120
	case -EINTR:
2121 2122 2123 2124 2125
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2126 2127
		ret = VM_FAULT_NOPAGE;
		break;
2128
	case -ENOMEM:
2129 2130
		ret = VM_FAULT_OOM;
		break;
2131
	case -ENOSPC:
2132
	case -EFAULT:
2133 2134
		ret = VM_FAULT_SIGBUS;
		break;
2135
	default:
2136
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2137 2138
		ret = VM_FAULT_SIGBUS;
		break;
2139
	}
2140
	return ret;
2141 2142
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2154
	for_each_ggtt_vma(vma, obj)
2155 2156 2157
		i915_vma_unset_userfault(vma);
}

2158 2159 2160 2161
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2162
 * Preserve the reservation of the mmapping with the DRM core code, but
2163 2164 2165 2166 2167 2168 2169 2170 2171
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2172
void
2173
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2174
{
2175 2176
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2177 2178 2179
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2180 2181 2182 2183
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2184
	 */
2185
	lockdep_assert_held(&i915->drm.struct_mutex);
2186
	intel_runtime_pm_get(i915);
2187

2188
	if (!obj->userfault_count)
2189
		goto out;
2190

2191
	__i915_gem_object_release_mmap(obj);
2192 2193 2194 2195 2196 2197 2198 2199 2200

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2201 2202 2203

out:
	intel_runtime_pm_put(i915);
2204 2205
}

2206
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2207
{
2208
	struct drm_i915_gem_object *obj, *on;
2209
	int i;
2210

2211 2212 2213 2214 2215 2216
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2217

2218
	list_for_each_entry_safe(obj, on,
2219 2220
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2221 2222 2223 2224 2225 2226 2227 2228

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2239 2240 2241 2242

		if (!reg->vma)
			continue;

2243
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2244 2245
		reg->dirty = true;
	}
2246 2247
}

2248 2249
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2250
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2251
	int err;
2252

2253
	err = drm_gem_create_mmap_offset(&obj->base);
2254
	if (likely(!err))
2255
		return 0;
2256

2257 2258 2259 2260 2261
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2262

2263
		i915_gem_drain_freed_objects(dev_priv);
2264
		err = drm_gem_create_mmap_offset(&obj->base);
2265 2266 2267 2268
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2269

2270
	return err;
2271 2272 2273 2274 2275 2276 2277
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2278
int
2279 2280
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2281
		  uint32_t handle,
2282
		  uint64_t *offset)
2283
{
2284
	struct drm_i915_gem_object *obj;
2285 2286
	int ret;

2287
	obj = i915_gem_object_lookup(file, handle);
2288 2289
	if (!obj)
		return -ENOENT;
2290

2291
	ret = i915_gem_object_create_mmap_offset(obj);
2292 2293
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2294

C
Chris Wilson 已提交
2295
	i915_gem_object_put(obj);
2296
	return ret;
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2320
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2321 2322
}

D
Daniel Vetter 已提交
2323 2324 2325
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2326
{
2327
	i915_gem_object_free_mmap_offset(obj);
2328

2329 2330
	if (obj->base.filp == NULL)
		return;
2331

D
Daniel Vetter 已提交
2332 2333 2334 2335 2336
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2337
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2338
	obj->mm.madv = __I915_MADV_PURGED;
2339
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2340
}
2341

2342
/* Try to discard unwanted pages */
2343
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2344
{
2345 2346
	struct address_space *mapping;

2347
	lockdep_assert_held(&obj->mm.lock);
2348
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2349

C
Chris Wilson 已提交
2350
	switch (obj->mm.madv) {
2351 2352 2353 2354 2355 2356 2357 2358 2359
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2360
	mapping = obj->base.filp->f_mapping,
2361
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2362 2363
}

2364
static void
2365 2366
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2367
{
2368 2369
	struct sgt_iter sgt_iter;
	struct page *page;
2370

2371
	__i915_gem_object_release_shmem(obj, pages, true);
2372

2373
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2374

2375
	if (i915_gem_object_needs_bit17_swizzle(obj))
2376
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2377

2378
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2379
		if (obj->mm.dirty)
2380
			set_page_dirty(page);
2381

C
Chris Wilson 已提交
2382
		if (obj->mm.madv == I915_MADV_WILLNEED)
2383
			mark_page_accessed(page);
2384

2385
		put_page(page);
2386
	}
C
Chris Wilson 已提交
2387
	obj->mm.dirty = false;
2388

2389 2390
	sg_free_table(pages);
	kfree(pages);
2391
}
C
Chris Wilson 已提交
2392

2393 2394 2395
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2396
	void __rcu **slot;
2397

2398
	rcu_read_lock();
C
Chris Wilson 已提交
2399 2400
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2401
	rcu_read_unlock();
2402 2403
}

2404 2405
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2406
{
2407
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2408
	struct sg_table *pages;
2409

C
Chris Wilson 已提交
2410
	if (i915_gem_object_has_pinned_pages(obj))
2411
		return;
2412

2413
	GEM_BUG_ON(obj->bind_count);
2414
	if (!i915_gem_object_has_pages(obj))
2415 2416 2417
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2418
	mutex_lock_nested(&obj->mm.lock, subclass);
2419 2420
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2421

2422 2423 2424
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2425 2426
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2427

2428 2429 2430 2431
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2432
	if (obj->mm.mapping) {
2433 2434
		void *ptr;

2435
		ptr = page_mask_bits(obj->mm.mapping);
2436 2437
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2438
		else
2439 2440
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2441
		obj->mm.mapping = NULL;
2442 2443
	}

2444 2445
	__i915_gem_object_reset_page_iter(obj);

2446 2447 2448
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2449 2450
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2451 2452
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2453 2454
}

2455
static bool i915_sg_trim(struct sg_table *orig_st)
2456 2457 2458 2459 2460 2461
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2462
		return false;
2463

2464
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2465
		return false;
2466 2467 2468 2469 2470 2471 2472

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2473
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2474 2475 2476 2477

	sg_free_table(orig_st);

	*orig_st = new_st;
2478
	return true;
2479 2480
}

2481
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2482
{
2483
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2484 2485
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2486
	struct address_space *mapping;
2487 2488
	struct sg_table *st;
	struct scatterlist *sg;
2489
	struct sgt_iter sgt_iter;
2490
	struct page *page;
2491
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2492
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2493
	unsigned int sg_page_sizes;
2494
	gfp_t noreclaim;
I
Imre Deak 已提交
2495
	int ret;
2496

C
Chris Wilson 已提交
2497 2498 2499 2500
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2501 2502
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2503

2504 2505
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2506
		return -ENOMEM;
2507

2508
rebuild_st:
2509 2510
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2511
		return -ENOMEM;
2512
	}
2513

2514 2515 2516 2517 2518
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2519
	mapping = obj->base.filp->f_mapping;
2520
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2521 2522
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2523 2524
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2525
	sg_page_sizes = 0;
2526
	for (i = 0; i < page_count; i++) {
2527 2528 2529 2530 2531 2532 2533
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2534
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2535 2536 2537 2538 2539 2540 2541 2542
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2543
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2544
			cond_resched();
2545

C
Chris Wilson 已提交
2546 2547 2548
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2549 2550 2551 2552
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2553
			 */
2554 2555 2556
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2569
				 * this we want __GFP_RETRY_MAYFAIL.
2570
				 */
M
Michal Hocko 已提交
2571
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2572
			}
2573 2574
		} while (1);

2575 2576 2577
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2578
			if (i) {
M
Matthew Auld 已提交
2579
				sg_page_sizes |= sg->length;
2580
				sg = sg_next(sg);
2581
			}
2582 2583 2584 2585 2586 2587
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2588 2589 2590

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2591
	}
2592
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2593
		sg_page_sizes |= sg->length;
2594
		sg_mark_end(sg);
2595
	}
2596

2597 2598 2599
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2600
	ret = i915_gem_gtt_prepare_pages(obj, st);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2620

2621
	if (i915_gem_object_needs_bit17_swizzle(obj))
2622
		i915_gem_object_do_bit_17_swizzle(obj, st);
2623

M
Matthew Auld 已提交
2624
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2625 2626

	return 0;
2627

2628
err_sg:
2629
	sg_mark_end(sg);
2630
err_pages:
2631 2632
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2633 2634
	sg_free_table(st);
	kfree(st);
2635 2636 2637 2638 2639 2640 2641 2642 2643

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2644 2645 2646
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2647
	return ret;
2648 2649 2650
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2651
				 struct sg_table *pages,
M
Matthew Auld 已提交
2652
				 unsigned int sg_page_sizes)
2653
{
2654 2655 2656 2657
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2658
	lockdep_assert_held(&obj->mm.lock);
2659 2660 2661 2662 2663

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2664 2665

	if (i915_gem_object_is_tiled(obj) &&
2666
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2667 2668 2669 2670
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2671

M
Matthew Auld 已提交
2672 2673
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2674 2675

	/*
M
Matthew Auld 已提交
2676 2677 2678 2679 2680 2681
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2682 2683 2684 2685 2686 2687 2688
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2689 2690 2691 2692

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2693 2694 2695 2696
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2697
	int err;
2698 2699 2700 2701 2702 2703

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2704
	err = obj->ops->get_pages(obj);
2705
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2706

2707
	return err;
2708 2709
}

2710
/* Ensure that the associated pages are gathered from the backing storage
2711
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2712
 * multiple times before they are released by a single call to
2713
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2714 2715 2716
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2717
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2718
{
2719
	int err;
2720

2721 2722 2723
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2724

2725
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2726 2727
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2728 2729 2730
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2731

2732 2733 2734
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2735

2736 2737
unlock:
	mutex_unlock(&obj->mm.lock);
2738
	return err;
2739 2740
}

2741
/* The 'mapping' part of i915_gem_object_pin_map() below */
2742 2743
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2744 2745
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2746
	struct sg_table *sgt = obj->mm.pages;
2747 2748
	struct sgt_iter sgt_iter;
	struct page *page;
2749 2750
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2751
	unsigned long i = 0;
2752
	pgprot_t pgprot;
2753 2754 2755
	void *addr;

	/* A single page can always be kmapped */
2756
	if (n_pages == 1 && type == I915_MAP_WB)
2757 2758
		return kmap(sg_page(sgt->sgl));

2759 2760
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2761
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2762 2763 2764
		if (!pages)
			return NULL;
	}
2765

2766 2767
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2768 2769 2770 2771

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2772
	switch (type) {
2773 2774 2775
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2776 2777 2778 2779 2780 2781 2782 2783
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2784

2785
	if (pages != stack_pages)
M
Michal Hocko 已提交
2786
		kvfree(pages);
2787 2788 2789 2790 2791

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2792 2793
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2794
{
2795 2796 2797
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2798 2799
	int ret;

T
Tina Zhang 已提交
2800 2801
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2802

2803
	ret = mutex_lock_interruptible(&obj->mm.lock);
2804 2805 2806
	if (ret)
		return ERR_PTR(ret);

2807 2808 2809
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2810
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2811
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2812 2813
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2814 2815 2816
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2817

2818 2819 2820
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2821 2822
		pinned = false;
	}
2823
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2824

2825
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2826 2827 2828
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2829
			goto err_unpin;
2830
		}
2831 2832 2833 2834 2835 2836

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2837
		ptr = obj->mm.mapping = NULL;
2838 2839
	}

2840 2841 2842 2843
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2844
			goto err_unpin;
2845 2846
		}

2847
		obj->mm.mapping = page_pack_bits(ptr, type);
2848 2849
	}

2850 2851
out_unlock:
	mutex_unlock(&obj->mm.lock);
2852 2853
	return ptr;

2854 2855 2856 2857 2858
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2859 2860
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2878
	if (i915_gem_object_has_pages(obj))
2879 2880
		return -ENODEV;

2881 2882 2883
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2933
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2934
{
2935
	bool banned;
2936

2937
	atomic_inc(&ctx->guilty_count);
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2950
	if (!banned)
2951 2952
		return;

2953 2954 2955 2956 2957 2958
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2959 2960 2961 2962
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2963
	atomic_inc(&ctx->active_count);
2964 2965
}

2966
struct i915_request *
2967
i915_gem_find_active_request(struct intel_engine_cs *engine)
2968
{
2969
	struct i915_request *request, *active = NULL;
2970
	unsigned long flags;
2971

2972 2973 2974 2975 2976 2977 2978 2979
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2980
	spin_lock_irqsave(&engine->timeline->lock, flags);
2981
	list_for_each_entry(request, &engine->timeline->requests, link) {
2982
		if (__i915_request_completed(request, request->global_seqno))
2983
			continue;
2984

2985
		GEM_BUG_ON(request->engine != engine);
2986 2987
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2988 2989 2990

		active = request;
		break;
2991
	}
2992
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2993

2994
	return active;
2995 2996
}

2997 2998 2999 3000
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3001
struct i915_request *
3002 3003
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3004
	struct i915_request *request = NULL;
3005

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

3027 3028
	/*
	 * Prevent request submission to the hardware until we have
3029 3030
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
3031
	 * to a second via its execlists->tasklet *just* as we are
3032
	 * calling engine->init_hw() and also writing the ELSP.
3033
	 * Turning off the execlists->tasklet until the reset is over
3034
	 * prevents the race.
3035 3036 3037 3038 3039 3040 3041
	 *
	 * Note that this needs to be a single atomic operation on the
	 * tasklet (flush existing tasks, prevent new tasks) to prevent
	 * a race between reset and set-wedged. It is not, so we do the best
	 * we can atm and make sure we don't lock the machine up in the more
	 * common case of recursively being called from set-wedged from inside
	 * i915_reset.
3042
	 */
3043 3044
	if (!atomic_read(&engine->execlists.tasklet.count))
		tasklet_kill(&engine->execlists.tasklet);
3045
	tasklet_disable(&engine->execlists.tasklet);
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

3057 3058 3059
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

3060 3061 3062
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3063 3064 3065 3066

	return request;
}

3067
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3068 3069
{
	struct intel_engine_cs *engine;
3070
	struct i915_request *request;
3071
	enum intel_engine_id id;
3072
	int err = 0;
3073

3074
	for_each_engine(engine, dev_priv, id) {
3075 3076 3077 3078
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3079
		}
3080 3081

		engine->hangcheck.active_request = request;
3082 3083
	}

3084
	i915_gem_revoke_fences(dev_priv);
3085
	intel_uc_sanitize(dev_priv);
3086 3087

	return err;
3088 3089
}

3090
static void skip_request(struct i915_request *request)
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3105 3106

	dma_fence_set_error(&request->fence, -EIO);
3107 3108
}

3109
static void engine_skip_context(struct i915_request *request)
3110 3111 3112
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
3113
	struct intel_timeline *timeline = request->timeline;
3114 3115
	unsigned long flags;

3116
	GEM_BUG_ON(timeline == engine->timeline);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

3132
/* Returns the request if it was guilty of the hang */
3133
static struct i915_request *
3134
i915_gem_reset_request(struct intel_engine_cs *engine,
3135 3136
		       struct i915_request *request,
		       bool stalled)
3137
{
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3159 3160 3161 3162 3163 3164 3165 3166 3167
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
3168 3169
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3170 3171 3172 3173

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3174
	} else {
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3192 3193
	}

3194
	return request;
3195 3196
}

3197
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3198 3199
			   struct i915_request *request,
			   bool stalled)
3200
{
3201 3202 3203 3204 3205 3206
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3207

3208
	if (request)
3209
		request = i915_gem_reset_request(engine, request, stalled);
3210 3211

	if (request) {
3212 3213 3214
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3215 3216 3217

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3218
}
3219

3220 3221
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3222
{
3223
	struct intel_engine_cs *engine;
3224
	enum intel_engine_id id;
3225

3226 3227
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3228
	i915_retire_requests(dev_priv);
3229

3230 3231 3232
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3233 3234
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3235
				      stalled_mask & ENGINE_MASK(id));
3236 3237
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
3238
			intel_context_unpin(ctx, engine);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3250
		if (intel_engine_is_idle(engine)) {
3251
			struct i915_request *rq;
3252

3253 3254
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3255
			if (!IS_ERR(rq))
3256
				__i915_request_add(rq, false);
3257
		}
3258
	}
3259

3260
	i915_gem_restore_fences(dev_priv);
3261 3262
}

3263 3264
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3265
	tasklet_enable(&engine->execlists.tasklet);
3266
	kthread_unpark(engine->breadcrumbs.signaler);
3267 3268

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3269 3270
}

3271 3272
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3273 3274 3275
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3276
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3277

3278
	for_each_engine(engine, dev_priv, id) {
3279
		engine->hangcheck.active_request = NULL;
3280
		i915_gem_reset_finish_engine(engine);
3281
	}
3282 3283
}

3284
static void nop_submit_request(struct i915_request *request)
3285
{
3286 3287 3288
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3289 3290
	dma_fence_set_error(&request->fence, -EIO);

3291
	i915_request_submit(request);
3292 3293
}

3294
static void nop_complete_submit_request(struct i915_request *request)
3295
{
3296 3297
	unsigned long flags;

3298 3299 3300
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3301
	dma_fence_set_error(&request->fence, -EIO);
3302 3303

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3304
	__i915_request_submit(request);
3305
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3306
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3307 3308
}

3309
void i915_gem_set_wedged(struct drm_i915_private *i915)
3310
{
3311 3312 3313
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3314 3315
	GEM_TRACE("start\n");

3316
	if (GEM_SHOW_DEBUG()) {
3317 3318 3319 3320 3321 3322
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3323 3324 3325
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3326 3327 3328 3329 3330
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3331 3332
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3333

3334
		engine->submit_request = nop_submit_request;
3335
		engine->schedule = NULL;
3336
	}
3337
	i915->caps.scheduler = 0;
3338

3339 3340 3341
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3342 3343 3344 3345
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3346
	 */
3347
	synchronize_rcu();
3348

3349 3350 3351
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3364
	 */
3365
	synchronize_rcu();
3366

3367 3368
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3369

3370 3371
		/*
		 * Mark all pending requests as complete so that any concurrent
3372 3373 3374 3375 3376 3377 3378
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
		spin_lock_irqsave(&engine->timeline->lock, flags);
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3379 3380

		i915_gem_reset_finish_engine(engine);
3381
	}
3382

3383 3384
	GEM_TRACE("end\n");

3385
	wake_up_all(&i915->gpu_error.reset_queue);
3386 3387
}

3388 3389 3390 3391 3392 3393 3394 3395 3396
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3397 3398
	GEM_TRACE("start\n");

3399 3400
	/*
	 * Before unwedging, make sure that all pending operations
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3411
			struct i915_request *rq;
3412 3413 3414 3415 3416 3417

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

3418 3419
			/*
			 * We can't use our normal waiter as we want to
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}
3434 3435
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3436

3437 3438
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3439 3440 3441 3442 3443 3444 3445 3446
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3447
	i915_gem_contexts_lost(i915);
3448

3449 3450
	GEM_TRACE("end\n");

3451 3452 3453 3454 3455 3456
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3457
static void
3458 3459
i915_gem_retire_work_handler(struct work_struct *work)
{
3460
	struct drm_i915_private *dev_priv =
3461
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3462
	struct drm_device *dev = &dev_priv->drm;
3463

3464
	/* Come back later if the device is busy... */
3465
	if (mutex_trylock(&dev->struct_mutex)) {
3466
		i915_retire_requests(dev_priv);
3467
		mutex_unlock(&dev->struct_mutex);
3468
	}
3469

3470 3471
	/*
	 * Keep the retire handler running until we are finally idle.
3472 3473 3474
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3475
	if (READ_ONCE(dev_priv->gt.awake))
3476 3477
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3478
				   round_jiffies_up_relative(HZ));
3479
}
3480

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3540 3541 3542 3543 3544 3545 3546
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3547 3548 3549 3550
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3551
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3552
	unsigned int epoch = I915_EPOCH_INVALID;
3553 3554 3555 3556 3557
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3558 3559
	/*
	 * Wait for last execlists context complete, but bail out in case a
3560 3561 3562 3563 3564
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3565
	 */
3566 3567 3568 3569
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3570 3571 3572 3573

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3574
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3575 3576 3577 3578 3579 3580 3581
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3582 3583 3584 3585
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3586
	if (new_requests_since_last_retire(dev_priv))
3587
		goto out_unlock;
3588

3589
	epoch = __i915_gem_park(dev_priv);
3590

3591 3592
	rearm_hangcheck = false;
out_unlock:
3593
	mutex_unlock(&dev_priv->drm.struct_mutex);
3594

3595 3596 3597 3598
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3599
	}
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3617 3618
}

3619 3620
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3621
	struct drm_i915_private *i915 = to_i915(gem->dev);
3622 3623
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3624
	struct i915_lut_handle *lut, *ln;
3625

3626 3627 3628 3629 3630 3631
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3632
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3633 3634 3635 3636
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3637 3638 3639 3640 3641 3642 3643
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3644
			i915_vma_close(vma);
3645

3646 3647
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3648

3649 3650
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3651
	}
3652 3653

	mutex_unlock(&i915->drm.struct_mutex);
3654 3655
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3667 3668
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3669 3670 3671
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3672 3673 3674 3675 3676 3677 3678
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3679
 *  -EAGAIN: incomplete, restart syscall
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3696 3697
	ktime_t start;
	long ret;
3698

3699 3700 3701
	if (args->flags != 0)
		return -EINVAL;

3702
	obj = i915_gem_object_lookup(file, args->bo_handle);
3703
	if (!obj)
3704 3705
		return -ENOENT;

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3727 3728 3729 3730

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3731 3732
	}

C
Chris Wilson 已提交
3733
	i915_gem_object_put(obj);
3734
	return ret;
3735 3736
}

3737
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3738
{
3739
	int ret, i;
3740

3741 3742 3743 3744 3745
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3746

3747 3748 3749
	return 0;
}

3750 3751
static int wait_for_engines(struct drm_i915_private *i915)
{
3752
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3753 3754
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3755
		GEM_TRACE_DUMP();
3756 3757
		i915_gem_set_wedged(i915);
		return -EIO;
3758 3759 3760 3761 3762
	}

	return 0;
}

3763 3764 3765 3766
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3767 3768 3769 3770
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3781
		i915_retire_requests(i915);
3782 3783

		ret = wait_for_engines(i915);
3784
	} else {
3785
		ret = wait_for_timeline(&i915->gt.execution_timeline, flags);
3786
	}
3787

3788
	return ret;
3789 3790
}

3791 3792
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3793 3794 3795 3796 3797 3798 3799
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3800
	obj->write_domain = 0;
3801 3802 3803 3804
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3805
	if (!READ_ONCE(obj->pin_global))
3806 3807 3808 3809 3810 3811 3812
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3837
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3858
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3859 3860 3861 3862 3863
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3864 3865
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3866
	if (write) {
3867 3868
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3869 3870 3871 3872 3873 3874 3875
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3876 3877
/**
 * Moves a single object to the GTT read, and possibly write domain.
3878 3879
 * @obj: object to act on
 * @write: ask for write access or read only
3880 3881 3882 3883
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3884
int
3885
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3886
{
3887
	int ret;
3888

3889
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3890

3891 3892 3893 3894 3895 3896
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3897 3898 3899
	if (ret)
		return ret;

3900
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3901 3902
		return 0;

3903 3904 3905 3906 3907 3908 3909 3910
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3911
	ret = i915_gem_object_pin_pages(obj);
3912 3913 3914
	if (ret)
		return ret;

3915
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3916

3917 3918 3919 3920
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3921
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3922 3923
		mb();

3924 3925 3926
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3927 3928
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3929
	if (write) {
3930 3931
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3932
		obj->mm.dirty = true;
3933 3934
	}

C
Chris Wilson 已提交
3935
	i915_gem_object_unpin_pages(obj);
3936 3937 3938
	return 0;
}

3939 3940
/**
 * Changes the cache-level of an object across all VMA.
3941 3942
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3954 3955 3956
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3957
	struct i915_vma *vma;
3958
	int ret;
3959

3960 3961
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3962
	if (obj->cache_level == cache_level)
3963
		return 0;
3964

3965 3966 3967 3968 3969
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3970 3971
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3972 3973 3974
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3975
		if (i915_vma_is_pinned(vma)) {
3976 3977 3978 3979
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3980 3981
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3993 3994
	}

3995 3996 3997 3998 3999 4000 4001
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4002
	if (obj->bind_count) {
4003 4004 4005 4006
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4007 4008 4009 4010 4011 4012
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4013 4014 4015
		if (ret)
			return ret;

4016 4017
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4034
			for_each_ggtt_vma(vma, obj) {
4035 4036 4037 4038
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4039 4040 4041 4042 4043 4044 4045 4046
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4047 4048
		}

4049
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4050 4051 4052 4053 4054 4055 4056
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4057 4058
	}

4059
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4060
		vma->node.color = cache_level;
4061
	i915_gem_object_set_cache_coherency(obj, cache_level);
4062
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4063

4064 4065 4066
	return 0;
}

B
Ben Widawsky 已提交
4067 4068
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4069
{
B
Ben Widawsky 已提交
4070
	struct drm_i915_gem_caching *args = data;
4071
	struct drm_i915_gem_object *obj;
4072
	int err = 0;
4073

4074 4075 4076 4077 4078 4079
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4080

4081 4082 4083 4084 4085 4086
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4087 4088 4089 4090
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4091 4092 4093 4094
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4095 4096 4097
out:
	rcu_read_unlock();
	return err;
4098 4099
}

B
Ben Widawsky 已提交
4100 4101
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4102
{
4103
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4104
	struct drm_i915_gem_caching *args = data;
4105 4106
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4107
	int ret = 0;
4108

B
Ben Widawsky 已提交
4109 4110
	switch (args->caching) {
	case I915_CACHING_NONE:
4111 4112
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4113
	case I915_CACHING_CACHED:
4114 4115 4116 4117 4118 4119
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4120
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4121 4122
			return -ENODEV;

4123 4124
		level = I915_CACHE_LLC;
		break;
4125
	case I915_CACHING_DISPLAY:
4126
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4127
		break;
4128 4129 4130 4131
	default:
		return -EINVAL;
	}

4132 4133 4134 4135
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4145 4146 4147 4148 4149 4150 4151
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4152
	if (ret)
4153
		goto out;
B
Ben Widawsky 已提交
4154

4155 4156 4157
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4158 4159 4160

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4161 4162 4163

out:
	i915_gem_object_put(obj);
4164 4165 4166
	return ret;
}

4167
/*
4168 4169 4170 4171
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4172
 */
C
Chris Wilson 已提交
4173
struct i915_vma *
4174 4175
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4176 4177
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4178
{
C
Chris Wilson 已提交
4179
	struct i915_vma *vma;
4180 4181
	int ret;

4182 4183
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4184
	/* Mark the global pin early so that we account for the
4185 4186
	 * display coherency whilst setting up the cache domains.
	 */
4187
	obj->pin_global++;
4188

4189 4190 4191 4192 4193 4194 4195 4196 4197
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4198
	ret = i915_gem_object_set_cache_level(obj,
4199 4200
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4201 4202
	if (ret) {
		vma = ERR_PTR(ret);
4203
		goto err_unpin_global;
C
Chris Wilson 已提交
4204
	}
4205

4206 4207
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4208 4209 4210 4211
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4212
	 */
4213
	vma = ERR_PTR(-ENOSPC);
4214 4215
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4216
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4217 4218 4219 4220
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4221
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4222
	if (IS_ERR(vma))
4223
		goto err_unpin_global;
4224

4225 4226
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4227
	__i915_gem_object_flush_for_display(obj);
4228

4229 4230 4231
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4232
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4233

C
Chris Wilson 已提交
4234
	return vma;
4235

4236 4237
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4238
	return vma;
4239 4240 4241
}

void
C
Chris Wilson 已提交
4242
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4243
{
4244
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4245

4246
	if (WARN_ON(vma->obj->pin_global == 0))
4247 4248
		return;

4249
	if (--vma->obj->pin_global == 0)
4250
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4251

4252
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4253
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4254

C
Chris Wilson 已提交
4255
	i915_vma_unpin(vma);
4256 4257
}

4258 4259
/**
 * Moves a single object to the CPU read, and possibly write domain.
4260 4261
 * @obj: object to act on
 * @write: requesting write or read-only access
4262 4263 4264 4265
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4266
int
4267
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4268 4269 4270
{
	int ret;

4271
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4272

4273 4274 4275 4276 4277 4278
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4279 4280 4281
	if (ret)
		return ret;

4282
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4283

4284
	/* Flush the CPU cache if it's still invalid. */
4285
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4286
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4287
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4288 4289 4290 4291 4292
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4293
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4294 4295 4296 4297

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4298 4299
	if (write)
		__start_cpu_write(obj);
4300 4301 4302 4303

	return 0;
}

4304 4305 4306
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4307 4308 4309 4310
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4311 4312 4313
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4314
static int
4315
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4316
{
4317
	struct drm_i915_private *dev_priv = to_i915(dev);
4318
	struct drm_i915_file_private *file_priv = file->driver_priv;
4319
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4320
	struct i915_request *request, *target = NULL;
4321
	long ret;
4322

4323 4324 4325
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4326

4327
	spin_lock(&file_priv->mm.lock);
4328
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4329 4330
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4331

4332 4333 4334 4335
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4336

4337
		target = request;
4338
	}
4339
	if (target)
4340
		i915_request_get(target);
4341
	spin_unlock(&file_priv->mm.lock);
4342

4343
	if (target == NULL)
4344
		return 0;
4345

4346
	ret = i915_request_wait(target,
4347 4348
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4349
	i915_request_put(target);
4350

4351
	return ret < 0 ? ret : 0;
4352 4353
}

C
Chris Wilson 已提交
4354
struct i915_vma *
4355 4356
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4357
			 u64 size,
4358 4359
			 u64 alignment,
			 u64 flags)
4360
{
4361 4362
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4363 4364
	struct i915_vma *vma;
	int ret;
4365

4366 4367
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4368 4369
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4400
	vma = i915_vma_instance(obj, vm, view);
4401
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4402
		return vma;
4403 4404

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4405 4406 4407
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4408

4409
			if (flags & PIN_MAPPABLE &&
4410
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4411 4412 4413
				return ERR_PTR(-ENOSPC);
		}

4414 4415
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4416 4417 4418
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4419
		     !!(flags & PIN_MAPPABLE),
4420
		     i915_vma_is_map_and_fenceable(vma));
4421 4422
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4423
			return ERR_PTR(ret);
4424 4425
	}

C
Chris Wilson 已提交
4426 4427 4428
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4429

C
Chris Wilson 已提交
4430
	return vma;
4431 4432
}

4433
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4448 4449 4450 4451 4452 4453 4454 4455 4456
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4457 4458
}

4459
static __always_inline unsigned int
4460
__busy_set_if_active(const struct dma_fence *fence,
4461 4462
		     unsigned int (*flag)(unsigned int id))
{
4463
	struct i915_request *rq;
4464

4465 4466 4467 4468
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4469
	 *
4470
	 * Note we only report on the status of native fences.
4471
	 */
4472 4473 4474 4475
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4476 4477
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4478 4479
		return 0;

4480
	return flag(rq->engine->uabi_id);
4481 4482
}

4483
static __always_inline unsigned int
4484
busy_check_reader(const struct dma_fence *fence)
4485
{
4486
	return __busy_set_if_active(fence, __busy_read_flag);
4487 4488
}

4489
static __always_inline unsigned int
4490
busy_check_writer(const struct dma_fence *fence)
4491
{
4492 4493 4494 4495
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4496 4497
}

4498 4499
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4500
		    struct drm_file *file)
4501 4502
{
	struct drm_i915_gem_busy *args = data;
4503
	struct drm_i915_gem_object *obj;
4504 4505
	struct reservation_object_list *list;
	unsigned int seq;
4506
	int err;
4507

4508
	err = -ENOENT;
4509 4510
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4511
	if (!obj)
4512
		goto out;
4513

4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4532

4533 4534
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4535

4536 4537 4538 4539
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4540

4541 4542 4543 4544 4545 4546
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4547
	}
4548

4549 4550 4551 4552
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4553 4554 4555
out:
	rcu_read_unlock();
	return err;
4556 4557 4558 4559 4560 4561
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4562
	return i915_gem_ring_throttle(dev, file_priv);
4563 4564
}

4565 4566 4567 4568
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4569
	struct drm_i915_private *dev_priv = to_i915(dev);
4570
	struct drm_i915_gem_madvise *args = data;
4571
	struct drm_i915_gem_object *obj;
4572
	int err;
4573 4574 4575 4576 4577 4578 4579 4580 4581

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4582
	obj = i915_gem_object_lookup(file_priv, args->handle);
4583 4584 4585 4586 4587 4588
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4589

4590
	if (i915_gem_object_has_pages(obj) &&
4591
	    i915_gem_object_is_tiled(obj) &&
4592
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4593 4594
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4595
			__i915_gem_object_unpin_pages(obj);
4596 4597 4598
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4599
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4600
			__i915_gem_object_pin_pages(obj);
4601 4602
			obj->mm.quirked = true;
		}
4603 4604
	}

C
Chris Wilson 已提交
4605 4606
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4607

C
Chris Wilson 已提交
4608
	/* if the object is no longer attached, discard its backing storage */
4609 4610
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4611 4612
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4613
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4614
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4615

4616
out:
4617
	i915_gem_object_put(obj);
4618
	return err;
4619 4620
}

4621
static void
4622
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4623 4624 4625 4626
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4627
	intel_fb_obj_flush(obj, ORIGIN_CS);
4628 4629
}

4630 4631
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4632
{
4633 4634
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4635
	INIT_LIST_HEAD(&obj->vma_list);
4636
	INIT_LIST_HEAD(&obj->lut_list);
4637
	INIT_LIST_HEAD(&obj->batch_pool_link);
4638

4639 4640
	obj->ops = ops;

4641 4642 4643
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4644
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4645
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4646 4647 4648 4649

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4650

4651
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4652 4653
}

4654
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4655 4656
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4657

4658 4659
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4660 4661

	.pwrite = i915_gem_object_pwrite_gtt,
4662 4663
};

M
Matthew Auld 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4688
struct drm_i915_gem_object *
4689
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4690
{
4691
	struct drm_i915_gem_object *obj;
4692
	struct address_space *mapping;
4693
	unsigned int cache_level;
D
Daniel Vetter 已提交
4694
	gfp_t mask;
4695
	int ret;
4696

4697 4698 4699 4700 4701
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4702
	if (size >> PAGE_SHIFT > INT_MAX)
4703 4704 4705 4706 4707
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4708
	obj = i915_gem_object_alloc(dev_priv);
4709
	if (obj == NULL)
4710
		return ERR_PTR(-ENOMEM);
4711

M
Matthew Auld 已提交
4712
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4713 4714
	if (ret)
		goto fail;
4715

4716
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4717
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4718 4719 4720 4721 4722
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4723
	mapping = obj->base.filp->f_mapping;
4724
	mapping_set_gfp_mask(mapping, mask);
4725
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4726

4727
	i915_gem_object_init(obj, &i915_gem_object_ops);
4728

4729 4730
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4731

4732
	if (HAS_LLC(dev_priv))
4733
		/* On some devices, we can have the GPU use the LLC (the CPU
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4745 4746 4747
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4748

4749
	i915_gem_object_set_cache_coherency(obj, cache_level);
4750

4751 4752
	trace_i915_gem_object_create(obj);

4753
	return obj;
4754 4755 4756 4757

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4758 4759
}

4760 4761 4762 4763 4764 4765 4766 4767
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4768
	if (obj->mm.madv != I915_MADV_WILLNEED)
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4784 4785
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4786
{
4787
	struct drm_i915_gem_object *obj, *on;
4788

4789
	intel_runtime_pm_get(i915);
4790
	llist_for_each_entry_safe(obj, on, freed, freed) {
4791 4792 4793 4794
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4795 4796
		mutex_lock(&i915->drm.struct_mutex);

4797 4798 4799 4800 4801 4802 4803
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4804 4805
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4806

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4819
		mutex_unlock(&i915->drm.struct_mutex);
4820 4821

		GEM_BUG_ON(obj->bind_count);
4822
		GEM_BUG_ON(obj->userfault_count);
4823
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4824
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4825 4826 4827

		if (obj->ops->release)
			obj->ops->release(obj);
4828

4829 4830
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4831
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4832
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4833 4834 4835 4836

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4837
		reservation_object_fini(&obj->__builtin_resv);
4838 4839 4840 4841 4842
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4843

4844 4845 4846
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4847 4848
		if (on)
			cond_resched();
4849
	}
4850
	intel_runtime_pm_put(i915);
4851 4852 4853 4854 4855 4856
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4867
		__i915_gem_free_objects(i915, freed);
4868
	}
4869 4870 4871 4872 4873 4874 4875
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4876

4877 4878
	/*
	 * All file-owned VMA should have been released by this point through
4879 4880 4881 4882 4883 4884
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4885

4886
	spin_lock(&i915->mm.free_lock);
4887
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4888 4889
		spin_unlock(&i915->mm.free_lock);

4890
		__i915_gem_free_objects(i915, freed);
4891
		if (need_resched())
4892 4893 4894
			return;

		spin_lock(&i915->mm.free_lock);
4895
	}
4896
	spin_unlock(&i915->mm.free_lock);
4897
}
4898

4899 4900 4901 4902 4903 4904
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4905 4906 4907 4908 4909 4910 4911 4912 4913
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4914 4915
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4916
		queue_work(i915->wq, &i915->mm.free_work);
4917
}
4918

4919 4920 4921
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4922

4923 4924 4925
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4926
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4927
		obj->mm.madv = I915_MADV_DONTNEED;
4928

4929 4930
	/*
	 * Before we free the object, make sure any pure RCU-only
4931 4932 4933 4934
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4935
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4936
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4937 4938
}

4939 4940 4941 4942
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4943 4944
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4945 4946 4947 4948 4949
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4950
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4951
{
4952
	struct i915_gem_context *kernel_context = i915->kernel_context;
4953 4954 4955
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4956 4957 4958 4959
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4960 4961
}

4962 4963
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4964 4965 4966 4967 4968 4969
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4970 4971 4972 4973 4974 4975
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4976
	 * of the reset, so this could be applied to even earlier gen.
4977
	 */
4978 4979
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4980 4981
}

4982
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4983
{
4984
	struct drm_device *dev = &dev_priv->drm;
4985
	int ret;
4986

4987
	intel_runtime_pm_get(dev_priv);
4988 4989
	intel_suspend_gt_powersave(dev_priv);

4990
	mutex_lock(&dev->struct_mutex);
4991 4992 4993 4994 4995 4996 4997 4998 4999

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
5000 5001 5002 5003
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
5004

5005 5006 5007 5008 5009
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
5010

5011 5012
		assert_kernel_context_is_current(dev_priv);
	}
5013
	i915_gem_contexts_lost(dev_priv);
5014 5015
	mutex_unlock(&dev->struct_mutex);

5016
	intel_uc_suspend(dev_priv);
5017

5018
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5019
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5020 5021 5022 5023

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
5024
	drain_delayed_work(&dev_priv->gt.idle_work);
5025

5026 5027 5028
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5029
	WARN_ON(dev_priv->gt.awake);
5030 5031
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5032

5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
5052
	intel_uc_sanitize(dev_priv);
5053
	i915_gem_sanitize(dev_priv);
5054 5055 5056

	intel_runtime_pm_put(dev_priv);
	return 0;
5057

5058
err_unlock:
5059
	mutex_unlock(&dev->struct_mutex);
5060
	intel_runtime_pm_put(dev_priv);
5061
	return ret;
5062 5063
}

5064
void i915_gem_resume(struct drm_i915_private *i915)
5065
{
5066
	WARN_ON(i915->gt.awake);
5067

5068 5069
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5070

5071 5072
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5073

5074 5075
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5076 5077 5078
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5079
	i915->gt.resume(i915);
5080

5081 5082 5083
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5084
	intel_uc_resume(i915);
5085

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5096 5097 5098 5099
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5100
	goto out_unlock;
5101 5102
}

5103
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5104
{
5105
	if (INTEL_GEN(dev_priv) < 5 ||
5106 5107 5108 5109 5110 5111
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5112
	if (IS_GEN5(dev_priv))
5113 5114
		return;

5115
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5116
	if (IS_GEN6(dev_priv))
5117
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5118
	else if (IS_GEN7(dev_priv))
5119
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5120
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5121
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5122 5123
	else
		BUG();
5124
}
D
Daniel Vetter 已提交
5125

5126
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5127 5128 5129 5130 5131 5132 5133
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5134
static void init_unused_rings(struct drm_i915_private *dev_priv)
5135
{
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5148 5149 5150
	}
}

5151
static int __i915_gem_restart_engines(void *data)
5152
{
5153
	struct drm_i915_private *i915 = data;
5154
	struct intel_engine_cs *engine;
5155
	enum intel_engine_id id;
5156 5157 5158 5159
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5160 5161 5162
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5163
			return err;
5164
		}
5165 5166 5167 5168 5169 5170 5171
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5172
	int ret;
5173

5174 5175
	dev_priv->gt.last_init_time = ktime_get();

5176 5177 5178
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5179
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5180
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5181

5182
	if (IS_HASWELL(dev_priv))
5183
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5184
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5185

5186
	if (HAS_PCH_NOP(dev_priv)) {
5187
		if (IS_IVYBRIDGE(dev_priv)) {
5188 5189 5190
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5191
		} else if (INTEL_GEN(dev_priv) >= 7) {
5192 5193 5194 5195
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5196 5197
	}

5198 5199
	intel_gt_workarounds_apply(dev_priv);

5200
	i915_gem_init_swizzling(dev_priv);
5201

5202 5203 5204 5205 5206 5207
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5208
	init_unused_rings(dev_priv);
5209

5210
	BUG_ON(!dev_priv->kernel_context);
5211 5212 5213 5214
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5215

5216
	ret = i915_ppgtt_init_hw(dev_priv);
5217
	if (ret) {
5218
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5219 5220 5221
		goto out;
	}

5222 5223 5224 5225 5226 5227
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5228 5229
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5230 5231
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5232
		goto out;
5233
	}
5234

5235
	intel_mocs_init_l3cc_table(dev_priv);
5236

5237 5238
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5239 5240
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5241
	return ret;
5242 5243
}

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5265
		struct i915_request *rq;
5266

5267
		rq = i915_request_alloc(engine, ctx);
5268 5269 5270 5271 5272
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5273
		err = 0;
5274 5275 5276
		if (engine->init_context)
			err = engine->init_context(rq);

5277
		__i915_request_add(rq, true);
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5295
		state = to_intel_context(ctx, engine)->state;
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5358
int i915_gem_init(struct drm_i915_private *dev_priv)
5359 5360 5361
{
	int ret;

5362 5363 5364 5365 5366 5367 5368 5369 5370
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5371
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5372

5373
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5374
		dev_priv->gt.resume = intel_lr_context_resume;
5375
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5376 5377 5378
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5379 5380
	}

5381 5382 5383 5384
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5385 5386 5387 5388
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5389
	ret = intel_uc_init_misc(dev_priv);
5390 5391 5392
	if (ret)
		return ret;

5393 5394 5395 5396 5397 5398
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5399
	mutex_lock(&dev_priv->drm.struct_mutex);
5400 5401
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5402
	ret = i915_gem_init_ggtt(dev_priv);
5403 5404 5405 5406
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5407

5408
	ret = i915_gem_contexts_init(dev_priv);
5409 5410 5411 5412
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5413

5414
	ret = intel_engines_init(dev_priv);
5415 5416 5417 5418
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5419

5420 5421
	intel_init_gt_powersave(dev_priv);

5422
	ret = intel_uc_init(dev_priv);
5423
	if (ret)
5424
		goto err_pm;
5425

5426 5427 5428 5429
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5441
	ret = __intel_engines_record_defaults(dev_priv);
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5470 5471
err_uc_init:
	intel_uc_fini(dev_priv);
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5485
	intel_uc_fini_misc(dev_priv);
5486

5487 5488 5489
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5490
	if (ret == -EIO) {
5491 5492
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5493 5494 5495
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5496 5497 5498 5499
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5500
		ret = 0;
5501 5502
	}

5503
	i915_gem_drain_freed_objects(dev_priv);
5504
	return ret;
5505 5506
}

5507 5508 5509 5510 5511
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5512
void
5513
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5514
{
5515
	struct intel_engine_cs *engine;
5516
	enum intel_engine_id id;
5517

5518
	for_each_engine(engine, dev_priv, id)
5519
		dev_priv->gt.cleanup_engine(engine);
5520 5521
}

5522 5523 5524
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5525
	int i;
5526

5527
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5528 5529
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5530
	else if (INTEL_GEN(dev_priv) >= 4 ||
5531 5532
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5533 5534 5535 5536
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5537
	if (intel_vgpu_active(dev_priv))
5538 5539 5540 5541
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5542 5543 5544 5545 5546 5547 5548
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5549
	i915_gem_restore_fences(dev_priv);
5550

5551
	i915_gem_detect_bit_6_swizzle(dev_priv);
5552 5553
}

5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5570
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5571
{
5572
	int err = -ENOMEM;
5573

5574 5575
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5576 5577
		goto err_out;

5578 5579
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5580 5581
		goto err_objects;

5582 5583 5584 5585
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5586
	dev_priv->requests = KMEM_CACHE(i915_request,
5587 5588
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5589
					SLAB_TYPESAFE_BY_RCU);
5590
	if (!dev_priv->requests)
5591
		goto err_luts;
5592

5593 5594 5595 5596 5597 5598
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5599 5600 5601 5602
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5603
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5604 5605 5606
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);

	mutex_lock(&dev_priv->drm.struct_mutex);
5607
	err = i915_gem_timeline_init__global(dev_priv);
5608 5609
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5610
		goto err_priorities;
5611

5612
	i915_gem_init__mm(dev_priv);
5613

5614
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5615
			  i915_gem_retire_work_handler);
5616
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5617
			  i915_gem_idle_work_handler);
5618
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5619
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5620

5621 5622
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5623
	spin_lock_init(&dev_priv->fb_tracking.lock);
5624

M
Matthew Auld 已提交
5625 5626 5627 5628
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5629 5630
	return 0;

5631 5632
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5633 5634
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5635 5636
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5637 5638
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5639 5640 5641 5642 5643 5644
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5645
}
5646

5647
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5648
{
5649
	i915_gem_drain_freed_objects(dev_priv);
5650 5651
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5652
	WARN_ON(dev_priv->mm.object_count);
5653

5654
	mutex_lock(&dev_priv->drm.struct_mutex);
5655 5656
	i915_gem_timeline_fini(&dev_priv->gt.legacy_timeline);
	i915_gem_timeline_fini(&dev_priv->gt.execution_timeline);
5657 5658 5659
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5660
	kmem_cache_destroy(dev_priv->priorities);
5661
	kmem_cache_destroy(dev_priv->dependencies);
5662
	kmem_cache_destroy(dev_priv->requests);
5663
	kmem_cache_destroy(dev_priv->luts);
5664 5665
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5666 5667 5668

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5669 5670

	i915_gemfs_fini(dev_priv);
5671 5672
}

5673 5674
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5675 5676 5677
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5678 5679 5680 5681 5682
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5683 5684 5685
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5686 5687 5688 5689 5690
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5701 5702
	 *
	 * To try and reduce the hibernation image, we manually shrink
5703
	 * the objects as well, see i915_gem_freeze()
5704 5705
	 */

5706
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5707
	i915_gem_drain_freed_objects(dev_priv);
5708

5709
	spin_lock(&dev_priv->mm.obj_lock);
5710
	for (p = phases; *p; p++) {
5711
		list_for_each_entry(obj, *p, mm.link)
5712
			__start_cpu_write(obj);
5713
	}
5714
	spin_unlock(&dev_priv->mm.obj_lock);
5715 5716 5717 5718

	return 0;
}

5719
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5720
{
5721
	struct drm_i915_file_private *file_priv = file->driver_priv;
5722
	struct i915_request *request;
5723 5724 5725 5726 5727

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5728
	spin_lock(&file_priv->mm.lock);
5729
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5730
		request->file_priv = NULL;
5731
	spin_unlock(&file_priv->mm.lock);
5732 5733
}

5734
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5735 5736
{
	struct drm_i915_file_private *file_priv;
5737
	int ret;
5738

5739
	DRM_DEBUG("\n");
5740 5741 5742 5743 5744 5745

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5746
	file_priv->dev_priv = i915;
5747
	file_priv->file = file;
5748 5749 5750 5751

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5752
	file_priv->bsd_engine = -1;
5753

5754
	ret = i915_gem_context_open(i915, file);
5755 5756
	if (ret)
		kfree(file_priv);
5757

5758
	return ret;
5759 5760
}

5761 5762
/**
 * i915_gem_track_fb - update frontbuffer tracking
5763 5764 5765
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5766 5767 5768 5769
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5770 5771 5772 5773
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5774 5775 5776 5777 5778 5779 5780 5781 5782
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5783
	if (old) {
5784 5785
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5786 5787 5788
	}

	if (new) {
5789 5790
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5791 5792 5793
	}
}

5794 5795
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5796
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5797 5798 5799
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5800 5801 5802
	struct file *file;
	size_t offset;
	int err;
5803

5804
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5805
	if (IS_ERR(obj))
5806 5807
		return obj;

5808
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5809

5810 5811 5812 5813 5814 5815
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5816

5817 5818 5819 5820 5821
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5822

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5837 5838 5839 5840

	return obj;

fail:
5841
	i915_gem_object_put(obj);
5842
	return ERR_PTR(err);
5843
}
5844 5845 5846 5847 5848 5849

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5850
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5851 5852 5853 5854 5855
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5856
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5981
	if (!obj->mm.dirty)
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5997

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

6044 6045
	obj->ops = &i915_gem_phys_ops;

6046
	err = ____i915_gem_object_get_pages(obj);
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6066 6067
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6068
#include "selftests/mock_gem_device.c"
6069
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6070
#include "selftests/huge_pages.c"
6071
#include "selftests/i915_gem_object.c"
6072
#include "selftests/i915_gem_coherency.c"
6073
#endif